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ABSTRACT In recent years, Deep Support Vector Data Description (Deep SVDD) has emerged as a
leading method in the field of anomaly detection. However, inaccuracies in parameter solving have been
identified as a limitation of this approach, which negatively affects its accuracy and efficiency. To address
this issue, we propose a new method, called Complete Deep Support Vector Data Description (CD-SVDD).
Our CD-SVDD is constructed with a traditional deep neural network and utilizes a modified SVDD as
its last layer. Its parameters are solved by an alternate iteration algorithm that ensures both high precision
and fast convergence of solutions. By keeping the network weights fixed, we solve the center and radius
of the modified SVDD based on its convex dual optimization problem. With the exact center and radius,
we then update the parameters of the neural network by backpropagation. Compared to the existing deep
SVDD, all parameters of our method are precisely solved. So, our method is defined to be ‘‘complete’’. This
approach enables us to maintain the ν-property found in shallow SVDD, which is beneficial for parameter
selection and model interpretability. To evaluate the performance of CD-SVDD, we conducted extensive
numerical experiments with five existingmethods on two image datasets, CIFAR-10 and CIFAR-100, as well
as five recorded benchmark datasets. Our results demonstrate that CD-SVDD achieves superior accuracy and
efficiency in the detection of anomalies.

INDEX TERMS Anomaly detection, deep learning, support vector data description, strong duality.

I. INTRODUCTION
Anomaly detection is a widely research field in machine
learning and data mining, with the aim of identifying data
that deviates from most instances. It includes point anomaly,
contextual anomaly, and collective anomaly [1], [2], [3].
Point anomaly, in particular, has been extensively researched
and can be categorized into classification-based, clustering-
based, and nearest neighbor-based approaches [1]. Among
these methods, one-class classification models are commonly
used and have shown admirable performance in various
applications.

One-class classification models are trained using normal
data to detect abnormal instances in prediction [4]. The
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classical approach is the one-class support vector machine
(OCSVM) [5], [6], which assumes the origin is an abnormal
point and learns a hyperplane to separate normal data from
it. Although OCSVM has achieved great performance in
various applications, it is limited by the use of a hyperplane
to separate the data. Support vector data description (SVDD)
[7], as a successful extension of OCSVM, separates normal
and abnormal data by learning a hypersphere instead of a
hyperplane. SVDD is more flexible and shows outstanding
prediction performance.

To enhance the handling of high-dimensional data,
some traditional dimension reduction methods have been
employed. For example, in [8], the author utilizes principal
component analysis (PCA) to reduce the dimension in image
anomaly detection. In [9], Shravan et al. propose a document
classifier based on PCA and OCSVM. In [10], Shen et al.
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employ PCA and SVDD for non-linear process monitoring.
However, despite their convenience, these dimension reduc-
tion methods may significantly impact prediction accuracy.
Moreover, traditional kernel techniques may have limited
adaptability when dealing with complex data structures.

In recent years, neural networks have been employed in
anomaly detection due to their robust data representation
capabilities [11], [12], [13], [14], [15]. The main research
involves two aspects.

1) Neural networks are often used for data preprocessing,
followed by training of the anomaly detection model.
For example, Alfeo et al. use an autoencoder for
data dimension reduction before training the anomaly
detection model in [16]. In [17], Wang et al. propose
an unsupervised deep learning method based on an
autoencoder combined with OCSVM for anomaly
detection. These approaches are referred to as mixed
models where the two stages are carried out separately.
However, similar to traditional dimension reduction
techniques, differences between normal and abnormal
data are not directly detected in data preprocessing.
As a result, the performance of anomaly detection
cannot be guaranteed.

2) The traditional anomaly detection model has been
extended to the deep learning framework, where neural
networks and traditional models are often trained
alternately. Ruff et al. proposed a deep SVDD by
extending ν-SVDD to the deep learning framework in
[18]. Similarly, in [19], a fully deep model, called a
one-class neural network (OCNN), was proposed by
extending OCSVM. These methods aim to improve
the performance of anomaly detection by incorporating
deep learning techniques.

The fully deep models mentioned above generally perform
better in predicting anomalies on large and complex datasets.
However, the deep SVDD training process has a limitation
where the center c of the hypersphere is manually fixed
and cannot be updated, negatively affecting the prediction
performance. Moreover, the square of the hypersphere radius
R2 is substituted with the quantile of the square distance from
c to the mapped samples, which lacks a theoretical foundation
and hinders the convergence speed and prediction accuracy of
deep SVDD.

