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ABSTRACT Plant detection and counting play a crucial role in modern agriculture, providing vital
references for precision management and resource allocation. This study follows the footsteps of machine
learning experts by introducing the state-of-the-art Yolov8 technology into the field of plant science.
Moreover, we made some simple yet effective improvements. The integration of shallow-level informa-
tion into the Path Aggregation Network (PANet) served to counterbalance the resolution loss stemming
from the expanded receptive field. The enhancement of upsampled features was accomplished through
combining the lightweight up-sampling operator Content-Aware ReAssembly of Features (CARAFE)
with the Multi-Efficient Channel Attention (Mlt-ECA) technique to optimize the precision of upsampled
features. This collective approach markedly amplified the discernment of small objects in Unmanned
Aerial Vehicle (UAV) images, naming it Yolov8-UAV. Our evaluation is based on datasets containing four
different plant species. Experimental results demonstrate the strong competitiveness of our proposed method
even when compared to the most advanced counting techniques, and it possesses sufficient robustness.
In order to advance the cross-disciplinary research of computer vision and plant science, we also release
a new cotton boll dataset with detailed annotated bounding box information. What’s more, we address
previous oversights in existing wheat ear datasets by providing updated labels consistent with global research
advancements. Overall, this research offers practitioners a powerful solution for addressing real-world
application challenges. For UAV scenarios, recommend using the specialized Yolov8-UAV, while Yolov8-N
is a wise choice for general scenes due to its sufficient accuracy and speed in the majority of cases.
Furthermore, we contribute two meaningful datasets that have research significance, effectively promoting
the application of data resources in the field of plant science. In short, our contribution is to improve the use
of Yolov8 in UAV scenarios and open two datasets with bounding boxes. The curated data and code can be
accessed at the following link: https://github.com/Ye-Sk/Plant-dataset.

INDEX TERMS Cotton boll, detection and counting, UAV, wheat ear, Yolov8.

I. INTRODUCTION
In recent years, deep learning, as the core technology of the
third wave of artificial intelligence, has made rapid progress
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and demonstrated remarkable performance and extensive
applications in various fields [1]. In scientific research and
engineering practice, deep learning has achieved significant
achievements. Plant detection and counting, as important
tasks in plant science and agricultural production, have
also benefited from the advancements in deep learning
technology.
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Accurate plant detection and counting play a critical role
in plant research, precision agricultural management, and
resource allocation [2], [3]. However, traditional methods
for plant detection and counting have limitations, including
limited feature extraction capabilities and subjective manual
rule design [4], [5], [6]. These methods struggle to cope
with the complexity and variability of plant scenes and the
processing requirements of large-scale data.

The emergence of deep learning technology has provided
new solutions for addressing plant detection and counting
problems. Deep learning is a machine learning approach
based on multi-layer neural networks, which efficiently
handles complex tasks by automatically learning feature
representations and pattern recognition from large-scale
data [7], [8]. In the context of plant detection and counting,
deep learning techniques have brought new breakthroughs to
plant science and agricultural production with their robust
feature learning and pattern recognition capabilities. Through
training and inference of deep learning models, accurate
detection and counting of plant objects in image data can
be achieved, greatly improving work efficiency and data pro-
cessing accuracy [9], [10].
Over the past few years, there have been many advanced

deep learning-based methods and models emerging in the
field of plant detection and counting, providing formidable
tools for agricultural producers to monitor and control var-
ious issues related to plant growth. Object detection, as an
important research direction, has gained increasing attention
in the plant domain. Researchers have started exploring the
use of deep learning models for plant detection and count-
ing tasks, including well-known models such as Yolo [11],
Faster R-CNN [12], and EfficientDet [13]. Some researchers
have also made a series of improvements to accomplish
plant detection and counting tasks [14], [15]. Despite that,
these improvements often involve complex and laborious
implementation processes and are optimized for specific
application scenarios. This situation limits the development
of cross-disciplinary research between computer vision and
plant science towards a more general direction.

