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ABSTRACT Corrosion is one of the most common types of damage inburied oil and gas pipelines. Corrosion
leaks can cause serious accidents and can be harmful to pipelinesduring service. The maximum corrosion
depth of an oil and gas pipeline is an important indicator for assessing the remaining strength of the pipeline.
An accurate prediction of the maximum corrosion depth is important for the safe operation of pipelines.
Machine learning has been shown to performwell in predictive assessment efforts. However, previous studies
have rarely considered the effects of corrosion characterization and parameter optimization simultaneously.
In this study, a multi-parameter maximum corrosion depth prediction model for pipelines based on GSCV-
XGBoost is proposed, which can be applied to real projects. The model performs feature extraction on the
pipeline dataset through Pearson correlation analysis, identifies the parameters that contribute more to the
maximum corrosion depth, and predicts the maximum corrosion depth of the pipeline using an optimized
machine learning model. The machine learning model used in this study was obtained by optimizing the
XGBoost model usingthe GirdSearchCV method. That is, the optimal hyperparameter combination of the
model was obtained by 10-fold cross-validation and grid searching. The prediction results werecompared
with those of five common machine learning models. The conclusions show that the GSCV-XGBoost model
performs the best in predicting the maximum corrosion depth of the pipeline with the smallest error. The
R2 and Root Mean Square Error(RMSE)scores forthe test set were 0.9886 and 0.2057, respectively. The
prediction accuracy was improved by 34.59% over that of the conventional XGBoost model.

INDEX TERMS Oil and gas pipelines, maximum corrosion depth prediction, machine learning, correlation
analysis, XGBoost.

I. INTRODUCTION
Pipelines are an important transport medium in today’s urban
development and construction, and the safety of pipelines
has always been the focus of attention from all walks of
life. Oil and gas pipelines are important energy transmission
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infrastructure [1], [2], [3]. In the process of operation, oil and
gas pipelines are very prone to destruction, such as corrosion
and rupture [4], [5], [6] due to long-term internal pressure and
the external environment. In recent years, oil and gas devel-
opment and production conditions have become increasingly
complex, and some oil and gas development technologies
have resulted new corrosion problems. Pipeline corrosion and
leakage problems occur frequently [7], [8], which seriously
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impact pipeline safety and even the safety of people’s lives
and property.

The study of the residual strength of corroded pipelines
helps assess the remaining life of the pipeline. This pro-
vides an important theoretical basis for the replacement
of pipelines, which can effectively reduce or even prevent
pipeline accidents. This is also important for improving the
development of pipeline safety performance assessments [9].
This also facilitates the subsequent repair of damaged pipes in
a timely manner for corrosion monitoring in various aspects.
Much of the current research has focused on predicting the
failure pressure of pipelines in order to assess their residual
strength. Predicting the depth of corrosion of pipelines is also
an important indicator for assessing the residual strength of
pipelines, which helps determine the residual life of pipelines
[10]. However, there are few studies in the literature that
predict pipeline depth. The depth of corrosion in pipelines is
commonly predicted using Artificial neural networks(ANN),
SVM, Bayesian regression and Decision Tree. The integrated
algorithm has a higher accuracy in handling predictive regres-
sion problems than traditional machine learning models [11].
Integration algorithms include three main categories: Bag-
ging, Boosting, and Stacking. Integration algorithms have
been used to improve machine learning by combining several
models.

The motivation of this study is to consider the influ-
ence of various factors on the corrosion depth of pipelines
and to realize an intelligent prediction of pipeline corrosion
depth through an innovative machine learning model GSCV-
XGBoost. This prediction model was obtained by optimizing
the integrated learning algorithm, XGBoost, using the Gird-
SearchCV method. The remainder of this paper is organized
as follows. Section III introduces the concepts and methods.
Section V describes the study work. Section VI presents and
discusses the results. Real application scenarios are presented
in Section VII. Finally, Section VII concludes the study.

II. RELATED WORKS
Evaluating the residual strength of oil and gas pipelines with
corrosion defects is essential for ensuring the safe operation
and maintenance of pipelines. There is a long history of
research on the residual strength of pipelines. Most research
on assessing the residual strength of pipelines has focused
on predicting the failure pressure of pipelines. Predicting the
corrosion depth of a pipeline is another important method for
assessing its residual strength. Machine learning is becoming
increasingly important for these methods.

A. PREDICTING PIPELINE FAILURE PRESSURES
Predicting pipeline failure pressures helps determine the
remaining strength and remaining life of a pipeline. Com-
monly used methods include experimental, finite element,
and data-driven methods. Traditional standard codes and
experimental methods for evaluating the residual strength of
pipelines evaluation are sometimes conservative. The pipe
failure pressure predicted by these methods is lower than the

actual blast failure pressure, and premature pipe replacement
can occur. This increases the cost of the project and does not
provide good economic benefits in practical applications.