To address the issue of imprecise solutions and to enhance
model interpretability, we introduce a novel approach called
the Complete Deep Support Vector Data Description (CD-
SVDD). We also demonstrated the theoretical property of
parameter ν in our CD-SVDD and propose an efficient
algorithm for implementing CD-SVDD. Compared to exist-
ing model, all parameters of our model is solved precisely.
Therefore, we defined it to be ‘‘complete’’.

The main contributions of this paper are summarized as
follows.

1) We propose the CD-SVDD. It can be well adapted
to the situation where the dimension of data is high
and the distribution is complex. The CD-SVDD has

great model properties and achieves higher prediction
accuracy.

2) We further develop an efficient joint alternate algorithm
for CD-SVDD, based on the strong duality of the opti-
mization and backpropagation method. This algorithm
is more efficient than the original algorithm and has a
faster convergence speed.

3) We demonstrate the ν-property of CD-SVDD, which
provides a valuable guidance for parameter selection
and enhances the interpretability of the model.

The rest of this paper is outlined as follows. Section II
briefly introduces the related work. In Section III, CD-SVDD
is proposed and the corresponding efficient algorithm is
developed. Then, we demonstrate the relevant ν-property.
Then, in Section IV, abundant experiments are conducted
to verify the validity of our method. Section V gives the
conclusion.

II. RELATED WORK
In this section, we review the classical SVDD [7] and the deep
SVDD [18].

A. SUPPORT VECTOR DATA DESCRIPTION
LetX be the input space. X = {x1, x2, . . . , xl} is a training set
that is drawn independently from X . LetH be a reproducing
kernel Hilbert space (RKHS) associated to a Mercer kernel
K : X ×X 7→ R that is continuous, symmetric, and positive
semidefinite [20]. Let φ : X 7→ H be the associated feature
map that satisfies K (xi, xj) = ⟨φ(xi), φ(xj)⟩ for all xi, xj ∈ X .
SVDD [7] finds a hypersphere that contains all normal

data as the separation boundary. It can be summarized as the
following optimization problem:

min
R,c,ξ

R2 + C
l∑
i=1

ξi

subject to ∥φ(xi) − c∥2 ≤ R2 + ξi,

ξi ≥ 0, i = 1, . . . , l. (1)

Here, R is the radius of the hypersphere. c is the hypersphere
center. ξi is the relaxation factor. The hyperparameter C is the
penalty parameter. l is the sample size.

The solution of the primal problem (1) is usually obtained
by solving the following dual problem (2).

min
α

αTQα −

l∑
i=1

αiQii

subject to 0 ≤ α ≤ C,

eTα = 1 (2)

where Qij = K (xi, xj), α is the vector of Lagrangian multipli-
ers, and e is a ones vector with appropriate dimensions.

Additionally, by replacing C of Eq. (1) with ν, ν-SVDD
has been proposed in [18]. The corresponding optimization
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problem is formulated as:

min
R,c,ξ

R2 +
1
νl

l∑
i=1

ξi

subject to ∥φ(xi) − c∥ ≤ R2 + ξi,

ξi ≥ 0, i = 1, . . . , l. (3)

Compared with C in SVDD, ν in ν-SVDD has a practical
interpretation [21]. ν ∈ (0, 1] is proved to be not only the
upper bound of the proportion of observations outside the
hypersphere, but also the lower bound of the proportion of
the support vectors [18].

B. DEEP SUPPORT VECTOR DATA DESCRIPTION
Deep SVDD is inspired by ν-SVDD [18], and uses a neural
network instead of the traditional kernel function.

Soft-boundary deep SVDD is proposed to minimize the
volume of the hypersphere that contains the outputs of the
neural network. It can be formulated as:

min
W ,R,c

R2 +
1
νl

l∑
i=1

max
{
0, ∥φ (xi,W ) − c∥2 − R2

}
+

λ

2

L∑
j=1

∥∥∥W j
∥∥∥2
F

. (4)

Here, R is the hypersphere radius, c is the hypersphere center.
W j is the parameter matrix of the j-th layer neural network.
L represents the number of layers of the neural network.
φ(xi,W ) represents the outputs of the neural network with
the input of the original data xi. λ and ν are hyperparameters.
Furthermore, a simplified version of the deep SVDD,

named one-class deep SVDD, is put forward as follows.

min
W ,c

1
l

l∑
i=1

∥φ (xi,W ) − c∥2 +
λ

2

L∑
j=1

∥∥∥W j
∥∥∥2
F

. (5)

The above models extend the shallow SVDD to deep learning
framework to improve the prediction performance. However,
in their solution algorithms, the parameters R2 and c are
roughly calculated. Specifically, R2 is just estimated by the
quantile of the square distance from c to the data mapping
result. This limits the performance of the deep SVDD.

