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ABSTRACT In recent years, Deep Support Vector Data Description (Deep SVDD) has emerged as a
leading method in the field of anomaly detection. However, inaccuracies in parameter solving have been
identified as a limitation of this approach, which negatively affects its accuracy and efficiency. To address
this issue, we propose a new method, called Complete Deep Support Vector Data Description (CD-SVDD).
Our CD-SVDD is constructed with a traditional deep neural network and utilizes a modified SVDD as
its last layer. Its parameters are solved by an alternate iteration algorithm that ensures both high precision
and fast convergence of solutions. By keeping the network weights fixed, we solve the center and radius
of the modified SVDD based on its convex dual optimization problem. With the exact center and radius,
we then update the parameters of the neural network by backpropagation. Compared to the existing deep
SVDD, all parameters of our method are precisely solved. So, our method is defined to be ““complete”. This
approach enables us to maintain the v-property found in shallow SVDD, which is beneficial for parameter
selection and model interpretability. To evaluate the performance of CD-SVDD, we conducted extensive
numerical experiments with five existing methods on two image datasets, CIFAR-10 and CIFAR-100, as well
as five recorded benchmark datasets. Our results demonstrate that CD-SVDD achieves superior accuracy and
efficiency in the detection of anomalies.

INDEX TERMS Anomaly detection, deep learning, support vector data description, strong duality.

I. INTRODUCTION
Anomaly detection is a widely research field in machine
learning and data mining, with the aim of identifying data
that deviates from most instances. It includes point anomaly,
contextual anomaly, and collective anomaly [1], [2], [3].
Point anomaly, in particular, has been extensively researched
and can be categorized into classification-based, clustering-
based, and nearest neighbor-based approaches [1]. Among
these methods, one-class classification models are commonly
used and have shown admirable performance in various
applications.

One-class classification models are trained using normal
data to detect abnormal instances in prediction [4]. The

The associate editor coordinating the review of this manuscript and

approving it for publication was Davide Patti

classical approach is the one-class support vector machine
(OCSVM) [5], [6], which assumes the origin is an abnormal
point and learns a hyperplane to separate normal data from
it. Although OCSVM has achieved great performance in
various applications, it is limited by the use of a hyperplane
to separate the data. Support vector data description (SVDD)
[7], as a successful extension of OCSVM, separates normal
and abnormal data by learning a hypersphere instead of a
hyperplane. SVDD is more flexible and shows outstanding
prediction performance.

To enhance the handling of high-dimensional data,
some traditional dimension reduction methods have been
employed. For example, in [8], the author utilizes principal
component analysis (PCA) to reduce the dimension in image
anomaly detection. In [9], Shravan et al. propose a document
classifier based on PCA and OCSVM. In [10], Shen et al.
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employ PCA and SVDD for non-linear process monitoring.
However, despite their convenience, these dimension reduc-
tion methods may significantly impact prediction accuracy.
Moreover, traditional kernel techniques may have limited
adaptability when dealing with complex data structures.

In recent years, neural networks have been employed in
anomaly detection due to their robust data representation
capabilities [11], [12], [13], [14], [15]. The main research
involves two aspects.

1) Neural networks are often used for data preprocessing,

followed by training of the anomaly detection model.
For example, Alfeo et al. use an autoencoder for
data dimension reduction before training the anomaly
detection model in [16]. In [17], Wang et al. propose
an unsupervised deep learning method based on an
autoencoder combined with OCSVM for anomaly
detection. These approaches are referred to as mixed
models where the two stages are carried out separately.
However, similar to traditional dimension reduction
techniques, differences between normal and abnormal
data are not directly detected in data preprocessing.
As a result, the performance of anomaly detection
cannot be guaranteed.

2) The traditional anomaly detection model has been
extended to the deep learning framework, where neural
networks and traditional models are often trained
alternately. Ruff et al. proposed a deep SVDD by
extending v-SVDD to the deep learning framework in
[18]. Similarly, in [19], a fully deep model, called a
one-class neural network (OCNN), was proposed by
extending OCSVM. These methods aim to improve
the performance of anomaly detection by incorporating
deep learning techniques.

The fully deep models mentioned above generally perform
better in predicting anomalies on large and complex datasets.
However, the deep SVDD training process has a limitation
where the center ¢ of the hypersphere is manually fixed
and cannot be updated, negatively affecting the prediction
performance. Moreover, the square of the hypersphere radius
R? is substituted with the quantile of the square distance from
¢ to the mapped samples, which lacks a theoretical foundation
and hinders the convergence speed and prediction accuracy of
deep SVDD.

To address the issue of imprecise solutions and to enhance
model interpretability, we introduce a novel approach called
the Complete Deep Support Vector Data Description (CD-
SVDD). We also demonstrated the theoretical property of
parameter v in our CD-SVDD and propose an efficient
algorithm for implementing CD-SVDD. Compared to exist-
ing model, all parameters of our model is solved precisely.
Therefore, we defined it to be “complete”.

The main contributions of this paper are summarized as
follows.

1) We propose the CD-SVDD. It can be well adapted

to the situation where the dimension of data is high
and the distribution is complex. The CD-SVDD has
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great model properties and achieves higher prediction
accuracy.

2) We further develop an efficient joint alternate algorithm
for CD-SVDD, based on the strong duality of the opti-
mization and backpropagation method. This algorithm
is more efficient than the original algorithm and has a
faster convergence speed.

3) We demonstrate the v-property of CD-SVDD, which
provides a valuable guidance for parameter selection
and enhances the interpretability of the model.

The rest of this paper is outlined as follows. Section II
briefly introduces the related work. In Section III, CD-SVDD
is proposed and the corresponding efficient algorithm is
developed. Then, we demonstrate the relevant v-property.
Then, in Section IV, abundant experiments are conducted
to verify the validity of our method. Section V gives the
conclusion.

Il. RELATED WORK
In this section, we review the classical SVDD [7] and the deep
SVDD [18].

A. SUPPORT VECTOR DATA DESCRIPTION
Let X be the input space. X = {x1, x2, ..., x;} is a training set
that is drawn independently from X'. Let H be a reproducing
kernel Hilbert space (RKHS) associated to a Mercer kernel
K : X x X — R that is continuous, symmetric, and positive
semidefinite [20]. Let ¢ : X — H be the associated feature
map that satisfies K (x;, x;) = (¢(x;), ¢(x;)) for all x;, x; € X.
SVDD [7] finds a hypersphere that contains all normal
data as the separation boundary. It can be summarized as the
following optimization problem:

l
inR2+C ;
}ellcl% + ;éz
subject to [|p(x;) — c|* < R* + &,
£>0,i=1,...,1 (D)

Here, R is the radius of the hypersphere. ¢ is the hypersphere
center. &; is the relaxation factor. The hyperparameter C is the
penalty parameter. / is the sample size.