Fortunately, thanks to the relentless efforts of machine
learning pioneers, some excellent general-purpose machine
learning models have been proposed [8], [16]. Among them,
the Yolo model has garnered significant attention due to its
outstanding balance between accuracy and speed. As the
latest detector in the Yolo series, Yolov8 not only inherits
the advantages of previous models but also surpasses them,
becoming a potent tool for practitioners in the field of plant
science.

With the rapid development of Unmanned Aerial Vehicles
(UAV) and remote sensing technology [4], [17], in the vast
realm of research, numerous scholars are dedicating their
efforts to advancing the analysis of remote sensing images.
Several publicly available remote sensing datasets, such as
Remote Sensing Object Detection (RSOD) [18] and Uni-
versity of Chinese Academy of Sciences - Aerial Object
Detection (UCAS-AOD) [19], are providing robust support

for research endeavors. On a different front, Liang et al. [20]
introduced a single-stage detector known as FS-SDD. They
constructed a feature pyramid by combining deconvolu-
tion modules and feature fusion modules, fully harnessing
these hierarchical features during the prediction process.
Their approach also takes spatial context information into
account. Wang et al. [21], on the other hand, proposed a
detector with contextual information to alleviate the chal-
lenge of complex backgrounds in remote sensing images.
They also enhanced the region proposal network of RCNN.
Furthermore, Liu et al. [22] devised a Multi-branch Paral-
lel Feature Pyramid Networks (MPFPN) to recover small
object features lost in deep semantic information. Whereas,
these methods demand significant memory and compu-
tational resources, limiting their practical application on
low-power edge image processing devices. In the realm of
agriculture, Lu et al. [41] proposed a local counting network
named TasselNetV3, which improved the visual output by
introducing an upsampling operator to supervise the redis-
tribution of counts. Bai et al. [42] designed a deep network
called RPNet, which enhances the counting performance for
rice plants by densely utilizing shallow and deep features.
Liu et al. [12] employed ResNet as the backbone for Faster
R-CNN to detect tassels in high-resolution UAV images.
While they effectively enhance the recognition performance
for small-sized plant objects, these aforementioned methods
require high-performance computing devices for both train-
ing and inference. At the current stage, high-resolution plant
image datasets collected by UAV have gained widespread
attention. These datasets contain diverse plant objects and
complex scenes, better simulating real-world application
environments and driving the application of plant detection
and counting methods in agricultural production. In this
study, we selected Yolov8 as a powerful baseline model and
enhanced its perception of small objects by introducing a
simple yet effective upsampling process. Unlike previous
research, we replaced the traditional nearest-neighbor upsam-
pling operation in Yolov8 with a data-dependent lightweight
upsampling operator called Content-Aware ReAssembly of
FEatures (CARAFE) [23]. Nevertheless, after each CARAFE
operation, we applied a Multi-Efficient Channel Attention
(Mlt-ECA) [24] for weighted adjustment of features. These
improvement methods are straightforward to implement.
We chose this approach because the Yolov8 baseline itself
has demonstrated strong performance, and excessive complex
improvements may lead to other performance trade-offs. The
improved model is named Yolov8-UAV, as it is more suitable
for UAV-like image detection tasks.

In addition to model design and training, dataset con-
struction and annotation are also crucial aspects. To our
knowledge, there is currently no publicly available cotton
boll dataset. Therefore, based on previous automated obser-
vation work [4], we have released a cotton boll dataset
named Cotton Boll Detection Augmented (CBDA), which
includes annotated bounding boxes. We also noticed that
Madec et al. [26] contributed a wheat ear dataset called
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FIGURE 1. Example images from four plant datasets.

Wheat Ears Detection (WED) with annotation boxes. Yet and
still, their work overlooked the consistency between annota-
tion labels and images, which hindered other researchers from
keeping pace with global research progress. Hence, we used
our previous wheat ear recognition model to regenerate anno-
tation labels for the WED dataset, and named it Wheat Ears
Detection Update (WEDU).