III. A COMPLETE DEEP SUPPORT VECTOR DATA
DESCRIPTION
As discussed in Section II-A, formulation (3) of ν-SVDD
was proposed to improve the interpretability of the model.
However, the non-convexity of the optimization problemwith
respect to R and the lack of guaranteed strong duality make
it challenging to solve R2 exactly [22]. In deep SVDD, the
distance quantile is used as an approximate representation
of R2. However, in the deep-SVDD training process, the
theoretical properties of ν in ν-SVDD cannot be guaranteed,
which impedes the model’s interpretability.

In this section, we propose the Complete Deep Support
Vector Data Description(CD-SVDD). The parameters in

FIGURE 1. A schematic diagram of CD-SVDD. In solving the CD-SVDD, R̄θ
and cθ are represented by the output results of the neural network, which
can be directly updated by the neural network parameter θ . That is why
we define our method to be ‘‘complete’’.

CD-SVDD could be solved accurately, and it has greater
theoretical properties.

Define the input space X ⊆ Rd and the output space
F ⊆ Rb. φθ (•) : X 7→ F is a map from Rd to Rb.
Here, φθ is constructed by a neural network and θ is its
corresponding weight parameters. l is the size of the training
dataset X = {x1, x2, . . . , xl} ⊆ X . The aim of CD-SVDD
is to jointly learn the neural network parameters θ together
with minimizing the volume of a hypersphere containing
the normal data. We give the formulation of CD-SVDD as
follows.

min
R̄θ ,cθ ,θ

R̄θ +
1
νl

l∑
i=1

max
{
0, ∥φθ (xi) − cθ∥2 − R̄θ

}
+

λ

2

K∑
k=1

∥∥∥θk
∥∥∥ . (6)

This model constructs a hypersphere that contains normal
data in the output space of the neural network. R̄θ is the
square of the radius of the hypersphere. cθ is the center of the
hypersphere. φθ (xi) is the mapping result of xi. The second
term is a penalty for training data outside the hypersphere.
The third term is the regularization for the parameters of the
neural network. Here, it is assumed that the neural network
has K layers and θk is the weights of the k-th layer. ν ∈ (0, 1]
is a hyperparameter.

The schematic diagram in Fig. 1. illustrates the workflow
of CD-SVDD. First, the original data in Rd are transformed
into a low-dimensional space Rb by a neural network. Then,
CD-SVDD finds the minimum volume hypersphere that
encloses the normal data. During training, only normal data
are expected to be mapped inside the hypersphere. In the
prediction process, any data point outside the hypersphere is
treated as an outlier.

Define the map of the neural network from the 1 first layer
to the K -th layer as φθ1 , φθ2 ,. . . , φθK . The feed-forward
process of the CD-SVDD can be represented as

o = φθK (φθK−1 (. . . φθ1 (x))),

f (x) = sgn(R̄− ∥o− c∥2).

Here, a value of ‘‘+1’’ indicates normal, and a value of
‘‘−1’’ implies abnormal. That is, samples located inside the
hypersphere are regarded as normal samples, while those
located outside the hypersphere are abnormal samples.
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In our proposed CD-SVDD, the optimization problem (6)
will be solved exactly, giving the CD-SVDD greater accuracy
and convergence speed. At the same time, the exact solution
of the parameters of CD-SVDD could also provide better
properties of the parameter ν, which makes CD-SVDD have
good interpretability.

A. MODIFIED SVDD
The parameters of optimization problem (6) can be solved
jointly and precisely. Firstly, assuming the parameters of
neural network are fixed, R̄θ , cθ and φθ could be abbreviated
as R̄, c and φ. Then, (6) degenerates to following optimization
problem:

min
R̄,c,ξ

R̄+
1
νl

l∑
i=1

ξi

subject to ∥φ(xi) − c∥2 ≤ R̄+ ξi,

R̄ ≥ 0,

ξi ≥ 0, i = 1, . . . , l. (7)

Here, ν ∈ (0, 1] is a hyperparameter. It is easy to demonstrate
the convexity of the problem (7) which satisfies the Slater
conditions. It often refers to strong duality [23]. This implies
that the parameters R̄ and c in the optimization problem (7)
can be solved with precision. We call Eq. (7) a modified
SVDD in this paper.

The modified SVDD holds the Theorem 1. It explains the
relationship between the optimal solution of the optimization
problem (7) and the parameter ν.

Theorem 1. (a) For any 0 < ν < 1, the constraint R̄ ≥

0 in (7) is unnecessary. That is, without this constraint, any
optimal solution still satisfies R̄ ≥ 0.
(b) If ν = 1, then at least one optimal solution has R̄ = 0.

The proof is similar to Theorem 3 in [22], so we omit it
here.