The solution of the primal problem (1) is usually obtained
by solving the following dual problem (2).

l
min O[TQOl — Z ;i Qi
o
i=1

subjectto 0 <« < C,
a=1 )
where Q;; = K (x;, xj), o is the vector of Lagrangian multipli-
ers, and e is a ones vector with appropriate dimensions.

Additionally, by replacing C of Eq. (1) with v, v-SVDD
has been proposed in [18]. The corresponding optimization
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problem is formulated as:

subject to [|p(x;) — cll < R® + &,
&§>0i=1,...,1L (3)

Compared with C in SVDD, v in v-SVDD has a practical
interpretation [21]. v € (0, 1] is proved to be not only the
upper bound of the proportion of observations outside the
hypersphere, but also the lower bound of the proportion of
the support vectors [18].

B. DEEP SUPPORT VECTOR DATA DESCRIPTION
Deep SVDD is inspired by v-SVDD [18], and uses a neural
network instead of the traditional kernel function.
Soft-boundary deep SVDD is proposed to minimize the
volume of the hypersphere that contains the outputs of the
neural network. It can be formulated as:
I

min R? + l max [O, i (xi, W) —c||*> — Rz}
W.R.c vl P
L
A 12
25w H . 4
+ 2 j_zl H F @

Here, R is the hypersphere radius, c is the hypersphere center.
W/ is the parameter matrix of the j-th layer neural network.
L represents the number of layers of the neural network.
¢ (x;, W) represents the outputs of the neural network with
the input of the original data x;. A and v are hyperparameters.
Furthermore, a simplified version of the deep SVDD,
named one-class deep SVDD, is put forward as follows.

, L

o ) A 12

IVI‘}I’ICIYZIZH‘P(X;', W) —cll +§Z}HW]HF' ©)
i= =

The above models extend the shallow SVDD to deep learning
framework to improve the prediction performance. However,
in their solution algorithms, the parameters R? and ¢ are
roughly calculated. Specifically, R? is just estimated by the
quantile of the square distance from c to the data mapping
result. This limits the performance of the deep SVDD.

IIl. A COMPLETE DEEP SUPPORT VECTOR DATA
DESCRIPTION
As discussed in Section II-A, formulation (3) of v-SVDD
was proposed to improve the interpretability of the model.
However, the non-convexity of the optimization problem with
respect to R and the lack of guaranteed strong duality make
it challenging to solve R? exactly [22]. In deep SVDD, the
distance quantile is used as an approximate representation
of R?. However, in the deep-SVDD training process, the
theoretical properties of v in v-SVDD cannot be guaranteed,
which impedes the model’s interpretability.

In this section, we propose the Complete Deep Support
Vector Data Description(CD-SVDD). The parameters in
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FIGURE 1. A schematic diagram of CD-SVDD. In solving the CD-SVDD, R
and ¢, are represented by the output results of the neural network, which
can be directly updated by the neural network parameter ¢. That is why
we define our method to be “complete”.

CD-SVDD could be solved accurately, and it has greater
theoretical properties.

Define the input space X € R¢ and the output space
F C RV gp(+) : X +— Fis a map from R? to RP.
Here, ¢y is constructed by a neural network and 6 is its
corresponding weight parameters. / is the size of the training
dataset X = {x{,x2,...,x} € X. The aim of CD-SVDD
is to jointly learn the neural network parameters 6 together
with minimizing the volume of a hypersphere containing
the normal data. We give the formulation of CD-SVDD as
follows.

1
o _
‘min Ry + — > max {0, o (xi) — coll* — Re}
Rg.,cp,0 vl i=1

K
Pt ®
k=1

This model constructs a hypersphere that contains normal
data in the output space of the neural network. Ry is the
square of the radius of the hypersphere. cg is the center of the
hypersphere. ¢y(x;) is the mapping result of x;. The second
term is a penalty for training data outside the hypersphere.
The third term is the regularization for the parameters of the
neural network. Here, it is assumed that the neural network
has K layers and 6 is the weights of the k-th layer. v € (0, 1]
is a hyperparameter.

The schematic diagram in Fig. 1. illustrates the workflow
of CD-SVDD. First, the original data in R? are transformed
into a low-dimensional space R” by a neural network. Then,
CD-SVDD finds the minimum volume hypersphere that
encloses the normal data. During training, only normal data
are expected to be mapped inside the hypersphere. In the
prediction process, any data point outside the hypersphere is
treated as an outlier.

Define the map of the neural network from the 1 first layer
to the K -th layer as ¢g1, @p2,..., dpx. The feed-forward
process of the CD-SVDD can be represented as

0 = P (Pgr-1(. .. Pg1(x))),
&) =sgnR — llo — c||?).

Here, a value of “4+1” indicates normal, and a value of
“—1” implies abnormal. That is, samples located inside the
hypersphere are regarded as normal samples, while those
located outside the hypersphere are abnormal samples.
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In our proposed CD-SVDD, the optimization problem (6)
will be solved exactly, giving the CD-SVDD greater accuracy
and convergence speed. At the same time, the exact solution
of the parameters of CD-SVDD could also provide better
properties of the parameter v, which makes CD-SVDD have
good interpretability.

A. MODIFIED SVDD

The parameters of optimization problem (6) can be solved
jointly and precisely. Firstly, assuming the parameters of
neural network are fixed, Ry, cp and ¢p could be abbreviated
as R, c and ¢. Then, (6) degenerates to following optimization
problem:

1<
gl;gR+W§Ei
subject to [l¢(x) — c[l* < R + &,

R >0,

£§>0,i=1,...,1 7

Here, v € (0, 1] is a hyperparameter. It is easy to demonstrate
the convexity of the problem (7) which satisfies the Slater
conditions. It often refers to strong duality [23]. This implies
that the parameters R and ¢ in the optimization problem (7)
can be solved with precision. We call Eq. (7) a modified
SVDD in this paper.

The modified SVDD holds the Theorem 1. It explains the
relationship between the optimal solution of the optimization
problem (7) and the parameter v.

