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ABSTRACT This study developed a novel graphene process technology based on nickel-carbon compound-
ing. This process can be applied to carbon brushes of traction motors in subway vehicles. We heated nickel
metal to 1000 ◦C, and multilayer graphene film was deposited over a large area. The graphene-based nickel
carbon (GBNC) was tested using an energy dispersive spectrometer (EDS) and Raman spectrometer, with a
G peak of 1580 cm−1 and a 2D peak of 2750 cm−1. The peak intensities were 2887 cm−1 and 2275 cm−1,
respectively. The findings verified that graphene produced using the nickel-carbon compounding process
technology has typical graphene characteristics. A GBNC carbon brush was installed on a traction motor
during the actual measurement. The proposed GBNC carbon brush cost was 20 % lower than the traditional
graphite carbon brush. Moreover, the wear loss was 30 % lower. The findings suggest that the graphene
performance is superior to traditional graphite carbon brushes regarding conducting efficiency, thermal
conductivity, and lubricating properties. Therefore, the GBCN carbon brush proposed in this study has good
performance. The GBNC carbon brush failure rate is lower than the traditional graphite carbon brush. Using
the GBNC carbon brush enhances traction motor stability. It also reduces maintenance costs, which improves
the efficiency of the electric multiple unit (EMU) propulsion systems to enhance the subway company’s
service quality, equipment quality, and corporate image.

INDEX TERMS Graphene-based nickel carbon, graphite, electric multiple units, traction motor, subway
vehicles.

I. INTRODUCTION
Graphite is a planar, laminarmaterial composed of carbon and
is classified as an allotrope. Three electronic structures sur-
round a carbon atom, forming a mixed region with peripheral
carbon atoms (3), where a hexahedral cubic lattice structure
occurs. The distance of each carbon atom is 0.142 nm. The
Van der Waals force attracts the graphite layers, and the pri-
mary spacing is approximately 0.34 nm. One valence electron
exists, making the graphite a conductive material. Graphite
is a crystalline nonmetal material with high-temperature
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resistance, good conductivity, and excellent lubrication. It is
widely used in various industrial fields, such as petrochemi-
cals [1], [2], machinery [3], [4], electric appliances [5], [6],
[7], [8], [9], aerospace [10], medical treatments [11], [12],
[13], [14], national defense [15], and solar energy [16].

According to the energy dispersive spectrometer (EDS)
composition analysis, the commercially available general
carbon brush contains carbon, copper, lead, tin, and iron
[17]. However, its poor durability results in considerable
wear, which can increase maintenance costs. Graphene and
nickel, with representative superiority, were selected for this
study, considering the material characteristics. Their supe-
rior physical properties [18] include high mechanical stress,
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high thermal conductivity, a highly directional surface, wear-
lubricating properties, and high electron mobility. These can
all increase electrical conduction efficiency. Therefore, this
study used graphene-based nickel carbon (GBNC) as the
traction motor carbon brush material.

There are several methods for producing graphene mate-
rials [19], [20], [21], [22], [23], [24], [25]. Mazurek et al.
discussed the influence of graphene deposition on the copper
electrode emission spectrum. Graphene was obtained using
chemical vapor deposition for electronic devices [19]. Sun
developed a photochemical reduction-oxidation graphene,
where the light dosage controlled the degree of oxidation-
reduction. The obtained graphene had high quality and excel-
lent conductivity, suitable for fuel cell electrode devices [20].
Xia et al. separated graphene and metal structures through
a thin organic dielectric layer for THz modulators [21].
Li et al. used Ge-enhanced chemical vapor deposition to
grow graphene, which had high conductivity and was applied
to gas sensors [22]. Xia et al. developed a technology using
a laser to generate graphene. The grown graphene was
three-dimensional and applicable to sensor devices [23].
Yu et al. combined heterogeneous materials based on mul-
tilayer graphene technology. They found that the material
enhanced the photoelectric properties and had a faster reac-
tion rate [24]. Chen et al. covered a metal surface with
oxidized graphene to detect the glucose in human blood with
good accuracy [25].
The present study used graphene as a carbon brush in trac-

tion motors of subway vehicles due to the excellent physical
characteristics of graphene carbon brushes [26]. It has high-
temperature resistance, exceptional thermal performance,
excellent electrical and thermal conductivity, lubricating
properties, plasticity, and chemical stability. This study found
that the GBNC carbon brush has good performance. Fur-
thermore, the carbon brush is an essential component for
conducting current between the rotating and stationary parts
of a traction motor, which can effectively reduce traction
motor failure rates. The GBNC carbon brush enhances trac-
tion motor stability, lowers maintenance costs, and improves
electric multiple unit (EMU) operating quality.

TABLE 1 shows a comparison of carbon brushes of
different materials. First, compare three materials of carbon
brushes, namely copper carbon, stainless steel, and nickel
carbon. Second, [27] and [28] materials are both copper
carbon, but their copper amount is 10 % and 50 %, respec-
tively, so the characteristic is different. Finally, the proposed
GBNC generates graphene and it has good conducting effi-
ciency and wear resistance. The GBNC conducting efficiency
and wear resistance are better than other carbon brushes
[27], [28], [29].

This paper has been categorized into five sections. The
introduction has been discussed in section I. Introducing
the subway vehicle propulsion system has been discussed in
section II. Novel GBNC technology has been presented in
section III. Experimental results are detailed in section IV,
and the conclusion is presented in the final section.

TABLE 1. Comparison of different materials’ carbon brushes.

II. INTRODUCING THE SUBWAY VEHICLE PROPULSION
SYSTEM
Subway vehicle propulsion systems are installed in power
cars to provide driving power. Figure 1 shows the circuit
architecture of a power propulsion system, where TM1,
TM2, TM3, and TM4 represent the four traction motors of a
power car. The variable voltage variable frequency (VVVF)
describes the traction inverter and provides electricity for the
traction motor.