For (7), when ν = 1, there is at least one optimal solution
R̄ = 0 according to Theorem 1. Then, the problem (7) is
equivalent to

min
c

l∑
i=1

∥φ(xi) − c∥2 . (8)

This case easily leads to a hypersphere collapse in neural
networks [18]. Therefore, the setting of ν = 1 is not
recommended.

When ν ∈ (0, 1), the constraint R̄ ≥ 0 in (7) will always
be satisfied. The problem (7) could be written as

min
R̄,c,ξ

R̄+
1
νl

l∑
i=1

ξi

subject to ∥φ(xi) − c∥2 ≤ R̄+ ξi,

ξi ≥ 0, i = 1, . . . , l. (9)

Note that if ν is set too close to 0, each ξi will tend to 0.

According to the optimization problem (7), R̄θ , cθ in the
CD-SVDD can be accurately solved. However, to update
the parameters of the neural network more accurately and
efficiently, we solve R̄, c in the optimization problem (7) via
its corresponding dual problem [24].

The Lagrange function [23] of (9) can be written as
follows.

L(R̄, c, ξ, α, β) = R̄+
1
νl

l∑
i=1

ξi

+

l∑
i=1

αi

(
∥φ (xi) − c∥2 − R̄− ξi

)
−

l∑
i=1

βiξi. (10)

where αi, βi is the Lagrange multipliers. Let

∂L

∂R̄
= 1 −

l∑
i=1

αi = 0,

∂L
∂c

= −2
l∑
i=1

αi (φ (xi) − c) = 0,

∂L
∂ξ

=
1
νl
e− α − β = 0,

KKT conditions corresponding to (9) can be obtained as
follows.

∥φ (xi) − c∥2 − R̄− ξi ≤ 0, i = 1, . . . , l, (11)

−ξi ≤ 0, i = 1, . . . , l, (12)

αi ≥ 0, i = 1, . . . , l, (13)

βi ≥ 0, i = 1, . . . , l, (14)

βiξi = 0, i = 1, . . . , l, (15)

αi

(
∥φ (xi) − c∥2 − R̄− ξi

)
= 0, i = 1, . . . , l, (16)

l∑
i=1

αi = 1, (17)

l∑
i=1

αiφ (xi) = c, (18)

α + β =
1
νl
e. (19)

The dual problem of (9) is achieved as follows.

min
α

αTQα −

l∑
i=1

αiQii

subject to 0 ≤ αi ≤
1
νl

, i = 1, . . . , l,

eTα = 1. (20)

Here, Qij = φ(xi) ∗ φ(xj)T .
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Definition 1. [25] Let α∗
= (α∗

1 , α
∗

2 , . . . , α
∗
l ) be the optimal

solution of (20). The observation xi is a support vector,
if α∗

i ̸= 0; Otherwise, it is called a non-support vector.

The optimal solution of center c∗ can be obtained by the
following formula:

c∗ =

l∑
i=1

α∗
i φ(xi). (21)

Denoted i1, i2, . . . , ip as the index that satisfies 0 < α∗
i <

1/νl in α∗, then the optimal solution of radius square R̄∗ is
achieved by:

R̄∗
=

1
p

p∑
j=1

∥∥φ
(
xij

)
− c∗

∥∥2 . (22)

B. DEEP LEARNING FOR θ

To update θ , we substitute the formulas (21) and (22) into (6).
Then, (6) can be rewritten as:

min
θ

1
p

p∑
j=1

∥∥∥∥∥φθ

(
xij

)
−

l∑
s=1

α∗
s φθ (xs)

∥∥∥∥∥
2

+
λ

2

K∑
k=1

∥∥∥θk
∥∥∥

+
1
νl

l∑
i=1

max

0,

∥∥∥∥∥φθ (xi) −

l∑
s=1

α∗
s φθ (xs)

∥∥∥∥∥
2

−
1
p

p∑
j=1

∥∥∥∥∥φθ

(
xij

)
−

l∑
s=1

α∗
s φθ (xs)

∥∥∥∥∥
2
 . (23)

Formulation (23) serves as a loss function to update the
parameters in the neural networks. Notably, R̄ and c in (23)
can be precisely solved through the dual problem (20).
In comparison, deep SVDD in (4) and (5) only provides
an approximate estimation of R2 and c through quantiles.
Hence, our proposed method offers stronger theoretical
support and yields a more accurate solution. Additionally,
R̄ and c in (23) are represented by φ(x) based on the
KKT conditions. This enables the direct optimization of the
hypersphere volume as part of the loss function, resulting
in a smaller hypersphere volume. Consequently, it becomes
easier to separate abnormal samples from the hypersphere,
further enhancing the accuracy of the model. Furthermore,
the precise solution method accelerates convergence and
enhances the computational speed of the model.