Theorem 1. (a) For any 0 < v < 1, the constraint R >
0 in (7) is unnecessary. That is, without this constraint, any
optimal solution still satisfies R > 0.

(b) If v = 1, then at least one optimal solution has R = 0.

The proof is similar to Theorem 3 in [22], so we omit it
here.

For (7), when v = 1, there is at least one optimal solution
R = 0 according to Theorem 1. Then, the problem (7) is
equivalent to

i
min > [lpx) — . ®)
i=1
This case easily leads to a hypersphere collapse in neural
networks [18]. Therefore, the setting of v = 1 is not
recommended.
When v € (0, 1), the constraint R > 0 in (7) will always
be satisfied. The problem (7) could be written as

l
- 1
min R+ — E &
Ryt vl ol l

subject to [l¢(x) — el < R+ &,
£E=>0,i=1,...,1L )
Note that if v is set too close to 0, each &; will tend to 0.

VOLUME 11, 2023

According to the optimization problem (7), Ry, cp in the
CD-SVDD can be accurately solved. However, to update
the parameters of the neural network more accurately and
efficiently, we solve R, ¢ in the optimization problem (7) via
its corresponding dual problem [24].

The Lagrange function [23] of (9) can be written as
follows.

[
_ - 1
LR, c,&,a,p) =R+ W,;Ei

S (¢ @) — el - R - &)

i=1
i

- Biti. (10)
i=1

where «;, B; is the Lagrange multipliers. Let

%ZI—ZO{I‘ZO,

l
oL
¥=—22ai(¢(xi)—c)=o,
=
oL 1
_— = —e — —_ :0’
g ~w¢ TP

KKT conditions corresponding to (9) can be obtained as
follows.

lp ) —cl> ~R—&<0,i=1,...,1, (11)
—-£<0,i=1,...,1, (12)

w>0,i=1,....0, (13)

Bi=0,i=1,....01, (14)

Bi& =0,i=1,....1, (15)

ai (||¢(x,-)—c||2—1_€—éi) —0,i=1,....0, (16)

1

Sa=1, a7

!
D ip () =c, (18)
i=1

oz—l—,B:ie. (19)
vl

The dual problem of (9) is achieved as follows.
I
rr}xin a’ Qo — ;%’Qiz‘
subjectto 0 < a; < %,i: 1,...,1,

ela=1. (20)

Here, Qi = ¢(x;) * (x)” .
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Definition 1. /25] Leta* = (af, o}, ..., o) be the optimal
solution of (20). The observation x; is a support vector,
ifal # 0; Otherwise, it is called a non-support vector.

The optimal solution of center ¢* can be obtained by the
following formula:

[
¢* =D o). 1)
i=1

Denoted iy, i3, . . ., i as the index that satisfies 0 < ot;‘ <
1/vl in o*, then the optimal solution of radius square R* is
achieved by:

_ 1<
R*:I;Z||¢(xij)—c*||2. (22)
=1

B. DEEP LEARNING FOR 0
To update 6, we substitute the formulas (21) and (22) into (6).
Then, (6) can be rewritten as:

1 14

min —E

2 N K
6 p- + 2 Z H
j=1 k=1

l
o (xi) — D iy (x)
s=1
2

l
b9 (x1) — D ey (xy)

s=1

l
1
+ v_l Zmax 0,
i=1
2
(23)

>
| ey
Formulation (23) serves as a loss function to update the
parameters in the neural networks. Notably, R and c in (23)
can be precisely solved through the dual problem (20).
In comparison, deep SVDD in (4) and (5) only provides
an approximate estimation of R and ¢ through quantiles.
Hence, our proposed method offers stronger theoretical
support and yields a more accurate solution. Additionally,
R and c in (23) are represented by ¢(x) based on the
KKT conditions. This enables the direct optimization of the
hypersphere volume as part of the loss function, resulting
in a smaller hypersphere volume. Consequently, it becomes
easier to separate abnormal samples from the hypersphere,
further enhancing the accuracy of the model. Furthermore,
the precise solution method accelerates convergence and
enhances the computational speed of the model.
After the optimal parameters of CD-SVDD are obtained,
for any sample x, we can define an anomaly score as follows.

1
o (x;) — D ey (x)
s=1

2 -
s@) = [ gor ) — *[[" = R™.
Then, we can give a prediction for x by the decision function:
J(x) = sgn(s(x)).

C. A JOINT ALTERNATE ALGORITHM
Firstly, R and ¢ are updated by solving the dual variable o
in optimization problem (20) with the initial parameter 6 of
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the neural network. After that, 0 is updated according to (23).
Parameters are trained alternately until the primal problem (6)
converges. The pseudo code is given in Algorithm 1.

Algorithm 1 Joint Alternate Algorithm of CD-SVDD
Input: training data X, hyperparameter v
Output: R*, c*, 6*
1: Initialize neural network parameter 0
2: while objective function (6) does not converge do
3:  a* < solving convex optimization problem (20) with
$e(X)
4: 6 < back propagation algorithm to minimize the loss
(23)
5: end while
6: R*, c* <= calculating by Eq. (21) and (22)
7. 0% <=0

Algorithm 1 can be easily extended to the mini-batch
case. Then, in each iteration, it just needs to solve a smaller
optimization. Additionally, with the precisely calculating R*
and ¢* in each batch, the whole algorithm can converge faster
than deep SVDD.

D. v-PROPERTY IN CD-SVDD

In this section, we demonstrate a great property of the
parameter v in CD-SVDD. For the sake of narrative, define
the abstract sample sets A, B and C as follows.

A = 9ol o) — col* < Ro x € X},
B = {9000l I#u ) — coll* = Ry, x € X},
C = [#o)l Igo ) - col > Ro,x e x .

According to (13)-(17), following formula holds

Po(x)) A= af =0, (24)

(bg(x,‘)GB=>O<ot;k < o (25)
v

Po(x)) € C = (X;k = L (26)

vl
Then, the following v-property can be proved.

Theorem 2. For CD-SVDD, v € (0, 1) is not only the upper
bound of the proportion of the mapped observations outside
the hypersphere, but also the lower bound of the proportion
of the support vectors.

Proof: When v € (0, 1), according to (17) and (26),
we have

[
1
B < 2%-.
=

Besides, from (17), (25) and (26), we obtain
| !
BUC|— > 201,-.
=
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Therefore, we have
1 < 1
B|— < i < |BUC|—.
Bl = 2 o < IBUCI
i=1
Namely,

1 1
1Bl7 =v =|BUCI;.

|
When min-batch strategy is employed, the result similar to
Theorem 2 can be derived.
The v-property makes CD-SVDD have greater inter-
pretability, which is helpful to guide the parameter selection
in the model training.

