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ABSTRACT The IEEE 802.1 Time-Sensitive Networking (TSN) Task Group has been developing various
standards since 2012 to provide deterministic and time-critical services through IEEE 802 networks. The
Time-Aware Shaper (TAS) is a key component in TSN that was introduced to enable precise forwarding
and shaping of time-sensitive network traffic. It allows configuring exclusive transmission slots for selected
traffic classes. To achieve the best benefit from the TAS, numerous scheduling algorithms have been
presented to find schedules for the transmission of time-critical network streams optimizing the stream
end-to-end transmission times in TAS-based networks. However, most existing works do not address how
the scheduling of critical network traffic affects the necessary number of critical transmission slots that is
limited in hardware and the resulting bandwidth utilization for other traffic classes. In this paper, we have
investigated how a selected set of heuristic and meta-heuristic algorithms for scheduling critical network
streams in TAS-based networks affects the utilization of network resources, and how the configuration of
TAS can be improved using a compression algorithm. Therefore, we make use of existing algorithms and
propose alternatives that have an influence on input data ordering, scheduling procedures, and the TAS
configuration. The evaluation showed that some of our proposed modifications can improve bandwidth
utilization and reduce the number of transmission slots for critical traffic significantly. Further on, the
compression algorithm can bring a remarkable improvement in isolated cases.

INDEX TERMS TSN, real-time, scheduling, ethernet networks.

I. INTRODUCTION
The introduction of Time-Sensitive Networking (TSN) [1]
reveals the possibility of using Ethernet technology in real-
time systems. It is particularly attractive because, on the
one hand, the coexistence of critical and non-critical traffic
in the same network is allowed and, on the other hand,
vendor dependency can be avoided, but the interoperability
between different vendors and devices can be established.
Especially in relation to time-critical network traffic (TSN
streams), it features various mechanisms to provide Quality
of Service (QoS), in particular, latency guarantee and low
jitter [2]. One of the most popular TSN shapers in research
is the Time-Aware Shaper (TAS) introduced in [3]. It works
on the principle of allocation of time slots to traffic classes.
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However, this mechanism relies on a proper configuration
that is not supported by the standard itself and is strongly
dependent on the amount of critical network traffic and the
network infrastructure. An inappropriate configuration can
lead to even worse latency, jitter, and bandwidth utiliza-
tion, or even to deadline misses that might have serious
consequences foremost when safety-critical applications are
involved. Innovations like autonomous driving come with
a high number of safety-critical applications, numerous
sensors and actuators, and consequently a higher load of
safety-critical network traffic [4].

Several papers have addressed scheduling time-sensitive
network traffic in conjunction with the configurations of
time-critical slots in the TAS. However, the majority has
focused on the adherence to the end-to-end delays of indi-
vidual network streams and has not taken the difficulties and
limitations of the TAS configuration into account. On the
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one hand, the number of configurable slots is limited by
the hardware, which is often omitted and might invalidate
the proposed algorithms. On the other hand, unusable gaps
can occur between configured slots, resulting in wasted
bandwidth. Since TSN promotes mixed-criticality, allowing
critical and non-critical network traffic to coexist in the
same network, the examination of wasted bandwidth and
resource utilization of critical network traffic becomes rel-
evant, particularly for less critical traffic. In transportation
systems like cars or trains, we will find network traffic related
to infotainment, telematics, and remote diagnostics among
others. If real-time traffic is not planned effectively regard-
ing bandwidth utilization, it can affect the performance of
infotainment, telematics, and diagnostic systems by monopo-
lizing and wasting essential resources. However, accounting
for unusable and left-over bandwidth for non-critical traffic
classes is frequently omitted.

In this paper, we introduce a set of heuristic algorithms and
meta-heuristic algorithms that schedule periodic and critical
TSN streams and take the limitations of the TAS config-
uration and bandwidth utilization into account to address
the aforementioned limitations of existing algorithms. There-
fore, we investigate the impact of our suggested algorithms
in synthetic scenarios by altering input data attributes and
sequences, scheduling optimization techniques, and specific
TAS characteristics. We examine the algorithms for their
execution time, schedulability, scalability, and bandwidth uti-
lization and give a recommendation for the choice of the
proper TAS algorithms based on the user’s requirements.
Moreover, we study the benefit of a schedule compression
proposed in [5] promising to reduce the number of configured
slots for critical traffic and bandwidth wastage.

Our main contribution is the algorithms’ design that not
only focuses on adherence to end-to-end latency but also
considers input data attributes and resource characteristics
and limitations from the beginning. The algorithms com-
prise a scheduling step and a TAS configuration step that is
mostly neglected in existing works. Moreover, to the best of
our knowledge, we present an exhaustive evaluation of the
network resource allocation for 802.1Qbv networks that is
unmatched in its scope.

The paper is structured as follows. Section II introduces
the fundamentals of this paper. The related work is addressed
in Section III. We present a system model in Section IV and
the applied scheduling algorithms in Section V. In Section
VI, we evaluate the algorithms and compare them. We draw
a conclusion in Section VII.

II. FUNDAMENTALS
A. TIME-AWARE SHAPER
TSN offers a set of shapers and schedulers including the
TAS to provide latency guarantees besides the mechanisms
for synchronization of time, reliability, and resource manage-
ment. The classification of the network traffic is a key feature
for TAS. It divides the network traffic into several network

classes based on the Priority Code Point (PCP) value in the
Virtual Local Area Networks (VLAN) tag (in the Ethernet
header) that has the integer range of 0-7, which results in
8 traffic classes. The term TSN stream defines a sequence
of one or more coherent network packets starting at a source
(talker) and being propagated to one or more destinations,
the listeners [6]. The TAS operates according to the Time
Division Multiple Access (TDMA) principle that divides the
time into several slots that can be reserved for one or more
traffic classes at the same time. The defined sequence of
non-overlapping time slots is repeated after a configurable
period. The schedule of the time slots is represented by the
Gate Control List (GCL) [3]. To implement the time slotting
principle, the standard 802.1Qbv has introduced the so-called
gates, one for each egress queue of a physical port, see Fig. 1.
Typically, 8 egress queues, one for each traffic class, are
available in physical ports [7]. According to [8], one egress
queue is enough for the highest priority traffic that includes
real-time traffic. One gate lets the traffic pass whenever it is
set active in a GCL entry. Otherwise, it is deactivated and
prevents the frames in the queue from being transmitted and
thus the queue is not considered by the transmission selection.
In Fig. 1a, the queues are encoded in a bit array in each GCL
entry. The left-most position is related to the highest priority
and the right-most to the lowest. 0 means the gate is inactive
and 1 indicates that it is active in the slot. The figure shows
8 egress queues with time-aware gates that are controlled
by the gate driver according to a GCL. The queue with
priority 7 represents the queue for scheduled/critical traffic.
This queue is exclusively served in the intervals [T0;T1]
and [T2;T3]. If several gates are active at the same time,
the transmission selection operates according to a scheduling
algorithm like strict-priority scheduling (SP) that first serves
the queues with the highest priority. The frames in the queues
are removed in a first come, first serve manner. To benefit
from the TAS, a common notion of time is necessary. This can
be provided in IEEE 802.1 AS [9] with a maximum deviation
of 1 µs.