After the optimal parameters of CD-SVDD are obtained,
for any sample x, we can define an anomaly score as follows.

s(x) =
∥∥φθ∗ (x) − c∗

∥∥2 − R̄∗.

Then, we can give a prediction for x by the decision function:

f (x) = sgn(s(x)).

C. A JOINT ALTERNATE ALGORITHM
Firstly, R̄ and c are updated by solving the dual variable α

in optimization problem (20) with the initial parameter θ of

the neural network. After that, θ is updated according to (23).
Parameters are trained alternately until the primal problem (6)
converges. The pseudo code is given in Algorithm 1.

Algorithm 1 Joint Alternate Algorithm of CD-SVDD
Input: training data X , hyperparameter ν

Output: R̄∗, c∗, θ∗

1: Initialize neural network parameter θ

2: while objective function (6) does not converge do
3: α∗

⇐ solving convex optimization problem (20) with
φθ (X )

4: θ ⇐ back propagation algorithm to minimize the loss
(23)

5: end while
6: R̄∗, c∗ ⇐ calculating by Eq. (21) and (22)
7: θ∗

⇐ θ

Algorithm 1 can be easily extended to the mini-batch
case. Then, in each iteration, it just needs to solve a smaller
optimization. Additionally, with the precisely calculating R̄∗

and c∗ in each batch, the whole algorithm can converge faster
than deep SVDD.

D. ν-PROPERTY IN CD-SVDD
In this section, we demonstrate a great property of the
parameter ν in CD-SVDD. For the sake of narrative, define
the abstract sample sets A, B and C as follows.

A =

{
φθ (x)| ∥φθ (xi) − cθ∥2 < R̄θ , x ∈ X

}
,

B =

{
φθ (x)| ∥φθ (xi) − cθ∥2 = R̄θ , x ∈ X

}
,

C =

{
φθ (x)| ∥φθ (xi) − cθ∥2 > R̄θ , x ∈ X

}
.

According to (13)-(17), following formula holds

φθ (xi) ∈ A ⇒ α∗
i = 0, (24)

φθ (xi) ∈ B ⇒ 0 < α∗
i <

1
νl

, (25)

φθ (xi) ∈ C ⇒ α∗
i =

1
νl

. (26)

Then, the following ν-property can be proved.

Theorem 2. For CD-SVDD, ν ∈ (0, 1) is not only the upper
bound of the proportion of the mapped observations outside
the hypersphere, but also the lower bound of the proportion
of the support vectors.

Proof: When ν ∈ (0, 1), according to (17) and (26),
we have

|B|
1
νl

≤

l∑
i=1

αi.

Besides, from (17), (25) and (26), we obtain

|B ∪ C|
1
νl

≥

l∑
i=1

αi.
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Therefore, we have

|B|
1
νl

≤

l∑
i=1

αi ≤ |B ∪ C|
1
νl

.

Namely,

|B|
1
l

≤ ν ≤ |B ∪ C|
1
l
.

When min-batch strategy is employed, the result similar to
Theorem 2 can be derived.

The ν-property makes CD-SVDD have greater inter-
pretability, which is helpful to guide the parameter selection
in the model training.

IV. COMPARISONS WITH OTHER EXISTING METHODS
In this section, we give a comparative discussion between
CD-SVDD and other existing methods, including classical
neural networks and anomaly detection methods.

A. COMPARISON WITH EXISTING CLASSICAL NEURAL
NETWORK METHODS
The hidden layer structure of CD-SVDD inherits traditional
neural networks. For instance, it could be made up of
convolution and pooling layers. Most importantly, our
CD-SVDD is designed for the specific task of anomaly
detection, while traditional CNNs (convolutional neural
networks) and GANs (generative adversary networks) are
intended for ordinary classification tasks or generative tasks.
One of the main constructive differences of our CD-SVDD is
the loss function, which is tailored for anomaly detection. The
CD-SVDD generates a hypersphere in the mapped feature
space as an anomaly detector.

B. COMPARISON WITH EXISTING ANOMALY DETECTION
APPROACHES
The comparisons of CD-SVDD with shallow one-class
methods, mixed deep anomaly detection approaches, and full
deep methods are discussed.

1) The shallow one-class methods, such as OCSVM and
SVDD, use a kernel function to map the original
data into high-dimensional space [5], [7]. However,
this approach has weaker adaptability, especially when
faced with complex data distributions. On the contrary,
CD-SVDD learns a neural network to map the original
data into a high-dimensional space, thereby improving
model performance. The data representation ability of
neural networks is more powerful than that of kernel
functions, which results in CD-SVDD generally having
better prediction performance than shallow models.