IV. COMPARISONS WITH OTHER EXISTING METHODS

In this section, we give a comparative discussion between
CD-SVDD and other existing methods, including classical
neural networks and anomaly detection methods.

A. COMPARISON WITH EXISTING CLASSICAL NEURAL
NETWORK METHODS

The hidden layer structure of CD-SVDD inherits traditional
neural networks. For instance, it could be made up of
convolution and pooling layers. Most importantly, our
CD-SVDD is designed for the specific task of anomaly
detection, while traditional CNNs (convolutional neural
networks) and GANs (generative adversary networks) are
intended for ordinary classification tasks or generative tasks.
One of the main constructive differences of our CD-SVDD is
the loss function, which is tailored for anomaly detection. The
CD-SVDD generates a hypersphere in the mapped feature
space as an anomaly detector.

B. COMPARISON WITH EXISTING ANOMALY DETECTION
APPROACHES

The comparisons of CD-SVDD with shallow one-class
methods, mixed deep anomaly detection approaches, and full
deep methods are discussed.

1) The shallow one-class methods, such as OCSVM and
SVDD, use a kernel function to map the original
data into high-dimensional space [5], [7]. However,
this approach has weaker adaptability, especially when
faced with complex data distributions. On the contrary,
CD-SVDD learns a neural network to map the original
data into a high-dimensional space, thereby improving
model performance. The data representation ability of
neural networks is more powerful than that of kernel
functions, which results in CD-SVDD generally having
better prediction performance than shallow models.

2) In mixed deep anomaly detection approaches, the
neural network training process and anomaly detection
are usually carried out independently. This limits the
prediction performance. On the contrary, CD-SVDD
trains the parameters of neural network and modified
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TABLE 1. Statistics of two image datasets.

Sample Size

Dataset # Categories  # Features
Training Test
CIFAR-10 10 3x32x32 50000 10000
CIFAR-100 100 3x32x32 50000 10000

SVDD together, which is more conducive to improve
prediction performance.

3) The existing deep SVDD model approximates some
of its parameters using a quantile approximation,
which may lead to imprecise results. In contrast,
our CD-SVDD uses an alternative iteration training
strategy. First, the parameters of the modified SVDD
are obtained through dual optimization. Then, the
parameters of the neural network are updated using
backpropagation. This allows for precise updates to the
model parameters during training, resulting in higher
accuracy. The training process is also faster as the
loss function converges more quickly. Furthermore, the
parameter v in CD-SVDD has better interpretability,
which can provide useful guidance for parameter
selection.

V. NUMERICAL EXPERIMENTS

A. EXPERIMENTAL SETUP

To verify the advantages of CD-SVDD, numerical experi-
ments are conducted on two image datasets, i.e., CIFAR-10,
CIFAR-100,! and five recorded benchmark datasets, i.e., a9
[26], codrna [27], epileptic [28], htru2 [29] and ijcnnl [30]
from UCI Machine Learning Repository? and LIBSVM.3
Their statistics are given in Tables 1 and 2, respectively.
Additionally, we verify the v-property in CD-SVDD on five
recorded benchmark datasets.

CIFAR-10 and CIFAR-100 datasets contain rich physical
images [31]. Some examples are shown in Fig. 2. These two
datasets were provided with specific training and division of
test sets. For the other five benchmark datasets, we randomly
take 80% for training, and the remaining 20% for testing.
In particular, one-class methods are just trained with one-
class samples. For multiclass data, we take turns to use one
of the categories of training samples to build the models.

All experiments are implemented by Python 3.10 on
Windows 11 running on a PC with system configuration Intel
Core i5-1140 CPU 2.70GHz with 16GB of RAM.

In the performance experiment, we compare CD-SVDD
with isolated forest (IF), OCSVM, v -SVDD, soft-boundary
deep SVDD and one-class deep SVDD.

1) IF [32] is an anomaly detection method. It judges normal
and abnormal data according to the average path lengths
needed to “isolate” a data point. It holds that abnormal data

! http://www.cs.toronto.edu/ kriz/cifar.html
2https ://archive.ics.uci.edu/ml/datasets
3 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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TABLE 2. Statistics of five recorded benchmark datasets.

Sample Size

Dataset  # Categories  # Features  Class

Training Test
0 19776 12785
a% 2 132 1 6273 26288
codrna 5 3 0 31752 27783
1 15876 43659

0 1840 9660

1 1840 9660

epileptic 5 178 2 1840 9660
3 1840 9660

4 1840 9660

0 13007 4891
htru2 2 8 1 1311 16587
.. 0 36110 13880
ijennl 2 2 1 3882 46108

FIGURE 2. Some examples of image datasets. The left is from CIFAR-10.
The right is from CIFAR-100.

can usually be ““isolated” by short average path lengths on
the trees.

2) OCSVM [5] is a one-class classifier. It assumes that the
origin is an outlier and searches for a hyperplane farthest from
the outlier as the separation boundary. The non-linear kernel
is introduced to improve the model accuracy.

3) v-SVDD [7] is a one-class classification. It separates
normal and anormal data by learning a hypersphere that
contains all normal data.

4) Soft-boundary Deep SVDD [18] is a fully deep
anomaly detection model proposed based on v-SVDD.
A neural network is used as a mapping tool to train a
hypersphere with the smallest volume.

5) One-class Deep SVDD [18] is a simplified version
of the soft-boundary deep SVDD. Its objective function is
changed to minimize the average distance between normal
samples and its center.

In the experiments, IF is implemented by the ‘“‘ensem-
ble.IsolationForest” class in the sklearn package. Both
OCSVM and v-SVDD adopt the Gaussian kernel function
[33] and the best hyperparameter is selected by grid search.
o 1is from the set {2i|i = —7,—6.5,...,7} and v is from
the set {0.01,0.02,...,0.99}. For deep learning methods,
that is, soft-boundary deep SVDD, one-class deep SVDD,
and CD-SVDD, we fix v=0.1 referring to [18] and the batch
size is 200. On the CIFAR-10 and CIFAR-100 datasets, the
architectures of their neural networks are CIFAR10-LeNet
[18]. On the other five benchmark datasets, their architectures
are fully connected feedforward neural networks. And we
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initialize network weights by uniform Glorot weights [34].
They are implemented through the torch package. The convex
optimization problem involved in CD-SVDD is solved by the
block coordinate descent method [35]. In order to verify the
v-property in CD-SVDD, we obtain the relationship between
the CD-SVDD training error ratio, support vector ratio, and
v, where v takes the value in {0.05, 0.1, ..., 0.95}.

