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ABSTRACT Deep neural networks are currently applied in multiple domains, especially in the automotive
industry. The main reason for this is related to the more complex challenges found in the field of signal
processing, especially when the tasks involve image and video data types. Using conventional/statistical
algorithms to deal with these high-complexity challenges is no longer a viable approach. Therefore, the
involvement of artificial intelligence solutions like deep neural networks has significantly increased. In recent
years, numerous architectures have been developed with the aim of maximizing performance. However,
their size and computation requirements have increased at the same time. For this reason, special attention
is currently being paid to the optimization of deep neural networks while trying to maintain (almost)
the same performance. In this work, we aim to tackle the problem of eye gaze estimation considered
within the automotive framework. Our proposal uses a knowledge distillation concept applied to a custom
CNN architecture, called the teacher model. Based on this, several CNN student models are derived using
layerwise and widthwise compression techniques. Furthermore, they are evaluated with respect to certain
performance metrics, e.g. neural network size and inference time. In the experimental results, we propose
certain compression methods which can address specific user requirements like model size, accuracy, and
inference time. Finally, the student models are evaluated using an EdgeAl embedded device (STM32H7471-
DISCO) in terms of accuracy, memory utilization, MACC complexity, and inference time. The combination
of layerwise and widthwise compression results as the optimal method to derive student models with a good
trade-off between the above-mentioned metrics. Using knowledge distillation, the accuracy can be improved
by up to 9.5% over the conventional training procedure.

INDEX TERMS ARM Cortex-M, convolutional neural networks, eye gaze estimation, knowledge distilla-
tion, microcontrollers.

I. INTRODUCTION
Deep neural networks (DNNs) have provided state-of-the-art

including the automotive industry, market research, and med-
ical domain.

performance in various domains, such as image classification
and recognition [ 1], object detection [2], video processing [3],
and segmentation [4].

The domain of gaze estimation holds significant impor-
tance within the context of human-computer interaction,
and it can find multiple applications across diverse fields,

The associate editor coordinating the review of this manuscript and
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Currently, driver inattention continues to be a significant
contributing factor in automobile collisions. The implemen-
tation of Advanced Driver Assistance Systems (ADAS) has
been proposed as a potential solution to mitigate the incidence
of car accidents caused by driver inattention. The driver’s
gaze can serve as an indicator to detect fatigue or lack of
attention while driving. In such situations, it is possible to
transmit warnings to the driver and, if necessary, take appro-
priate measures to avoid a collision [5].
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The application of gaze estimation in market research
involves the evaluation of customer attention toward specific
brands or products. The data obtained can provide informa-
tion on customer search patterns, purchasing preferences, and
their navigation within the store [6].

Gaze estimation has potential applications in the medical
domain [7], including the diagnosis of autism spectrum disor-
der (ASD) and the aid of individuals with disabilities in their
daily activities, by utilizing their gaze to operate electronic
devices such as smartphones, computers, and televisions.
Through the integration of various visual cues, such as
deliberate blinking and eye movements, people with disabil-
ities may be able to effectively operate the aforementioned
devices.

To obtain a lightweight convolutional neural network
(CNN) the following high-level processes are commonly
used: (1) optimizing and compressing a pre-trained model,
and (2) designing and training from scratch a light model
architecture.

To optimize and compress a pre-trained model is a more
convenient process, as many pre-trained CNN models are
available for a wide range of applications. Different methods
applicable to pre-trained models are presented in a recent
survey paper [8]. The authors show a comparative study on
structure-preserving compression techniques with the aim
of providing insights into the most appropriate method for
a given task. These techniques can be summarized in the
following categories: connection pruning, weight quantiza-
tion, and low-rank matrix / tensor (weight) decomposition.
Connection pruning is used to remove connections from
a network that have a small contribution to overall per-
formance. To identify the connections, a commonly used
strategy is magnitude-based pruning. The basic concept of
this strategy is to define a threshold that can be global or
layer-specific as a condition to eliminate a connection [9].
Weight quantization is applied with the aim of decreasing the
memory footprint by reducing the numerical precision from
32-bit floating point representation to 16-bit floating point
half-precision or 8-bit integer arithmetic. Furthermore, repre-
sentations with less than 8 bits have already been proposed,
and even binarization [10]. I. Orasan et al. [11] investi-
gated several post-training quantization solutions using the
TensorFlow Lite deep learning framework on CNN models
of different sizes. The obtained compression ratio is up to
4 times, and the worst-case accuracy degradation is only
0.43%. The low-rank matrix and tensor decomposition is a
method applied to the weight matrices by decomposing them
into a lower-rank approximation. Singular Value Decom-
position (SVD) [12] is the widely used algorithm for this
purpose. However, the compression of a pre-trained model is
subject to performance degradation. For example, when using
magnitude-based connection pruning, a fine-tuning training
step might be necessary.

To design from scratch a light model architecture involves
applying certain optimizations to avoid a computationally
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expensive model. The SqueezeNet [13] architecture is a
common example that has been developed in this direction
with the aim of obtaining a smaller neural network with
fewer parameters. The application of Neural Architecture
Search (NAS) methodologies has also been widely exploited
in recent years. For example, E-DNAS [14] is a differentiable
architecture search method for embedded systems that com-
putes the optimal kernel size that captures input data patterns
at different resolutions. To reduce the number of operations,
the authors of [ 14] make use of the additive property of convo-
lution operations to merge kernels with different compatible
sizes into one. However, the use of NAS methodologies is
typically a long and time-consuming procedure.

Another algorithm that involves changes in architecture
and training from scratch is knowledge distillation [15]. The
basic concept using this method is to transfer the knowledge
from a high-performance model, called the teacher, to a
smaller one, the student. This transfer is performed during
the training process using a specific knowledge distillation
algorithm. Compared to the teacher model, the student can
use a different architecture or can be a modified version
of the teacher model. The most common approach found
in the existing literature is to use a different architecture for
the student network. However, using the modified teacher
model could lead to several improvements such as: (1) the
conventional training efficiency can be similar to the teacher
model, as the student architecture is based on the teacher,
(2) the training with knowledge distillation can have better
results, especially when the student model is not significantly
different than the teacher one. These improvements are more
visible when the student model is not very different compared
to the teacher model.