Some scholars have gradually introduced finite element
ideas into the study and analysis of the residual value of
pipelines and have achieved good results. Yang et al. [12]
conducted a bending test study and finite element modeling
of the static strength of corroded pipes, showing that the
static strength of corroded pipes is significantly lower than
that of normal pipes. The results of this study prove that
the finite element method is significantly better than the
traditional experimental method. Yang et al. [13] designed
several different diameters and wall thicknesses of Q690
welded high-strength steel pipe model through the finite
element modeling software ANSYS, proposed Q690 welded
high-strength steel pipe cross-sectional longitudinal residual
stress distribution model, the study of high-strength steel
pipe residual working strength has important implications.
Su et al. [14] studied the bursting capacity of a variety of
steel tubes with corrosion defects under the action of internal
pressure based on the finite element method by considering
diameter, wall thickness and steel strength grade of the steel
pipe. A failure pressure prediction method for medium and
high strength corroded steel pipes was proposed. Since the
rise of machine learning, it has been proven to perform
well in various types of work [15], [16]. Kumar et al. [17]
trained API 5L X80 pipeline dataset with different defect
spacings,depths,defect lengths, and longitudinal compression
loads using ANN. In addition, a failure pressure prediction
model for highly ductile corroded pipes under combined
loads was proposed. Lo et al. [18] used finite elements to
simulate the failure of pipes with various corrosion geometri-
cal parameters and loads, trained the finite element simulated
pipe data using ANN and evaluated their performance. The
evaluation results showed that this method has a low error.
Shaik et al. [19] proposed an intelligent prediction model for
the remaining life of crude oil pipelines using feedforward
back propagation networks.The model can predict the con-
ditions of crude oil pipelines based on specific factors, such
as metal loss anomalies, wall thickness, weld anomalies and
pressure flow rate, and calculate the remaining life of the
pipeline based on the metal loss growth rate.

B. PREDICTING THE DEPTH OF CORROSION IN PIPELINES
The corrosion depth is an important index that affects the
remaining strength of the pipeline, and it also has an impor-
tant reference value for determining the remaining life of the
pipeline. Moreover, corrosion depth has a greater impact on
the pipeline than the corrosion length and corrosion width
[20]. Fang et al. [21] showed that as the corrosion depth
increases, the maximum principal stress and strain of the
pipeline also increase, and the probability of pipe failure
increases. Wang et al. [22] investigated the causes of cast
iron pipe failure and established a new corrosion pit depth
predictionmodel. It was demonstrated that with an increase in
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corrosion depth, the toughness of the cast iron pipeline gradu-
ally decreases and the corrosion pit depth has more influence
on the failure of pipeline than other factors. Ma et al. [23]
established a new formula for predicting the damage pressure
of corroded pipes made of high-strength steel materials, and
found that the corrosion depth of pipes has a greater effect
on the failure pressure of pipes than the corrosion width and
length of pipes. Chen et al. [24] utilized the fractal hypothesis
to establish a prediction model for the corrosion pit depth of
nuclear power pipelines and laid down an accurate prediction
model for the maximum corrosion pit depth of pipelines. This
is of incredible significance in the study of the remaining
work performance of corroded pipelines. The application
of intelligent algorithms makes the study of pipeline corro-
sion depth more accurate and reliable [25]. Ma et al. [26]
developed a PSO-SVM model to predict the growth of the
corrosion depth in pipelines. Balekelayi et al. [27] researched
the connection between the external corrosion depth of aging
buried oil and gas pipelines and the outer soil factors. The
expectedmodel of the outer depth of the pipeline corrosion pit
was determined using the Bayesian spectral analysis regres-
sion method. The prediction of the maximum corrosion depth
is critical to the safety of defective pipelines, however, few
studies have been conducted specifically on the maximum
corrosion depth. Ben Seghier et al. [28] considered the effect
of hyperparameter optimization on the model and developed
a hybrid machine learning model SVR-FFA to predict the
maximum pitting depth of pipelines. Velazquez et al. [29],
[30] collected nearly 300 sets of data on the maximum pitting
depth of pipelines with the corresponding pipeline character-
istics and soil conditions, and analyzed the influence of local
soil conditions and the characteristics of the pipeline itself
on the pitting depth of the pipeline. An empirical prediction
formula for the maximum pitting depth was established using
multiple regression. Most models for predicting the corrosion
depth of pipelines focus on conventional machine learning
models such as ANN, SVM, and Bayesian regression, and
do not simultaneously consider pipeline characteristics and
hyper-parameter optimization.The XGBoost algorithm is an
emerging and excellent integrated learning model that has a
significant advantage in making various types of risk predic-
tions [31], [32]. Compared with the research of Ben Seghier
and Velazquez et al. the intelligent predictionmodel proposed
in this study adopts a more advanced machine learning model
and possesses better prediction capability. This study devel-
oped an intelligent prediction framework for the maximum
corrosion depth of oil and gas pipelines based on this pre-
diction model, which can be applied to a variety of practical
engineering scenarios.

III. CONCEPTS AND METHODS
This section describes the intelligent prediction framework
for the maximum corrosion depth of pipelines proposed in
this study. The base model XGBoost applied to the intelligent
framework is also presented, along with five other compara-
tive machine learning models.

A. MAXIMUM CORROSION DEPTH PREDICTION
FRAMEWORK
Many factors affect the maximum corrosion depth of the pipe,
including the pipe and soil characteristics, involving multiple
variables related to the maximum corrosion depth. The use of
too many redundant variables affects the accuracy of the sub-
sequent model predictions and requires feature engineering.
This includes a correlation analysis of variables and feature
extraction [33] to extract important variables for the next step
of model building. The advanced XGBoost algorithm in the
field of machine learning is used to build the predictionmodel
and divide the training set and test set. Model parameter
tuning of the training set is an essential step in regression
prediction, and parameter optimization can improve the pre-
dictive power of the model [34]. Subsequently, the optimized
GSCV-XGBoost model was used to predict the maximum
corrosion depth test set of the pipe. Finally, an error analysis is
performed on the prediction results to compare the difference
between the predicted value of the model and the true value
of the sample to evaluate the prediction ability of the model.
In this study, an intelligent prediction model of the maximum
corrosion depth of a pipeline is proposed for the pipeline cor-
rosion problem, as shown in Figure 1. It includes five major
parts: data collection, feature engineering, machine learning
modeling, parameter optimization and model training, and
evaluation of prediction results.