Taking into account the case of imbalanced test samples
(one of the classes is regarded normal class, and the
others abnormal), the value of AUC (area under curve)
under optimal parameters is used to evaluate the prediction
performance of each model [36]. Furthermore, we calculate
the F1 scores under the optimal parameters on the five
recorded benchmark datasets.

B. RESULTS OF PREDICTION AND EFFICIENCY

To evaluate the accuracy and effectiveness of our proposed
CD-SVDD method, we compare it with five other methods
on two image datasets and five benchmark datasets.

1) CIFAR-10. It consists of images of common vehicles
and animals. As shown in Table 3, CD-SVDD achieves
higher AUC values in comparison to other models in 8 of
10 categories, which means that the model has greater
accuracy. This suggests that CD-SVDD can more accurately
identify common vehicles and animals. OCSVM and SVDD
follow it.

Besides, the training iterations and computational time
of three deep models, i.e., soft-boundary deep SVDD, one-
class deep SVDD and CD-SVDD, are shown in Table 4.
“Iterations” corresponds to the iterations of updating the
model parameters, and “Time” represents the total training
time until the model reaches the optimal AUC value.
“DP” represents the time to solve the dual problem, and
“Network™ denotes the time to update the parameters of
the neural network. It implies that CD-SVDD achieves the
least iterations for 4 categories, and the shortest time for
5 categories. It can also be found that the computational
time of CD-SVDD is shorter even with large iterations.
This indicates that CD-SVDD has advantages in computation
speed compared to the other two models.

2) CIFAR-100. It is comprised of images of animals,
plants, and household products, providing an extremely
diverse range of objects for classification. As shown in
Table 5, CD-SVDD outperforms other models in 90 of
100 categories in terms of optimal AUC values, indicating its
higher accuracy in identifying anomalies. Moreover, based on
the AVERAGE result, CD-SVDD significantly outperforms
other models. These results indicate that CD-SVDD can
be effectively applied to real-world anomaly detection
tasks. The corresponding iterations and the results of the
computational time are shown in Table 6. CD-SVDD
achieves the lowest number of iterations for 45 categories
and has the shortest computational time for 54 categories.
Additionally, we provide a box plot in Fig. 3 to observe the
overall computational performance in all 100 categories of
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TABLE 3. The optimal AUC values (in Percentage) of six methods on CIFAR-10 dataset.

Soft-boundary One-class
Normal Class IF OCSVM SVDD Deep SVDD  Deep SVDD CD-SVDD
0 66.733  65.223  70.156 64.157 58.338 74.853
1 44.628 41.009 51.100 51.865 54.672 79.937
2 65.085 65.074 68.820 64.573 65.871 66.781
3 50417 49907  52.025 54.500 55.132 59.611
4 74.902  75.042  77.302 76.066 76.336 71.752
5 52.291 51.356  50.822 56.200 56.894 63.282
6 71.355 71.591 74.056 75.543 75.639 77.453
7 54.308 51.291 52.207 59.657 56.379 66.745
8 71.589  67.661 70.500 62.183 68.259 76.441
9 55.351 49.144 52432 56.171 54.970 79.172
AVERAGE 60.666  58.730  56.883 62.092 62.249 71.603
Win/Draw/Loss  8/0/2 8/0/2 8/0/2 9/0/1 9/0/1
TABLE 4. Computational iterations and time (in Seconds) of three deep models on CIFAR-10 dataset.
Normal Class Soft-boundary Deep SVDD One-class Deep SVDD CD-SVDD
Iterations Time (s) Iterations Time (s) Iterations Time (s) DP (s) Network (s)
0 32 252.570 35 308.683 24 127415 0.316 127.099
1 89 695.009 27 208.069 31 150.475 0.396 150.079
2 62 466.353 51 386.757 207 1406.150 2.689 1403.461
3 27 215.989 467 3646.297 253 1760.750 3.300 1757.450
4 236 959.792 69 545.986 123 847.495 1.604 845.891
5 16 118.008 27 205.710 37 262.550 0.479 262.071
6 226 1671.144 226 1687.093 49 317.277 0.631 316.646
7 43 218.586 42 321.493 11 68.962 0.138 68.824
8 29 249.317 34 294.875 35 262.017 0.454 261.563
9 16 119.506 53 387.662 16 103.893 0.206 103.687
AVERAGE 77.600 496.627 103.100 799.263 78.600 530.698 1.021 529.677
Win/Draw/Loss 5/1/4 5/0/5 6/0/4 7/0/3
200 "
1400 4 175
1200 1 150
1000 1 125
800 { 100
600 { 75
4004 50
2004 25
04 0
Soft-boundary Deep SVDD  One-class Deep SVDD CD-SVDD Soft-boundary Deep SVDD  One-class Deep SVDD CD-SVDD

(a) Iterations

FIGURE 3. Iterations and time (in seconds) of three deep models on CIFAR-100 dataset.

(b) Time (s)

CIFAR-100. The quartiles of iterations and corresponding
time for CD-SVDD are significantly smaller than those for
the other two deep models. This suggests that CD-SVDD can
converge to the optimal AUC value more quickly, demon-
strating the effectiveness of using optimization methods to
solve the problem (9) and minimize the objective function (6).
The outliers observed in the one-class deep SVDD solution
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process also suggest that CD-SVDD has a more stable solving
process.

3) Five recorded benchmark datasets. We verify the
advantages of our CD-SVDD in terms of prediction accu-
racy and computational efficiency. For prediction accuracy,
we compare the optimal AUC value, average AUC value,
and F1 score of each model on these datasets. Additionally,
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TABLE 5. The optimal AUC values (in percentage) of six models on CIFAR-100.