In this work, we use the knowledge distillation algorithm
proposed in [15] to train a CNN model to solve the
problem of estimating eye gaze for automotive applica-
tion. Student models are derived from the teacher model
by using the layerwise and widthwise compression meth-
ods. To find the optimal trade-off between accuracy and
model size, additional student models are defined using a
combination of layerwise and widthwise compression. The
aim of this CNN model optimization is the neural net-
work deployment on a resource-constrained device, such as
low-cost microcontrollers based on ARM Cortex M cores.
Motivation is justified by the availability of some neural
models that have already been developed and tested in other
applications using ARM Cortex-M-based processors [16],
[17]. Furthermore, we tested and validated student mod-
els using the X-CUBE-AI STM32Cube expansion package
[18] on the STM32H7471-DISCO development board. The
STM32H7471-DISCO hardware is built around a dual core
microcontroller based on ARM Cortex-M7 and -M4.

In summary, this work makes the following contributions.

1) We propose a custom CNN architecture as a teacher
model for eye gaze estimation that has only 6.14MB size with
77.48% accuracy.
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2) We apply knowledge distillation methodology with dif-
ferent specific parameters to train various student models
obtained using layerwise and widthwise compression meth-
ods.

3) We present and discuss the experimental results to find
the most appropriate compression method considering user
requirements (model size, accuracy, and inference time).

4) We validate the student models using the AI val-
idation application of the X-CUBE-AI package on the
STM32H747I-DISCO hardware device, providing details
regarding accuracy, memory utilization, MACC complexity
and inference time.

This paper is organized as follows. Section II refers to rep-
resentative approaches in the domain of eye gaze estimation.
It also emphasizes the need for neural network compression
and optimization. In addition, it includes an in-depth analysis
of the most recent knowledge distillation methods along with
their different applications. Section III shows the knowledge
distillation algorithm in more detail and the approach used for
the definition of the teacher and student models. Section IV
presents the experimental results related to knowledge distil-
lation parametrization, inference time computation, hardware
and software configuration, knowledge distillation results
obtained on the host platform, and validation on the target
device, respectively. The section also provides information
regarding knowledge distillation efficiency on both host and
target platforms. Section V concludes the paper.

Il. RELATED WORK

Next, we briefly describe the eye gaze estimation problem
along with several state-of-the-art deep learning solutions,
then review a few recent representative papers that prove
the efficiency of the knowledge distillation algorithms for
different applications. We end the section by referring to the
analysis paper [19] that follows a similar approach to our
work.

A. EYE GAZE ESTIMATION

The estimation of a person’s gaze through the use of DNN
is an intensively researched topic in the field of biometrics
today. Gaze estimation techniques have evolved over time
from single-user applications operating within constrained
environments to multiuser applications in complex uncon-
strained environments that involve lots of variations.

The current gaze estimation approaches are classified into
two main categories: model-based and appearance-based
approaches.

The first category implies the usage of a geometric model
of the eye that includes ocular components such as the
corneal reflection or the pupil. This technique requires
high-resolution images or calibration from person to person
to accommodate the differences in the shape of the eye, thus
making it more time consuming; it also gives a more accurate
result.

The appearance-based approach involves a direct map-
ping from images or eye features to gaze directions and
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is believed to work well in real-world scenarios due to a
model’s generalization capability. This kind of approach usu-
ally does not involve person-to-person calibration as in the
previous method. This appearance-based approach can use
low-resolution images and middistance scenarios.

In [20] Zhuang et al. propose a simplified gaze estimation
network model based on a combination of LeNet and Xcep-
tion neural network architectures, named SLeNet. To improve
the network model’s computational performance and cut
down the number of parameters utilized in the convolution
stage, the Xception network makes use of a technique known
as deep separable convolution. The method of splicing the
features of head posture is kept, and another branch neu-
ral network was designed to learn the head posture based
on the image of the information given by the eye and the
corners of the mouth. The experiment was carried out on
the MPIIGaze dataset, and this method shows that SLeNet
uses fewer parameters (923.989) and produces a lower MSE
loss of 2.6971 accuracy and a better training and inference
time compared to the traditional LeNet and VGG-16 network
architectures.

A paper describing a gaze estimation system based on
cooperative network CI-Net that makes use of a consis-
tency (C-Net) and inconsistency (I-Net) estimation network
is proposed in [21] by Luo et al. The consistency estimation
network is used to estimate the main gaze (a measure calcu-
lated based on the monocular directions of the left and right
eye) of the true gaze. Weight assignment between the eyes and
face features is done adaptively by an attention mechanism.
The residuals based on the true gaze are estimated by the
inconsistency estimation network. To obtain more accurate
eye directions, I-Net is able to get information from C-Net
in a selective manner using a cross-attention module. The
experiments were conducted using MPIIGaze (angular error:
3.8 degrees), EyeDiap (angular error: 5.4 deg) and RT-Gene
(angular error: 7.9 deg) datasests and it shows that the CI-Net
yields lower angle errors than current CNN mainstream
methods.

Z. Zichen et al. researched a monocular gaze estimation
method [22]. The paper addresses the issue that most of the
current appearance-based gaze estimation papers use both
eyes to predict and estimate the gaze direction. The pro-
posed method is based on mixed attention (MGE-Net). The
estimation of each eye gaze point is done through CNNs
and involves using information about the monocular feature,
monocular position, and face feature. The method was tested
on MPIIFaceGaze (5.06 cm error) and GazeCapture (1.95 cm
on phone, 2.75 cm on tablet) datasets.