2) In mixed deep anomaly detection approaches, the
neural network training process and anomaly detection
are usually carried out independently. This limits the
prediction performance. On the contrary, CD-SVDD
trains the parameters of neural network and modified

TABLE 1. Statistics of two image datasets.

SVDD together, which is more conducive to improve
prediction performance.

3) The existing deep SVDD model approximates some
of its parameters using a quantile approximation,
which may lead to imprecise results. In contrast,
our CD-SVDD uses an alternative iteration training
strategy. First, the parameters of the modified SVDD
are obtained through dual optimization. Then, the
parameters of the neural network are updated using
backpropagation. This allows for precise updates to the
model parameters during training, resulting in higher
accuracy. The training process is also faster as the
loss function converges more quickly. Furthermore, the
parameter ν in CD-SVDD has better interpretability,
which can provide useful guidance for parameter
selection.

V. NUMERICAL EXPERIMENTS
A. EXPERIMENTAL SETUP
To verify the advantages of CD-SVDD, numerical experi-
ments are conducted on two image datasets, i.e., CIFAR-10,
CIFAR-100,1 and five recorded benchmark datasets, i.e., a9a
[26], codrna [27], epileptic [28], htru2 [29] and ijcnn1 [30]
from UCI Machine Learning Repository2 and LIBSVM.3

Their statistics are given in Tables 1 and 2, respectively.
Additionally, we verify the ν-property in CD-SVDD on five
recorded benchmark datasets.

CIFAR-10 and CIFAR-100 datasets contain rich physical
images [31]. Some examples are shown in Fig. 2. These two
datasets were provided with specific training and division of
test sets. For the other five benchmark datasets, we randomly
take 80% for training, and the remaining 20% for testing.
In particular, one-class methods are just trained with one-
class samples. For multiclass data, we take turns to use one
of the categories of training samples to build the models.

All experiments are implemented by Python 3.10 on
Windows 11 running on a PC with system configuration Intel
Core i5-1140 CPU 2.70GHz with 16GB of RAM.

In the performance experiment, we compare CD-SVDD
with isolated forest (IF), OCSVM, ν -SVDD, soft-boundary
deep SVDD and one-class deep SVDD.

1) IF [32] is an anomaly detectionmethod. It judges normal
and abnormal data according to the average path lengths
needed to ‘‘isolate’’ a data point. It holds that abnormal data

1http://www.cs.toronto.edu/ kriz/cifar.html
2https://archive.ics.uci.edu/ml/datasets
3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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TABLE 2. Statistics of five recorded benchmark datasets.

FIGURE 2. Some examples of image datasets. The left is from CIFAR-10.
The right is from CIFAR-100.

can usually be ‘‘isolated’’ by short average path lengths on
the trees.

2)OCSVM [5] is a one-class classifier. It assumes that the
origin is an outlier and searches for a hyperplane farthest from
the outlier as the separation boundary. The non-linear kernel
is introduced to improve the model accuracy.

3) ν-SVDD [7] is a one-class classification. It separates
normal and anormal data by learning a hypersphere that
contains all normal data.

4) Soft-boundary Deep SVDD [18] is a fully deep
anomaly detection model proposed based on ν-SVDD.
A neural network is used as a mapping tool to train a
hypersphere with the smallest volume.

5) One-class Deep SVDD [18] is a simplified version
of the soft-boundary deep SVDD. Its objective function is
changed to minimize the average distance between normal
samples and its center.

In the experiments, IF is implemented by the ‘‘ensem-
ble.IsolationForest’’ class in the sklearn package. Both
OCSVM and ν-SVDD adopt the Gaussian kernel function
[33] and the best hyperparameter is selected by grid search.
σ is from the set {2i|i = −7,−6.5, . . . , 7} and ν is from
the set {0.01, 0.02, . . . , 0.99}. For deep learning methods,
that is, soft-boundary deep SVDD, one-class deep SVDD,
and CD-SVDD, we fix ν=0.1 referring to [18] and the batch
size is 200. On the CIFAR-10 and CIFAR-100 datasets, the
architectures of their neural networks are CIFAR10-LeNet
[18]. On the other five benchmark datasets, their architectures
are fully connected feedforward neural networks. And we

initialize network weights by uniform Glorot weights [34].
They are implemented through the torch package. The convex
optimization problem involved in CD-SVDD is solved by the
block coordinate descent method [35]. In order to verify the
ν-property in CD-SVDD, we obtain the relationship between
the CD-SVDD training error ratio, support vector ratio, and
ν, where ν takes the value in {0.05, 0.1, . . . , 0.95}.