Moreover, the gating mechanism alone does not protect
critical time slots from the intrusion of non-critical network
traffic into their slots. If the transmission of a non-critical
Ethernet frame has been initiated just an instant before the
slot start time for critical traffic it cannot be preempted
instantly. In theworst case, it means an intrusion of aMaximal
Transmission Unit (MTU)-sized packet with 1542Byte con-
sidering Ethernet data and physical layer overhead. To avoid
intrusion situations, IEEE 802.1Qbv defines the so-called
guard bands that are applied at the end of a time slot and are
associated with gates. Packets that are ready for transmission
in the interval of an active guard band are held back and
will not intrude into time slots that are not assigned for their
classes. This occurs if the guard band has a fixed size (MTU
transmission size in the worst case) and does not feature a
special logic to check if a frame can pass without causing
intrusions [3]. Fig. 1b shows the serialization on the wire
and demonstrates a use case where the guard band has a
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FIGURE 1. Example of a TAS configuration.

fixed size. One non-critical frame arrives in TAS cycle n
an instant before the guard band starts and is transmitted.
Another non-critical frame arrives in TAS cycle n+ 1. Even
though it could fit into the non-critical slot, it is held back
by the guard band and bandwidth is wasted. This illustration
also makes clear that reserved slots do not have to be fully
utilized. Unused slot times, especially in the critical slot, lead
to bandwidth wastage. In Fig. 1b, such an unused slack arises
between S1 and S2 in cycle n that could be assigned to lower
priority traffic classes. While the TDMA principle provides
benefits for critical traffic, it also shows disadvantages for
other traffic classes.

However, finding a feasible gate configuration is a com-
plex mission, since hundreds of time-critical network streams
might have to be scheduled across small-sized or large-sized
networks so far that all streams are able to meet their end-
to-end transmission deadlines. The gate times of adjacent
devices must be coordinated whenever two or more gates in
different egress ports share at least one stream. The purpose is
to avoid unnecessary delays. This requires careful scheduling
approaches that we will address in this work.

We cannot make assumptions about wasted bandwidth in
the non-critical slots since we do not have enough knowledge
about it. But we can evaluate our scheduling algorithms by the
number of necessary slots as well as resulting guard bands
and determine the wasted bandwidth in critical slots. We will
address the scheduling of TSN streams, the configuration of
the GCLs in the network, as well as the bandwidth utilization
in critical slots in more detail.

B. GENETIC ALGORITHMS
Since some of our considered algorithms use Genetic Algo-
rithms (GA) [10], we will give an introduction in this section.
A GA is inspired by the biological evolutionary process,

FIGURE 2. String encoding.

which includes natural selection and genetics. It is a random-
ized search technique that consists of several steps, see [11]:

1) Initialization: An initial population of individuals is
created. The population represents the first generation.
Each individual represents a solution to a problem and
consists of an encoded chromosome. The chromosome
has a set of genes whose values often have a bit or string
representation [12].

2) Fitness Evaluation: Each individual is assigned a fit-
ness value through a fitness function that indicates the
quality of the solution.

3) Selection: A percentage of individuals is selected for
the next generation. Individuals with a better fitness
value have a higher chance to survive.

4) Reproduction: In this step, the selected individuals are
mated and mutated by applying crossover operations
on two individuals or randomly mutating one or more
individuals. This process generates new offspring.

5) Replacement: A fraction of the individuals is replaced
by the generated offspring while maintaining the pop-
ulation size. Often, the best individuals are taken to
the next generation as described in the elitist approach
[13, p. 347].

6) Repeat or terminate: Either steps 1-5 are executed again
or a termination condition is met, e.g. number of gen-
erations or a specified runtime is reached.

Scheduling a TSN stream can be mapped to a permuta-
tion problem [11]. Each chromosome encodes a sequence
of all streams to be scheduled, and each gene, which can
be perceived as a variable, contains the unique identification
of a stream, e.g. in a string representation. The value of a
gene is also referred to as allele. The chromosome describes
the order in which the streams are scheduled from the left
to the right. Fig. 2 gives an example of a stream encoding.
During our evaluation phase, we discovered that the Position-
based Crossover (PBX) and the Swap mutator are the most
appropriate for our problem.

The PBX takes two individuals and determines a random
number of positions that is smaller than the chromosome size.
In Fig. 3, we choose indexes 1 and 4. Two new offspring are
created. The chromosomes of the offspring inherit the genes
that are determined by the selected positions, each offspring
from one of the parents. Offspring1 from Fig. 3 inherits S2
at index 1 and S5 at index 4 from Individual1. The remaining
positions of the offspring are filledwith unique elements from
the other parent under the observance of the gene order of
the parents. In our example, we would try to place the gene
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FIGURE 3. PBX operator.

with the value S2 from Individual2 at index 0 in Offspring1.
But since S2 is already present in Offspring1, we continue
with S3. S3 is not present in Offspring1 and can be placed at
index 0, etc. The Swap mutator takes one individual from the
population and selects two random genes in the chromosome.
Then, the gene positions are swapped. For more detailed
information, we refer to our previous work [11].