A paper tackling the estimation of the gaze zone of a driver
is described by Bi et al. in [23]. The article uses the Columbia
Gaze dataset (CAVE dataset), which was preprocessed and
then reclassified and divided into 8 gaze areas that correspond
to a driver’s gaze zone. The method used in this paper for
gaze estimation is transfer learning combined with a structure
of a VGG16 convolutional neural network. By removing the
top 3 layers that are fully connected and adding other custom

120743



IEEE Access

I L. Ordsan et al.: Deep Learning-Based Eye Gaze Estimation for Automotive Applications

fully connected layers, together with a fully connected layer
at the end of the model, they achieved the multiclassification
task. The resulting model yielded an accuracy rate of 78.7%
on the validation set.

Liu et al. describe a differential convolutional neural
network approach for gaze estimation in [24], where the
differential convolutional neural network predicts the differ-
ences between two eye images of the same person. By using
the inferred differences between a set of subject-specific
calibration photos, the gaze direction of a novel eye sample
can be predicted. A better prediction can be achieved by
reducing annoyance factors such as illumination perturba-
tions, alignment, or eyelid closing. This proposed method
can be fine-tuned to make the predictions consistent. This
method outperforms current state-of-the-art method results
on MPIIGaze, EyeDiap, and UT multiview databases even
when using only one calibration sample. The experimental
results for MPIIGaze and EyeDiap are 3.8- and 3.23-degree
angular error, respectively.

Joo et al. describe a ““one-stage trainable 2D Gaze estima-
tion network’” in [25]. Most of the proposed methods use two
different steps for gaze estimation. The first step is the local-
ization of the eye landmarks and the second step regresses
the gaze direction. Furthermore, a deep neural network is
proposed that combines the two stages mentioned above into
one single stage. Its backbone network is a Stacked Hourglass
Network, where both the coordinates of the eye landmarks
and the normalized gaze direction vector are estimated simul-
taneously. The datasets used were UnityEyes for training
and MPIIGaze for testing, and the best performance for this
method was a mean square error of 0.039.

A gaze estimation method that found its inspiration in the
two-eye asymmetry was described by Cheng et al. [22] in his
paper using FARE-Net. The system is based on the observa-
tion that the two eyes of the same person may appear uneven;
therefore, the differences between them are used to optimize
the result of gaze estimation using a face-based asymmetric
regression evaluation network (FARE-Net). It consists of two
networks, one for the regression task and another for the
evaluation, finally combined into a single network. It uses an
asymmetric mechanism for training that yields asymmetric
weights. The authors evaluated 3 datasets, namely MPIIGaze
(4.3 deg ang err), EyeDiap (5.71 deg ang err), and RT-Gene
(8.4 deg ang err). This method predicts 3D gaze directions
for both eyes and achieves leading performances in the men-
tioned datasets.

B. NEURAL MODEL OPTIMIZATION AND COMPRESSION
TECHNIQUES

To overcome the expensive resource demand, e.g., the high
computational cost and model size, in recent years, different
optimization methods have been developed and evaluated.
Examples of the most common methods are quantization
of the model parameters [26], neural network pruning [9],
or knowledge distillation [15].
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Quantization is applied to reduce the numerical repre-
sentation of the neural network parameters with the aim of
decreasing the memory footprint and consequently the model
size. Since neural network models are usually highly over-
parameterized, the precision could be maintained at a high
level [11].

Neural network pruning is a method used to remove certain
structure elements from a network (e.g., convolutional layers,
connections, or neurons) that are redundant and have a small
contribution to the network performance. Unlike quantiza-
tion, the accuracy of the model can be more affected, and a
fine-tuning training step may be necessary for recovery.

Knowledge distillation is a method that involves training
to transfer the knowledge from a pre-trained teacher model
to a smaller one that is called the student model. The aim of
using this method is to train a lightweight model (student)
that makes use of the knowledge learned by a large model
(teacher). This approach increases performance over conven-
tional training. Unlike previous methods, this method can be
considered as a first step of the optimization process, as the
student model can be further optimized using quantization or
pruning.

Pourramezan Fard et al. [27] used the concept of knowl-
edge distillation to create a new architecture for the facial
landmark detection task. EfficientNet-B3 architecture was
used for the teacher network and MobileNetV2 for the stu-
dent network. The main contribution is to design a specific
knowledge distillation loss function and a teacher-student
architecture. The architecture is evaluated using three differ-
ent datasets. The student network accuracy is significantly
improved than using the original MobileNetV2 and in the
same range with state-of-the-art methods, e.g., using COFW
dataset the area-under-the-curve (AUC) has a difference of
only 0.01 between teacher and student model.

Liu et al. [28] proposed a transformer-to-transformer
knowledge distillation framework for semantic segmentation
using transformer-specific patch embedding as the primary
knowledge source. The framework combines feature map
and patch embedding distillation. Two fundamental modules
are developed, Cross Selective Fusion and Patch Embedding
Alignment, and two optimization modules, Global-Local
Context Mixer and Embedding Assistant. The framework
is validated using Cityscapes, ACDC, and BYUv2 datasets
showing improvements over existing knowledge distillation
methods. To present the results, they used a common eval-
uation metric for semantic segmentation tasks such as mean
Intersection over Union (mloU). The best result was obtained
using an optimized version of the proposed framework that
achieves a +13.12% improvement in mloU against a student
model trained without knowledge distillation.

Yang et al. [29] use knowledge distillation to obtain
efficient deep learning models for a 3D object detection
application. A study has been performed to achieve student
detectors with acceptable performance from the perspective
of model compression and input resolution reduction. In the
end, six pairs of teachers and students are used based on
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voxel and pillar architectures. Seven existing knowledge
distillation methods are employed to benchmark the mod-
els. Efficient knowledge transfer from teacher to student is
implemented using Teacher Guided Initialization which uses
pre-trained teacher parameters to initialize the student model.
The results showed that efficient model design along with
knowledge distillation provides superior performance for 3D
detectors based on pillar and voxel architectures. A voxel-
based model outperforms its teacher model, while FLOPS
decreased by 2.4x. The most efficient detector is 2.2x faster
than previous voxel/pillar-based detectors.