Taking into account the case of imbalanced test samples
(one of the classes is regarded normal class, and the
others abnormal), the value of AUC (area under curve)
under optimal parameters is used to evaluate the prediction
performance of each model [36]. Furthermore, we calculate
the F1 scores under the optimal parameters on the five
recorded benchmark datasets.

B. RESULTS OF PREDICTION AND EFFICIENCY
To evaluate the accuracy and effectiveness of our proposed
CD-SVDD method, we compare it with five other methods
on two image datasets and five benchmark datasets.

1) CIFAR-10. It consists of images of common vehicles
and animals. As shown in Table 3, CD-SVDD achieves
higher AUC values in comparison to other models in 8 of
10 categories, which means that the model has greater
accuracy. This suggests that CD-SVDD can more accurately
identify common vehicles and animals. OCSVM and SVDD
follow it.

Besides, the training iterations and computational time
of three deep models, i.e., soft-boundary deep SVDD, one-
class deep SVDD and CD-SVDD, are shown in Table 4.
‘‘Iterations’’ corresponds to the iterations of updating the
model parameters, and ‘‘Time’’ represents the total training
time until the model reaches the optimal AUC value.
‘‘DP’’ represents the time to solve the dual problem, and
‘‘Network’’ denotes the time to update the parameters of
the neural network. It implies that CD-SVDD achieves the
least iterations for 4 categories, and the shortest time for
5 categories. It can also be found that the computational
time of CD-SVDD is shorter even with large iterations.
This indicates that CD-SVDD has advantages in computation
speed compared to the other two models.

2) CIFAR-100. It is comprised of images of animals,
plants, and household products, providing an extremely
diverse range of objects for classification. As shown in
Table 5, CD-SVDD outperforms other models in 90 of
100 categories in terms of optimal AUC values, indicating its
higher accuracy in identifying anomalies.Moreover, based on
the AVERAGE result, CD-SVDD significantly outperforms
other models. These results indicate that CD-SVDD can
be effectively applied to real-world anomaly detection
tasks. The corresponding iterations and the results of the
computational time are shown in Table 6. CD-SVDD
achieves the lowest number of iterations for 45 categories
and has the shortest computational time for 54 categories.
Additionally, we provide a box plot in Fig. 3 to observe the
overall computational performance in all 100 categories of
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TABLE 3. The optimal AUC values (in Percentage) of six methods on CIFAR-10 dataset.

TABLE 4. Computational iterations and time (in Seconds) of three deep models on CIFAR-10 dataset.

FIGURE 3. Iterations and time (in seconds) of three deep models on CIFAR-100 dataset.

CIFAR-100. The quartiles of iterations and corresponding
time for CD-SVDD are significantly smaller than those for
the other two deep models. This suggests that CD-SVDD can
converge to the optimal AUC value more quickly, demon-
strating the effectiveness of using optimization methods to
solve the problem (9) andminimize the objective function (6).
The outliers observed in the one-class deep SVDD solution

process also suggest that CD-SVDDhas amore stable solving
process.

3) Five recorded benchmark datasets. We verify the
advantages of our CD-SVDD in terms of prediction accu-
racy and computational efficiency. For prediction accuracy,
we compare the optimal AUC value, average AUC value,
and F1 score of each model on these datasets. Additionally,
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TABLE 5. The optimal AUC values (in percentage) of six models on CIFAR-100.

we carried out a sign test and Friderman test on the exper-
imental results. For computational efficiency, we compare

computational time and iterations when the models achieve
desirable and stable AUC values.
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TABLE 6. Iterations and time (in seconds) of three deep models on CIFAR-100 dataset.

TABLE 7. The optimal AUC values (in percentage) of six models on five recorded benchmark datasets.

TABLE 8. The average AUC values (in percentage) of six models on five recorded benchmark datasets.

Considering that the performance of neural structures is
often sensitive to initial conditions, we repeat the training
three times and compare the corresponding optimal and
average AUC values, respectively. As shown in Table 7,
in terms of optimal AUC value, CD-SVDD has outstanding
performance in 9 of 13 categories. As shown in Table 8,
in terms of the average AUC value, CD-SVDD performed
well in 10 out of 13 categories. Since the training results
of OCSVM and SVDD on the same data are stable, we just
train these models once. For shallow models IF, OCSVM and
SVDD, the class ‘0’ of dataset codrna cannot be detected

properly at all, which reflects the limitations of shallow
models.

