
Received 10 September 2023, accepted 11 October 2023, date of publication 18 October 2023, date of current version 27 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3325748

Multi-State Merkle Patricia Trie (MSMPT):
High-Performance Data Structures for
Multi-Query Processing Based on
Lightweight Blockchain
VIDDI MARDIANSYAH , (Member, IEEE), ABDUL MUIS, (Member, IEEE),
AND RIRI FITRI SARI , (Senior Member, IEEE)
Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok City 16424, Indonesia

Corresponding author: Riri Fitri Sari (riri@ui.ac.id)

This work was supported in part by the Ministry of Education and Culture, Indonesia, through the Directorate General of Research and
Development under Penelitian Disertasi Doktor (PDD) Research Scheme under Grant NKB-336/UN2.RST/HKP.05.00/2021. The work of
Viddi Mardiansyah was supported in part by Lembaga Pengelola Dana Pendidikan (LPDP), Ministry of Finance, Indonesia, under Contract
2020032102333.

ABSTRACT Blockchain technology has emerged as a promising solution to secure and decentralized plat-
forms. However, blockchain technology has high computational requirements, latency, and low throughput,
particularly for single or multi-query processing. Lightweight blockchain has emerged as a solution to
overcome these problems. It addresses performance and efficiency issues and can provide convenience in the
query process. This paper proposed a novel high-performance data structure formulti-query processing based
on a lightweight blockchain, namely Multi-State Merkle Patricia Trie (MSMPT). MSMPT combines Merkle
Patricia Trie (MPT) based indexing and linked-list storage to achieve high performance. MPT has been used
on the Ethereum network with a Key-Value database approach. The key field in this proposal is used as
crucial user data. The value field is changed to the head of the linked list, and the following data elements
will store a summary of the data based on the specified category. In this paper, a blockchain simulator was
built to discover the performance of the proposed systems. This simulator will simulate creating blocks
in a blockchain network using existing and modified blockchain data structures. The blocks created will
be compared using the query process from the conventional and proposed systems. The experimental
findings demonstrate that MSMPT outperforms existing blockchain-based data structures by requiring only
about one millisecond in query processing performance and less than 500 bytes of additional storage. The
MSMPT provides a promising solution for efficient and scalable datamanagement in lightweight blockchain,
particularly for multi-query processing.

INDEX TERMS Blockchains, blockchain data structure, lightweight blockchain, linked lists, multi-
state Merkle Patricia Trie.

I. INTRODUCTION
Evolution in the digital world has made data an indispensable
commodity for all activities [1]. Data is used as a primary
source in various application areas such as healthcare [2], [3],

The associate editor coordinating the review of this manuscript and

approving it for publication was Somchart Fugkeaw .

[4], transportation [5], [6], economy [7], [8] and industry [9],
[10]. Because this data is considered valuable, it creates an
interest for criminals to exploit it for personal acquisition or
interest [11]. Destruction or minimal alteration of data to not
arouse suspicion from data owners is one of the most feared
things [12]. Another area for improvement with data is the
availability of the data itself [13]. Data is available from only

117282

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-8653-9087
https://orcid.org/0000-0002-8841-8078
https://orcid.org/0000-0001-7156-184X


V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

one source, so in the event of a denial-of-service attack on the
data provided, the availability of data will be detrimental to
the owners and users of the data.

Data has become the most valuable asset for organiza-
tions of all sizes and types in the digital era. From financial
transactions to medical records and personal information,
data is being generated and collected at an unprecedented
scale. However, this massive amount of data also challenges
traditional storage systems and datamanagement. Blockchain
technology has emerged as a potential solution to these prob-
lems. The emergence of blockchain technology as a potential
remedy to these problems.

Since being introduced by Satoshi Nakamoto in 2008 and
implemented in 2009 as Bitcoin’s underlying technology
[14], blockchain in recent years has become popular because
of the increasing success of some cryptocurrencies. Accord-
ing to Forbes, the two most popular cryptocurrencies in
May 2022 [15] are Bitcoin and Ethereum [16]. Blockchain
technology also offers a solution to these two problems of
data security. First, it is an immutable and tamper-resistant
data structure on blockchain technology replicated among
nodes in a network. This append-only system made the data
cannot be changed. Second, it is a distributed database charac-
terized by decentralization [17], [18]. This distributed system
resolves data availability restrictions because data can be
accessed from various locations. Because this data is consid-
ered valuable, it creates an interest for criminals to exploit it
for personal acquisition or interest. In the last several years,
blockchain technology has been used in many industries,
including healthcare, public critical infrastructures, supply
chain and logistics management, access control, and medical
records. Blockchain was originally designed for recording
financial transactions or asset transfers. Thus, blockchain is
currently used to store valuable data, including ownership
or identity certificates, financial accounts, medical data, and
even data transactions from the Internet of Things (IoT).

The following disadvantages of the conventional block-
chain, which is based on the Bitcoin system: First off, the
transaction is open and entirely transparent, and the transac-
tion latency is significant [14] because of the shortcomings
of the consensus process. Decentralized design is the second
disadvantage. All existing nodes can join the blockchain or
leave.

However, the blockchain is a chain structure database,
which will cause the query inefficiently regarding the increas-
ing number of blocks grown. As of March 31, 2023, the
block height of Bitcoin reached 783,277. It means that when
the blockchain systems need to query historical data, even
for a single data, systems will need to traverse hundreds of
thousands of blocks. The Bitcoin blockchain does not hold
account balances. It only holds keys to Unspent Transaction
Outputs (UTXOs). An entire UTXO is spent (sometimes
partially received back as ‘‘change’’ as a brand new UTXO)
and is included in a transaction.

Ethereum has proposed an account-based data architecture,
which can manage transactions better to increase the overall

effectiveness and accessibility of blockchain. To accelerate
the query, Ethereum created three index trees [19], [20].

The world state in Ethereum updates the status of all
deployed and active smart contracts and all accounts, includ-
ing balances. The whole node’s state tree comprises an
RLP-encoded global account [21], [22]. It handles account
data, creates transaction set hashes using the Merkle Patricia
Trie, and organizes and manages account data [23].
Ethereum used LevelDB [24] as the world state database

in the blockchain system and stored the block data in simple
Key-Value (KV) queries, not relational queries. LevelDB is
an open-source on-disk key-value store used in various oper-
ating systems like Windows, macOS, Unix-based systems,
and Android. LevelDB enables database to record the keys
and the values in arbitrary byte arrays and organizes data
according to the key. This database supports data compres-
sion, grouping writes, and forward and backward iteration.

Below is a summary of this article’s contributions.

• This paper proposed a high-performance data struc-
ture for a multi-query processing model based on a
lightweight blockchain, which improves the multi-query
search method on the lightweight blockchain.

• A Multi-State Merkle Patricia Trie (MSMPT) is pro-
posed based on a modified Merkle Patricia Trie with a
Linked List. Each linked list associated with a critical
client account may have different state information from
other key client accounts.

• MSMPT improves query search from state storage. This
structure can improve the performance of blockchain
information retrieval while ensuring that each account’s
different states remain known.

The remaining sections are organized as follows. Section II
discusses related concepts and works, while Section III pro-
vides an overview of the proposed methodology. The details
about multi-state queries are presented in Section IV. The
experiment results and discussion are covered in Section V,
while Section VI provides a summary of the work.

II. PRELIMINARY CONCEPTS
Since its beginnings in 2009 as the technology underlying
Bitcoin transactions, blockchain is a distributed ledger sys-
tem that has been through substantial development. With the
capability to provide security, immutability, accountability,
and transparency through a distributed network, it is highly
suited for use cases that conventional infrastructure cannot
serve. This section will briefly describe specific approaches
linked to the proposed system and explain why it is essential
to the architecture of the proposed system to comprehend the
blockchain infrastructure.

A. BLOCKCHAIN ARCHITECTURE
Blockchain architecture describes the layout and organiza-
tion of a blockchain network, a distributed, decentralized
database used to store data and track transactions. A com-
bination of different technologies, such as cryptography,

VOLUME 11, 2023 117283



V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

FIGURE 1. Blockchain architecture layer.

distributed ledger technology, networking, and game theory,
works together to enable trust and consensus on the chain
[25]. The architecture preserves the same structure across
all nodes and is optimized as a monetary system. A public
blockchain system is neutral because it does not depend
on trust, unlike traditional ledgers managed by centralized
entities [26]. The blockchain architecture is composed of
different layers, each of which serves a specific purpose
in the operation of the blockchain network. A blockchain
architecture layer is presented in Fig. 1, and this structure is
also used to describe different layers and components.