III. RELATED WORK
In this work, we introduce a variety of algorithms for schedul-
ing TSN streams and, in addition, provide a configuration
method for the TAS while also performing an in-depth eval-
uation of network resource usage. The scheduling problem
regarding the TAS has been addressed and reviewed multiple
times. However, to the best of our knowledge, no other work
presents a unified approach to scheduling and configuration
while also optimization bandwidth utilization and wastage.
We will first review related TSN scheduling approaches
that mainly focus on adherence to end-to-end stream delays
without considering the GCL configuration and resource uti-
lization. One of the most reviewed works in this field is from
Craciunas et al. [14]. The authors make use of Satisfiability
Modulo Theories (SMT), which determines for given formu-
las (or in this case constraints) if they are satisfiable. This
approach is able to schedule up to 1500 TSN streams in
a range of 4 hours varying the size of flows and devices.
They have mainly focused on the scheduling aspect and
the resulting runtime performance. Besides, their algorithm
allows the use of several egress queues. In terms of runtime,
our performance surpasses that of similar network topologies.
However, we cannot compare the success rate or the resultant
end-to-end delays since that data has not been provided.
The approach presented in [10] applies GAs to schedule
time-triggered traffic in time-sensitive networks. The authors
propose a GA for solving the routing and scheduling problem
of TSN streams with inter-dependencies but do not go into
detail about the GCL configuration. Given that we do not
address the routing issue or the inter-dependencies of streams,
a direct comparison with this work is not feasible. However,
we share similarities in the design of the genetic algorithm
for TAS-based scheduling, specifically in the chromosome
encoding that associates one stream with one gene and the
fitness function that outlines the resulting makespan of the
schedule.

Also, a few works exist that draw attention to the joint
scheduling of TSN streams and the configuration of the
GCLs. Dürr and Nayak [5] have implemented a Tabu Search
algorithm for scheduling TSN streams and integrated the no-
wait principle. After the scheduling phase, they perform a

FIGURE 4. Stream and delay characteristics for stream S1.

compression algorithm to reduce the number of GCL entries
and guard bands.We adopt the no-wait approach and also per-
form a modified compression function afterward. For similar
network configurations, our suggested algorithms demon-
strate superior performance in terms of runtime compared
to the cited work. Opposed to this work, we allow different
harmonic or non-harmonic periods, while [5] considers the
same period for all streams. Nonetheless, the authors have
not presented any evaluations concerning schedulability or
bandwidth utilization. Jing et al. [15] assume a fixed number
of allowed GCL entries in the network using up to 4 queues
to reduce guard bands. They solve the scheduling problem by
applying SMT, Optimization Modulo Theories (OMT), and
a custom heuristic approach. The SMT variant takes about
2 days to find feasible schedules for small use cases involv-
ing up to 100 flows. The OMT approach allows scheduling
up to 10000 streams in two days. The heuristic approach
outperforms other heuristic approaches, resulting in fewer
GCL entries that have to be scheduled, but shows a slightly
worse schedule ratio. Compared to this approach, we focus
on one egress queue for scheduled traffic. Several of our
proposed approaches can keep up or outperform the resulting
number of GCL entries for up to 800 streams and 30 switches.
However, we do not have enough knowledge about the used
network resources in the paper. Further on, we show a lower
runtime and carry out evaluations closer to industrial and
automotive use cases. Moreover, we provide more diverse
procedures to control the number of GCL entries and the
bandwidth utilization. The work presented in [16] applies
the SMT solver to schedule TSN streams. Similar to a set
of our approaches, they set the GCL period to the greatest
common divisior (GCD) of all stream periods. They evaluate
their algorithm with small use cases and state that GCD-
based approaches show a better runtime and allow reusing the
configured slots. However the authors do not report statistics
about GCL configuration or bandwidth utilization.

IV. SYSTEM MODEL
We describe the system model based on [17] and [18]. The
network is denoted as a bidirectional graph G(N ,L), where
N defines the set of network nodes and L the set of links
between nodes. Each link li,j ∈ L defines a unidirectional
logical link between the nodes ni ∈ N and nj ∈ N , (i! = j).
The method r(li,j) returns the link rate of li,j. The streams
to be scheduled are denoted by the set S. Each stream sk
∈ S is defined by the tuple ⟨pk , φk , dk , lk , ptk ⟩, with pk
denoting the stream period, φk the release offset at the talker
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FIGURE 5. No-wait scheduling of S1 in reference to Fig. 4.

referred to the start of pk , and dk the relative deadline in ref-
erence to the start of pk . We assume that the deadline equals
the period. However, this assumption can be adapted. The
resulting scheduling offset can be adjusted by the scheduling
algorithms and is described as φ∗k , φ

∗
k ≥ φk ≥ 0. The size of

sk is defined as lk including physical and data layer protocol
overhead. The stream path is denoted by ptk that consists of a
sequence of links. The function talk(sk ) returns the talker of
the stream and list(sk ) the listener. For the sake of simplicity,
we assume that each stream has one listener and carries one
Ethernet frame. Considerable stream delays are listed in the
following, cf. [17]:

• transmission delay D
li,j
tans,k = (lk ×8 bit/Byte)/r(li,j)) of

stream sk on link li,j that describes the time it takes to
put bits of sk on the wire,

• propagation delay D
li,j
prop that denotes the time it takes

for a bit to travel from one end of the link to the other
depending on the cable properties, and

• processing delay Diproc of a network node ni depending
on its switching logic.

Some stream delays and characteristics are illustrated in
Fig. 4 for an example stream S1. We focus on scheduling
TSN streams in a no-wait manner that denotes that when-
ever a stream starts its transmission at the talker, it travels
along its path without encountering other streams in egress
port queues. Thus, streams have exclusive access to net-
work resources and do not experience any queueing delays.
The consideration of queuing delays defines its own field
of research and can be performed e.g. by using analytical
frameworks like Network Calculus [19], [20]. Fig. 5 depicts
the no-wait scheduling for S1. In the upper scenario, S1 is
allocated on the link li,j with the offset φ1 = 0. The no-wait
transmission start time on the next link lj,m would be at
φ1 +D

li,j
trans,1 + D

li,j
prop + D

j
proc. Since there is already another

stream scheduled at this time step and S1 would have to wait
for its transmission, we would hurt the no-wait assumption.

Thus, we have to shift S1 on the first link li,j by the necessary
offset, in this case by the size of the occupied slots. S1 gets
an adjusted start offset φ∗1 > 0 consequently, and the no-wait
principle is met.