Normal Class IF 0CSVM SVDD SSZZ;’Z“\'/“D‘;;Y D‘:::'S“{Z?D CD-SVDD
0 74248 56.793 74.985 54251 64.991 78.039
1 73.031 68.116 66.822 62753 68.229 78.016
2 55.272 53.449 55.423 60.366 58.166 72.178
3 64300 62.458 62323 64.083 66.183 72722
4 74722 74430 73.006 67.361 71.796 75.568
5 60.157 58.538 58.202 50.836 57322 65516
6 61.665 57.804 56.803 64.980 64.927 70.053
7 71667 70.820 68.347 70.504 73.502 77451
8 67.741 66.535 68.349 61.884 62.828 73.023
9 61245 55.575 64.667 54.681 62.161 66.648
10 52,084 50754 57152 57.511 59.984 60.838
11 47188 45918 45701 54953 53.331 68.799
12 72397 68.864 70399 65.259 72.245 77132
13 51504 48.140 49.840 65.039 60.383 72.068
14 59.762 56.547 57.208 62.864 65.137 76.342
15 62.425 60.147 59.838 62237 58.734 62476
16 58974 54077 54616 62769 62.957 64927
17 85.357 83.005 83.119 71654 62.559 88313
18 74862 75.043 75.724 71070 76.193 69.140
19 61254 57.966 58.421 63.481 64.480 63.802

20 81.197 69.155 76.175 42229 62510 83.587
21 70.958 63.482 64.948 69.806 71.700 79.185
2 48.479 47.231 53.495 59.122 62.062 66.829
23 80.082 79.658 80.766 53.620 82214 91.267
24 89.509 83.665 84.842 48.807 57.832 88.615
25 52276 49.845 53.000 51.445 51.404 62277
26 56700 57.463 60.055 67.565 64.959 70.228
27 75.795 75.704 75.847 63.760 69.910 77.332
28 62290 58216 74291 62.092 62.188 78.833
29 56477 52.890 57.101 47.667 56.244 72273
30 86.162 84.879 83.169 60.501 66.500 84.950
31 66.857 66.181 67.086 68.702 67.352 71500
2 50,885 50031 50.841 58.855 59.005 64.293
33 84.765 83.093 81.824 68.800 76.800 82.883
34 70.125 70.196 73317 64.365 70.403 73819
35 47420 44973 49.975 61322 58.061 70.065
36 72,448 70627 69.503 64.489 61.789 71393
37 66.113 61759 63.259 65.534 59.430 69.871
38 76458 76360 76527 60.780 73,292 72261
39 58.290 55.709 67.420 70.339 61.524 73.502
40 51.085 47933 62.340 53.882 58.543 65223
41 74008 62.081 69.153 42558 43733 77.958
2 74574 72,493 77.610 63.300 71.255 74632
43 77.605 76231 76,445 68.298 78.042 72335
44 64201 64.582 67.301 50.350 62.545 70.395
45 54253 52728 54.084 58.583 61.967 69.238
46 45.723 41915 49.985 55.481 53.966 70.910
47 81.518 75.304 78.494 71.596 73.940 86.686
48 52420 50946 51.684 69.080 64.604 79.629
49 80.903 78.145 79.977 67574 65.868 85758
50 61472 62017 52842 53750 57.420 73236
51 73.508 70430 71141 69.919 73.507 78.601
52 91.947 88.032 88.121 85.357 84.972 94.354
53 82,982 66.542 75.822 40.974 47550 93593
54 54276 50972 47.060 63.725 63.876 78.500
55 65.707 66.286 65.101 57.880 60.900 68513
56 65.074 63.283 62356 62.997 65.376 72930
57 60.940 53.642 62.450 52.105 51.804 71339
58 57.758 54.907 56.266 71.434 69.572 75.659
59 74339 69.698 70173 67715 68.601 82.649
60 89.592 86987 93.211 80611 80.384 96.909
61 74279 68.843 71.188 66.435 65.289 76.642
62 69915 61.633 63.130 31.665 65.145 84256
63 77651 76977 81.101 62290 72174 81609
64 69313 68.851 69.520 63.426 63.266 71519
65 66320 64816 66.499 60.620 60.580 67.951
66 67.161 66.607 65.017 59.634 67.109 67438
67 71.965 69.844 75.389 44.640 66.900 79.402
68 83.482 81.167 83.241 68.751 62.560 91396
69 72348 69.595 76,468 61399 65.882 79.584
70 63738 58252 61.152 45203 56.175 71748
71 89.055 88.075 89.883 74.753 84.596 90.855
7 63.023 61.835 61.696 62.056 56.574 64.749
73 80.422 74723 76378 53.020 79.954 84961
74 73370 73.484 73.426 64273 72855 71.905
75 66715 63347 65.951 66917 73351 75.406
76 75.026 71304 74.600 59235 68.459 84222
77 67.149 67.964 68.377 63.580 62.430 70.198
78 67992 67.741 66.749 62,097 70.641 71781
79 74202 76537 81787 66320 70.323 80.925
80 73335 72728 74.655 68.081 73.484 76926
81 60944 57518 58.101 68.166 62.545 69.637
82 67.843 55.508 57276 46173 63.821 79.631
83 58.796 51.873 56.431 49.504 53.436 83.918
84 55.494 55.181 59072 55.929 51.873 62430
85 71077 66.542 65.370 65.512 58.546 81179
86 65.444 51637 49919 44536 48.041 73200
87 51.480 47.808 53.950 55.742 58.682 60.255
88 69.263 68.140 68222 66.289 70.142 70.709
89 69.615 68.977 67.729 73.828 72.106 79.660
90 65.050 60933 62.149 60216 54835 78.521
91 66.119 61.460 71102 57.096 63.650 77453
2 68313 63.574 64.642 70.794 71.570 80.662
93 58.565 58.541 62753 50.955 56.540 67.681
94 75.620 72182 75.160 67.201 68.155 80.197
95 77.628 72511 70928 50.878 60.622 83.583
96 79.828 76.359 75.290 71.012 71.407 83.151
97 70.188 67.741 67.807 70674 71463 69.513
98 44.104 41533 51.000 56031 52,629 66.776
9 62903 64.740 73.338 76281 81.600 84.126
AVERAGE 67.119 64.485 66.567 61.629 64.576 75708
Win/Draw/Loss 93/07 96/0/4 95/0/5 98/0/2 95/0/5

we carried out a sign test and Friderman test on the exper-
imental results. For computational efficiency, we compare
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computational time and iterations when the models achieve
desirable and stable AUC values.
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TABLE 6. Iterations and time (in seconds) of three deep models on CIFAR-100 dataset.