The application/presentation layer, shown in Fig. 1, con-
sists of the programs end users use to communicate with
the blockchain network. The application and execution layers
comprise this stratum. Layer of application may consist of
user interfaces, software, application programming interfaces
(APIs), and frameworks. At the execution layer, smart con-
tracts and decentralized applications (DApps) are examples
of this layer. Despite the fact that transactions pass from
the application to the execution layer, they are validated
and executed at the semantic layer. The application provides
instructions to the execution layer, which implements trans-
actions and guarantees the blockchain’s deterministic nature.

The second layer, or consensus layer, shown in Fig. 1, is an
essential part of the layer in the existence of the blockchain
platform. This layer creates a new block, validates the newly
created block, and ensures that all nodes involved in the

blockchain network approve or disapprove of the activities
that occur. Several existing cryptocurrencies have consen-
suses, such as Bitcoin and Litecoin, using a Proof-of-Work
(PoW) consensus, while Ethereum uses a Proof-of-Stake
(PoS) consensus.

In Fig. 1, the communication between nodes in the third
or network layer uses a client-server topology. However,
in blockchain technology, the topology is known as peer-
to-peer to interact between nodes in the network. Block
discovery, transactions, and propagation are all handled by
this layer. The propagation layer is another name for this
layer. This layer ensures that nodes can find each other
and interact, propagate, and synchronize to maintain the
blockchain network in a legal state. Nodes perform activities
and transactions that occur on the blockchain.

The fourth layer, or the data layer in Fig. 1, is a data
structure used by the blockchain and is illustrated by a series
of interrelated blocks. All data or transactions recorded in a
block are stored in a Merkle Tree (MT). MT is a binary tree
of hashes. Each successfully mined block contains the root
hash of the MT and other information, such as block version
number, the previous hash block, nonce, and time-stamp.
MT provides security and integrity because all transactions
in a block are recorded in a root hash. So it is challenging
to change the existing transaction data because the slightest
change will affect the owned root hash value.

The last layer in Fig. 1, the infrastructure or hardware
layer in the blockchain architecture, is a data storage medium
known as a server. In the blockchain mechanism, all data is
stored not in a server but in several nodes in a distributed net-
work. When clients request content or data stored in a node,
applications search for data using a client-server mechanism.
This data search mechanism on the blockchain is conducted
on the nearest or trusted node through a peer-to-peer network
mechanism. The client-to-client or peer-to-peer blockchain
network nodes are also tasked with computing, validating,
and recording transactions in a shared ledger.

B. BLOCKCHAIN STORAGE
Blockchain storage is an innovative method of securely stor-
ing data in a decentralized network. Traditional centralized
cloud storage platforms have loopholes that can compromise
data security. Blockchain storage can solve the shortcom-
ings inherent in traditional centralized storage infrastructures.
To manage the storage in blockchain, usually, the data are
stored in a data structure that allows for the integrity of the
data to be verified (e.g., Merkle Tree [27] or Merkle Patricia
Trie [23]). The block is kept on a storage device in a log-like
structure, with the information stored in a state database for
quick access. In the event of a failure, this log is mostly used
to verify or rebuild the state database [28].

As a decentralized technology, blockchain features stores
facts and statistics. A series of blocks hold the entire trans-
action report [29]. As illustrated in Fig. 2, every block in
the chain contains transactions, block version, time-stamp,
previous hash, nonce, and Merkle Tree.

117284 VOLUME 11, 2023



V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

FIGURE 2. Blockchain data structures in general.

A block is the fundamental unit of the blockchain and
consists of numerous interconnected pieces with substan-
tial value. The block contains the previous hash block,
time-stamp, block version, nonce, Merkle root, and list of
transactions (which comprise a transaction and the transac-
tions counter). The previous hash block and Merkle root hash
tree in a block primarily use encryption hashing algorithms
to safeguard data and transactions.

Cryptocurrencies use specific hashing algorithms that
implement cryptographic hash functions and maintain
blockchain functionality and transaction processing. Bitcoin,
for example, employs the SHA256 algorithm, Ethereum
employs the Ethash method, and Litecoin employs the Scrypt
(pronounced es-crypt) algorithm. SHA-256 is more complex,
secure, and consumes more energy, making it suitable for
large-scale mining operations. Scrypt is faster, simpler, and
less energy-consuming, making it more accessible to individ-
ual miners. Ethash is a memory-hard algorithm specifically
designed for Ethereum, making it more resistant to ASICs
and fostering decentralization.

The Merkle root tree hash logs all transactions. Every new
transaction made by a user on the blockchain network will
be stored on the Merkle Tree. The Merkle root hash created
from all transactions at that moment will be saved and formed
into a block. When a new transaction attempts to change
the contents of a block, all fields must be updated to reflect
the changes. Digital signatures mostly rely on the Merkle
root tree hashes to prevent malevolent users from purpose-
fully changing data. Digital signatures employ a variety of
encryption algorithms. These digital signatures complicate
the conversion process for hackers; to escape detection, they
must destroy the block containing the record and those related
to it.

Blockchain is a network of interconnected blocks by cryp-
tographic signatures, with each block containing data. The
genesis block is the initial block in a blockchain network.
The new block created will include the header data from the
previous block and all the transaction data itself. After this
new block is connected to the previous block and informed
of all connected nodes in the blockchain network and as
confirmation of approval for adding this block from other

nodes, the block can no longer be changed or tampered
with. If new data needs to be stored using the append-only
mechanism, a new blockchain blockmust be introduced to the
network [30].

C. BLOCKCHAIN QUERY
Blockchain query refers to retrieving data from a blockchain.
There are several ways to query blockchain data, depending
on the blockchain platform, the type of data, and the use case.
Blockchain query is essential to build decentralized appli-
cations, analyze blockchain data, and explore blockchain
transactions.

A query on the blockchain is an operation used to get
information from a transaction or block on the blockchain
network. Queries on the blockchain usually refer to requests
for specific information sent to the blockchain network.
This operation can be performed by anyone connected to
the blockchain network, provided they have access to the
required private key.

In the blockchain, two types of queries are commonly
performed. The first is a single query, an operation per-
formed to get information from a single block or transaction
on the blockchain. An example of a single query is get-
ting information about an account’s balance or checking
the transaction’s confirmation status. The second query is a
multi-query, an operation performed to simultaneously get
several blocks or transactions on the blockchain. An example
of a multi-query is getting information about several transac-
tions that occurred in a certain period or checking information
about several addresses simultaneously.

In processing queries on the blockchain, several protocols,
such as consensus and encryption protocols, are used to
ensure data security and validity. This query process ensures
that the information the blockchain provides is reliable and
valid.

The blockchain systems query process has at least four
layers: storage, transaction, consensus, and network. Every
layer is entirely adjustable for the specific demands of various
technological variants, with all their benefits and drawbacks
[31]. Fig. 3 shows the simplified architecture of a blockchain
for querying data using four layers.

VOLUME 11, 2023 117285



V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

FIGURE 3. Simplified architecture of a blockchain for querying data using
four layers.

In Fig. 3, when a transaction occurs, and a block with a
certain consensus is generated, the newly created block is
linked to the existing block and stored in distributed storage.
When a query transaction is requested by a user/node, the
system will read all data stored in storage to respond to
the query request. Searching for this data will depend on
the size of the data saved in storage. The bigger the data
stored, the query process will be very long. The more data
is saved, the longer the query process. Because the system
is decentralized, data can be searched by reading the storage
closest to the user who requested the query.

Challenges with querying blockchain data include limited
APIs, decentralization, lack of query language, and data con-
fusion and entanglement [32]. The more blockchain-based
applications, the more data need to process and store. As a
result, eventually, there will be a problem with enough data
flowing and bandwidth increasing.

D. LIGHTWEIGHT BLOCKCHAIN
As a new technology approach, a lightweight blockchain is
a simplified or modified version of a traditional blockchain
that enables trustless, secure data transactions between nodes.
The architecture of blockchain technology demands heavy
computation and energy consumption, making it difficult
for resource-constrained devices to participate in the net-
work. Lightweight blockchain is simplified and designed to
be less resource-intensive than traditional blockchain, but
data security is not compromised. This strategy is suitable
for applications and devices, including Internet of Things
devices, that require data integrity but have limited com-
putational resources [33]. An experiment demonstrated, for
instance, that a lightweight blockchain-based network could
accommodate up to 1.34 million authentication and verifica-
tion processes per second, which is sufficient for use in IoT
networks with limited resources, especially in the healthcare
industry [34]. To better understand the research opportunities
and restrictions, the characteristics of current research and the
limitations of blockchain for IoT on lightweight blockchain
for IoT proposals must be rigorously studied [35].