The remaining delays are regarded as static delays and
hardware-dependent. Consequently, the end-to-end transmis-
sion delay e2ek of sk neglecting the stream offset φk is
calculated by:

∀li,j ∈ ptk :

e2ek =
∑

li,j∈ptk\{ltalk(sk ),m}

(Diproc + D
li,j
trans,k + D

li,j
prop)

+ D
ltalk(sk ),m
trans,k + D

ltalk(sk ),m
prop . (1)

In Fig. 1, the talker does not consider a processing delay at
its end-station. We also neglect the clock deviation that must
be considered in real systems. A schedule is feasible if Fig. 2
applies to all scheduled streams.

∀sk ∈ S :
φ∗k + e2ek ≤ dk . (2)

V. SCHEDULING ALGORITHMS FOR TAS
We will present a classification of scheduling algorithms
for TAS-capable networks in Section V-A that follow the
assumptions made in the system model. Implementation
details will be presented in Section V-C. The main objective
of the presented scheduling approaches is to comply with the
stream end-to-end deadline and to minimize the makespan.
Makespan defines the effective length of the schedule begin-
ning from the transmission start of the earliest stream and
terminating at the transmission end time of the latest stream
in the resulting schedule. The goal of our work is not only
to examine which algorithms provide the best makespan but
also to investigate which scheduling variants provide the
most efficient bandwidth utilization and GCL configuration.
Therefore, we propose algorithm variants considering the
input data properties and influencing the input data ordering,
the scheduling procedure, and the GCL configuration.

A. SCHEDULING ALGORITHM CLASSES
The main part of this work is the design of scheduling
algorithms that impact schedule quality regarding end-to-end
stream delays and network resource utilization. Therefore,
we have identified a hierarchical classification of TAS algo-
rithms, as illustrated in Fig. 6. Each level of the hierarchy
has unique distinguishing characteristics. The distinction was
derived from TAS properties, other fields of applications,
and use cases and influences the makespan and the net-
work resource utilization. On the top level, we subdivide
the scheduling algorithms into harmonic and non-harmonic
variants that state how stream periods are selected. This
classification refers to the characteristics of the input data.
Harmonic periods are multiples of each other in contrast to
non-harmonic periods. Harmonic periods are characteristic
for industrial real-time communication systems, as stated
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FIGURE 6. Algortihm classification with abbreviations {.} for Section VI.

in [21] and [22]. Notably, in automotive systems also
non-harmonic periods are of relevance [23]. In general, all
scheduling algorithms create a schedule with a length of the
hyperperiod hp which is the least common multiple of all
stream periods. Each stream sk has to be scheduled hp/pk
times within the hyperperiod on each link of its path. The
schedule is repeated after each hyperperiod. The final result-
ing GCL period for each TAS-capable egress port can be
fitted into the size of the hyperperiod in case of harmonic and
non-harmonic periods or it can be transformed and reduced
to the GCD of the stream periods for harmonic periods. This
subdivision is illustrated underneath the harmonic class in
Fig. 6 and has an influence on the configuration of the GCL
of the TAS. The GCD has the size of the smallest period, all
other periods and the hyperperiod are multiples of it. The
reduction of the GCL period to the GCD helps to lower
the number of necessary GCL entries for critical traffic as
detailed in Section V-D. To be able to reduce the GCL period,
we have to subdivide the hyperperiod into several segments
of the length of the GCD resulting in hp/GCD segments,
see Fig. 7a (upper and lower scenario). The figure shows
exemplary scheduling of S1 and S2 in an egress port where
other streams have already been scheduled (occupied slots).
In principle, planning a stream sk in the GCD and hyperpe-
riod variant (HYPO)1 work similarly (Section V-C) with the
significant exception that sk is not planned beyond the bound-
aries of a GCD segment on a link. GCD algorithms do not
plan stream beyond GCD boundaries since the GCL period
will be set to GCD and the transmission behavior between
GCL periods is not clearly defined in the hardware. Fig. 7b
shows a HYPO algorithm that places S2 between two GCD
periods. The non-harmonic branch neglects the GCD branch
since the GCD of non-harmonic periods can be significantly
smaller than the stream periods and consequently lead to a
significant planning and management overhead.

The following applies to harmonic and non-harmonic vari-
ants: Each variant can be executed with a random order of
streams or with a sorted stream order. This classification
refers to the input order of data. Sorting is done in the

1We will abbreviate the hyperperiod algorithm classes with HYPO in the
following sections.

FIGURE 7. Example of a schedule on a link/port for GCD and HYPO
versions.

ascending order of the stream periods. Consequently, the
first stream to plan is the one with the smallest period. The
sorting approach can be related to the well-established rate
monotonic algorithm for task scheduling, which plans the
tasks with a lower period (higher rate) first [24].

We additionally consider the alternated and non-alternated
versions of the GCD class. The alternation follows a
load-balancing approach and means that streams with a
period that is a multiple of the GCD are planned in the
GCD segment with the least occupation first. The alternation
branches represent an optimization process for bandwidth
utilization that is integrated with the scheduling phase. Fig. 7a
shows an example of an alternating and non-alternating
approach. In both, S1 with a period of 4ms that is a multiple
of the GCD duration is scheduled in the first GCD segment.
Then S2 is scheduled, also with a period of 4ms. Since the
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FIGURE 8. The whole scheduling procedure.

first segment has now a higher occupation, S2 is scheduled
in the second segment in the alternated approach. In the non-
alternating scenario, S2 is scheduled in the first fitting slot in
the first segment.

The leaves of the classification tree describe the procedure
that solves the scheduling problem. The input streams can
be scheduled with a heuristic approach, that is specifically
designed for the scheduling problem. It is executed and eval-
uated once, one-shot (1S), with a given order of streams. The
other option is the GA. The difference to heuristics is that
GAs investigate several permutations of the stream orders
and evolve them over several generations to improve the
makespan, which represents the fitness value of an individual.