In summary, the main contributions of this paper are as
follows:

1) Upsamplingmethod: By introducing a simple yet effec-
tive upsampling process, it enhances the perception
capability for detecting small-scale objects. Channel
suppression is performed after each upsampling step to
eliminate feature redundancy.

2) Yolov8: It provides a powerful baseline model for prac-
titioners to select and use deep learning methods in
practical applications. For applications in similar UAV
scenarios, it is recommended to choose the specialized
Yolov8-UAV. In general scenarios, selecting Yolov8-N
is advisable.

3) CBDA andWEDU datasets: The cotton boll and wheat
ear datasets, including detailed annotation boxes, have
been publicly released, contributing to the advance-
ment of research in related fields.

II. DATASETS AND METHODS
A. PLANT DATASETS
We conducted performance evaluations on four plant
datasets, including the publicly available Maize Tassels
Detection and Counting (MTDC) [27] dataset and Rape
Flower Rectangular Box Labeling (RFRB) [28] dataset.
What’s more, we introduced two new datasets in this paper,
namely Cotton Boll Detection Augmented (CBDA) and
Wheat Ears Detection Update (WEDU). Example images
from the four plant datasets are shown in Figure 1.

Here, we provide a brief introduction to the characteristics
and challenges of these datasets.

The CBDA dataset is introduced for the first time in
this paper, was collected in a specific region of Xinjiang
Uygur Autonomous Region in 2013 using an automated
ground observation system. Detailed information about the
imaging device can be found in [4]. Due to the inherent
growth patterns of the cotton bolls and limitations in sample
collection, our dataset has relatively limited samples. In addi-
tion, the variation patterns of cotton bolls over time are not
very pronounced. Given these limitations, we selected only
75 representative images as the foundation of the dataset.
To compensate for the limited sample size, we employed
techniques such as color distortion and mosaic augmentation
to expand the cotton boll images. Through this approach,
we expanded the dataset to a total of 180 images. Signif-
icantly, it should be emphasized that due to the stochastic
nature of the augmentation process, the difficulty of recogni-
tion may significantly increase for some images, potentially
exceeding the model’s understanding capabilities.

The WEDU dataset is an extension of the WED dataset
originally released by Madec et al. [26]. These pioneers
have made significant contributions in the field of plant
research, but unfortunately, they overlooked the consistency
between the annotation labels and the images in the released
dataset. This issue has hindered researchers from keeping
pace with global research advancements. In our previous
work, we developed a neural network, WheatLFANet [25],
for detecting wheat ears detection, and based on this achieve-
ment, we re-generated the annotation boxes for the WED
dataset. Nonetheless, it is inevitable that due to the limitations
of model performance, we couldn’t completely eliminate
potential noise in the annotation boxes. This poses a sig-
nificant challenge compared to other meticulously curated
datasets.

The MTDC dataset is a collection of images related to
maize tassels, gathered from four experimental fields in
China and spanning six maize varieties. The dataset com-
prises 186 images for training and 175 images for testing.
Notably, the testing set was intentionally designed to con-
sist of entirely different sequences, resulting in significant
variations in data distribution. This characteristic poses a
considerable challenge for domain adaptation, demanding the
model to possess strong generalization capabilities for prac-
tical applications and adapt to diverse scenes and conditions.
The images in the dataset have varying resolutions, including
3648×2736, 4272×2848, and 3456×2304, further adding to
the complexity of the task. The MTDC dataset’s uniqueness
lies in its diverse and challenging composition, making it a
valuable resource for research on maize tassels detection and
counting algorithms.

The RFRB dataset was collected between 2021 and 2022 in
Wuhan, Hubei, China, specifically focusing on the study of
rape flowers. This dataset comprises a total of 114 images
of rape flowers, with 90 images allocated for training pur-
poses and 24 images designated for testing. An important
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FIGURE 2. Yolov8-UAV network framework, which uses PANet to fuse multi-scale image information.

characteristic of the RFRB dataset is that these images were
captured using a mobile device at a height ranging from 10 to
15 meters, making it a typical dataset for UAV images. One
notable aspect of the RFRB dataset is the presence of a
considerable number of instances in each image, ranging
from 27 to 629. This high object density presents a significant
challenge for the model to accurately detect and capture
small-scale plant features.