A lightweight distributed blockchain comprises sev-
eral modules, including a consensus process, a ledger
synchronization protocol, and shared storage persistence. The

distributed blockchain module makes memory restrictions on
computing nodes easier [36]. However, using a distributed
blockchain module may increase consensus’s complexity
and communication costs. Therefore, selecting a consen-
sus mechanism and query process is crucial in designing a
lightweight blockchain.

E. RELATED WORKS
A query process can be an exponential mechanism [37].
The exponential mechanism defines a probability distribution
over all outcomes and generates a random one from the
distribution. Many researchers have conducted appropriate
research in these fields to understand better how to increase
the efficiency of the blockchain query process.

EtherQL was initially developed by Li et al. [38] as an
effective querying layer for Ethereum. Range queries and
top-k queries, two highly effective query primitives that may
be quickly integrated with other applications, are provided by
this technology for analyzing blockchain data. Different lev-
els of abstraction are provided by EtherQL, making it suitable
for application developers, researchers, and data analysts.

Yue et al. [39] demonstrate their experience using
SQL-based databases for blockchain technology analysis,
detail the features of the Bitcoin blockchain that make it a
compelling database case, compare and contrast the three
approaches, and offer recommendations for practical applica-
tions. They discovered that querying blockchains with SQL
can be a valuable instructional strategy.

Riadi et al. [40] proposed a system framework design
using the Inter-Planetary File System (IPFS) and Blockchain
technology with a case study of COVID-19 data. Combining
these technologies allows the data stored in the Electronic
Health Record to be safe and always available. All data is
secured with blockchain cryptographic algorithms and can
only be accessed using their user private key. This system can
maximize the use of private keys as access rights to maintain
the integrity of the COVID-19 diagnosis and certificate data.

Jiahe et al. [41] suggested a blockchain-based intelli-
gent manufacturing security model and implemented a novel
Merkle Patricia Trie to enhance the blockchain’s structure and
enable quick node status queries. Because theMerkle Patricia
Trie degrades the performance when supporting the data
operation with high data volume and concurrent operation.
Jiahe et al. propose a cache-based Merkle Patricia Trie and
lock-free concurrent that can reduce the time complexity of
data injection and improve the acceleration of block genera-
tion and query process.

Yang et al. [42] proposed LedgerDB, a centralized ledger
database designed for secure and tamper-proof recording
of application transactions. LedgerDB provides universal
auditing and verification capabilities for all parties requiring
transaction recording integration. This LedgerDB is proposed
to be deployed on Alibaba Cloud. Another Yang [43] paper
tells about the concepts and principles of verification in
LedgerDB, which emphasizes the importance of external
solid audit capabilities in centralized ledger databases.

117286 VOLUME 11, 2023



V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

Kong et al. [44] proposed a new world state by enhancing
the entire node organization mode and the balancing state.
State creation’s organization and insertion techniques are
redefined as a state tree is built for some states in blocks. Their
research shows that the suggested strategy lowers memory
usage and boosts retrieval effectiveness.

Xing et al. [45] discovered that the current blockchain sys-
tem only supports traversal queries using transaction hashes
as keywords and needs to perform better in data management.
The account’s past transactions can now be accessed more
quickly thanks to a query mechanism based on the account
transaction trace chain (ATTC). They suggest an account
transaction chain-index structure based on sub-chains. The
account transaction chain is broken up into smaller chains,
and a hash pointer links the final blocks of each chain. The
sub-chain query mode in ATTC shortens the query path by
converting the block-by-block query mode to the sub-chain.
In order to reduce the cost of building the index and use fewer
storage resources, several transactions from the same account
are combined and stored in the same block.

III. HIGH-PERFORMANCE DATA STRUCTURES FOR
MULTI-QUERY PROCESSING BASED ON
LIGHTWEIGHT BLOCKCHAIN
Query processing in the lightweight blockchain is a vital sys-
tem performance aspect. A lightweight blockchain is a type
of blockchain that tries to lower the storage and processing
needs of the blockchain system while preserving its secu-
rity and decentralization. Lightweight blockchain also uses
a combination of cryptographic techniques and optimization
strategies. In a lightweight blockchain, query processing is
conducted by the network nodes responsible for verifying
transactions and maintaining the blockchain [46].
The information saved in a block is merely the Merkle root

information, as explained in Fig. 2, and the transaction data
that takes place will be stored in aMerkle Tree. Each non-leaf
node in a Merkle Tree is identified with the hash value of its
offspring node labels, while every leaf node is identified with
the hash value of a data block. The Merkle Tree considerably
lowers the amount ofmemory needed for verification and aids
in confirming the accuracy and authenticity of data.

When a transaction in the Merkle Tree is tampered with
unauthorized, the miners can detect it because the transac-
tions stored in the Merkle Tree store the hash value of each
node in the position of the parent node above. So every time
there is a change in transaction details, such as the amount
to be debited or credited or the address where the payment
is made, the change will be forwarded up to the hash at the
top level and finally to the Merkle root. The Merkle Tree
is the best solution regarding time complexity for searching
for a transaction on a block. Merkle Tree is designed for
single queries only, for example, for finding a transaction
history. Unfortunately, currently, the requirement to query
process not only for a single transaction but also a query
process for a multi-transaction that has been made for a single
user, for example [47]. Thus, the current system needs a new

FIGURE 4. Merkle Patricia Trie structure.

or modified blockchain data structure to process multiple
queries.

Ethereum uses a Merkle Patricia Trie as its primary data
structure for storing the world state (stores the account states,
including account balances and nonce values. Each node in
this tree represents an account.), transactions (records trans-
actions that update the world state tree. These transactions
are stored immutably in the blockchain), and other related
data [48]. This specific data structure combines aMerkle Tree
and a Patricia Trie, offering benefits of both structures, such
as efficient data storage and quick data retrieval.

A data structure known as the Merkle Patricia Trie offers
a mechanism to authenticate all (key, value) bindings cryp-
tographically. As a result of its complete determinism, trees
with matching (key, value) connections are sure to be identi-
cal. These matching connections make inserts, lookups, and
deletes efficient, with a time complexity of O(log(n)). Fig. 4
depicts an illustration of the structure of Merkle Patricia Trie
employed by the Ethereum network.

Fig. 4 illustrates the three different nodes. The extension
node comes first and holds a link to the subsequent node
and a portion of the key field shared by several nodes. The
branch node is a node that has pointers to separate nodes
that share the same key prefix. The last is a leaf node, which
contains a value field and the final portion of the key field
(also known as the key-end). A prefix from each of the leaf
node’s parents is concatenated to form the key field to the
leaf node, which ends in the leaf node. As mentioned above,
Ethereum uses Merkle Patricia Trie on these three trees: the
state root, transaction root, and receipts root. Fig. 5 shows the
original Ethereum block header.

This paper proposes a novel structure of blockchain by
modifying the Merkle Patricia Trie structure used on the
Ethereum network and combining it with the Linked List
structure to be implemented on a lightweight blockchain
network. The approach is to use a Merkle Patricia Trie

VOLUME 11, 2023 117287



V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

FIGURE 5. Ethereum block header.

FIGURE 6. Merkle Patricia Trie with Linked Lists structure.

combined with a linked list data structure. The Merkle Patri-
cia Trie in this proposed system uses the same LevelDB
(key, value) database; however, the ‘‘value’’ field is used
as the head value of the proposed linked lists. The next
element in the linked lists is a detailed transaction or summary
transaction. Therefore, it is expected to have more efficient
query processes and data storage than the three Merkle Patri-
cia Tries used in Ethereum. This paper proposed a novel
high-performance data structure for multi-query processing
based on a lightweight blockchain, the Multi-State Merkle
Patricia Trie (MSMPT).

The proposed form of data structure in MSMPT, imple-
mented on a lightweight blockchain by modifying Merkle
Patricia Trie structure and combined with Linked List,
is depicted in Fig. 6 and Fig. 7. The grey color in Fig. 6 is
the additional linked lists structure that combined in Merkle
Patricia Trie.

In Fig. 6, the existing Merkle Patricia Trie structure is
modified by combining it with the structure of the linked list.

FIGURE 7. Proposed additional Merkle Patricia Trie with Linked Lists into
lightweight blockchain structure. (a) blockchain structure, (b) modified
blockchain structure.