B. OVERALL SCHEDULING PROCEDURE
One scheduling algorithm is defined as a combination
of the algorithm classes that starts at the harmonic/non-
harmonic subdivision and ends at the 1S/GA leave, which
leads to 16 different combinations. One combination is, e.g.,
H_GCD_Sorted_ALT_GA. Fig. 8 illustrates the steps of the
whole scheduling procedure. Regardless of the combination
selected, we follow the same steps. The first major step is
the selection of the algorithm. Initially, we are given a set
of streams with either harmonic or non-harmonic periods for
scheduling. Based on the periods of these streams, we then
choose either the harmonic or non-harmonic variant. Sub-
sequently, we determine whether to arrange the input data
in order or leave it randomized, mapping the decision to a
scheduling class. If we operate with a harmonic class and
intend to fit the GCL period into the GCD, we choose a
GCD class. In this case, we can apply a balancing effect
by selecting the alternating approach. Then, the algorithm
extracts one stream after the other from the given order of
streams and tries to find proper scheduling slots according
to the proposed slot search strategy in Section V-C with a
1S or GA procedure. If successful, the slot occupation of
streams on all links is determined and forwarded to the GCL

setup, where designated GCL entries on each utilized link are
calculated (Section V-D). If desired, the GCL configuration
can be optimized afterward using a schedule compression
procedure that is introduced in Section V-E.

C. SLOT SEARCH ALGORITHM
The primary scheduling step consists of finding a feasi-
ble schedule using one of the 16 presented algorithms. All
algorithms make use of the slot search algorithm that we
introduced in [17]. The implementation presented in our for-
mer work [17] covers solely the H_GCD_Rand_1S approach.
In this paper, we reuse the slot search algorithm from [17] and
extend it with alternating, sorting, and HYPO variants. Dur-
ing the scheduling phase, we only consider slots for critical
traffic and assume that the whole bandwidth is available for
critical traffic.

In alignment with the slot search algorithm suggested in
[17], the goal of the scheduling algorithms is to find suitable
and non-overlapping slots for each stream sk along its path
ptk such that it does not experience any queueing delay,
only static network delays. The algorithm tries to place sk
on each link of ptk starting with the initial offset φk at the
talker. If there are no suitable slots φk is shifted to φ∗k until
appropriate free slots or no feasible solution can be found.
We look for equidistant time slots that are one stream period
apart on each link of ptk and require that slots on consecutive
links li,j and lj,m are D

li,j
trans,k + D

li,j
prop + Djproc time steps

apart to maintain the no-wait approach. Equidistant slots help
reduce the jitter of end-to-end times. Each egress port keeps
track of free and occupied time slots. Whenever a stream is
scheduled, it occupies new time slots and reduces free slots.
If sk fits multiple times in the hyperperiod we look for hp/pk
equidistant slots on each link. These steps are common for all
variants.

Fig. 9 shows a HYPO-based planning process for S1 with
φ1 = 0 and p1 = hp/2 on link li,j. S1 has to be scheduled two
times within the hyperperiod. The algorithm looks for free
slots in the interval [0;p1) and [p1;hp). Here, we can place
S1 in the free slot of the first segment and the second segment
such that the start times lie pk apart. The position of S1 within
the free slots does not have to align with the beginning or the
end times of the free slot. In some cases, φ1 has to be shifted
to find feasible slots. We proceed with the slot search on the
next link starting at φ∗1+D

li,j
trans,1 +D

li,j
prop +D

j
proc (cf. Fig. 5).

The GCD-based approaches work similarly with the dif-
ference that we look for free slots in GCD segments that are
one stream period apart. The segment-based search for non-
alternating GCD classes has already been presented in our
former work [17]. Fig. 10 and Fig. 11 show exemplary GCD
planning with 4 GCD segments of the size 2ms. A stream
with a period of 2ms, such as S1, is scheduled in each GCD
segment. The stream S2 with a period of 4ms has to be
scheduled in two segments that are one stream period apart,
e.g. in the first and the third segment (GCD index 0 and 2) or
the second and the fourth. Non-alternating GCD and HYPO
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FIGURE 9. Scheduling S1 with p1 < hyperperiod.

FIGURE 10. Scheduling S1 and S2 with non-alternating GCD.

FIGURE 11. Scheduling S2 with a different offset using GCD.

FIGURE 12. Example configuration of GCL entries on a link.

approaches apply the earliest and first fit solution, while the
alternating versions implement a load-balancing strategy that
starts the slot search in the least occupied GCD. In Fig. 10,
S2 has an initial offset φ2 = 0 ms. The non-alternating
approach searches for free slots that are big enough for l2 in
the earliest segments indexed with ⌊φ2/GCD⌋ = 0 and
2. In Fig. 11, φ2 = 2.5 ms. Thus, the non-alternating
algorithm starts the slot search at indexes 1 and 3. The
alternating algorithm examines the bandwidth occupation in
segments {0,2} and {1,3} and begins the slot search in the
least occupied combination. Other algorithm classes do not
have an influence on the slot search algorithm, but rather on
the order and the overall procedure.

D. GCL CONFIGURATION
Successful schedules provide the final transmission offsets
and the occupied slots for each stream and guarantee exclu-
sive access to network resources. After, the configuration of
GCL entries has to be accomplished. The network could set
the GCL periods of all utilized egress ports to the hyperperiod
of all streams and allocate one GCL entry for each stream
along its path. The configuration times are given by occupied
slots of the streams. However, the resulting allocation of

Algorithm 1 createCritGCLEntries(C)
1 maxTrans← setmaxTrans();
2 normSlots← normalize(C);
3 sort(normSlots);
4 refSlot ← popNext(normSlots);
5 if refSlot.start > 0 and refSlot.start < maxTrans then
6 sumUpWasted();
7 refSlot.start ← 0;
8 while normSlots not empty do
9 slot ← popNext(normSlots);

10 diff ← slot.start − refSlot.end ;
11 if diff ≥ maxTrans then
12 createGCLEntry(refSlot.start , refSlot.end);
13 refSlot = slot;
14 else
15 sumUpWasted();
16 setSlotStart(refSlot ,

min(refSlot.start, slot.start));
17 setSlotEnd(refSlot ,

max(refSlot.end, slot.end));
18 end
19 end
20 diff ← GCLPeriod − refSlot.end ;
21 if diff < maxTrans then
22 sumUpWasted();
23 refSlot.end ← GCLPeriod ;
24 createGCLEntry(refSlot.start , refSlot.end);

GCL entries could have many gaps that cannot be used by
other traffic classes. Also, the number of configurable slots
for all traffic classes in the TAS is often strongly limited.
It varies between around 128 GCL entries for smaller and
experimental setups up to 1024 entries [16]. Thus, it might
not be possible to create an exclusive entry for each stream.
In Fig. 13a a HYPO algorithm allocates nine slots, while in
Fig. 13b a GCD algorithm results in 5 slots for the same
amount of critical network traffic.