Xiao et al. [30] use knowledge distillation to design a DNN
to estimate depth information for a 3D real-time pedestrian
tracking with monocular camera. This is effective in measur-
ing the level of occlusion by monitoring the distance between
the target and the camera. For the teacher network, they used
an open-source monocular depth estimation method, and the
student network is a 5-layer CNN. Tracking performance is
tested before and after knowledge distillation. Using distilla-
tion, the depth prediction accuracy is slightly improved, and
the inference speed is significantly accelerated by 2.08x, from
17.1 to 52.6 Hz.

Hong et al. [19] present a model compression analysis for
CNNs applying layerwise and widthwise compression. Train-
ing is performed using the CIFAR-10 dataset with knowledge
distillation to improve the accuracy of compressed models.
The teacher is a simple model with 15 convolutional layers
that achieves 89.56% accuracy, while the student architecture
is MobileNetV1. The Deep Taylor decomposition is used
to visualize the features learned by the student model and
demonstrate a better representation compared to conventional
training. The results show that layerwise compression is
more suitable when the inference speed must be improved,
while widthwise compression is recommended for memory
requirement and computational cost reduction. For widthwise
compression, a compression rate of 42.27% is obtained, while
for layerwise compression is 32.42%. In terms of accuracy
improvement using knowledge distillation, their suggestion
is to use widthwise compression with increasing accuracy
above 4.71% against conventional training. However, the
student model has a different architecture compared to the
teacher model, and their analysis does not include the com-
bination of layerwise and widthwise compression. Details
about the inference time measurement or calculation are also
not provided. For instance, the widthwise compression does
not considerably modify the inference time, while the number
of parameters and FLOPs are significantly reduced.

lll. METHODOLOGY

A. KNOWLEDGE DISTILLATION

The compression of a DNN is common practice for obtaining
a lightweight network for low-cost and resource-scarce hard-
ware devices. Knowledge distillation is a particular method
that involves training to transfer knowledge from a larger
network to a different one that has a significantly smaller
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size. Bucilua et al. [31] in their important paper successfully
demonstrated for the first time that the knowledge acquired
by a large ensemble of models can be transferred to a single
small model. The aim of using this method is to train the
student network so that it can reproduce the performance of
the teacher network, but with fewer resources.

The process of applying knowledge distillation consists
of the following main stages: (1) definition of teacher and
student networks, (2) training of the teacher network, and (3)
training of the student network with knowledge transfer from
the teacher network. They are detailed below.

1) DEFINITION OF THE TEACHER AND STUDENT NETWORKS
The teacher network can be a high-performance stan-
dard model with high number of parameters (e.g., ResNet,
DenseNet, EfficientNet), while the student network can be
a standard model as well, but with a smaller number of
parameters. Depending on the task, a custom architecture of
the teacher and student networks can be used.

2) TRAINING THE TEACHER NETWORK

The teacher network is trained using a standard training
procedure with the aim of achieving the most appropriate
accuracy.

3) TRAINING THE STUDENT NETWORK WITH KNOWLEDGE
TRANSFER FROM THE TEACHER NETWORK

In this stage, the knowledge distillation algorithm is used.
Forward propagation is performed for the teacher and stu-
dent networks, while backpropagation is applied only to the
student network. The main loss function is defined using two
different loss functions: student loss and distillation loss.

Knowledge from a model is categorized into three different
types: Response-based knowledge, Feature-based knowl-
edge, and Relation-based knowledge [32]. Response-based
knowledge focuses on the final output layer, where the stu-
dent model will learn the predictions of the teacher model.
Feature-based knowledge leverages the knowledge of the
data from teacher intermediate layers to train a student
model. Relation-based knowledge focuses on the correla-
tion between feature maps, graphs, similarity matrix, feature
embeddings, or probabilistic distributions. In this paper,
response-based knowledge is used because it showed the best
results in different tasks and applications.

The block diagram for the knowledge distillation process
is shown in Fig. 1.

The knowledge transfer from teacher to student is per-
formed by minimizing the main loss function with the target
to yield the same probabilities as using the teacher model.
Basically, it refers to the output of the softmax function
applied to non-normalized predictions. These predictions
of the teacher model are usually found under the name
of logits. Most often, the correct class of the probability
distribution has a higher level compared to the other class
probabilities that are close to zero. Therefore, the outcome
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FIGURE 1. Knowledge distillation block diagram.

provided by this probability distribution is very similar to the
ground truth labels of the dataset. Regarding this behavior,
Hinton et al. [15] introduced the softmax parameter tempera-
ture. By denoting this parameter with 7', the probability p; of
class i from the logit z; is computed as in (1).
_ exp(@/T)
2, exp(/T)

When the parameter T is set to 1, the equation becomes a
standard softmax function. Setting a value higher than 1 for
T, the probability distribution will provide more information
about the classes where the teacher model reported a predic-
tion close to the correct class. This is the knowledge of the
teacher model that is transferred to the student model using
the distillation algorithm. When the distillation loss function
is calculated using the soft labels, the same value of T is used
to calculate the softmax on the student’s logits.

It was noticed as a benefit to train the distilled model
also using the ground truth labels of the dataset. Therefore,
a second loss function is computed with the parameter 7’
set to 1. This is a standard loss function called student loss.
By denoting the distillation loss function with Hy; (2), and
the student loss function with Hy (3), the main loss function
is calculated using (4).

Hi=H(@© (;T=1),0(@sT =1)) ()
Hy=H(y,o(z; T =1)) 3
L(x;W)=axH;+pB*Hy 4)

ey

where H is the cross-entropy loss function, o is the softmax
function, z; and z; are the logits of the teacher and student
models, y is the ground truth label, x is the input, W are the
student model parameters, while o and § are coefficients.