The unique keys stored in the root, branch, extension, and leaf
nodes are still used. However, the value that accompanies the
unique Key is changed to a pointer that points to a linked list.
Fig. 6 shows that one unique Key will have a pointer pointing
to a series of linked lists. Each element in the linked list will
store different information according to the system’s needs.
When a user makes a new transaction, the data stored in the
user’s element-linked lists will also be updated so that the data
stored in theMerkle Patricia Trie with Linked Lists are always
the latest.

Fig. 7 shows the modifications made to the blockchain data
structure in this paper. A detailed explanation can be seen
in Fig. 7 (a), which shows the existing data structure on the
blockchain. Fig. 7 (b) shows the proposed Merkle Patricia
Trie data structure that has been combined with Linked Lists
and will be implemented on a lightweight blockchain.

IV. MULTI-STATE MERKLE PATRICIA TRIE WITH LINKED
LISTS
This section will explain the detail of the proposed Merkle
Patricia Trie with Linked Lists data structure created to per-
form multi-query processes. With the multi-query process
conducted. It is expected to show multi-states for each user
in the lightweight blockchain network.

In order to get good test results, we built a lightweight
blockchain simulator ourselves. The block creation pro-
cess in the simulator uses the consensus Proof-of-Work
(PoW) approach. The PoW consensus refers to a lightweight
blockchain using a difficulty level that can be set or adjusted
so block creation does not take long [49]. The PoW con-
sensus approach was chosen in this simulator because this
consensus is the most popular consensus mechanism used in

117288 VOLUME 11, 2023



V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

Algorithm 1 Creates Blocks With Adjustable Difficulty
Levels
Input: Block(B), difficulty
Output: B.compute_hashing and nonce
01: Define Class Block:
02: Define Function __initialize(Me, index, transactions,

time-stamp, previous_hash, merkleRoot, MPTwLLroot,
nonce= 0):

03: Me.index � index
04: Me.transactions � transaction
05: Me.time-stamp � time-stamp
06: Me.previous_hash � previous_hash
07: Me.merkleRoot � merkleRoot
08: Me.MPTwLLroot � MPTwLLroot
09: Me.nonce � nonce
10: Define Function compute_hashing(me):
11: block_str � json.dump(Me.__dict__, sort_key=True)
12: Return sha256 (block_str.encode()).hexdigest()
13: Define Function proof_of_work(Me, block):
14: nonce� Rnd()
15: compute_hashing � block.compute_hashing()
16: While Not compute_hashing.startswith(’0’ ∗ difficulty):
17: nonce � Rnd()
18: compute_hashing � block.compute_hashing()
19: Return compute_hashing
20: Define Function add_block(Me, block):
21: block.previous_hash � block.parentcompute_hashing()
22: block.hash �Me.proof_of_work(block)

cryptocurrencies, such as Bitcoin, to validate transactions and
prevent double-spending. It allows decentralized networks to
operate securely, with no centralized authority.

Regarding security, PoWensures that only legitimate trans-
actions are recorded on the blockchain. It requires miners to
solve complex mathematical puzzles, making it difficult for
bad actors to tamper with the blockchain. The time, energy,
and cost of attempting to alter transactions make it highly
unlikely for scammers or hackers to succeed. The major
drawback of this consensus is energy consumption, which
is why this paper uses the adjustable difficulty level in the
simulator.

In the blockchain simulator, several default values must be
set before a block can be created, including the maximum
number of current users, the total number of those who will
make transactions, the number of transactions made for each
user, the overall value of activities stored per block, the
number of miners that are responsible for creating the block,
and the level of difficulty determinedwhen creating the block.

Algorithm 1 shows block generation in the blockchain
simulator. Fig. 8 explains the detail of the block creation pro-
cess using the PoW consensus approach, with the target hash
being searched for using an adjustable difficulty level using
a sequence diagram. Algorithm 2 shows the creation of the
Merkle Tree for all the transactions made by the users/nodes.

In Algorithm 1, the block creation process in the
blockchain simulator uses the PoW consensus approach. The
simulator user determines the difficulty level used in this
algorithm. The difficulty level value entered determines the
number of consecutive zeroes that appear sequentially in the

FIGURE 8. Detailed sequence diagram of mining block using new data
structure Merkle Patricia Trie with linked lists.

target hash being searched. The greater the specified diffi-
culty value, the more zero values appear sequentially. The
mining process for a block will take longer because the possi-
bility of getting several zero values that appear sequentially is
less likely. The nonce value is unique as a critical value used
to get the hash of the target and can verify the block validity.
The nonce value is got randomly and iteratively until a target
hash value is obtained with the number of zeros appearing
sequentially, and a new block is created.

Fig. 8 shows the block creation process using the proposed
new data structure Merkle Patricia Trie with Linked Lists.
When the user makes n-blocks, the user must enter several
setting parameters expected to produce the desired number
of blocks in the simulator application. Then, the blockchain
simulator will create an initial block, known as a genesis
block, and store it as the first block with a zero index and a
zero nonce value because this block only had a hash value
without difficulty level. The simulator will create the next
block regarding the previous block’s hash value (in this case,
the Genesis block). When another new block is created, the
previous hash value in the new block is referred from the hash
value of the previous hash block. When the mining process
of a block is started, the simulator will require two additional
input values. The first one is the root hash value of a Merkle
Tree (the mechanism for finding/generating the hash root
value of a Merkle Tree can be seen in Fig. 2 and Algorithm 2)
based on the maximum number of transactions to be recorded
in a block that the user has determined. The second value of
the Merkle Patricia Trie with Linked Lists is the root hash
value. The process of the Merkle Patricia Trie with Linked
List to obtain the hash root value will be explained using the
sequence diagram in Fig. 9.

Merkle Trees are used in blockchain technology for several
reasons, contributing to the system’s efficiency, security, and
scalability. First is data integrity validation. Merkle Trees

VOLUME 11, 2023 117289



V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

Algorithm 2 Create a Merkle Tree to Store Transactions in
the Form of a Hash tree
Input : MerkleTree(nodes□MaxUserTrx ∗ MaxTrxPerUser),

List � MaxTrxPerBlock
Output : nodes.getRootHash
01: Define Class Node:
02: Define Function __initialize(Me, left, right, value):
03: Me.left � left
04: Me.right � right
05: Me.value � value
06: @staticmethod
07: Define Function doubleHash(value:str):
08: Return hashlib.sha256(hashlib.sha256(value.encode()).

digest()).hexdigest()
09:
10: Define Class MerkleTree:
11: Define Function __initialize(Me, values: List[str]):
12: Me.__buildTree(values)
13: Define Function __buildTree(Me, values: List[str]):
14: leaves � [Node(None, Node,doubleHash(e)) For e In
values]
15: If Len(leaves) % 2 Equals 1:
16: leaves.append(leaves[-1:]) # duplicate last element IF

odd number of elements
17: Me.root � Me.__buildTreeRec(leaves)
18: Define Function __buildTreeRec(Me, nodes: List[Node]):
19: half � Len(nodes) // 2
20: If Len(nodes) Equals 2:
21: Return Node(nodes[0], nodes[1], Node.doubleHash

(nodes[0].value + nodes[1].value))
22: left �Me.__buildTreeRec(nodes[:half])
23: right � Me.__buildTreeRec(nodes[half:])
24: value � Node.doubleHash(left.value + right.value)
25: Return Node(left, right, value)
26: Define Function OutputTree(me):
27: Me.__ OutputTreeRec(Me.root)
28: Define Function __OutputTreeRec(Me, node):
29: If node != None:
30: Display(node.value)
31: Me.__OutputTreeRec(node.left)
32: Me.__OutputTreeRec(node.right)
33: Define Function getRootHash(Me):
34: Return Me.root.value

can effectively validate data integrity in a blockchain using a
cryptographic hash method. This validation ensures that any
changes in the data can be easily detected and the original data
can be verified with no entire dataset. The second is reduced
disk space. Compared to other data structures, Merkle Trees
take up very little disk space, as they only store the hash
values of the data blocks. This hash value allows for more
efficient storage of transaction data. The third is efficient
verification. Merkle Trees enable faster and more efficient
data verification by only requiring a few hash values to
prove the integrity of a transaction. This efficiency of data
verification reduces the computational resources needed for
verification. The last one is the decreased network traffic.
By breaking down the data into smaller pieces and using hash
values, Merkle Trees reduce the data sent over the network
for verification. This capability to reduce the data leads to
reduced network traffic and faster transaction times.