The challenges are highlighted by an example in Fig. 12:
If only one stream is scheduled in the network the GCL
period of all traversed ports could be set to the stream period.
Assigning aGCL slot to a stream sk that starts its transmission
at t = 0 means configuring at least two slots, one for the
critical traffic and one for other traffic classes. If the stream
is transmitted on a link at t > 0 then either another slot
for non-critical traffic can be created before the transmission
of sk and one after, or the preceding or the succeeding time
window is merged with the stream slot. Merging slots reduces
the number of necessary GCL entries but can lead to unused
bandwidth. In the case of more streams, we have more deci-
sions to make about configuration, merging, and GCL period.

Our slot configuration method in Algorithm 1 configures
and optimizes the GCL slots for critical streams. The slots
in between are reserved for best-effort traffic classes. The
algorithm receives the effective set of occupied stream slots
C that results from one of the scheduling algorithms.
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FIGURE 13. Merging GCL entries.

First, we determine maxTrans that represents the trans-
mission time of the MTU-sized frame with 1542 Byte on
wire depending on the link rate (line 1). If the scheduling
algorithm is a GCD variant we have to normalize the effective
transmission times to create entries in the range of the GCD
(line 2). The slot normalization is denoted by:

newSlotStartTime = oldSlotStartTime%GCLPeriod

newSlotEndTime = oldSlotEndTime%GCLPeriod .

A normalized view is presented in Fig. 13b for GCD algo-
rithms, while Fig. 13a illustrates the non-normalized view
for GCD and at the same time the normalized representation
for HYPO approaches. The normalization does not affect
HYPO variants. We sort the normalized stream slots in the
ascending order of the transmission slot start times (line 3).
The GCL period is set to GCD or the hyperperiod depending
on the algorithm classification. Starting with the earliest slot,
we first check if there is a gap between the start of the GCL
period and the start of the earliest slot refSlot (lines 5-7). If the
gap is smaller than maxTrans we merge the unused window
with the stream slot and add upwasted bandwidth.We assume
that the guard bands have a fixed size of maxTrans, as dis-
cussed in Section II-A. This chosen window size guarantees
that at least one best-effort Ethernet frame can pass if it
arrives before the guard band time in contrast to smaller
window sizes. In lines 9-10, we remove the next slot (slot) and
calculate the gap between slot and the reference slot refSlot .
If the difference is greater than or equal tomaxTranswe create
a GCL entry with the times and size of refSlot and leave
the gap between slot.start and refSlot.end for other traffic
classes (lines 11-13). In this case, slot becomes the reference
slot in the next iteration. If the difference between the slots
is smaller than maxTrans (line 14) we merge the refSlot and
slot by taking the minimum of both start times (line 16) and
the maximum of both end times (line 17). Exemplary slot
merge approaches are illustrated in Fig. 13. In GCD variants,
the start time of slot is greater than or equal to the start
time of refSlot , but the end time could be smaller since we
normalize and times and sort by start times. The merged slot
is the reference slot in the next iteration under this condition.

FIGURE 14. Schedule compression.

We repeat this procedure over all slots (lines 8-18) and finally
examine the gap between the last slot and the GCL period end
(lines 20-24). During the whole procedure, we also calculate
the wasted bandwidth by summing up all gaps that are located
in merged slots (lines 6,15). In HYPO variants, the unused
slots only occur between two adjacent critical slots (Fig. 13a)
and between one critical slot and the beginning or the end
of the GCL period, see Fig. 12. In the GCD-based variants,
a merged slot can be used by several streams running in
different GCDs, see Fig. 13b. If one normalized stream slot
overlaps with another, e.g. S1 with S2 and S3 in Fig. 13b,
we take the average of the wasted slot sizes over all affected
GCD segments, which are GCD0 and GCD1 in our example.
Particularly alternating approaches support the re-usage of
merged slots by different streams [16]. We do not include a
specific limit of GCL entries in the algorithms, but we can
extend the algorithm to do so.

E. SCHEDULE COMPRESSION
Another approach that is applied in this paper is schedule
compression. It was shortly introduced in [5]. The schedule
compression tries to shift the scheduled streams such that
the wasted bandwidth is reduced and the transmissions of
streams are closer to each other, as depicted in Fig. 14. After
the slot configuration part, we examine if schedule compres-
sion is useful. Therefore, we sort the scheduled streams in
descending order of their resulting end-to-end times. We pick
the first stream with the latest end-to-end time (reference
stream) and look for streams in the sorted list that cross its
paths. Then, we try to shift the crossing streams closer to the
reference stream so that the maximum end-to-end deadline of
the crossing streams is not missed. The shift move consists of
increasing the resulting offset φ∗k of sk . Therefore, we have
to find a shift value that is feasible on the whole path of the
crossing streams without overlapping with other scheduled
streams. We continue the procedure with the next stream
in the sorted list as the reference stream, etc. If the shift
operations lead to contiguous streams being torn apart and
resulting in worse bandwidth utilization we neglect the shift
step. In the end, we finally agree on whether to use the
previous plan or the shifted one, which depends on if the
shifted version improves the bandwidth utilization or not.

F. ADJUSTMENT OF THE GENETIC ALGORITHM
In Section II-B, we have presented how to encode an input
order of streams in a chromosome and which crossover and
mutation operators can be applied. These characteristics suit
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FIGURE 15. Chromosome encoding creating sorted groups.

TABLE 1. GA parameters.

well for random order algorithm classes. However, sorted
algorithm classes need a slight adjustment to the encoding
of the chromosome and the evolution operators to be able to
maintain the sorted order of streams (by their periods). The
sorted approaches create subgroups in the chromosome. Each
subgroup is identified by a stream period. Streams with the
same period are assigned to the same subgroup, see Fig. 15.
The subgroups are sorted in the ascending order of the sub-
group period within the chromosome. The chosen crossover
operator for this algorithm is the PBX-Sort that is a modified
PBX version, and the selected mutator is Swap-Sort, which is
also a modified version of the Swap mutator. The difference
is that the modified operators work on subgroups and not
on the whole chromosome. In summary, they are applied to
randomly drawn subgroups and can lead to changes within
the subgroups.

The selected parameters for GA algorithm classes are
summarized in Fig. 1. In general, a bigger population size
and a higher number of generations might lead to a better
solution for space exploration and exploitation. But to avoid
a runtime explosion, we have chosen a population size of
30 and a generation number of 20. The choice of the crossover
and mutation operators and rates has been experimentally
determined.