B. PROPOSED METHOD
Taking into account the deployment requirements on edge
devices in the context of plant science, Yolov8 offers different
versions such as N, S, M, etc. Considering our specific needs,
we have chosen the most lightweight version, Yolov8-N,
as the baseline model. Following modern neural network
design principles, we have made minor yet effective mod-
ifications that make the detection network structure more
comprehensive and detailed, specifically suited for detect-
ing small and densely-packed plant objects in UAV images.
Hence, we have named it Yolov8-UAV. The overall network
architecture is illustrated in Figure 2.

In recent years, the PathAggregationNetwork (PANet) [29]
has emerged as a novel paradigm for object detection [30],
[31], [32], standing out for its outstanding multi-scale fea-
ture fusion and contextual information aggregation. PANet
incorporates a bottom-up path to extract high-resolution
features and combines it with a top-down path for contextual
information aggregation, showcasing its unique advantages.
The introduction of PANet has played a positive role in the
rapid development of the object detection field. As one of
the state-of-the-art detectors known today, Yolov8 also adopts
this remarkable PANet structure.

Firstly, PANet leverages the backbone structure of the Fea-
ture Pyramid Network (FPN) [33] to construct a pyramid-like
feature map, enabling efficient detection of objects of dif-
ferent sizes through cross-scale feature fusion. Secondly,
by adding bottom-up path augmentation, the network’s
perception of details and low-level features is further

improved. Our modification simply involves adding an addi-
tional upsampling process to the FPN backbone to enhance
the perception of small objects and fusion with the C2 layer
of the feature set, resulting in an additional output feature
layer. This improvement is simple, effective, and easy to
implement, as demonstrated in previous experiments and
experiences [34], [35], [36].

In contrast to previous studies, we employ a data-dependent
lightweight upsampling operator called Content-Aware
ReAssembly of FEatures (CARAFE) [23] instead of the tradi-
tional nearest-neighbor upsampling operation used inYolov8.
In comparison to traditional bilinear interpolation upsam-
pling, the CARAFEmethod offers a significant advancement.
CARAFE has the ability to dynamically generate upsampling
kernels, enabling instance-specific content-aware processing.
This adaptability allows CARAFE to effectively integrate
a broader range of contextual information while still main-
taining a lightweight design. As a result, it surpasses the
limitations of bilinear interpolation upsampling when it
comes to processing semantic information and expanding
the perceptual range of feature maps. CARAFE’s innovative
approach opens new possibilities for enhancing feature maps
and achieving more precise and contextually informed results
in various image processing tasks. After each CARAFE
operation, we apply a Multi-Efficient Channel Attention
(Mlt-ECA) [24] for weighted feature adjustment. Mlt-ECA
utilizes a dimensionality-preserving local cross-channel
interaction strategy and adaptively determines the size of
the 1D convolution kernel based on the needs, achieving
coverage of local cross-channel interactions. Specifically:

k = ψ(C) =

∣∣∣∣ log2(C)γ
+
β

γ

∣∣∣∣
odd

(1)

where k represents the size of the convolution kernel, C rep-
resents the number of channels, and odd indicates that k is
an odd number. γ and β are set to 2 and 1, respectively,
in our experiments, to adjust the proportion between C and
the convolution kernel.
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The incorporation of multi-scale feature fusion, contextual
information aggregation, and channel attention has enhanced
the model’s perception, expressive power, and adaptability.
By integrating multi-scale features, the model gains a more
comprehensive understanding of the input data, allowing
it to capture fine-grained details and high-level contextual
information simultaneously. Contextual information aggrega-
tion enhances the model’s global context awareness, leading
to more accurate predictions, particularly in tasks involv-
ing object detection and segmentation. The introduction
of channel attention further boosts the model’s expressive
power by selectively emphasizing relevant and discrimi-
native features, leading to improved feature representation
and extraction. The collective impact of these enhance-
ments is particularly advantageous in detecting small and
crowded objects, making the model highly suitable for real-
world scenarios that involve intricate and densely arranged
objects.