Algorithm 2 shows the process of creating the Merkle
Tree. Creating a Merkle Tree in this simulator depends on
three data variables inputted into the simulator: MaxUserTrx,
MaxTrxPerUser, and MaxTrxPerBlock. MaxUserTrx is the
data variable used to determine the number of users/nodes
that will actively make transactions on the simulator. The
data variable MaxTrxPerUser is the data to determine the
number of transactions made by the user/node.While the data
variable MaxTrxPerBlock is used to determine the number of
transactions that will be recorded in the Merkle Tree, which
will be hashed root and stored in a block. In Figure 2, the
evidence shows that each transaction will be on a leaf on
the Merkle Tree. If the number of transactions is odd or
Not divisible by two, then the transaction will be duplicated.
So that the hash process at the top level will still be able to
create a good root hash value.

Fig. 9 shows the sequence diagram of the proposed
Merkle Patricia Trie with Linked List as a new structure
of lightweight blockchain. Ethereum blockchain uses the
Merkle Patricia Trie as one of its crucial data structures
in the storage layer. There are four reasons Ethereum uses
the Merkle Patricia Trie. First is efficient and secure data
verification. Merkle Trees enable efficient data verification
in a decentralized blockchain network, ensuring the shared
data can be verified and trusted with little processing power.
The second is support for key-value maps. Unlike binary
Merkle Trees, which are suitable for authenticating infor-
mation in a ‘‘list’’ format, the Merkle Patricia Trie handles
key-value maps, making it suitable for state representation.
Third is the immutable state tree. Merkle Patricia Tries are
used in Ethereum to create an immutable state tree, which
helps maintain the integrity of the state data and allows for
the generation of proofs for including transactions or state
changes. The last one is Merkle proofs. Merkle Patricia Tries
allow for the generation of Merkle proofs, enabling users to
authenticate a small amount of data and extend that authenti-
cation to large databases of potentially unbounded size. This
feature is helpful for light clients that only download the chain
of block headers.

Ethereum uses Keccak to create the Merkle root in the
Merkle Patricia Trie since it provides a secure and efficient
hashing mechanism for a tree structure that is well-suited to
represent and update the state of the Ethereum blockchain.
Keccak, also called SHA-3, is a brand-new hash algorithm
unrelated to the SHA-1 and SHA-2 families. In this proposed
method, the simulator still uses the algorithm. The blockchain
simulator uses the function Keccak taken from Crypto.Hash
library.

Ethereum uses RLP (Recursive Length Prefix) encoding
in its Merkle Patricia Tries to provide a space-efficient and
standardizedmethod of transferring data between nodes. RLP
standardizes the space-efficient format of data transit between
nodes. RLP is the primary encoding technique for serializing
things in Ethereum and is used to encrypt arrays of binary
data that can be nested in any order. The function RLP in the
simulator is imported from the PyPI library.

117290 VOLUME 11, 2023



V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

FIGURE 9. Sequence diagram of Merkle Patricia Trie with linked lists.

In Fig. 9, recording data using theMerkle Patricia Trie with
Linked Lists are made by finding the key field value of the
transaction data. As mentioned, Merkle Patricia Trie uses key
and value databases. If the key field value is not found in the
data in theMerkle Patricia Trie, a new extension node, branch
node, and leaf node will be constructed. The value fields in

the Merkle Patricia Trie hereafter will store the information
of the pointer of a new linked list of transactions. If the key
field value of the transaction data sought is found, adding an
extension, branch, or leaf node is not performed. However,
it only conducts the updating process of the data stored in the
linked list.

VOLUME 11, 2023 117291



V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

The Merkle Patricia Trie with Linked Lists, which has
three different nodes—branch nodes, extension nodes, and
leaf nodes—develops as shown in Fig. 9. Branch nodes,
these nodes represent the internal nodes in the tree and have
up to 16 child nodes (since Ethereum addresses are repre-
sented as 256-bit numbers, and each branch node represents a
16-way radix tree). Each child node can be another
branch node, an extension node, or a leaf node. The hash
of a branch node is derived from the hashes of its child
nodes. Extension nodes are used to optimize the storage and
traversal of the tree by compressing chains of single-child
nodes. An extension node contains a shared nibble sequence
(a standard portion of the Key between two nodes) and a
pointer to the next node (a branch node or a leaf node).
The hash of an extension node is derived from the shared
nibble sequence and the hash of the next node. Leaf nodes
represent the data stored in the tree (e.g., account balances,
contract storage, or contract code). A leaf node contains a
key and a value. The key field is the Ethereum address (or
storage location), and the value field is the RLP-encoded data
associated with that address. However, the value in the leaf
node is modified to store the pointer head address of the
linked list structure to be created for each user/node. Linked
list structures are used to store data in leaf nodes, allowing for
efficient updates and deletions.

V. EXPERIMENTS
The proposed system has been implemented and tested on
a blockchain simulator environment to validate the feasibil-
ity of the proposed system. This section presents a detailed
evaluation of MSMPT as a high-performance data structure
for multi-query processing based on lightweight blockchain.
The experimental setup is described first, then the evaluation
findings and discussion are presented.

A. EXPERIMENTAL SETUP
The experiment was performed and tested using Python pro-
gramming language version 3.8.5. On two operating systems:
Microsoft Windows 10 (64-bit) Home Edition and virtual
machine Ubuntu 18.04.4 LTS version. The hardware con-
figuration used to test the blockchain simulator is i7-8th

generation Intel Core Processor, with 2.2GHz six-core pro-
cessor, supported with 16GB DDR4 memory-card (extended
16 GB), including the NVidia GeForce Video Graphic Cards
(series RTX 2070), and SSD 2TB.

In order to achieve a better understanding of performance
under different conditions, the blockchain simulator that has
been built has parameter settings that are used to produce
various outputs that will be tested. Several parameter settings
are defined for testing stages to achieve well-measured test
results on the blockchain simulator.

Table 1 shows the category of each element on linked lists
that used in the simulator. This category can be changed base
on the need of the user. In this experiment, the number of
category defined for four different categories with difference
purpose of category.

TABLE 1. Category that is implemented on each element linked list.

In this experiment, the category mentioned in Table 1 is
adapted from the common Bitcoin transaction. The cate-
gory is chosen because of the query transaction in Bitcoin,
which is usually lookup for in this category. Maybe for other
implementations, the category can be changed based on the
system’s needs. Such as, in healthcare, the first category can
store real-time heartbeats information. The second category
may store the information summary heartbeats (diastole or
systole) per day, the next category for the information per
week or any other category needed, or maybe on any other
application systems.

Table 2 shows the parameter settings used for performance
testing. The number of blocks generated from the simulator
refers to the parameter settings in Table 2. These generated
blocks will then be tested for speed in conducting the query
process so that for each scenario that has been determined,
the performance that wants to know will be known.

Every scenario on the performance evaluation will be
tested at least ten times. Performing multiple tests and exper-
iments can lead to a better understanding of the result and
functionality of the simulator’s output using the proposed
system.

B. ANALYSIS OF QUERY PERFORMANCE PROCESSING
SPEED
The query performance processing speed of the Merkle Patri-
cia Trie with Linked Lists is analyzed based on lookup
operations. This operation is a searching process for a specific
key in the tree that involves traversing the tree from the root
to the corresponding leaf node.

Based on the parameter setting declared in Table 2, the
targeted output of the simulator is to produce ten to 50 blocks,
100 to 500 blocks, and 1000 to 5000 blocks. To determine
the results of significant differences from the blocks made,
each block in the first scenario contains two transactions. The
second scenario contains twenty transactions following the
number of target blocks stated above. After the target number
of blocks has been created, the lookup process is performed
by querying a user account and capturing the time required
to search and find detailed information on that account.
Experiments conducted for the query lookup process using
the Merkle Patricia Trie with Linked List on the blockchain
simulator are shown in Fig. 10 and Fig. 11.

117292 VOLUME 11, 2023



V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

TABLE 2. Parameter setting for performance evaluation.

FIGURE 10. Query processing speed comparison with two transactions per block. (a) 10-50 blocks, (b) 100-500 blocks, (c) 1000-5000 blocks.

FIGURE 11. Query processing speed comparison with twenty transactions per block. (a) 10-50 blocks, (b) 100-500 blocks, (c) 1000-5000 blocks.

Fig. 10 displays the time performance results in the first
scenario. Fig. 10 (a) shows significant performance with less
than one millisecond, compared to the time required if using
the Merkle Tree data structure, which is between 0.002 and
0.006 seconds, while with the Merkle Patricia Trie structure,
it takes less than 0.002 seconds. Fig. 10 (b) and Fig. 10 (c),
the time performance for query lookup using Merkle Patricia
Trie with Linked List still wins the competition with one
millisecond rather than Merkle Tree, which needs more time
between 0.002 and 0.007 seconds, and the Merkle Patricia
Trie requires time less than 0.002 seconds.