VI. EVALUATION
We have developed the set of scheduling algorithms using the
Java-based GCD method from our earlier work [17], which
solely included the H_GCD_Rand_GA variant. We have
extended the implementation with the sorted, alternating,
GA, and all HYPO variants. The GA variants have been
implemented with the help of the Jenetics framework2 that
is also written in the Java language. The evaluation was
performed on an Intel(R) Core(TM) i7-8550U CPU with a
1.88GHz clock rate and 24GB RAM. To test all variations
of the scheduling algorithms, we have varied the following
parameters:
• number of switches: {3, 5, 10, 20, 30}
• number of end-stations: ⌈ [1;2] * number of switches ⌉

2https://jenetics.io/

• number of streams: {50, 150, 200, 300, 500, 800}
• topologies: {star, ring, meshed}
• stream length: 84-1542 bytes, one frame per stream
• transmission mode: unicast

We group a set of switches and streams to small- to
middle-sized and larger industrial networks, resulting in
(cf. [25]):
• small/middle networks (SMN): {3, 5, 10} switches and
{50, 150, 200} streams

• large networks (LN): {20, 30} switches and {300, 500,
800} streams

The link speed was set to 1Gbps (Gigabit per second),
which is well represented in today’s networks. The network
topologies are randomly generated and also the streams are
randomly allocated. The selection of the stream periods has
a significant impact on the following investigations. The
set {2, 4, 8, 16, 32} ms identifies the harmonic periods.
Non-harmonic periods are {2, 4, 5, 10, 20} ms, as identi-
fied for the vehicular domain in [23]. We have executed all
combinations of algorithms from Fig. 2, which defines the
16 algorithm classes, 50 times for each combination of a
number of switches, number of streams, and experiment. The
periods of the streams differ for harmonic and non-harmonic
variants but are the same within each group. The harmonic
and non-harmonic use cases are not directly comparable. But
we would like to explain how the choice of periods affects
the experiments. The main purpose of the evaluation is to
observe the time performance, schedulability, scalability, and
bandwidth utilization based on the numerical results derived
from the execution of the scheduling algorithms.

A. TIME PERFORMANCE
A reasonable runtime is especially important for rapid pro-
totyping and reconfiguration scenarios. Fig. 16 shows the
average time performance of the different algorithms in
seconds in dependence on the number of streams. Only
feasible schedules are taken into account. It becomes appar-
ent that the runtime increases with the number of streams.
While the heuristic approaches perform linearly and under
30 seconds, the GAs show a high runtime increase for more
than 200 streams. GAs perform in a range of several min-
utes for a high number of streams. Also, the figure reveals
that HYPO-based algorithms perform worse on average.
GAs using the GCD and alternating the segments perform
better than other GA variants. A similar conclusion can
be drawn for the time performance in dependence on the
increasing number of bridges, see Fig. 16b. Experiment
NH_HYPO_Sorted_GA improves for 30 switches. One rea-
son could be that the streams are better distributed across
the network. Thus, the slot search algorithm finds fewer
conflicting streams and a faster solution.

B. SCHEDULABILITY
Especially in relation to 1S heuristic algorithms, the success
rate becomes relevant. While GAs evaluate and permutate
hundreds of different solutions, 1S algorithms only have one
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TABLE 2. Experiments classification.

FIGURE 16. Average runtime of the scheduling algorithms.

trial. The success rate is composed of the number of success-
ful executions (#s), that found feasible solutions, divided by

the sum of successful executions and failed executions (#f):

#s
#s+ #f

.

Fig. 17 shows the success rate for all algorithms related to
the number of streams and switches. For the set of {3, 5,
10} switches and {50, 150, 200} all algorithms show a 100%
success rate. For the combinations of {20, 30} switches and
{50, 150, 200} streams, all non-harmonic variants perform
worse, especially for 800 streams, while the others provide a
(nearly) 100% success rate. The GA classes present a higher
success rate for non-harmonic experiments. The illustrations
show that sorting streams does not bring any advantages for
non-harmonic use cases regarding the success rate.

C. GCL AND BANDWIDTH CONSIDERATION
Since network devices have limited memory and often a
simple logic, the number of resulting GCL entries is signifi-
cant. At this point, we remind the reader that the number of
entries calculated for critical traffic is only one part of the
actual configuration. To evaluate the configuration, we have
observed the maximum number of the resulting critical slots
among all egress ports. This number determines the nec-
essary dimensioning of the hardware. After the scheduling
and configuration step, the number of GCL entries can be
extracted for each egress port from the results. Fig. 18a
shows that the number of entries rises with the number
of switches and streams for GCD and Fig. 18b for HYPO
classes. All GCD-based variants provide lower numbers than
HYPO algorithms. Foremost, alternating variants, particu-
larly in conjunction with the GA, show the best performance
regarding maximum GCL entries. Non-harmonic algorithms
outperform the harmonic and HYPO-based variants. One
reason could be that they can better exploit unused slots due to
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FIGURE 17. Success rates of the experiments in dependence on the
number of switches and streams.

odd periods in some cases. Sorting variants perform similarly
to non-sorting variants. Moreover, we have investigated the
percentage improvement/decrease of the maximum number
of necessaryGCL slots in an egress port without (gclMaxWC)
and with schedule compression (gclMaxC):

impGclMax% =
gclMaxWC − gclMaxC

gclMaxWC
∗ 100%.

Fig. 18c illustrates impGclMax% for GCD and Fig. 18d
for HYPO variants. The compression algorithm can improve
GCD-based approaches by up to 4%, which means that less
critical transmission slots are needed. The improvement of
the number of GCL slots has more effect on algorithms
using hyperperiods because the number of GCL entries is
significantly higher for them.

Fig. 19a shows the bandwidth wastage for GCD and
Fig. 19b for HYPO classes. This value represents the band-
width wastage in the whole network over all used ports,
calculated in the sumUpWasted step in Fig. 1. Since we have
several similar experiments, we take the maximum of all
recorded values for similar tests. In this case, all HYPO vari-
ants perform better than GCD variants without alternating,

FIGURE 18. GCL metrics for a varying number of switches and streams.

particularly NH_HYPO_Rand_1S and H_HYPO_Rand_1S.
Other HYPO algorithms and GCD alternating 1S and GA
variants are located in the middle.
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FIGURE 19. Examination of bandwidth wastage for a varying number of
switches and streams.