• Data collection. The data collection process is the foun-
dation of machine learning modeling, and the model can
be trained and predicted only after a reasonable data-set
is input into themodel. The data source used in this study
was pipe and soil sample data collected by researchers
during a three-year period in the field excavation of
an onshore buried pipeline in southern Mexico. The
maximum depth of corrosion loss for each pipeline with
a diameter equal to or less than twice the wall thickness
was measured and collected, along with the correspond-
ing pipeline characteristic variables, including pipeline
design, operational, and environmental data.

• Feature engineering. Through a correlation analysis of
the maximum corrosion depth of the pipe and the related
feature variables, some feature variables with strong
correlation with the maximum corrosion depth were
extracted and used as the input variables of the model.

• Machine learningmodeling. After feature extraction, the
dataset is divided into a training set and a test set, and
the XGBoost algorithm, which is currently emerging
in the field of machine learning, is used to make prelim-
inary modeling predictions of the pipe corrosion depth
in the dataset.

• Parameter optimization and model training.Machine
learning models often have many hyperparameters, and
the value of the hyperparameters will also significantly
affect the prediction results [35]. The hyperparameter
optimization of the model and selection of the optimal
combination of hyperparameters for model training can
improve the prediction accuracy of the model.
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• Prediction results evaluation.The optimized GSCV-
XGBoost model was used to predict the maximum
corrosion depth of pipes on the test set. The results
of the prediction results are analyzed and various error
indicators are calculated. The error metric is used to
measure the difference between the predicted results
of each model and the true [36], [37], which is the
difference between the predicted output value and the
true value of the sample. The prediction accuracy and
error of the model on the test set were comprehensively
using several different error evaluation indicators.

FIGURE 1. Intelligent prediction model of maximum corrosion depth of
the pipeline.

B. XGBOOST - BASE MODEL FOR MAXIMUM CORROSION
DEPTH PREDICTION
XGBoost, whose full name is eXtreme Gradient Boosting,
is an efficient boosting integrated learning [38], [39], [40].
The core idea of the boosting algorithm is to aggregate
multiple weak learners to form a strong learner, so that the
strong learner can obtain the advantages of various weak
learners to achieve optimal model performance. XGBoost is
essentially a boosted tree model built on the GBDT model
that update the model by minimizing losses. Compared to
the traditional GBDT model, XGBoost has made significant
improvements in algorithm accuracy, speed and generaliza-
tion ability. XGBoost can efficiently process billions of data
in a parallel and distributed fashion; it can also has han-
dle sparse data and parallel learning using column blocks
[41]. In this model, XGBoost extends the loss function to a
second-order derivative, making the model closer to its true
loss. Moreover, the loss function adds a regularization term
to the basic empirical loss to optimize the complexity of
the model and prevent overfitting. XGBoost can also select
the optimal features utilizing information gain, and make the
objective function continuously approach the optimal value

by analyzing the learning error of the base model CART
regression tree and constantly updating the sample weights
at each iteration [42]. The objective function is continu-
ously approximated by analyzing the learning error of the
base model CART regression tree and updating the sample
weights at each iteration. Compared with other conventional
machine learning methods, XGBoost has the unique advan-
tage of significantly enhancing the generalization ability of
the model and improving the accuracy of the model pre-
diction. XGBoost has many hyperparameters, and parameter
optimization is extremely important for improving the accu-
racy of the model. The model participates in the adjustment
of various hyperparameters such as the number of basic tree
models (themaximum number of iterations), maximum depth
of the tree, and gamma.

This study is a regression problem, where the maximum
corrosion depth of the pipe is y, and the important vari-
ables related to y are X1,X2,X3

· · ·XN, then the relationship
between the input and output of this model is:

This study is a regression problem, themaximum corrosion
depth of the pipe is y, and the important variables related to y
are X1,X2,X3

· · ·XN. Thethe relationship between the input
and output of this model is:

f
(
X1,X2,X3

· · ·XN
)

= y (1)

The input vector set of this predictionmodel D = {(xi, yi)} ,
where each weak learner is denoted by fk, and the maximum
predicted corrosion depth of the ith sample obtained after the
superposition of K weak learners is:

ŷi =

∑K

k=1
fk (xi) (2)

Suppose the base model for the t-iteration is:

ŷ(t)i =

∑t

k=1
ŷ(t−1)
i + ft (xi) (3)

The basic form of the XGBoost loss function consists of
an empirical loss term and a regularization term (the sum of
the complexitiesof decision trees):

L =

∑n

i=1
I(yi, ŷi) +

∑t

i=1
� (fi) (4)

Then take step t as an example, the loss function can be
rewritten as:

L(t)
=

∑n

i=1
I(yi, ŷ

(t−1)
i + ft (xi)) + � (ft) + Constant

(5)

A second-order Taylor expansion of the loss function for
the first half, which is also an important feature of XGBoost,
can be rewritten as:

l
(
yi , ˆyi(t−1) + ft (xi)

)
l
(
yi, ŷ

(t−1)
i

)
+ gift (xi) +

1
2
hif2t (xi) (6)
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where gi represents the first-order derivative of the loss func-
tion, and hi represents the second-order derivative of the loss
function. Here we have used the squared loss function using:

l
(
yi , ŷ

(t−1)
i

)
=

(
yi − ŷ(t−1)

i

)2
(7)

Substituting the second-order Taylor expansion into the
loss function of sub-equation (4):

L(t)
≈

∑n

i=1

[
I(yi, ŷi

(t−1)
+ gift (xi) +

1
2
hif2t (xi))

]
+ � (ft) + Constant (8)

The loss function is simplified by removing the constant
term as:

L(t)
≈

∑n

i=1

[
gift (xi) +

1
2
hif2t (xi)

]
+ � (ft) (9)

It is also necessary to continue to derive the regression
decision tree node splitting condition, assuming that each
CART regression tree contains the weights w of its leaf
nodes and a kind of sample-to-leaf node mapping relation-
ship q. Here the mapping relationship can be expressed as
the branching structure of the decision tree, and the model
complexity� can be expressed in terms of the number of leaf
nodes T with weights w, then we have:

ft (x) = wq(x) (10)