After the first scenario was successfully tested, the advan-
tages of the Merkle Patricia Trie with Linked List were seen
for fast performance when lookup queries. An experiment

with the second scenario was carried out to ensure further the
superiority of the Merkle Patricia Trie with Linked List.

In the second scenario, we increase the capacity of trans-
actions stored in the block. The increasing number of
transactions aims to determine the ability of the query process
if there are various transactions stored in a block that can
affect the query process. Fig. 11 shows the time performance
results generated in the second scenario.

Fig. 11 (a) still shows the best time performance for query
lookup using Merkle Patricia Trie with Linked List with still
below one millisecond, compared to the lookup process using
Merkle Tree data structure between 0.003 and 0.012 seconds.
In contrast, the Merkle Patricia Trie structure takes less
than 0.002 seconds. The number of transactions in a block

VOLUME 11, 2023 117293



V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

FIGURE 12. Storage capacity comparison with two transactions per block. (a) 10-50 blocks, (b) 100-500 blocks, (c) 1000-5000 blocks.

FIGURE 13. Storage capacity comparison with twenty transactions per block. (a) 10-50 blocks, (b) 100-500 blocks, (c) 1000-5000 blocks.

influences the Merkle Tree’s query process, but it has little
effect when using the Merkle Patricia Trie with Linked Lists.
As seen in Figures 11 (b) and 11 (c), the lookup process on the
Merkle Tree takes between 0.1 and 0.6 seconds. This lookup
process takes too long compared to the Merkle Patricia Trie
with Linked Lists, which remained stable for around one mil-
lisecond, and compared to the Merkle Patricia Trie remained
for around two milliseconds.

C. STORAGE CAPACITY ANALYSIS
Besides testing the performance of the time needed to process
the query, we also measure the space (storage) requirements
when implementing the Merkle Patricia Trie with Linked
Lists structure. This measure is necessary to see the feasibility
of the proposed structure so that the existing system’s per-
formance is manageable, especially with the required space
(storage). The two scenarios in Table 2 are still used to
determine the required space (storage).

From the experimental results of testing the two scenarios
in Table 2, it can be seen in Fig. 12 (a) the amount of
space (storage) required is only around 300 to 301 bytes,
and in Fig. 12 (b), it only requires 302 to 314 bytes, while
in Fig. 12 (c) takes about 318 to 333 bytes. The result of
the second scenario with more transactions in a block, the
space (storage) requirement only requires a range of 308 to
323 bytes, as shown in Figure 13 (a). Whereas Figure 13 (b)
requires 317 to 333 bytes of space (storage) and only requires
333 to 351 bytes for space (storage) requirements in the
experiments in Figure 13 (c). Overall, the required amount
of space (storage) is tiny, ranging from 300 to 355 bytes,

when using the Merkle Patricia Trie structure needs around
2-5 percent more. In contrast, transaction data storage in the
Merkle Tree will increase as various transactions are stored
in the blockchain network. The experiments show that the
required space (storage) increased from bytes to megabytes.

VI. CONCLUSION
This paper proposed an MSMPT, a novel high-performance
data structure for multi-query processing that can pro-
vide efficient and fast multi-query services for lightweight
blockchain. The proposed structure is modified from Merkle
Patricia Trie used in Ethereum and combined with Linked
Lists.

The proposed blockchain data structure will apply to a
lightweight blockchain network. These structures adopt the
structure of the Merkle Patricia Trie and then combine it with
the Linked Lists structure. Ethereum uses Merkle Patricia
Trie as a data structure, and LevelDB is as the backing store
for this data structure. This data structure provides a crypto-
graphically authenticated and deterministic means of storing
data, ensuring that trees with the same (key, value) bindings
are identical and have the same hash root. The proposed
system keeps the ‘‘key’’ field to store user/node account
information and modifies the existing ‘‘value’’ field, which
initially contains a number or value; this field is changed to a
pointer head pointing to the address of a Linked List element.
Each element in the Linked List will contain the information
needed to store the information needed when performing the
query process.

Ethereum uses three Merkle Patricia Tries to store detailed
information about users/nodes on the Ethereum network. The

117294 VOLUME 11, 2023



V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

proposed system uses only a single Merkle Patricia Trie
and modifies the use of the ‘‘value’’ field with the Linked
Lists structure. The results of testing the proposed struc-
ture show fast time performance when performing query
processes. It can display multi-state information from each
user/node in the designed simulator. The query process in
the proposed structure only takes about one millisecond to
display summary information from transactions conducted
by users/nodes. The proposed system’s space (storage) only
requires a range of space (storage) of less than 500 bytes.
The proposed data structure for multi-query processing ser-
vices can be used in the IoT with large amounts of data
and requires efficient and fast processing of data queries.
An example is medical record data, which requires stor-
ing or processing existing data and querying according to
specific categories for analysis, such as the category of the
lowest blood oxygen level in one day, week, or month.
Although MSMPT can enhance multi-query processing ser-
vices, it can still be improved more extensively under the
following aspects.

Artificial Intelligence (AI) Techniques: MSMPT does not
support any AI techniques for controlling the category for
each element of the linked list. Including AI techniques can
significantly contribute towards MSMPT based on system
usage requirements.

Cloud infrastructure: MSMPT is built using Python pro-
gramming language. Cloud infrastructure can be virtualized;
in-depth exploration is required to virtualize the blockchain
structure in MSMPT using Python or other programming
languages.

REFERENCES
[1] A. Z. Faroukhi, I. El Alaoui, Y. Gahi, and A. Amine, ‘‘Big data moneti-

zation throughout big data value chain: A comprehensive review,’’ J. Big
Data, vol. 7, no. 1, pp. 1–22, Dec. 2020, doi: 10.1186/s40537-019-0281-5.

[2] A. Sharma, Sarishma, R. Tomar, N. Chilamkurti, and B.-G. Kim,
‘‘Blockchain based smart contracts for Internet of Medical Things in
e-healthcare,’’ Electronics, vol. 9, no. 10, p. 1609, Oct. 2020, doi:
10.3390/electronics9101609.

[3] V. Mardiansyah and R. F. Sari, ‘‘Lightweight blockchain framework for
medical record data integrity,’’ J. Appl. Sci. Eng., vol. 26, no. 1, pp. 91–103,
May 2022, doi: 10.6180/jase.202301_26(1).0010.

[4] A. Gautama, A. F. Rochim, and L. Bayuaji, ‘‘Privacy preserving electronic
health record with consortium blockchain,’’ in Proc. 6th Int. Conf. Inf.
Technol., Inf. Syst. Electr. Eng. (ICITISEE), Dec. 2022, pp. 303–308, doi:
10.1109/ICITISEE57756.2022.10057649.

[5] V. Astarita, V. P. Giofrè, G. Mirabelli, and V. Solina, ‘‘A review of
blockchain-based systems in transportation,’’ Information, vol. 11, no. 1,
p. 21, Dec. 2019, doi: 10.3390/info11010021.

[6] F. M. Enescu, N. Bizon, G. Serban, and I. C. Hoarca, ‘‘Environmental
protection–blockchain solutions for intelligent passenger transportation of
persons,’’ in Proc. 13th Int. Conf. Electron., Comput. Artif. Intell. (ECAI),
Jul. 2021, pp. 1–6, doi: 10.1109/ECAI52376.2021.9515026.

[7] S. Huckle, R. Bhattacharya, M. White, and N. Beloff, ‘‘Internet of Things,
blockchain and shared economy applications,’’ Proc. Comput. Sci., vol. 98,
pp. 461–466, Jan. 2016, doi: 10.1016/j.procs.2016.09.074.

[8] X. Li andH. Feng, ‘‘The innovation of enterprisemanagementmode of dig-
ital economy based on blockchain technology,’’ in Proc. Int. Conf. Knowl.
Eng. Commun. Syst. (ICKES), Dec. 2022, pp. 1–5, doi: 10.1109/ICK-
ECS56523.2022.10060213.

[9] C.-K. Chang, ‘‘Blockchain for integrated nuclear power plants man-
agement system,’’ Information, vol. 11, no. 6, p. 282, May 2020, doi:
10.3390/info11060282.

[10] M. Surjandy, H. L. H. S.Warnars, and E. Abdurachman, ‘‘Blockchain tech-
nology open problems and impact to supply chain management in auto-
motive component industry,’’ in Proc. 6th Int. Conf. Comput. Eng. Design
(ICCED), Oct. 2020, pp. 1–4, doi: 10.1109/ICCED51276.2020.9415836.