Normal Class Soft-boundary Deep SVDD  One-class Deep SVDD CD-SVDD
Iterations Time (s) Iterations Time (s) Iterations Time (s) DP (s) Network (s)
AVERAGE 45.270 350.329 43.010 334.963 41.410 276.790 0.540 276.250
Win/Draw/Loss 54/5/41 50/3/47 66/0/34 64/0/36
TABLE 7. The optimal AUC values (in percentage) of six models on five recorded benchmark datasets.
Dataset Normal Class IF OCSVM  SVDD SDOZEE"S“{,‘I‘;%Y Dg;‘;'sciﬁ‘ls)sD CD-SVDD
29 0 64.568 60.540 61.855 64.284 67.939 69.543
1 77.615 77.271 78.453 69.447 71.541 81.221
codrma 0 69.966 67.087 72.168 79.336 83.818 82.335
1 65.745 61.752 92.330 85.892 84.166 88.326
0 1.679 1.149 32.702 95.111 95.920 97.343
1 61.553 60.938 71.367 65.818 68.908 68.700
epileptic 2 65.447 65.887 73.785 72.339 71.908 74.435
3 48.519 47918 49.973 60.222 59.924 70.804
4 75.609 76.347 76.445 47.400 67.240 76.926
htru? 0 95.102 92.982 94.991 94.991 95.665 97.056
1 92.451 88.645 97.419 95.208 94.683 97.504
ijennl 0 58.715 58.440 65.884 61.152 63.101 69.989
1 58.039 59.865 81.403 61.116 71.362 64916
AVERAGE 63.728 62.986 72.983 73.255 76.629 79.931
Win/Draw/Loss 13/0/0 13/0/0 10/0/3 13/0/0 10/0/3
TABLE 8. The average AUC values (in percentage) of six models on five recorded benchmark datasets.
Dataset Normal Class IF OCSVM  SVDD SSZZ;"S“\‘,’dDa];y Dce):;'s‘{ﬁ‘f)sD CD-SVDD
a9 0 62.772 £ 2.174 60.540 61.855 61.986 £2.290 64.525 4+ 2.426  66.6621+-2.312
1 77.711 £0.374 77.271 78.453 68.489 +£0.906 70.941 +0.826  80.683+0.431
codrna 0 69.524 4+ 0.366 67.087 72.168  77.801 £2.042 78.908 4+ 3.489  81.566+0.754
1 65.229 4+ 0.459 61.752 92.330 85.296 £ 0.446 83.963 +0.203  85.220 4 2.249
0 1.488 +0.135 1.149 32702 93.920 £1.074 93.809 £2.274  96.636+0.501
1 61.465 4+ 0.090 60.938 71.367 65.405+0.480 67.9194+0.885 68.361 4+ 0.240
epileptic 2 65.363 = 0.073 65.887 73.785 71.048 £0.990 71.483+0.314  73.960+0.374
3 48.225 + 0.210 47918 49.973  59.539 +0.626  59.058 % 0.645 70.753+0.048
4 75.437 £ 0.124 76.347 76.445 46.800 £ 0.648 65.247 £ 1.650  76.739+0.173
htru?2 0 95.080 4+ 0.016 92.982 94991 94.664 +£0.273  95.227 +0.324  96.190+0.649
1 91.336 +0.841 88.645 97.419 94.7224+0.365 93.020 £1.380  97.461+0.036
ijcnnl 0 58.161 4 0.652 58.440 65.884 60.160 £0.752  62.095 4 0.891 66.147+0.819
1 56.678 4+ 0.963 59.865 81.403 60.103£0.743 65.978 £3.966 63.015 4 1.955
Win/Draw/Loss 13/0/0 10/0/3 13/0/0 12/0/1 12/0/1

Considering that the performance of neural structures is
often sensitive to initial conditions, we repeat the training
three times and compare the corresponding optimal and
average AUC values, respectively. As shown in Table 7,
in terms of optimal AUC value, CD-SVDD has outstanding
performance in 9 of 13 categories. As shown in Table 8§,
in terms of the average AUC value, CD-SVDD performed
well in 10 out of 13 categories. Since the training results
of OCSVM and SVDD on the same data are stable, we just
train these models once. For shallow models IF, OCSVM and
SVDD, the class ‘0’ of dataset codrna cannot be detected
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properly at all, which reflects the limitations of shallow
models.

We conduct a sign test [37] to further verify the prediction
performance of CD-SVDD according to optimal AUC value
in Table 7. The results are shown in Table 9. The total number
of sample categories is denoted as N, while “Node”
represents the number of categories where the efficiency of
the two models is equal. “S*> and “S~ are the number
of categories in which CD-SVDD is superior or inferior to
the other model, respectively. “p” indicates the results of
the sign test. As shown in Table 9, at a significance level of
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TABLE 9. Sign test of model precision in seven datasets.

Model N Node i S~ D
IF 123 0 114 9** 0.000
OCSVM 123 0 117 6** 0.000
SVDD 123 0 113 10** 0.000
Soft-boundary Deep SVDD 123 0 120 3** 0.000
One-class Deep SVDD 123 0 114 9+ 0.000

e x and *x represent significant at levels of 0.1 and 0.05, respectively.

TABLE 10. The mean rank of AUC value of six models on five recorded benchmark datasets.

Model Maximum AUC Value Average AUC Value
IF 2.38 2.31
OCSVM 1.54 1.62
SVDD 4.35 4.38
Soft-boundary Deep SVDD 3.19 3.23
One-class Deep SVDD 4 3.85
CD-SVDD 5.54 5.62
TABLE 11. The statistics of friderman test.
Average AUC Value
N 13
Chi-Square 37.714**
df 5
p 0.000
o x and *x represent significant at levels of 0.1 and 0.05, respectively.
TABLE 12. Sign test of model precision in seven datasets.
Model N Node S+t S~ p
IF 13 0 13 0** 0.000
OCSVM 13 0 10 3% 0.046
SVDD 13 0 13 0** 0.000
Soft-boundary Deep SVDD 13 0 12 1%* 0.002
One-class Deep SVDD 13 0 12 1** 0.002

o x and *x represent significant at levels of 0.1 and 0.05, respectively.

0.05, CD-SVDD outperforms the other five models in terms
of prediction performance. This implies that the predictive
performance of CD-SVDD is effective.

The Friderman test is conducted according to average AUC
value in Table 8. As shown in Table 10 and Table 11, there
are obvious differences in the prediction accuracy of each
model.