Overall, the integration of multi-scale feature fusion,
contextual information aggregation, and channel attention
demonstrates a holistic approach to enhancing the model’s
capabilities. The proposed modifications contribute to its
generality, making it a potent tool for tackling challenging
visual tasks and paving the way for further advancements in
computer vision research and applications.

C. LOSS FUNCTION
Yolov8’s loss calculation includes both classification loss
and regression loss. The purpose of the classification loss
is to help the model distinguish between foreground and
background, while the regression loss is used to constrain
the model’s learning process for predicting box positions
and shapes. In particular, the classification loss is formulated
as Binary Cross-Entropy Loss (BCE) [37], which can be
expressed as follows:

Lbce = −
1
n

∑n

i=1
[yi log pi + (1 − yi) log(1 − pi)] (2)

It is a commonly used binary classification loss function,
used to measure the learning dissimilarity between positive
and negative samples by the model. For Equation (2), the
target value (label value) is denoted as y, the predicted result
as p, and n’represents the batch size.

The regression loss is guided by the Complete Intersection
over Union (CIoU) [38] and Distribution Focal Loss (DFL)
[39] functions. In greater detail, the CIoU loss measures the
matching degree between the predicted bounding box and the
ground truth bounding box, while the DFL loss focuses on the
matching of the distance field. It can be described as follows:

Lreg =
1

Npos

∑Npos

i=1
(wi × [1 − CIoU (b̂i, bi)] + DF(d̂i, di))

(3)

Here,Npos represents the number of positive sample boxes,
b̂i, bi represents the coordinate information of the predicted

boxes and the ground truth boxes, d̂i, di represents the val-
ues of the predicted distance field and the ground truth
distance field, CIoU (b̂i, bi) represents the computed CIoU
value, and wi represents the weight of the i-th positive or
negative sample. DF(d̂i, di) represents the distance field loss
function computed using DFL. To specify, DFL is a distance
field-based loss function used to optimize the regression task
in detection, and its expression is as follows:

Ldf =
1

4Npos

∑Npos

i=1

∑4

j=1
[pj log(pj) −

K∑
k=1

w(k)qjk log(qjk )]

(4)

In this equation, pj represents the j-th element of the ground
truth distance field, qjk represents the probability of the k-th
component corresponding to the j-th element of the predicted
distance field, andwk serves as a weight coefficient to balance
the loss between different k values. Finally, the loss of Yolov8
is defined as Los = αLcls + βLreg, where α and β are
hyperparameters.

III. EXPERIMENTS AND RESULTS
A. TRAINING DETAILS AND QUANTITATIVE METRICS
The experiments were implemented using the PyTorch
deep learning framework and accelerated using CUDA. The
CBDA training dataset was divided into 120 images for train-
ing and 60 images for testing. The WEDU dataset consisted
of 165 training images and 71 testing images. The MTDC
dataset contained 186 training images and 175 testing images.
The RFRB dataset included 90 training images and 24 test-
ing images. The model was optimized for 300 epochs. It is
important to note that themodel parameter configuration used
in this study remained consistent with the default parameters
and no adjustments were made.

We used the following evaluation metrics to quantify
the detection performance: precision (Pr), recall (Re), aver-
age precision at 50% IoU (AP50), and average precision
at 50%-95% IoU (AP50-95). These metrics provide more
accurate measures of the model’s localization performance.
Precision represents the proportion of correctly predicted
objects among all predicted objects by the model, while
recall represents the proportion of correctly predicted objects
among all actual objects. AP refers to the mean area under the
Pr - Re curve. They are calculated as follows:

Pr =
TP

TP+ FP
(5)

Re =
TP

TP+ FN
(6)

AP =

∫ 1

0
Pr (Re)d(Re) (7)

where TP, FP, and FN represent the number of true pos-
itives, false positives, and false negatives, respectively.
Besides, the evaluation metrics for counting tasks are as
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TABLE 1. Quantitative results of CBDA dataset.