[11] K. E. Pavlou and R. T. Snodgrass, ‘‘Forensic analysis of database tamper-
ing,’’ ACM Trans. Database Syst., vol. 33, no. 4, pp. 1–47, Nov. 2008, doi:
10.1145/1412331.1412342.

[12] M. Iqbal and R. Matulevičius, ‘‘Blockchain as a countermeasure solu-
tion for security threats of healthcare applications,’’ in Business Pro-
cess Management: Blockchain and Robotic Process Automation Forum,
J. G. Enríquez, S. Debois, P. Fettke, P. Plebani, I. van de Weerd,
I. Weber, Eds. Cham, Switzerland: Springer, 2021, pp. 67–84, doi:
http://doi.org/10.1007/978-3-030-85867-4_6.

[13] A. U. Nwosu, S. B. Goyal, and P. Bedi, ‘‘Blockchain transforming
cyber-attacks: Healthcare industry,’’ in Innovations in Bio-Inspired Com-
puting and Applications, A. Abraham, H. Sasaki, R. Rios, N. Gandhi,
U. Singh, K. Ma, Eds. Cham, Switzerland: Springer, 2021, pp. 258–266,
doi: 10.1007/978-3-030-73603-3_24.

[14] S. Nakamoto. (2009). Bitcoin: A Peer-to-peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[15] K. Tretina. 10 of the Best Cryptocurrencies in May 2022. Forbes
Media LLC. Accessed: Dec. 31, 2022. [Online]. Available:
https://www.forbes.com/advisor/investing/cryptocurrency/top-10-
cryptocurrencies/

[16] G. Wood. Ethereum: A Secure Decentralised Generalised
Transaction Ledger. Accessed: Nov. 10, 2022. [Online]. Available:
https://ethereum.github.io/yellowpaper/paper.pdf

[17] Y. Wang, Y. Wang, Z. Wang, G. Yang, and X. Yu, ‘‘Research coopera-
tions of blockchain: Toward the view of complexity network,’’ J. Ambient
Intell. Humanized Comput., vol. 13, no. 3, pp. 1339–1352, Mar. 2022, doi:
10.1007/s12652-020-02596-6.

[18] P. Li, K. Li, Y. Wang, Y. Zheng, D. Wang, G. Yang, and X. Yu,
‘‘A systematic mapping study for blockchain based on complex net-
work,’’ Concurrency Comput., Pract. Exper., vol. 34, no. 14, Jun. 2022,
Art. no. e5712, doi: 10.1002/cpe.5712.

[19] J. Bonneau, ‘‘EthIKS: Using Ethereum to audit a CONIKS key trans-
parency log,’’ in Financial Cryptography Data Security. J. Clark,
S. Meiklejohn, P. Y. A. Ryan, D. Wallach, M. Brenner, K. Rohloff, Eds.
Berlin, Germany: Springer, 2016, pp. 95–105, doi: 10.1007/978-3-662-
53357-4_7.

[20] R. Zhang, R. Xue, and L. Liu, ‘‘Security and privacy on blockchain,’’ ACM
Comput. Surv., vol. 52, no. 3, pp. 1–34, May 2020, doi: 10.1145/3316481.

[21] B. Singhal, G. Dhameja, and P. S. Panda, ‘‘How Blockchain Works,’’
in Beginning Blockchain: A Beginner’s Guide to Building Blockchain
Solutions, B. Singhal, G. Dhameja, P. S. Panda, Eds. Berkeley, CA, USA:
Apress, 2018, pp. 31–148.

[22] B. Singhal, G. Dhameja, and P. S. Panda, ‘‘How Ethereum works,’’ in
Beginning Blockchain: A Beginner’s Guide to Building Blockchain Solu-
tions, B. Singhal, G. Dhameja, P. S. Panda, Eds. Berkeley, CA, USA:
Apress, 2018, pp. 219–266.

[23] D. Vujicic, D. Jagodic, and S. Randic, ‘‘Blockchain technology,
Bitcoin, and Ethereum: A brief overview,’’ in Proc. 17th Int.
Symp. INFOTEH-JAHORINA (INFOTEH), Mar. 2018, pp. 1–6, doi:
10.1109/INFOTEH.2018.8345547.

[24] S. Ghemawat and J. Dean. LevelDB. Accessed: Nov. 3, 2021. [Online].
Available: https://github.com/google/leveldb

[25] S. S. Dang. Understanding the Blockchain Layered Architecture to
Solve The Scalability Challenges. Forbes Digital Assets. Accessed:
Feb. 10, 2023. [Online]. Available: https://www.forbes.com/sites/
sanjitsinghdang/2022/10/24/understanding-the-blockchain-layers-to-
solve-the-scalability-challenges/

[26] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, ‘‘An overview
of blockchain technology: Architecture, consensus, and future trends,’’
in Proc. IEEE Int. Congr. Big Data (BigData Congr.), Jun. 2017,
pp. 557–564, doi: 10.1109/BigDataCongress.2017.85.

[27] R. C. Merkle, ‘‘A digital signature based on a conventional encryption
function,’’ in Advances in Cryptology CRYPTO ’87, C. Pomerance, Ed.
Berlin, Germany: Springer, 1988, pp. 369–378.

[28] C. Yue, Z. Xie, M. Zhang, G. Chen, B. C. Ooi, S. Wang, and
X. Xiao, ‘‘Analysis of indexing structures for immutable data,’’ in Proc.
ACM SIGMOD Int. Conf. Manage. Data, Jun. 2020, pp. 925–935, doi:
10.1145/3318464.3389773.

VOLUME 11, 2023 117295

http://dx.doi.org/10.1186/s40537-019-0281-5
http://dx.doi.org/10.3390/electronics9101609
http://dx.doi.org/10.6180/jase.202301_26(1).0010
http://dx.doi.org/10.1109/ICITISEE57756.2022.10057649
http://dx.doi.org/10.3390/info11010021
http://dx.doi.org/10.1109/ECAI52376.2021.9515026
http://dx.doi.org/10.1016/j.procs.2016.09.074
http://dx.doi.org/10.1109/ICKECS56523.2022.10060213
http://dx.doi.org/10.1109/ICKECS56523.2022.10060213
http://dx.doi.org/10.3390/info11060282
http://dx.doi.org/10.1109/ICCED51276.2020.9415836
http://dx.doi.org/10.1145/1412331.1412342
http://dx.doi.org/http://doi.org/10.1007/978-3-030-85867-4_6
http://dx.doi.org/10.1007/978-3-030-73603-3_24
http://dx.doi.org/10.1007/s12652-020-02596-6
http://dx.doi.org/10.1002/cpe.5712
http://dx.doi.org/10.1007/978-3-662-53357-4_7
http://dx.doi.org/10.1007/978-3-662-53357-4_7
http://dx.doi.org/10.1145/3316481
http://dx.doi.org/10.1109/INFOTEH.2018.8345547
http://dx.doi.org/10.1109/BigDataCongress.2017.85
http://dx.doi.org/10.1145/3318464.3389773


V. Mardiansyah et al.: MSMPT: High-Performance Data Structures for Multi-Query Processing

[29] D. L. K. Chuen, Handbook of Digital Currency: Bitcoin, Innovation,
Financial Instruments, and Big Data, 1st ed. New York, NY, USA: Aca-
demic, 2015.

[30] S. Krishnan, V. E. Balas, E. J. Golden, Y. H. Robinson, S. Balaji, and
R. Kumar, Handbook of Research on Blockchain Technology, 1st ed.
New York, NY, USA: Academic, 2020.

[31] D. Hellwig, G. Karlic, and A. Huchzermeier, Build Your Own Blockchain:
A Practical Guide to Distributed Ledger Technology (Management for
Professionals), 1st ed. Cham, Switzerland: Springer, 2020, pp. 16–187.

[32] DeHive. How to Solve the Blockchain Data Query Issue and
What the Graph Service Has to Say. CoinMarketCap. Accessed:
Jan. 18, 2023. [Online]. Available: https://coinmarketcap.com/alexandria/
article/how-to-solve-the-blockchain-data-query-issue-and-what-the-
graph-service-has-to-say

[33] S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, ‘‘FogBus: A blockchain-
based lightweight framework for edge and fog computing,’’ J. Syst. Softw.,
vol. 154, pp. 22–36, Aug. 2019, doi: 10.1016/j.jss.2019.04.050.

[34] D. Hanggoro and R. F. Sari, ‘‘A review of lightweight blockchain tech-
nology implementation to the Internet of Things,’’ in Proc. IEEE R10
Humanitarian Technol. Conf. (R10-HTC), Nov. 2019, pp. 275–280, doi:
10.1109/R10-HTC47129.2019.9042431.