Subsequently, we conducted a sign test to assess the
disparity in prediction accuracy between CD-SVDD and
each model according to Table 8. Details of the results are
presented in Table 12, all of which demonstrated statistical
significance at a confidence level of 0.05. This implies that
the superior prediction accuracy exhibited by CD-SVDD is
universal.

The optimal F1 score for each model is shown in Table 13.
Among the 13 categories, CD-SVDD is significantly superior
to other models in 9 categories. The one-class deep SVDD
follows it. This indicates that CD-SVDD not only achieved
success on image datasets but also has excellent performance
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on recorded datasets. This demonstrates the universality of
CD-SVDD for data types.

The iterations and time of soft-boundary deep SVDD, one-
class deep SVDD, and CD-SVDD are shown in Table 14.
CD-SVDD achieves the least iterations and the shortest time
for 5 categories of benchmark datasets, which verifies the
efficiency of our method.

We conduct a sign test [37] to further verify the computa-
tional efficiency of CD-SVDD. As shown in Table 15, at a
significance level of 0.1, the convergence rate of CD-SVDD
is significantly better than that of soft-boundary deep SVDD.
At a significance level of 0.05, the computational efficiency
of CD-SVDD is also significantly better than that of one-class
deep SVDD. These results demonstrate the effectiveness of
applying convex optimization methods to the solving process.

It is important to note that, based on the results presented
in Table 4, Table 6, and Table 14, the time required to solve
the convex optimization problem (20) in our CD-SVDD is
very minimal and can be considered negligible. Nevertheless,
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TABLE 13. The optimal F1 score (in percentage) of six models on five recorded benchmark datasets.

. . Soft-boundary One-class
Dataset Normal class IF OCSVM SVDD Deep SVDD Deep SVDD CD-SVDD
a9 0 55.949 39.246 24.765 56.693 60.614 58.561
1 12.528 6.792 16.440 12.547 20.784 21.346
codrna 0 45.754 28.338 44.468 57.316 60.492 57.553
1 17.860 11.646 27.448 25.184 33.060 38.609
0 8.656 61.431 1.832 48.657 63.086 65.493
1 10.623 7.200 1.619 12.489 13.471 14.272
epileptic 2 12.125 6.998 5.380 13.254 14.637 15.533
3 11.385 9.231 4.601 11.810 11.711 16.060
4 15.902 6.200 0.000 14.056 13.771 15.938
htru? 0 91.739 50.365 19.557 93.571 93.861 93.109
1 20.692 1.821 31.313 63.188 55.043 77.722
Giennl 0 77.695 54.144 47.512 79.261 79.678 79.176
) 1 4.177 3.255 4.299 4.272 5.084 5.483
Win/Draw/Loss 13/0/0 13/0/0 13/0/0 13/0/0 9/0/4
TABLE 14. Iterations and time (in seconds) of three deep models on five recorded benchmark datasets.
Dataset Normal class  Soft-boundary Deep SVDD One-class Deep SVDD CD-SVDD
Iterations Time (s) Iterations  Time (s)  Iterations Time(s) DP(s) Network (s)
a9 0 33 3.621 645 69.038 20 2.383 0.372 2.011
1 18 4,941 11 2.887 32 9.196 0.579 8.616
codrna 0 298 61.527 512 105.923 1994 456.221 35.732 420.489
1 767 244.774 278 90.293 671 234.057 12.043 222.014
0 95 11.213 83 9.671 43 5.709 0.726 4.983
1 58 6.483 378 37.933 165 21.801 2.946 18.855
epileptic 2 36 4.037 45 4.654 69 8.942 1.242 7.700
3 117 12.938 49 5.488 70 7.883 1.241 6.641
4 170 21.355 594 69.604 24 2.992 0.420 2.572
htru2 0 283 11.174 1973 76.138 106 5.799 1.877 3.921
1 11 1.350 14 1.801 24 3.568 0.430 3.138
Gonnl 0 162 17.435 4792 712.441 216 28.237 3.891 24.345
yenn 1 159 56.674 182 64.203 19 6792 0326 6.465
AVERAGE 169.769 35.194 735.077 96.160 265.615 61.045 4.756 56.289
Win/Draw/Loss 7/0/6 7/0/6 7/0/6 7/0/6
TABLE 15. Sign test of model efficiency in seven datasets.
Model N Node S+ S— P
.
Iterations 123 6 73 44** 0.005
One-class Deep SVDD Time 123 0 78 45** 0.002

e x and *x represent significant at levels of 0.1 and 0.05, respectively.

this optimization process plays a crucial role in our method
by allowing for higher prediction performance and faster
training speeds through an exact solution procedure. These
findings further highlight the validity and effectiveness of
utilizing convex optimization to calculate R and C in our
CD-SVDD method.

C. RESULTS ON v-PROPERTY OF CD-SVDD
We verify the v-property of Theorem 2 using five recorded
benchmark datasets. In the interest of brevity, we present
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results for only one class of training samples, labeled 0 for
each dataset. The training error ratio and the support vector
ratio curves, which change with the parameter v, are shown
in Fig. 4.

As the value of v increases, the support vector ratio and
training error ratio generally rise, indicating that v controls
the volume of the hypersphere. A larger value of v may
result in more training samples lying outside the hypersphere.
It is obvious that the support vector ratio is never less
than v, and the error ratio is never greater than v. This
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FIGURE 4. The changing curves of training error ratio, support vector ratio with different values of v.

observation confirms Theorem 2. Other datasets have similar
conclusions.

VI. CONCLUSION

In this paper, we introduce the Complete Deep Support Vector
Data Description (CD-SVDD) and propose an efficient
solving algorithm that accurately computes each parameter
using optimization methods with fast computational speed.
By training the parameters of the neural network and
the modified-SVDD jointly and updating them alternately,
we achieve faster convergence of the objective function and
higher prediction accuracy. Additionally, we demonstrate the
v-property of CD-SVDD, which not only sets the upper
bound of the proportion of mapped observations outside
the hypersphere, but also serves as the lower bound of the
proportion of support vectors, improving parameter selection
and model interpretability. Our numerical experiments on
two image datasets and five recorded benchmark datasets
fully demonstrate the superior performance of CD-SVDD
in prediction and computational efficiency, as well as the
v-property. However, the performance of CD-SVDD is still
closely tied to the structure of the neural network, and it
remains a challenge to find a structure that can consistently
perform well on all datasets. One of our future goals
is to explore the use of more complex neural network
architectures, such as long-short-term memory (LSTM),
to enhance the ability of our method to handle sequential data.
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