TABLE 2. Quantitative results of WEDU dataset.

TABLE 3. Quantitative results of MTDC dataset.

follows:

MAE =
1
N

∑N

n=1
|Gn − Pn| (8)

RMSE =

√
1
N

∑N

n=1
(Gn− Pn)2 (9)

N represents the number of images, Gn represents the
predicted count in the nth image, and Pn represents the
ground-truth count in the nth image. Mean Absolute Error
(MAE) quantifies the accuracy of the model, while Root
Mean Square Error (RMSE) quantifies the robustness of the
model. The lower the values of these two metrics, the better
the counting performance.

B. RESULTS AND DISCUSSION
For the feasibility of our proposed method, we directly com-
pared it with state-of-the-art results. Additionally, we com-
pared three representative methods: the classic two-stage

network Faster R-CNN [40] for object detection, the
anchor-free method CenterNet [46] for object detection, and
the state-of-the-art model TasselLFANet [14] for maize tassel
localization in the current agricultural domain, as shown in
Tables 1-4. Considering the small spatial occupancy of plant
instances in theWEDUandRFRBdatasets, these datasets can
be classified as typical UAV datasets. In this case, compared
to Yolov8-N, Yolov8-UAV demonstrates stronger compet-
itiveness and specialization in the detection and counting
task. In general scenes, choosing Yolov8-N is wise, as it
possesses sufficient accuracy and generality in the majority
of cases. TasselNetV3-Seg†, RPNet, and RapeNet repre-
sent advanced paradigms in the field of object counting.
While these methods provide reliable results in plant count-
ing, they face a crucial limitation: the inability to provide
accurate plant information. This is a drawback for appli-
cations that aim for fine-grained agricultural management.
Object detection, compared to object counting, is a more
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TABLE 4. Quantitative results of RFRB dataset.

FIGURE 3. Yolov8-N and Yolov8-UAV linear regression results.

promising paradigm. Yolov8, as the latest detector devel-
oped by machine learning experts, surpasses most dedicated
counting methods in terms of counting performance. Even
on our low-cost devices - Nvidia GTX 1650 GPU (4G) and
Intel i5-10200H CPU (8G) laptop, Yolov8 exhibits efficient
task completion with an ultra-real-time efficiency of 161fps.
This means that even on more affordable devices, Yolov8 can
efficiently handle the task. It is also important to note that,
when evaluating detection tasks, the focus lies on assessing
the exceptional performance metrics of classification models,
whereas in counting tasks, greater emphasis is placed on the
model’s accurate prediction capability for continuous vari-
ables.When evaluating and improving detection and counting
tasks, the pursuit of outstanding performancemetrics for clas-
sification models and precise prediction performance metrics
for continuous variables becomes crucial to ensure compre-
hensive optimization of the model across diverse tasks and
achieve the highest level of performance.

C. LINEAR REGRESSION VISUALIZATION
As shown in Figure 3, the visual examination of counting
errors through the linear regression graph was an essential
step in our analysis. The impressive fitting ability demon-
strated by our proposedmethod, even in the face of challenges

from diverse datasets, highlights its robustness and adapt-
ability. The interpretability advantage of the linear regression
visualization proved invaluable in diagnosing underlying
issues that might not be apparent through other evaluation
metrics.

Notably, certain regression results displayed significant
deviations, providing valuable insights into the specific chal-
lenges posed by these diverse datasets. This observation
underlines the intricacies that persist in computer vision
problems, particularly in the context of complex plant sci-
ence environments. The visual representation of correct and
incorrect detections in Figure 4 further accentuated these
complexities, as both Yolov8-N and Yolov8-UAV models
exhibited some erroneous responses despite seemingly good
counting levels.