B. DEFINITION OF TEACHER AND STUDENT MODELS

1) DEFINITION OF THE TEACHER

To maximize accuracy while keeping the model size small,
the teacher model is based on a custom architecture. A tiny
CNN model that consists of five convolutional layers is pro-
posed with the aim to derive small-size student models that
can be deployed on the target device, a STM32H7471-DISCO
hardware platform.
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To construct the data pipeline and generate batches of
tensor image data, we use the ImageDataGenerator class.
Additionally, some pre-processing layers are built into the
model such as rescaling, resizing, and random contrast. These
layers are depicted in the teacher model architecture shown
in Fig. 2 [33]. It consists of five 2D convolutional layers
followed by BatchNormalization, ReLU activation function,
MaxPooling2D and Dropout layers. ZeroPadding2D is used
with the same padding type for all layers. At the end, a
Flatten layer is used, followed by two Dense layers. Using
this definition, the model has 505.017 parameters and a size
of 6.14MB.

2) DEFINITION OF THE STUDENT
The teacher model is used as a baseline for the student
models. To obtain a smaller student model, two different tech-
niques are employed: layerwise and widthwise compression.
Layerwise compression is applied by reducing the number of
convolutional layers, while widthwise compression is applied
by reducing the number of filters. The optimal student model
is the one with the smaller size without a significant accuracy
loss. To increase the search space for the optimal student
model, different combinations of layerwise and widthwise
compression are considered.

For the layerwise compression, the next student models are
defined:

1. Student_cut5 with the last convolutional layer removed

2. Student_cut4 where the last two convolutional layers are
removed

For the widthwise compression, the next student models
are defined:

1. Student_width10,a model with 10% fewer filters

2. Student_width30,a model with 30% fewer filters

3. Student_width50,a model with 50% fewer filters

The combinations of layerwise and widthwise compres-
sion are defined by applying widthwise compression to the
models resulting from the layerwise compression. We use the
name Student_cutX &widthY, where X is the layerwise model,
and Y is the widthwise model. In total, 11 student models are
used to find the optimal configuration.

IV. EXPERIMENTS

A. EXPERIMENTAL SETUP

1) HARDWARE AND SOFTWARE CONFIGURATION

The experiments in this paper use a PC station with the
following configuration: GeForce GTX 1070 graphic card,
8G RAM memory, and Ubuntu 20.04.3 LTS operating sys-
tem. The main prerequisites for the virtual environment are:
TensorFlow 2.7.0, Python 3.8.5, and Keras 2.7.0.

2) THE DATASET

The performance of the proposed models is evaluated using
the Columbia Gaze dataset [34] that is used in several recent
articles for the estimation of eye gaze [35], [36]. This is
a publicly available dataset that consists of 5880 images
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FIGURE 2. Architecture of the teacher model [33].

of 56 people performing various gaze orientation and head
poses. Samples from the original dataset are shown in Fig. 3.
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FIGURE 3. Samples from the columbia gaze dataset [34].

CENTER

FIGURE 4. Eye gaze directions.

A dataset preparation is necessary since we reformulate
the problem from a regression (image to numerical angle
values) to a classification one (image to zone labels). More
precisely, the images must be classified into nine gaze direc-
tions, as depicted in Fig. 4.

Every image in the CAVE dataset has a descriptive name
that includes information about the camera rotation and gaze
direction. For example, one instance of an image identifier is
0001_2m_15P_-10V_15H.jpg. The identifier comprises five
components:

1. The participant’s number (0001)

2. The camera’s distance from the subject (2m)

3. The camera’s rotation from the subject’s frontal position
(15P)

4. The subject’s gaze direction on the OY axis (-10V)

5. The subject’s gaze direction on the OX axis (15H)

Using this knowledge, we define a mapping scheme to
automatically assign the appropriate class to each image.

Depending on the direction, the last three values of the
name might take either positive or negative values. A positive
numerical value for P denotes a leftward rotation, and the
horizontal values H adhere to the same notation. Vertical
values V are denoted by positive and negative numbers, where
the positive values indicate an upward direction, and the
negative values indicate a downward direction.

Considering that the photographs encompass the complete
facial structure of the subject, supplementary preprocessing
measures are necessary to exclusively isolate the subject’s
eyes from the images.

The preparation of the dataset involves multiple procedures
such as eye cropping, image scaling, grayscale conversion,
and channel reduction (RGB to gray scale). To retrieve the
eyes from the photos in the database, a face detector was used.
Specifically, a Haar cascade-type feature from the OpenCV
library was utilized for this purpose. When employing this
method, the face contained in the image will be located.
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____Step,

0 20 40 60 80

FIGURE 6. Exponential decay learning rate schedule [38].

The OpenCV package utilizes a specific module as an eye
detector, which produces an image mainly containing the
eye region for the given task. Consequently, the complete
photographs depict solely a monochromatic region of the
subjects’ ocular region (refer to Fig. 5).

Finally, the 60-20-20 split is performed with respect to
training, testing, and validation sets [37].

3) TRAINING CONFIGURATION

The learning policy is set using a batch size of 16, a Cat-
egorical Crossentropy loss function, and Adam optimizer
with a learning rate of le-4. The number of epochs is set
to 100. An exponential decay learning rate schedule is used
that keeps the initial learning rate for the first 50 epochs and
decreases it exponentially after that, as depicted in Fig. 6
[38]. The experimental results show that using this learning
rate schedule improves accuracy. Training of both student and
teacher models is performed using the same parameters and
configuration.

To use the model with the highest accuracy that is obtained
during training, we make use of ModelCheckpoint callback.
Using this callback, the accuracy of the validation is moni-
tored to save the model with the maximum value.