� (ft) = γT+
1
2

λ
∑T

j=1
w2
j (11)

where j = 1, 2, 3. . .T, the jth leaf node of the t-tree regression
decision tree contains the following set of samples:

Ij = {i|q (xi) = j} (12)

Define Gj =
∑

i∈Ij gi, Hj =
∑

i∈Ij hi, where Gj and Hj
denote the cumulative first-order partial derivative and cumu-
lative second-order partial derivative values of the samples in
the jth leaf node, respectively, the loss function can be written
as:

L(t)
=

∑T

j=1

[
Gjwj +

1
2

(
Hj + λ

)
w2
j

]
+ γ λ (13)

We take out the leaf node j separately at this point: Gjwj +
1
2

(
Hj + λ

)
w2
j , when the leaf nodes of each tree independent

of each other reach the optimal value, the loss function of the
whole model will also reach the optimal value. It is derived
and the result equals 0, giving the optimal point w∗

j and the
optimal value L.

w∗

j = −
Gj

Hj + λ
(14)

L = −
1
2

∑T

j=1

G2
j

Hj + λ
+ γ λ (15)

Suppose that the regression decision tree undergoes a fea-
ture split at a leaf node, and the loss function before its split

is expressed as:

Lbefore = −
1
2

[
(GL + GR)2

HL + HR + λ

]
+ λ (16)

The loss function after splitting is given by:

Lafter = −
1
2

[
G2
L

HL + λ
+

G2
R

HR + λ

]
+ 2λ (17)

Then the information gained after splitting can be
expressed as:

Gain =
1
2

[
G2
L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)2

HL + HR + λ

]
−λ

(18)

If the information gain Gain > 0, then it means that the
objective function value becomes smaller after splitting into
two leaf nodes, andthe result of this split is considered, other-
wise it is not considered. It is necessary to iterate all features
to determine the optimal splitting feature.

C. MODELS FOR COMPARISON
When evaluating the prediction results of a model, the error

parameter metrics of the model are calculated. It is also
necessary to include different machine learning regression
models for comparison. Five commonly used regression
prediction models, BP Neural Network, Support Vector
Regression, Decision Regression Tree, Random Forest and
AdaBoost, are chosen for comparison models.

1) BP NEURAL NETWORK (BP)
BP neural network is a multilayer feedforward neural net-
work by the reverse transmission of errors [43]. The key
steps include forward propagation of the signal and reverse
transmission of error, where reverse transmission of error is
the core step of neural network training. The input values of
the neural network are computed and passed into the hidden
layer and output layer in turn, and the error between the final
output value and the desired output value is returned along
the original route.And the error is minimized by modifying
the threshold of the neurons and the weights of the neuron
connections in each layer [44]. In this study, the regression
prediction model of a BP neural network is established for
the maximum depth data set of pipe corrosion.

2) SUPPORT VECTOR REGRESSION (SVR)
The SVMmodel is a widely used dichotomousmodel that can
address classification and regression problems [45]. Support
vector regression machine SVR is an important branch of
support vector machines that specialize in solving regression
problems. SVR creates an ‘‘interval band’’ on both sides of
the linear function, and the loss is not calculated for the
data within the interval band. To maximize the distance to
the farthest point of the hyperplane, the optimized model is
finally obtained by minimizing the total loss and maximizing
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TABLE 1. Model error analysis indicators.

the interval. Important hyperparameters of the SVR model
include C and epsilon.

3) DECISION TREE REGRESSION (DTR)
Decision Tree [46] is a common supervised learning method.
Data record sets are organized into a hierarchical structure
consisting of a series of rule-governed nodes and branches
[47]. A complete decision tree comprises nodes and directed
edges, with the root node comprising a complete set of sam-
ples, leaf nodes representing categories, and internal nodes
representing features. Starting from the root node, a particular
feature is selected to distribute the samples. Further splitting
is performed where each child node acts as a parent node
fromwhichmore nodes and decision tree layers are generated
until the classification of all samples is complete [48]. Deci-
sion Tree Regression used to solve the regression problem.
Important hyperparameters for the DTR model include the
depth of the tree, the minimum number of samples required
for segmentation.

4) RANDOM FOREST (RF)
Random Forest is based on bootstrap sampling and is an
extended variant of bagging. This efficient integrated learn-
ing algorithm can be used for multi-class classification and
regression.The advantages of the RFmethod are: the principle
of the algorithm is relatively simple and easy to implement.
Compared with BP and SVR, it is suitable for more feature
parameters and has better performance in practical applica-
tions [49]. According to the characteristics, the data samples
are continuously divided according to certain conditions, and
finally the purpose of classification or regression is achieved.
The RF algorithm obtains different subsets of samples by
randomly sampling the original pipeline maximum corrosion
depth dataset, training the base learner for each subset of
samples and performing model integration and outputs. The
final output is obtained by voting to solve the classification

problem. And the final model output is obtained by averaging
the output of the base learners when solving the regression
problem, which greatly improves the model performance of
random forest greatly improved compared to that of individ-
ual learners [50]. In this model, the random forest uses a
regression decision tree as its base learner to fit the regression
problem. Important hyperparameters of the RF model are the
depth of the tree and the number of learners.

5) ADABOOST
AdaBoost [51] is a typical representation of the boosting
integration algorithm. AdaBoost completes two important
steps when working, one is to increase the weight of the
sample that was classified incorrectly by theweak classifier in
the previous round, and to reduce the weight of the correctly
classified sample.The second is to linearly combine multiple
weak classifiers to increase the weight of weak classifiers
with a good classification effect and to reduce the weights
of weak classifiers with high classification error rate [52]. In
this model, AdaBoost also uses decision trees as the basis
for its weak learners, which can fit the regression problem
well with its unique advantages. Common hyperparameters
of the AdaBoost model include the learning rate and number
of weak learners.