Understanding these challenges prompted us to con-
sider a delicate balance between various factors, such
as network width, depth, and resolution, as emphasized
in [43] and [44]. Achieving optimal performance necessitates
thoughtful consideration of these dimensions. We acknowl-
edge that using higher-resolution images can indeed yield
substantial improvements in performance, but it inevitably
incurs higher computational costs. Striking the right balance
between computational efficiency and performance becomes
a critical consideration for real-world applications.

We recognize that using higher-resolution images can
indeed lead to substantial performance improvements, but
it comes at the expense of increased computational costs.
This trade-off becomes a critical consideration for real-world
applications, where computational efficiency plays a signifi-
cant role in deploying models effectively.

We also observed that the visual differences between
Yolov8-N and Yolov8-UAV are relatively minor. In fact,
Yolov8-UAV’s advantage stems from slightly more accurate
detections per image and its adaptability to specific UAV sce-
narios. This also implies that Yolov8-UAV is generally more
robust. In conclusion, the linear regression visualization and
the analysis of correct and incorrect detections have provided
a comprehensive assessment of our method’s performance.
It has also shed light on the challenges and trade-offs involved
in tackling complex computer vision tasks, particularly in the
context of plant science. These findings contribute to a deeper
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FIGURE 4. Visualization results of the four plant datasets.

understanding of the model’s behavior and will guide future
a dvancements in the field of computer vision, especially
in precision agriculture and environmental monitoring appli-
cations. As we continue to refine our approach, we remain
committed to addressing the complexities of real-world sce-
narios and enhancing the practical utility of computer vision
techniques for various scientific domains.

IV. GOOD PRACTICE SUGGESTIONS
1) Deploying Yolov8-N and Yolov8-UAV on resource-

constrained devices is a smart choice as they have the
optimal performance and generality.

2) Due to their ability to provide a comprehensive scene
description, Yolov8-N and Yolov8-UAV exhibit strong
interpretability. This enables a deep understanding of
the model’s decision-making process, facilitating opti-
mization and diagnosis of specific components.

3) Capturing imaging views from lower angles is prefer-
able since it avoids introducing significant scale varia-
tions that could complicate recognition.

4) Optimal image acquisition conditions entail suitable
lighting, minimal background interference, and accu-
rate color representation.

V. CONCLUSION
In this study, we extensively applied the advanced baseline
Yolov8 proposed by machine learning experts to a wide range
of plant data. We further enhanced the model’s perception
of small objects through simple yet effective improvement
methods that are easy to implement. Our experimental results
unequivocally demonstrate the strong competitiveness of our
proposed approach, even when compared to state-of-the-
art counting methods. The renowned accuracy and speed
balance of the Yolo series make it highly user-friendly for
practitioners.

In the general scenes, opting for Yolov8-N proves to be a
wise decision. Alternatively, using Yolov8-UAV at the cost of
some speed loss can significantly improve performance in the
UAV scenario, and it has sufficient generality and robustness.

Moreover, to contribute to the research community,
we have released a new CBDA dataset focusing on cotton
bolls sand an updated WEDU dataset focusing on wheat
ears. These datasets aim to attract researchers’ attention and
foster collaborative efforts in advancing the field of plant
science through machine learning techniques. It’s crucial to
point out that the CBDA dataset’s richness is relatively lim-
ited, and ample training data remains crucial for achieving
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good performance. At times, achieving this requires col-
laboration among researchers worldwide. Alternatively, the
presence of noise in the WEDU dataset is detrimental to
models with poor robustness against adversarial interference.

Moving forward, we’ll apply advanced techniques in plant
science following expert guidance. Our focus is on interdis-
ciplinary research, innovation, and impactful contributions
to agriculture and sustainability. We’ll connect cutting-edge
machine learning with practical plant science, empowering
researchers for a food-secure future.
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