4) KNOWLEDGE DISTILLATION PARAMETRIZATION

The student models are trained with knowledge distillation
using different values for the T parameter and « coefficient.
The B coefficient is calculated as / —«. To find the optimal
result, the parameter 7 is used in the range 2 - 16 with the next
set points: 2, 4, 8, 10, 12, 14, and 16. For each T value, three
different values for « coefficient are used: 0, 0.5, and 0.8.
When the « coefficient is set to 0, the student loss function Hy
from (4) is discarded. When the « coefficient is set to 0.5, it is
equal to B coefficient and, therefore, the student loss function
Hji and the distillation loss function H; have the same weight
in the main loss function (4). When the « coefficient is set to
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0.8, the distillation loss function H;has a small contribution
in the main loss function (4).

5) INFERENCE TIME COMPUTATION

The inference time is calculated using the total number of
computations that the model will have to perform. This
parameter is denoted by FLOPs. Next, the floating-point
operations per second, which is hardware-specific, are
denoted by FLOPS. For the PC station used in this work, the
FLOPS number is 6.463 TFLOPS. To compute the FLOPs for
a specific model, we make use of the keras-flops library [39].
Therefore, the inference time is computed using the relation
provided in (5).

FLOPs

Inferencetime = ————
FLOPS

[s] )
6) STM32 HARDWARE CONFIGURATION

We chose as the target embedded platform the ARM Cortex-
M7 core STM32H747XIH6 microcontroller with enabled
data and instruction cache memory, which equips the
STM32H7471-DISCO development board. The operating fre-
quency can be configured up to 480MHz. To ensure the
proper functionality of the CPU and to make use of the maxi-
mum performance, we configure the clock management unit
to generate a system clock of 475MHz. In the graphical user
interface for the X-CUBE-AI configuration, we set the Com-
pression setting to Noneand Optimizationto Balanced.For the
other peripherals, the default configuration is used.

B. KNOWLEDGE DISTILLATION RESULTS ON THE HOST
PLATFORM

In the first stage, the student model is trained without knowl-
edge distillation. This creates the baseline model that has
been useful to emphasize the improvement brought by the
knowledge distillation algorithm. The test accuracy obtained
from this conventional training is referred to in Table 1 and
denoted as Standard accuracy.

Table 1 shows the results that do not depend on « or T
for all student models: model size, number of parameters,
compression ratio, standard accuracy, and inference time.
Tables 2 - 5 show the test accuracy results for all the student
models depending on « and T values. The highest accuracy
obtained for each model is highlighted in bold. To present
all of these results, we follow the next approach: (1) we
present the results for each compression method in terms of
maximum accuracy, knowledge distillation efficiency, com-
pression ratio, and inference time along with a summary for
each method, (2) we discuss the compression method that
can be used depending on user requirements in terms of
performance, size, and inference time, and (3) we summarize
the main conclusions based on the presented results.

1) LAYERWISE COMPRESSION
When the last convolutional layer is removed, i.e., the Stu-
dent_cutSmodel, the accuracy is higher than the teacher
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TABLE 1. Teacher and student models.

Model Size Parameters ~ Compression ratio  Standard accuracy Inference time
Teacher 6.14MB 505.017 N/A 77.48% 60.77us
Student width10 491MB 402.183 1.25 75.94% 49.47us
Student _cut5 4.17MB 340.921 1.47 74.57% 59.74us
Student_cut5&width10 3.31MB 269.933 1.85 73.37% 48.64ps
Student width30 3.02MB 244.610 2.03 72.08% 33.75us
Student_cut4 2.39MB 193.337 2.56 70.20% 55.68us
Student_cut5&width30  2.05MB 164.867 2.98 72.78% 33.25us
Student_cut4&width10 1.89MB 151.714 3.24 70.37% 45.39pus
Student_width50 1.64MB 129.633 3.74 70.86% 21us
Student_cut4&width30 1.20MB 94.202 5.09 63.09% 31.30us
Student_cut5&width50 1.14MB 88.545 5.37 67.35% 20.74ps
Student_cut4&width50 693KB 51.617 8.86 62.53% 19.72ps
TABLE 2. Layerwise compression results. TABLE 3. Widthwise compression results.
Accuracy Accuracy
Model T Model T
0=0 a=0.5 a=0..8 a=0 a=0.5 a=0.8
2 76.36% 76.61% 77.05% 2 76.19% 76.36% 74.31%
4 75.77% 77.39% 75.59% 4 74.40% 77.56% 76.45%
8  76.71% 75.94% 76.71% 8 72.60% 76.79% 77.56%
Student cuts 10 74.91% 77.14% 76.62% Student_width10 10 76.02% 77.99% 78.16%
14 76.79% 80.13% 77.39% 14 76.96% 7148%  76.88%
p) 71.74% $73.80% 72.51% 2 75.68% 76.79% 72.51%
4 7654% 76.02% 73.63% 4 74.91% 7482% - 76.71%
8 74.14% 73.88% 75.94% . 8 74.82% T6d6%  72.17%
Student cutd 10 74.22% 73.80% 75 34% Student_width30 10 72.77‘;& 76.88::% 75.252&
12 75.42% 74.82% 75.08% 12 73.28% 76.96% 73.80%
14 73.711% 76.02% 75.17%
14 76.19% 75.08% 74.74% o o N
16 7517% 74.82% 74.05% 16 74.91% 73.03% 72.68%
2 69.60% 69.17% 71.23%
4 65.32% 67.03% 63.35%
8 65.66% 69.52% 67.03%
. s . Student_width50 10 65.92% 72.85% 71.57%
model and the compression ratio is 1.47. Since t.he num- 12 70.29% 69.60% €9.77%
ber of computations for this layer is small, the inference 14 70.71% 69.00% 70.71%
16 69.00% 68.23% 70.54%

time is less affected. When layer 4 is also removed, i.e.
the Student_cut4model, the accuracy is lower than the one
provided by the teacher model, but the knowledge distillation
improvement with reference to the standard accuracy is the
same as for the Student_cut5model. A higher compression
ratio is obtained, but the difference in the inference time
is small. Therefore, layerwise compression could lead to
improvements in terms of accuracy, even higher than the
teacher model accuracy, a modest compression ratio. The
inference time has only a small decrease, since the number
of computations is not significantly affected.