D. ERROR ANALYSIS INDICATORS
The results of machine learning predictions must tested using
error analysis. In this study, the deviation between the model
prediction results and true values is measured using sev-
eral error analysis parameter indicators. The error parameter
metrics used in this study are Explainable Variance Value
(EV), Coefficient of Determination (R2 ), Mean Square Error
(MSE), Root Mean Square Error (RMSE), Mean Absolute
Error (MAE) and Median Absolute Error (MedAE). Table 1
lists the specific expressions for these error metrics. EV and
R2 denote the accuracy of fitting the model sample values
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TABLE 2. Distribution of parameters.

TABLE 3. The value range of |PCC| and the corresponding degree of correlation.

to the predicted results, and the larger the value calculated
according to the formula, the more accurate the model is.
MSE, RMSE, MAE, and MedAE denote the prediction error
of the model, the smaller the value, the smaller the error. MSE
measures the average of the squared difference between the
predicted value and the true value, which is more sensitive
to the samples with larger errors.RMSE is the square root of
MSE, which is in the same units as the original data, is easier
to interpret, and is more commonly used. MAE is used to
measure the magnitude of the average model error. MedAE
is used to measure the median of the absolute values of errors
for all samples.

IV. EMPIRICAL ANALYSIS
A. EXPERIMENTAL DATA COLLECTION
All data in this study were obtained from the literature [29],
[30], the researchers Velazquez JC et al. collected 259 sets
of soil and pipeline samples over a three-year period, which
were from onshore buried oil and gas transportation pipelines
in service in southern Mexico. The soil samples included
six types of clay, clay loam, sandy clay loam, chalky clay,
powdered clay loam, and silt loam, and the pipeline samples
had the maximum corrosion depth and age. In addition to
the four groups of experimental missing data, the remaining
255 groups of pipeline characteristic data were used as the
object of study in this study. The parameters related to the
pipeline include the following:

Maximum pitting depth (mpd) and pipe exposure time (t);
parameters related to soil properties include: PH (ph), redox
potential (rp), pipe-to-soil potential (psp), soil resistivity (sr),
water content(wc), soil bulk density(sbd), dispersed chloride
content(dcc), bicarbonate content (bc), sulfate content (sc),
and coating type (ct). Among them, the coating type (ct)
is different from the other parameters, which are sub-typed
variables and it is inconvenient to count their distribution. The
data of the pipe-to-soil potential (psp) are all negative values,
and for the convenience of calculation, this study calculates

all the data of psp by taking their opposite numbers. The
distributions of the remaining parameters are presented in
Table 2. Avg stands for mean, Std is the standard deviation,
Ske is the skewness, and Kur is the kurtosis. The histogram
of each parameter is shown in Figure 2. The scatter plot of
each parameter with the maximum pitting depth is shown in
Figure 3.

B. FEATURE ENGINEERING
If the training set data aretoo complex, machine learning is
prone to overfitting, which requires dimensionality reduction
of the data to extract important variables and reduce the
complexity of the model. Feature selection [53], [54] is an
important data processing method, and filtering is the most
commonly used feature selection method forremovingirrele-
vant and redundant variables, reducingthe dimensionality of
the data, reducingthe running time of the model andimprove-
ingthe generalization ability of themodel. Pearson correlation
analysis isthe filtered approach, which is easy to calculate and
can effectively measure the relationship between features and
response variables.

To further understand the relationship between the data,
clarify the relationship between the maximum corrosion
depth and each of the remaining parameters, and identify the
input variables for the next step of machine learning, Pearson
correlation analysis needs to be performed on each data vari-
able [55]. The strength of the correlation between variables
can be judged by calculating the Pearson correlation coeffi-
cient, and the calculation formula refers to Equation 19 and
Equation 20. The larger the absolute value of the calculated
Pearson correlation coefficient, the stronger the correlation
between the variables, and conversely, the lower the cor-
relation. The closer the correlation coefficient is to 0, the
lower the correlation. The closer the correlation coefficient
is to 1 and -1, the stronger the correlation. A positive cor-
relation coefficient indicates that the relationship between
variables is positively correlated, and a negative correla-
tion coefficient indicates that there is a negative correlation
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FIGURE 2. Histogram of each parameter.
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FIGURE 2. (Continued.) Histogram of each parameter.

between variables. The correlation coefficient is expressed
in PCC, and the absolute value of the correlation coefficient
is expressed in |PCC|. Table 3 shows the value range of
|PCC| and the corresponding degree of correlation. Correla-
tion analysis was performed and plotted by Python, as shown
in Figure4.

Pearson correlation coefficient(PCC):

PCC(X,Y) =
cov(X,Y)

σxσy
(19)

cov(X,Y) =

∑n
i=1 (Xi−X(Yi−Y)

n
(20)

where cov(X,Y) is the covariance of the variables X, Y, and
X is the mean of X, and Y is the mean of Y, and σx is the
standard deviation of X, and σy is the standard deviation of Y.

As shown in Figure 4, the correlation between the variables
and the maximum corrosion depth (mpd) was ranked from
strong to weak: t > sbd > wc > dcc > ph = psp > rp > sr >

bc > sc. The correlation coefficients of the three variables sr,
bc, and sc are close to zerofor mpd, therefore the three param-
eters sr, bc, and sc need to be removed. In Figure 3, it can also
be observed that the correlation between each parameter of sr,
bc,sc and mpd is particularly weak based on the scatter plot
of each variable versus the maximum corrosion depth of the
pipeline. The remaining sevenparameters (t, sbd, wc,dcc,ph,
pspand rp) that contribute more to the maximum corrosion

depth wereselected as the control variables for mpd and the
input variables for the model. As shown in Figure 4, the
exposure time of the pipeline(t), soil bulk density(sbd), and
water content(wc) significantly influence on the maximum
corrosion depth of the pipeline.