Furthermore, we considered the impact of the compression
algorithm on the wasted bandwidth. We denote the wastage
without compression as wastedWC and the wastage after

FIGURE 20. Left-over bandwidth for other traffic classes for a varying
number of switches and streams.

compression as wastedC . The improvement (impWasted%)
is described with:

impWasted% =
wastedWC − wastedC

wastedWC
∗ 100%.

Fig. 19c illustrates that the compression algorithm can
improve the wasted bandwidth by up to 7%, particularly for
H_GCD_Rand_ALT_1S. The compression technique shows
only little merit for HYPO classes, as illustrated in Fig. 19d.

Another interesting metric is the left-over bandwidth
for other traffic classes. Therefore, we have calculated
the left-over bandwidth in the whole network. In gen-
eral, all HYPO-based algorithms show a higher avail-
able bandwidth followed by the H_GCD_Rand_ALT_GA
and H_GCD_Sorted_ALT_GA approaches, see Fig. 20.
The non-alternating GCD algorithms H_GCD_Rand_1S,
H_GCD_Rand_GA, H_GCD_Sorted_1S, and H_GCD_
Rand_GA show the worst performance. Also in this scenario,
alternating approaches show a high benefit. However, with
a higher number of critical GCL slots, we have a higher
number of non-critical slots and more guard bands that might
prevent the transmission of non-critical traffic. The actual
available bandwidth has to be observed analytically or by
using simulation. The maximum observed utilization on a
link for 800 streams and 20-30 switches was about 73%,
while we received a low utilization of up to 12% for small
networks. The average utilization was lower.

Last but not least, we have compared the resulting
makespans of feasible solutions on the one hand for all
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TABLE 3. The percentage increase of the makespan compared to the best
solution H_GCD_Sorted_GA.

TABLE 4. The percentage increase of the makespan compared to the best
solution NH_HYPO_Sorted_GA.

harmonic classes (Fig. 3) and on the other hand for non-
harmonic (Fig. 4). The tables illustrate the percentage
increase of the makespan compared to the best results.
H_GCD_Sorted_GA provides the smallest makespan over
all harmonic experiments and represents the baseline for
Fig. 3. The alternating versions provide the worse makespan,
which is due to the load-balancing strategy and not the
first-fit selection of the GCD. For non-harmonic periods,
NH_HYPO_Sorted_GA features the best makespan and
results in the baseline for Fig. 4.

D. DISCUSSION
In our research, we operate under the assumption of ideal
clocks. Yet, drifts between device clocks are typical in prac-
tical settings. The IEEE 802.1AS-2020 specification [9],
designed for TSN, guarantees a clock deviation no greater
than 1µs between the master and slave clocks. By simply
adjusting the device-to-device delays, this variance can be
seamlessly integrated into the system model, ensuring the
relevance and applicability of our proposed algorithms in
real-world contexts.

Furthermore, we have not taken into account the time pre-
cision of the devices. At present, our implementation assumes
a one-nanosecond precision. However, we can incorporate the
respective time precision into the system model by adjusting
the time scale.

Moreover, our study has primarily focused on the unicast
mode of transmission, overlooking multicast streams. While
our algorithms are capable to manage multicast streams,
we chose to emphasize unicast streams to facilitate the
description of the system model.

Additionally, our analysis focused on the wasted band-
width within critical slots only. In practical scenarios, there’s
a likelihood of encountering further bandwidth wastage
due to guard bands assigned for non-critical traffic classes.
This introduces the argument that an increased number of
configured GCL entries could amplify bandwidth wastage,
potentially diminishing the efficiency of the HYPO variants.
However, such an examination must be undertaken either
through simulation or analytical methods, given our limited
insights into the behavior of non-critical traffic, which also
varies significantly across different application domains.

VII. CONCLUSION
We have presented a set of heuristic and meta-heuristic algo-
rithms in this paper that schedule critical TSN streams in
a no-wait approach, minimizing the jitter and end-to-end
latency of the streams and the makespan of the schedule
in GA-based approaches. The algorithms apply different
modifications to input data ordering, the scheduling pro-
cedure, and GCL configuration. This has an impact on
the number of necessary GCL slots and bandwidth utiliza-
tion. We have evaluated the different scheduling approaches
regarding the runtime, success rate, maximum number of
necessary GCL entries, as well as bandwidth utilization and
wastage. If we have only harmonic periods and compliance
with the maximum end-to-end deadline is sufficient then
alternating approaches are suitable to provide a low number
of GCL entries and lower bandwidth wastage. Alternating
applies a load-balancing approach that allows a better uti-
lization of the bandwidth and a better re-usage of GCL slots.
Furthermore, if runtime is not a crucial factor then GA vari-
ants in conjunction with alternating deliver the best results
for bandwidth statistics and GCL configurations when using
harmonic periods. In general, all GA variants in harmonic
and non-harmonic branches perform better on average con-
sidering all metrics but the runtime. Sorting versions do not
show significant merit compared to non-sorted approaches.
Generally, GCD-based algorithms are helpful for reduc-
ing the necessary number of GCL entries. Harmonic and
non-harmonic approaches combined with HYPO show sig-
nificantly better results regarding the wasted and left-over
bandwidth compared to GCD variants without alternating but
can result in a high number of necessary GCL entries for
larger topologies. In this case, the limitations of hardware
have to be carefully considered and the slot merging approach
has to be adapted to consider a limited number of GCL
entries. Moreover, non-harmonic algorithm classes show a
smaller success rate for large topologies than all other algo-
rithms. Also, non-harmonic algorithms classes do not benefit
much from sorting approaches, while GA additions help to
reach a higher success rate for larger topologies. Furthermore,
the schedule revealed a slight improvement in the results in
individual cases.

In summary, the evaluations show that the modifications
of scheduling algorithms have a high impact on the network
resource usage, particularly for harmonic algorithm classes,
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and that accurately designed heuristic algorithms are well
suited to solve scheduling problems and beyond. These con-
siderations are often neglected in the literature.

In the future, we intend to embed the clock deviation and
precision into our system model. Moreover, we plan to inves-
tigate bandwidth utilization with a simulation environment to
analyze the impact of the TAS configuration resulting from
our suggested algorithms on the non-critical network traffic.
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