2) WIDTHWISE COMPRESSION

With the number of filters reduced by 10%, the accu-
racy using knowledge distillation is slightly higher than
the standard accuracy. The compression ratio is also small,
but the inference time is even shorter. Using the Stu-
dent_width30model, the accuracy is higher than the standard
accuracy, the compression ratio has increased, while the
inference time has decreased significantly. When the number
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of filters is reduced by 50%, the accuracy improvement is
similar to the Student_widthl0Omodel accuracy, but the com-
pression ratio has significantly increased, while the inference
time is reduced by more than half compared to the teacher
model.

The Student width30 model is most suitable to be used
in practical applications because the accuracy is close to the
accuracy of the teacher model, the knowledge distillation
algorithm makes a significant improvement while the com-
pression ratio and inference time can be acceptable.

3) LAYERWISE AND WIDTHWISE COMPRESSION

The results for the layerwise and widthwise compression are
presented in Table 4 and Table 5. Table 4 shows the results
for Student_cut5 model in combination with all the widthwise
compression models. Table 5 follows a similar approach, but
uses the Student_cut4model.
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TABLE 4. Layerwise and widthwise compression results.

Accuracy
Model T

a=0 a=0.5 a=0.8

2 73.39% 75.39% 75.15%

4 77.14% 76.19% 76.93%

8 76.29% 75.32% 77.71%

S‘“d\;i“;ﬁfl“(;s & o 75.68% 75.60% 76.71%
12 76.96% 76.89% 77.14%

14 76.45% 76.62% 74.34%

16 75.59% 76.11% 76.88%

2 71.44% 74.23% 72.44%

4 75.86% 73.97% 74.23%

8 75.18% 74.48% 74.02%

s‘“‘f:i“;;;;f & o 75.17% 76.11% 76.62%
12 73.20% 74.74% 73.23%

14 71.68% 73.40% 74.32%

16 74.66% 75.34% 73.22%

2 67.53% 68.12% 64.84%

4 70.20% 69.07% 65.60%

8 69.23% 69.55% 68.75%

Sm‘iji“;ﬁfs“g & o 68.00% 70.71% 65.49%
12 66.95% 70.03% 67.83%

14 61.92% 64.68% 71.16%

16 66.53% 67.89% 71.40%

TABLE 5. Layerwise and widthwise compression results.
Accuracy
Model T

a=0 a=0.5 a=0.8

2 7311% 71.12% 72.94%

4 73.31% 74.33% 71.55%

8 74.41% 74.15% 76.14%

St“‘i‘;i“;ﬁfl‘g“ & 7332% 72.46% 72.34%
12 75.27% 73.06% 74.94%

14 75.25% 73.54% 73.28%

16 74.10% 73.33% 73.37%

2 68.23% 67.72% 71.14%

4 72.43% 68.63% 70.41%

8 70.46% 70.93% 72.38%

Sm‘i‘ji“;af;g“ & o 70.59% 69.85% 71.88%
12 71.86% 70.33% 70.63%

14 70.42% 72.68% 70.89%

16 67.52% 70.01% 70.46%

2 63.98% 59.94% 62.92%

4 55.81% 65.83% 63.84%

8 63.38% 68.01% 60.41%

S‘“‘iji“;t—lfs“(;“ & o 64.91% 67.07% 59.80%
12 66.09% 67.20% 64.98%

14 60.70% 68.29% 63.87%

16 60.18% 61.86% 62.50%

Using the Student_cut4layerwise compression model, the
knowledge distillation efficiency is higher than using the Stu-
dent_cutSmodel. The compression ratio and inference time
improve as the number of filters is reduced. The highest
compression ratio and decrease in inference time are obtained
using the Student_cutd &width50model, but the accuracy is
more affected in this case.

C. VALIDATION ON THE TARGET PLATFORM
The student models are validated on the STM32H747I-
DISCO hardware device using the X-CUBE-AI toolchain.
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We noticed that X-CUBE-AI currently does not support
rescaling, resizing, and random contrast preprocessing layers
built into the model. Therefore, these pre-processing layers
were removed and implemented outside the model. To be
consistent, this change was made for both the student models
and the teacher model. For this reason, the teacher model is
trained from scratch again and the student models are trained
using the knowledge distillation configuration (parameters o«
and T') that achieved the highest accuracy in Section B.

The following configurations are available for the
X-CUBE-ALI software: system performance, validation, and
template application. System performance is a standalone
test application for performance assessment and validation.
In this paper, we use the validation set-up from the available
template. The results obtained are presented in Table 6 in
terms of accuracy, RAM and ROM memory utilization,
MACC complexity, and inference time. The MACC metric is
directly related to the computational complexity of a certain
neural model. Thus, it can be used to assess the real-time
capabilities of the target platform. The memory footprint is
important to find a suitable hardware device, i.e. the micro-
controller, since the size of the model should not exceed the
RAM size of the processor. All these results are automatically
computed with the validation process and reported by the
STM32CubeMX graphical tool.

D. DISCUSSION

1) KNOWLEDGE DISTILLATION RESULTS ON THE HOST
PLATFORM

Depending on the user requirements, different results can be
expected after compressing a model: (1) reduce the model
size while maintaining the performance or even to improve
the accuracy, if possible, (2) reduce the model size and infer-
ence time with a small accuracy degradation, (3) significantly
reduce the model size and inference time but keeping the
accuracy in acceptable limits.

For the first case, the following models can be used:
Student_cut5, Student_widthl0, and Student_cut5 &widthl0.
For these models, the accuracy is higher than the accu-
racy of the teacher model. The highest compression ratio
and reduced inference time are obtained for the Stu-
dent_cut5 &widthl0model. If the user requirement is not to
achieve maximum accuracy, then Student_cut5&widthi0is
the most appropriate to use.