C. MODEL PARAMETER OPTIMIZATION
In actual machine learning model training, to improve the
generalization ability of the model and reduce the generaliza-
tion error of the model as much as possible, it is necessary to
solve the problem of hyperparameter optimization. Different
hyperparameters often yield different results, and choosethe
optimal combination of models. In this study, we choose
GirdSearchCV [56], which can be understood as an automatic
parameter tuning. It consists of twomain parts: grid search for
hyperparameters and model cross-validation.

The three common tuning methods are random search,
grid search and Bayesian optimization, among which grid
search is the simplest and most widely used hyperparameter
search method [57], [58]. The grid search is the simplest
and most widely used hyperparameter search method, which
determines the optimal value by searching all points in the
hyperparameter range and ensuresthat the hyperparameter
that makes the model most accurate within the given param-
eter range is found. Cross-validation [59] setsaside a part of
the data in the training set as the validation set to evaluate
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FIGURE 3. Scatter plot of the variation of each parameter with mpd.
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FIGURE 3. (Continued.) Scatter plot of the variation of each parameter with mpd.

TABLE 4. The hyperparameters of the XGBoost model and its search scope.

FIGURE 4. Correlation analysis chart.

themodel performance, selectsthe best hyperparameters if the
amount of data is sufficient, and the test set makesthe final
evaluation index on the screened hyperparameters. In this
study, K-fold cross-validation [60], [61] is used, whichcan
minimize themodel bias due to random sampling training and
reduce the adverse effects of data division on the model. The
original data set is divided into a training set and a test set,
and the training set is thendivided into k parts on average.
Each training k-1 copy of the data isused as the training set
and the remaining 1 copy is used as the validation set, and k
models are built by training k times in total. Within a certain
range, the larger the k-value, the more times the training, the

FIGURE 5. 10-fold CV.

more the average value taken out at the end can represent
the accuracy of the model. However, the k-value cannot be
increased indefinitely and must be limited to a certain range.
Generally speaking, a k value of 10 is considered reasonable.
In this study, we use 10 times cross-validation, that is,the k
value is equal to 10.

GirdSearchCV is a training and comparison processthat
combines the advantages of grid search and cross-validation
to achieve automatic parameter tuning. In other words, the
parameters are sequentially tuned,the learner model is trained
in a given range of hyperparameters in steps, and the hyper-
parameter that gives the highest accuracy to the validation
set can be selected from all parameters. In this study, 10-fold
cross-validation is used to evaluate the performance of each
combination of parameters of the XGBoost model and to
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TABLE 5. The hyperparameter values of machine learning models.

FIGURE 6. The four-step process for optimizing the XGBoost model using
the GirdSearchCV method.

select the optimal combination of parameters that minimizes
the model error. The selected optimal model and optimal
hyperparameter combinations are used to train the entire
training set and finally used on the test set for the final
prediction.

Figure 5 showsthe10-fold cross-validation method.
Figure 6 shows the four-step process of optimizing the
XGBoost model using the GirdSearchCV method. The first
step is to randomly scramble the 255 sets of pipeline datasets
in this study and divide them into training and test sets, with
aratio of8:2.The training set has 204 sets of data and the test
set has 51 sets. The second step divides the training set into
10 equal points on average, nineof which are used as the
training set and the remaining 1 part is the verification set, and
10 partitions are carried out in turn, and a total of 10 machine
learning models are established. The third step is to select the
combination of the optimal model hyperparameters, adjust
the hyperparameters in turn according to the step size, use
them to train these 10 models, and select the combination of
the model and the hyperparameters that make the verification
set the most accurate. The fourth step is to train the entire
training set using the selected optimal model and the optimal

hyperparameter combination, and finally to make the final
prediction on the test set. The optimized GSCV-XGBoost
model was finally obtainedthrough the GirdSearchCV opti-
mization process.

The hyperparameter search for the XGBoost model was
performed. The searched hyperparameters and their search
ranges are shown in Table 4 below.

V. RESULTS AND DISCUSSION
A. MODEL PREDICTION RESULTS
Forthe BP, SVR, DTR, RF and AdaBoost models, the dataset
was divided into training and test setsaccording to 8:2. The
training set was used entirely for model training and the test
set was used for prediction of results. The optimized GSCV-
XGBoost model and the remaining five benchmark models
were used for model prediction in the test set, respectively.
The parameter settings for each model are listed in Table 5.
Figure7 shows the final result performance of the GSCV-
XGBoost model and the remaining five comparison models
on the 51 sets of test sets, showing the comparison between
the true value of the maximum corrosion depth mpd and the
predicted output value. The red dots in the figure represent
the real values of the mpd samples on the 51 test sets, the blue
dots represent the predicted output values of mpd in the test
sets of the model, and the solid blue line represents the line
of predicted values. The fit of each model is shown in the
figure. The GSCV-XGBoost model has the best prediction
effect, most of the blue prediction points are close to the
red true value points, and the overall difference between the
true value and the predicted value is very small. The three
models DTR,RF and AdaBoost fit similarly and are weaker
than the GSCV-XGBoost modelis. More than half of the blue
predicted points are closer to the red true value points, and
the rest of the predicted points deviate more from the true
values.The BP model fits weaker than these three models,
with more predicted points deviating from the true points.
Only a few of the predicted values in the SVR model are
close to the true values, and most of the predicted value points
deviate far from the red true value points. This indicates that
the SVR model is the worst fit of all the models.