[35] D. Stefanescu, L. Montalvillo, P. Galán-García, J. Unzilla, and
A. Urbieta, ‘‘A systematic literature review of lightweight blockchain
for IoT,’’ IEEE Access, vol. 10, pp. 123138–123159, 2022, doi:
10.1109/ACCESS.2022.3224222.

[36] A. Al-Mamun, F. Yan, and D. Zhao, ‘‘SciChain: Blockchain-enabled
lightweight and efficient data provenance for reproducible scientific com-
puting,’’ in Proc. IEEE 37th Int. Conf. Data Eng. (ICDE), Apr. 2021,
pp. 1853–1858, doi: 10.1109/ICDE51399.2021.00166.

[37] F. McSherry and K. Talwar, ‘‘Mechanism design via differential privacy,’’
in Proc. 48th Annu. IEEE Symp. Found. Comput. Sci. (FOCS), Oct. 2007,
pp. 94–103, doi: 10.1109/FOCS.2007.66.

[38] Y. Li, K. Zheng, Y. Yan, Q. Liu, and X. Zhou, ‘‘EtherQL: A query layer
for blockchain system,’’ in Database Systems for Advanced Applications,
Cham, S. Candan, L. Chen, T. B. Pedersen, L. Chang, W. Hua, Eds. Cham,
Switzerland: Springer, 2017, pp. 556–567, doi: 10.1007/978-3-319-55699-
4_34.

[39] K.-B. Yue, K. Chandrasekar, and H. Gullapalli, ‘‘Querying Bitcoin
blockchain using SQL,’’ in Proc. 2018th EDSIG Conf. Inf. Syst. Comput.
Educ., Norfolk, VA, USA, Oct. 2018, Paper 4607. [Online]. Available:
https://iscap.us/proceedings/2018/index.html

[40] I. Riadi, T. Ahmad, R. Sarno, P. Purwono, and A. Ma’arif, ‘‘Developing
data integrity in an electronic health record system using blockchain and
InterPlanetary file system (case study: COVID-19 Data),’’ Emerg. Sci. J.,
vol. 4, pp. 190–206, Feb. 2022, doi: 10.28991/esj-2021-SP1-013.

[41] J. Xu, Y. Tian, T. Ma, and N. Al-Nabhan, ‘‘Intelligent manufacturing secu-
rity model based on improved blockchain,’’ Math. Biosci. Eng., vol. 17,
no. 5, pp. 5633–5650, 2020, doi: 10.3934/mbe.2020303.

[42] X. Yang, Y. Zhang, S. Wang, B. Yu, F. Li, and Y. Li, ‘‘LedgerDB: A
centralized ledger database for universal audit and verification,’’ Proc.
VLDB Endowment, vol. 13, no. 12, pp. 3138–3151, 2020.

[43] X. Yang, S. Wang, F. Li, Y. Zhang, W. Yan, F. Gai, B. Yu, L. Feng, Q. Gao,
and Y. Li, ‘‘Ubiquitous verification in centralized ledger database,’’ in
Proc. IEEE 38th Int. Conf. Data Eng. (ICDE), May 2022, pp. 1808–1821,
doi: 10.1109/ICDE53745.2022.00181.

[44] L. Kong, Y. Dou, Q. Yin, X. Min, and Q. Li, ‘‘WST+iMPT: A high-
performance incremental verification world state model for massive
accounts,’’ in Proc. IEEE Int. Conf. Parallel Distrib. Process. With Appl.,
Big Data Cloud Comput., Sustain. Comput. Commun., Social Comput.
Netw. (ISPA/BDCloud/SocialCom/SustainCom), Sep. 2021, pp. 263–270,
doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00046.

[45] X. Xing, Y. Chen, T. Li, Y. Xin, and H. Sun, ‘‘A blockchain index struc-
ture based on subchain query,’’ J. Cloud Comput., vol. 10, no. 1, p. 52,
Dec. 2021, doi: 10.1186/s13677-021-00268-0.

[46] D. Przytarski, C. Stach, C. Gritti, and B. Mitschang, ‘‘Query pro-
cessing in blockchain systems: Current state and future challenges,’’
Future Internet, vol. 14, no. 1, p. 1, Dec. 2021. [Online]. Available:
https://www.mdpi.com/1999-5903/14/1/1

[47] Q. Qu, I. Nurgaliev, M. Muzammal, C. S. Jensen, and J. Fan, ‘‘On spatio-
temporal blockchain query processing,’’ Future Gener. Comput. Syst.,
vol. 98, pp. 208–218, Sep. 2019, doi: 10.1016/j.future.2019.03.038.

[48] R. Smith. Merkle Patricia Trie. Ethereum Developers Doc.
Accessed: Apr. 1, 2023. [Online]. Available: https://ethereum.org/en/
developers/docs/data-structures-and-encoding/patricia-merkle-trie/

[49] V. Mardiansyah and R. F. Sari, ‘‘SimBlock simulator enhancement
with difficulty level algorithm based on Proof-of-Work consensus for
lightweight blockchain,’’ Sensors, vol. 22, no. 23, p. 9057, Nov. 2022.
[Online]. Available: https://www.mdpi.com/1424-8220/22/23/9057

VIDDI MARDIANSYAH (Member, IEEE) received
the B.Sc. degree in mathematics and natural sci-
ence, majoring in computer science from Univer-
sitas Padjajaran, Bandung, Indonesia, in 1998, the
M.Eng. degree in computer science/informatics,
majoring in software engineering from Institut
Teknologi Bandung, Indonesia, in 2007, and the
Dr. (Eng.) degree in electrical engineering, major-
ing in computer engineering from Universitas
Indonesia, in July 2023. Since 2019, he has been

pursued his Ph.D. degree with the Department of Electrical Engineering,
Faculty of Engineering, Universitas Indonesia.

Since 2015, he has been a permanent Computer Science/Informatics Lec-
turer for undergraduate students with the Faculty of Engineering, Universitas
Widyatama, Bandung. His research interests include blockchains, software
engineering, programming, networking, and the Internet of Things.

ABDUL MUIS (Member, IEEE) received the
B.E. degree in electrical engineering, majoring in
control engineering from Universitas Indonesia,
in 1998, and the master’s and Ph.D. degrees in
mechatronics and friendly motion control from
Keio University, in 2004 and 2007, respectively.

He was with the Electrical Engineering Depart-
ment, Universitas Indonesia, in 1999. Since return-
ing to Universitas Indonesia as a permanent
Lecturer, in 2007, his knowledge has recently

expanded to embedded systems, information systems, and related industry
4.0. His research interests include mechatronics, motion control, vision-
based control, and automation.

RIRI FITRI SARI (SeniorMember, IEEE) received
the B.Sc. degree in electrical engineering from the
University of Indonesia (UI), the master’s degree
in human resource management from Atmajaya
University, Jakarta, the M.Sc. degree in soft-
ware systems and parallel processing from the
Department of Computer Science, University of
Sheffield, U.K., and the Ph.D. degree in computer
networking from the School of Computing, Uni-
versity of Leeds, U.K.

Since April 2010, she has been the Chairperson of UI GreenMetric Rank-
ing of World Universities, a flagship program to rank universities worldwide
based on their green campus and sustainability. She is currently a Professor
in computer engineering with the Department of Electrical Engineering,
Faculty of Engineering, UI. She has been a member of the Special Task
Force for Improving the Academic Reputation of Indonesian Higher Edu-
cation Institutions at the Ministry of Research and Higher Education, since
September 2015. She also received various awards, including the 2012
Inspirational Women and Youth from PT Indosat and the 2013 Kartini
2.0 Women in Technology from PT Telkom and a Honorary Professor from
Kazakhstan Agrarian National University, in 2017. In 2023, she was awarded
the prestigious Habibie Prize. She received the British Council Chevening
Award for the M.Sc. degree.

117296 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.jss.2019.04.050
http://dx.doi.org/10.1109/R10-HTC47129.2019.9042431
http://dx.doi.org/10.1109/ACCESS.2022.3224222
http://dx.doi.org/10.1109/ICDE51399.2021.00166
http://dx.doi.org/10.1109/FOCS.2007.66
http://dx.doi.org/10.1007/978-3-319-55699-4_34
http://dx.doi.org/10.1007/978-3-319-55699-4_34
http://dx.doi.org/10.28991/esj-2021-SP1-013
http://dx.doi.org/10.3934/mbe.2020303
http://dx.doi.org/10.1109/ICDE53745.2022.00181
http://dx.doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00046
http://dx.doi.org/10.1186/s13677-021-00268-0
http://dx.doi.org/10.1016/j.future.2019.03.038