For the second case, the following models have achieved
a decrease in accuracy of less than 1% compared to
the teacher model Student_cutd4, Student width30 and
Student_cut5&width30. The highest compression ratio
and reduced inference time are obtained for the Stu-
dent_cut5 &width30model, which is the most suitable to use
for this category.

When model size and inference time are considered the
most important aspects, the following most appropriate
solutions are Student_width50, Student_cut5 &width50, Stu-
dent_cut4 &widthl0, Student_cutd &width30, and
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TABLE 6. Validation on target platform results.

Host Target Inference
Model platform  platform RAM ROM MACC time
accuracy accuracy

Student_width30 72.17% 72.39% 296.30KB  981.00 KB 98,799,751 910.063ms
Student_cut4 73.71% 73.75% 397.11 KB 779.75KB 164,364,985 1508.588ms
Student_cut5&width30  71.40% 71.28% 296.02KB  669.04 KB 97,759,844 902.817ms
Student_cut4&width10  73.45% 73.32% 34777KB  617.18 KB 134,115,120 1268.091ms
Student_width50 65.83% 65.93% 28821 KB  531.89 KB 61,721,697 563.455ms
Student_cut4&width30  73.63% 73.66% 291.56 KB 392.54 KB 92,665,890 870.506ms
Student_cut5&width50  68.66% 68.65% 287.93 KB  370.93 KB 61,186,017 561.296ms
Student_cut4&width50  70.80% 70.86% 287.65KB  226.22KB 58,519,905 541.118ms

Student_cut4&width50. The highest compression ratio and
reduced inference time is obtained using the Student_cut4
&width50model, but the accuracy is only 68.29%. The
model in this category that has the highest accuracy is Stu-
dent_cut4&widthl10. It is close to the accuracy of the teacher
model, while the compression ratio is 3.24.

Considering the above results, the following conclusions
can be summarized.

1. Using knowledge distillation, accuracy can be improved
by up to 9.5% compared to a conventional training procedure.
This is achieved using the layerwise and widthwise compres-
sion model Student _cut4d &width30.

2. The knowledge distillation algorithm is more efficient
when the coefficient o is set to 0 or 0.5, and 7 is set to a higher
value such as 14. Therefore, the efficiency is higher when the
main loss function (4) is based only on the distillation loss
function Hy or the student loss functionH and the distillation
loss function H; have the same weight.

3. Combining layerwise compression and widthwise com-
pression is more efficient than using them independently.

4. Inference time is further reduced using widthwise com-
pression than using layerwise compression. The combination
of them comes with an improvement, but not significantly
large.

2) VALIDATION ON THE TARGET PLATFORM

The accuracy results shown in Table 6 are in the same range
as the accuracy results presented in Section B. They are not
identical because the models undergo a different training pro-
cess. The purpose of the validation on the STM32 hardware is
to show that the accuracy achieved is similar to that obtained
on the host platform, as no compression is applied that could
introduce a drop. The small difference could be due to the
accuracy being computed using different tools.

Regarding RAM and ROM memory utilization, the fol-
lowing considerations can be summarized depending on
layerwise or widthwise compression: (1) the RAM mem-
ory utilization is reduced using widthwise compression.
Using layerwise compression, the difference is not signifi-
cant, (2) the ROM memory utilization is gradually reduced
as the model size decreases. For this result, no difference
is visible between layerwise and widthwise compression,
and (3) combining layerwise compression and widthwise
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compression is more efficient because RAM memory is also
reduced.

The MACC complexity is higher when only layerwise
compression is used. It is significantly reduced when width-
wise compression is applied. The most efficient choice
is also to use a combination of layerwise and widthwise
compression.

The inference time follows a distribution similar to that
computed in Section B which presents the results on the host
platform. Therefore, the inference time is even more reduced
using widthwise compression, and the combination with
layerwise compression comes with improvements. For the
Student_cut4 &width30model, the inference time is 870.5ms,
while the accuracy is 73.66%. This means that one frame per
second can be achieved with accuracy close to the maximum.
This inference time can be accepted in practical applications,
enabling us to implement a real-time gaze detection system
on a low-power/low-cost embedded platform.

V. CONCLUSION

Today, deep neural networks and their associated deep learn-
ing paradigm are omnipresent in the automotive domain
[40]. Our work refers to an optimization procedure aimed
at the deployment of an eye gaze estimation neural model
on automotive-specific hardware. The knowledge distilla-
tion algorithm can be successfully applied to significantly
reduce the memory footprint of a convolutional neural net-
work. In this work, the layerwise and widthwise compression
methods have been used independently or in combination
to define various student models. With knowledge distilla-
tion, accuracy can be improved by up to 9.5% compared
to using the conventional training procedure. A compres-
sion ratio of up to 8.86 is achieved with a decrease of
less than 10% in accuracy. The inference time is further
reduced using widthwise compression. Combining layerwise
and widthwise compression is more efficient and a good
trade-off between model size, accuracy, and inference time.
The results of the validation on the STM32 hardware show
that to reduce the utilization of ROM and RAM memory,
the combination of layerwise and widthwise compression
represents the optimal solution. The same combination repre-
sents a viable solution to simultaneously optimize the MACC
complexity and inference time. Still we could identify some
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limitations of the proposed methodology as it only transfers
knowledge related to the initial model outputs and not cap-
turing the internal representations learned by teacher model.
Also, the student model can learn little from some teacher
models if there is an important architecture gap between
them.

Future work proposes to extend this paper by explor-
ing more advanced knowledge distillation algorithms, e.g.
data-free [41] or gaussian noised-based [42] knowledge
distillation. Furthermore, combining knowledge distillation
with other optimization methods like, e.g., quantization and
pruning is expected to further reduce the model size and
consequently the memory footprint.
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