Figure8 shows the performance of the GSCV-XGBoost
model and the remaining five benchmark models on the
51 test sets.

Each purple point in the figure represents a test set sam-
ple, and its x-coordinate corresponds to its true value and
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FIGURE 7. Comparison between actual and predicted values of 6 machine learning models.

y-coordinate corresponds to the model prediction value. The
closer the purple dot is to the red y = x line, the smaller
the difference between the true and predicted values of the
sample, and the better the model fit. The dashedblackline in
the figure represents the fitted curve of these sample points.
The GSCV-XGBoost model has the highest degree of overlap
between the sample points and the y = x line. The sample
points are basically located on the line or distributed on both
sides of the line, and the true value of the test set fits the
predicted value to the highest degree. The DTR, AdaBoost,
RF, and BP models are the next best fit, with some sample
points distributed near the y = x line. Most points in the

SVR model are far from the y = x line, and the fitted curves
of the sample points deviate a lot from the y = x line.
Moreover, the maximum corrosion depth samples larger than
4mm in the SVR model, their predicted values are all much
smaller than their true values. indicating that the SVR model
hasthe worst fit.

B. ERROR ASSESSMENT OF PREDICTION RESULTS
In order to accurately assess the prediction accuracy of each
model, an error analysis of the final prediction of each model
was conducted in this study. The calculated error metric
scores for each model are listed in Table 6. R2 and EV
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FIGURE 8. Fit of 6 machine learning models on the test set.
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TABLE 6. Error metrics for 6 ML models.

FIGURE 9. Histogram of error metric scores for 6 ML models.

represent the fitting accuraciesof the models. Among all the
samples in the test set, GSCV-XGBoost has the highest accu-
racy with an explainable variance value EV and a coefficient

of determination R2 of 0.9894 and 0.9886, respectively.
The EV and R2 scores of DTR are 0.6310 and 0.6261,
respectively. AdaBoost, RF, and BP have the next highest
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FIGURE 10. Prediction results of the XGBoost model and the GSCV-XGBoost model.

FIGURE 11. Flow chart of real-world application.

accuracy with their R2 scores of 0.5903, 0.5778, and 0.4758,
respectively. SVR has the lowest accuracy metrics.The EV
and R2 scores of the SVR model are only 0.3315 and 0.2764,
respectively.

MSE, RMSE, MAE, and MedAE represent the errors of
the models.The MSE, RMSE, MAE, and MedAE scores
of the GSCV-XGBoost model are 0.0423, 0.2057, 0.1401,
and 0.0999, respectively, and these prediction errors are the
smallest among the models. The prediction errors for each
of the DTR, RF, and AdaBoost models are larger than the
GSCV-XGBoost model, but smaller than the BP and SVR
models.The MSE,RMSE,MAE,MedAE scores of BP and
SVR models are higher than other models.

It shows that GSCV-XGBoost performs the best in pre-
dicting the maximum corrosion depth dataset, and it has
the highest prediction performance with the lowest error.The
SVR model and the BP model have the highest prediction
errorsand the SVR model has the lowest prediction perfor-
mance. Figure 9 shows the histogram of the scores of each

error metric parameter for the GSCV-XGBoost model and the
other five compared models.

Moreover, the results of the study were compared with
thoseof Ben Seghier andVelazquez et al. As shown in Table 6,
the prediction errors of the GSCV-XGBoostmodel proposed
in this study are smaller than those of these researchers.

C. INFLUENCE OF PARAMETER OPTIMIZATION
This study differs from other prediction models in that it
uses GirdSearchCV, a parametric optimization approach,
and whether parameter optimization is performed has a sig-
nificant impact on the prediction accuracy of the model.
To demonstrate this difference more clearly, this study
specifically compares the prediction results of the XGBoost
base model without parameter optimization and the GSCV-
XGBoost model with parameter optimization on the test set,
as shown in Figure10. The left panel shows the prediction
results of the XGBoost model without parameter optimiza-
tion on the test set, and the right panel shows the prediction
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TABLE 7. Error indicators for the XGBoost model and the GSCV-XGBoost
model.

results of the GSCV-XGBoost model. The red dots indicate
the real values ofmpd, the blue dots indicate the predicted val-
ues of mpd, and the blue curve represents the concatenation of
the predicted values. It can be clearly seen that the XGBoost
model has a poor fit between the predicted and true values of
the maximum corrosion depth, whereas the GSCV-XGBoost
model has a significantly better fit. Table 7shows the error
index scores of the XGBoost and GSCV-XGBoost models
forthe test set.From Table 7, it is evident that the XGBoost
model is poorly fitted, and the accuracy metrics EV and
R2 are 0.7456 and 0.7345, respectively. The various errors
of the XGBoost model are also relatively large, with MSE,
RMSE,MAE, andMedAE being 0.9822, 0.9911, 0.6723, and
0.4268, respectively. The accuracy of the GSCV-XGBoost
model after parameter optimization is greatly improved, and
the coefficient of determination R2 is increased by 34.59%,
and the root mean square error RMSE is reduced to 0.2057.
This also shows that parameter optimization is crucial for the
model, which can significantly improve the model prediction
accuracy and reduce the model prediction error.