We conduct a sign test [37] to further verify the prediction
performance of CD-SVDD according to optimal AUC value
in Table 7. The results are shown in Table 9. The total number
of sample categories is denoted as ’’N ’’, while ‘‘Node’’
represents the number of categories where the efficiency of
the two models is equal. ‘‘S+’’ and ‘‘S−’’ are the number
of categories in which CD-SVDD is superior or inferior to
the other model, respectively. ‘‘p’’ indicates the results of
the sign test. As shown in Table 9, at a significance level of
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TABLE 9. Sign test of model precision in seven datasets.

TABLE 10. The mean rank of AUC value of six models on five recorded benchmark datasets.

TABLE 11. The statistics of friderman test.

TABLE 12. Sign test of model precision in seven datasets.

0.05, CD-SVDD outperforms the other five models in terms
of prediction performance. This implies that the predictive
performance of CD-SVDD is effective.

The Friderman test is conducted according to average AUC
value in Table 8. As shown in Table 10 and Table 11, there
are obvious differences in the prediction accuracy of each
model.

Subsequently, we conducted a sign test to assess the
disparity in prediction accuracy between CD-SVDD and
each model according to Table 8. Details of the results are
presented in Table 12, all of which demonstrated statistical
significance at a confidence level of 0.05. This implies that
the superior prediction accuracy exhibited by CD-SVDD is
universal.

The optimal F1 score for each model is shown in Table 13.
Among the 13 categories, CD-SVDD is significantly superior
to other models in 9 categories. The one-class deep SVDD
follows it. This indicates that CD-SVDD not only achieved
success on image datasets but also has excellent performance

on recorded datasets. This demonstrates the universality of
CD-SVDD for data types.

The iterations and time of soft-boundary deep SVDD, one-
class deep SVDD, and CD-SVDD are shown in Table 14.
CD-SVDD achieves the least iterations and the shortest time
for 5 categories of benchmark datasets, which verifies the
efficiency of our method.

We conduct a sign test [37] to further verify the computa-
tional efficiency of CD-SVDD. As shown in Table 15, at a
significance level of 0.1, the convergence rate of CD-SVDD
is significantly better than that of soft-boundary deep SVDD.
At a significance level of 0.05, the computational efficiency
of CD-SVDD is also significantly better than that of one-class
deep SVDD. These results demonstrate the effectiveness of
applying convex optimizationmethods to the solving process.

It is important to note that, based on the results presented
in Table 4, Table 6, and Table 14, the time required to solve
the convex optimization problem (20) in our CD-SVDD is
very minimal and can be considered negligible. Nevertheless,
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TABLE 13. The optimal F1 score (in percentage) of six models on five recorded benchmark datasets.

TABLE 14. Iterations and time (in seconds) of three deep models on five recorded benchmark datasets.

TABLE 15. Sign test of model efficiency in seven datasets.

this optimization process plays a crucial role in our method
by allowing for higher prediction performance and faster
training speeds through an exact solution procedure. These
findings further highlight the validity and effectiveness of
utilizing convex optimization to calculate R̄ and C in our
CD-SVDD method.

C. RESULTS ON ν-PROPERTY OF CD-SVDD
We verify the ν-property of Theorem 2 using five recorded
benchmark datasets. In the interest of brevity, we present

results for only one class of training samples, labeled 0 for
each dataset. The training error ratio and the support vector
ratio curves, which change with the parameter ν, are shown
in Fig. 4.

As the value of ν increases, the support vector ratio and
training error ratio generally rise, indicating that ν controls
the volume of the hypersphere. A larger value of ν may
result in more training samples lying outside the hypersphere.
It is obvious that the support vector ratio is never less
than ν, and the error ratio is never greater than ν. This
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FIGURE 4. The changing curves of training error ratio, support vector ratio with different values of ν.

observation confirms Theorem 2. Other datasets have similar
conclusions.

VI. CONCLUSION
In this paper, we introduce the Complete Deep Support Vector
Data Description (CD-SVDD) and propose an efficient
solving algorithm that accurately computes each parameter
using optimization methods with fast computational speed.
By training the parameters of the neural network and
the modified-SVDD jointly and updating them alternately,
we achieve faster convergence of the objective function and
higher prediction accuracy. Additionally, we demonstrate the
ν-property of CD-SVDD, which not only sets the upper
bound of the proportion of mapped observations outside
the hypersphere, but also serves as the lower bound of the
proportion of support vectors, improving parameter selection
and model interpretability. Our numerical experiments on
two image datasets and five recorded benchmark datasets
fully demonstrate the superior performance of CD-SVDD
in prediction and computational efficiency, as well as the
ν-property. However, the performance of CD-SVDD is still
closely tied to the structure of the neural network, and it
remains a challenge to find a structure that can consistently
perform well on all datasets. One of our future goals
is to explore the use of more complex neural network
architectures, such as long-short-term memory (LSTM),
to enhance the ability of our method to handle sequential data.
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