VI. REAL-WORLD APPLICATION
The pipeline maximum corrosion depth intelligent prediction
method proposed in this studyis applied in a practical scenario
with the flow shown in Figure11. Pipeline data collection
should be performed first, which is an important step. The
data can be obtained from geological, pipeline design, and
periodic inspection reports, which constitute the data set for
pipeline analysis. The acquired dataset is processed for fea-
ture engineering to extract the important parameters. A max-
imum corrosion depth prediction model is constructed using
machine learning algorithms and the model is optimized.
The residual value and probability of failure of the defective
pipeline can be better assessedbased on the maximum corro-
sion depth of the pipeline predicted by the optimized model.
Subsequently, atime prediction model of the maximum cor-
rosion depth of the pipe can be added to better predict the
growth of corrosion depth. Combined with pipeline base
information, a reasonable prediction of the remaining life
of the pipelinecan be made. Relevant personnel can make
a reasonable pipeline cycle maintenance management plan
based on the predicted value of the model. This intelligent
prediction method proposed in this study can play a role
in practical engineering scenarios,such as pipeline operation
and maintenance management, engineering design evalua-
tion, asset management and optimization, and safety risk
assessment. Compared with traditional formula calculation
and finite element simulation methods, the use of data-driven
artificial intelligence algorithms can simplify the workflow

and improve efficiency. Artificial intelligence algorithms can
achieve even better performance in future pipeline research.

VII. CONCLUSION
In this study, the influence of various factors on the maximum
corrosion depth of a pipeline is analyzed and considered, and
the maximum corrosion depth prediction model of pipeline
based on GSCV-XGBoost is established. A prediction frame-
work that can be applied to practical engineering is proposed.
The pipeline features were extracted by correlation analysis,
and the feature variables important to the maximum corrosion
depth were obtained. The XGBoost model was optimized
using the GirdSearchCV method to obtain the hybrid GSCV-
XGBoost model. The prediction results werecompared with
those of the remaining five common machine learning mod-
els, and with the work of other researchers. The effects
of parameter optimization on the prediction accuracy of
the model were compared. The following conclusions were
drawn.

The GSCV-XGBoost model has the highest accuracy in
predicting the maximum corrosion depth of a pipeline. This
study testedthe prediction accuracy of the improved GSCV-
XGBoost algorithm compared with the remaining five com-
mon machine learning algorithms on the pipeline dataset.
First, the control variables of the maximum corrosion depth
of the pipeline were processed using Pearson correlation
analysis, and the input variables of the model wereob-
tained through feature extraction. Second, the basic machine
learning model XGBoost was improved. The GirdSearchCV
algorithm wasusedto tune the hyperparameters of the tradi-
tional machine learning model. A 10-fold CV wasused to
reduce the adverse effects caused by random division of data
during model training. Simultaneously, the optimal hyperpa-
rameter combination of themodel was obtained by combining
the grid search to obtain the optimized GSCV-XGBoost
model. Finally, the GSCV-XGBoost model and the remaining
five comparison models wereused to make predictions forthe
pipeline test set, and the prediction results wereevaluated for
errors. The results show that the prediction model based on
GSCV-XGBoost has the lowest error and highest prediction
accuracy among all the models. The prediction results are sig-
nificantly better than those of other researchers. The RMSEof
the GSCV-XGBoost model is only 0.2057, and the EV and
R2, which represent the prediction accuracy, are 0.9894and
0.9886, respectively. It has the absolute advantage of high
accuracy compared with other models.The GSCV-XGBoost
model has the highest fit and strongest predictive ability for
the maximum pipeline corrosion depth dataset. All the other
models suffered from underfitting or overfitting problems.
Through the correlation analysis of the data set, we also
found that the parameters that have the greatest influence on
the maximum corrosion depth are the exposure time of the
pipeline, soil accumulation density, and soil moisture content.

Parameter optimization has an important impact on the
prediction accuracy of machine learning models. In this
study, we comparedand analyzedthe impact of with and
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without parameter optimization on the prediction results of
the XGBoost models. The comparison results show that
the baseXGBoost model without GirdSearchCV optimized
parameters has a high RMSE of 0.9911, and an R2 score
of only 0.7345 forthe test set. The hybrid model GSCV-
XGBoost after parameter optimization is much better than
the basic XGBoost model in terms of prediction accuracy.
The accuracy metric R2 improved by 34.59% and the RMSE
decreased to 0.2057. This indicates that the prediction perfor-
mance of the model can be better explored by GirdSearchCV
optimization, which largely improves the accuracy of the
model.

This GSCV-XGBoost-based intelligent prediction model
proposed in this studycan refine the machine learning dataset
using feature engineering and optimize the model param-
eters by GirdSearchCV. It has a high prediction accuracy
forthe problem of maximum corrosion depth prediction of the
pipelines. However, there are still shortcomings in this model,
the data of thismodel come from the existing actual cases, and
the data samples are mostly concentrated in the soil samples
around the service pipeline. Many other variables affect the
maximum corrosion depth of the pipeline, such as the type of
steel, protection methods, and corrosives.

The specific effects of these factors on the depth of cor-
rosion of the pipeline areasfollows. Type of steel: Different
types of steelshave different corrosion resistances. Generally,
steelscontaining chromium, nickel, molybdenum and other
alloy elements exhibit better corrosion resistance. Protec-
tion methods: Oil and gas pipelines are typically protected
against corrosion by cathodic protection. Cathodic protection
technology typically involves the installationofone or more
cathodes on the pipelinesurface. Through the action of the
current to reduce the pipeline surface potential to below the
cathodic potential, the metal surface becomes a cathode to
achieve anti-corrosion. Corrosive agents: There are many
corrosive agents in the working environment of oil and gas
pipelines, such as oxygen, water vapor, carbon dioxideand
hydrogen sulfide. The concentration of these corrosives and
their time of action also affect the corrosiondepth. For exam-
ple, a high concentration of hydrogen sulfide will accelerate
the corrosion of steel, whereas carbon dioxide slowsdown
the corrosion rate to a certain extent. The inclusion of more
influencing factors should be considered in future studiesbe-
cause of the lack of these influencing factors. Deep learning
was not applied in this study, and a better model can be
built in the future by applying deep learning algorithms. In
addition, the corrosion depth growth trend of the pipeline and
the probability of failure of the pipeline can be investigated
in futurestudies.
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