FIGURE 1. Circuit architecture diagram of a power propulsion system for
subway vehicles.

The propulsion system signals when the EMU master
controller or driver issues a control command. The signal is
converted into a pulse width modulation (PWM) signal, and
the traction inverter converts the direct current (DC) 750 V
electricity into a three-phase alternating current (AC). The
propulsion system operates the traction motor and provides
power for the EMU. If the master controller or driver issues
a deceleration command, the traction inverter exports a lower
amount of AC to reduce the operating speed of the traction
motor. Additionally, the traction motor operates with inertia
when a train is coasting. It turns into a generator and exports
electricity, which is fed back to the third rail. If the feedback
voltage exceeds 900 V, the EMU brake resistor is actuated,
the feedback voltage is reduced, and the subway company’s
power system is protected.

Figure 2 shows the electric control structure diagram of a
power car propulsion system for subway vehicles. First, the
third rail provides a voltage of 750 V, and the power car’s
current collector receives the electric power. Next, the 750 V
power is transmitted to the line switch and reactor through the
knife switch box and current collector fuse. Finally, the 750 V
power is transmitted to the traction inverter. The three-phase
AC is exported to drive the traction motor, the traction motor
rotates the gearbox to operate the wheels, and the EMU
moves forward. The master controller instructs the traction
control unit to regulate the three-phase AC exported from
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FIGURE 2. Electric control structure diagram of a power car propulsion
system.

the traction inverter. The master control regulates the traction
motors to accelerate/decelerate the EMU in a timely manner.

The electric control structure diagram of a power car
propulsion system for subway vehicles is shown in Figure 2.
Figure 3 illustrates the essential components of a power car
propulsion system, including the current collector, as shown
in Figure 3 (a). Figure 3 (b) illustrates the knife switch box.
Figure 3 (c) shows the line switch and electrical equipment
boxes. Figure 3 (d) shows the traction motor. Figure 3 (e)
shows the wheel. Figure 3 (f) shows the master controller.
Figure 3 (g) represents the line reactor. These components
comprise relevant power circuits of a propulsion system (see
Figures 2 and 3) in building a propulsion system.

This study developed a novel graphene-based nickel-
carbon compounding method and applied it to the carbon
brush of traction motors in a propulsion system for subway
vehicles. The traction motor carbon brush is essential for
conducting current between rotating and stationary parts.
However, the carbon brush may be damaged in actual oper-
ation due to high current, long run time, and other effects.
As such, this study developed a GBNC carbon brush due to
its good electrical conductivity and excellent wear resistance.
The developed GBNC carbon brush was installed in a traction
motor for actual operation and was analyzed and compared to
the traditional graphite carbon brush.

III. NOVEL GBNC TECHNOLOGY
A. GBNC
Figure 4 illustrates the graphene-based nickel carbon
(GBNC) production process. First, physical vapor deposition
coated a nickel film on a carbon block. The substrate’s diam-
eter was 5 mm, and its height was 1 mm. After adjusting the

nickel-carbon ratio and heat treatment, the nickel film was
sputtered onto the graphite block substrate surface for 30min-
utes to form a graphene film on the metal surface. Since
the nickel of the metal film is a catalyst, a steadier lattice
structure can be resynthesized under the catalyst effect. This
principle significantly increases the graphene film formation
rate. Furthermore, this study observed the formation and
characteristics of the graphene film at the heating condition
(1000 ◦C). The separated graphene film can be applied to
circuit laying and electronic modules, which canmeet various
applications in the future. In the present study, graphite pow-
der was compressed into an ingot with an oil pressure unit
before using the natural carbon powder (K23) for growing
graphene. The ingot was the substrate, and the nickel film
was coated on the ingot surface through sputtering. It was
adjusted and sintered by vacuum degree and inert gases for
about one hour, which ensured that the carbon atoms were
diffused and deposited on the transition metal film of the
graphite ingot. The graphene film (silver) was formed on
the ingot surface. Then, the graphene film’s morphology and
characteristics were observed. Finally, the characteristics of
the graphene grown based on nickel-carbon compounding
were tested using an energy dispersive spectrometer (EDS)
and a Raman spectrometer.

This study produced the graphene was using a sputtering
systemwith physical vapor deposition. The nickel and carbon
elements were insoluble for lattice mismatch. The melting
point of nickel is 1455 ◦C, whereas the melting point of the
carbon element is 3827 ◦C, which influences the graphite
layer’s continuity. This study used nickel metal as a catalyst,
and the carbon atoms were diffused and separated from the
nickel. A hexagonal annular crystalline film was formed to
obtain a large, smooth graphite layer. Adding Ni element
enhanced the strength of graphite film and increased the
film’s deposition.

A radio frequency source (13.56 MHz) negatively charges
the insulating material. Electrons are accelerated through
high-frequency electric field variation. Gas molecules are
ionized, resulting in a glow effect. With gas flow, ions react
with atoms to form atomic groups. Then, the atomic groups
react with the ions to form particles, and the particles deposit
to create a film.

Regarding the sputtering method, the vacuum degree
7 × 10−3 torr was achieved using a mechanical pump. The
vacuum degree 3 × 10−6 torr was achieved using a diffusion
pump. Thus, a uniform, pure film was deposited in a high
vacuum. The power was regulated with a load voltage for
optimal particle deposition density.

Figure 5 shows the schematic diagram of the gun body
model. The gun body was vacuumed to a fixed value using a
vacuummachine for actuation. Next, argon gas was supplied.
The carbon rod received a continual spread of inert gas, and
the nickel sputtering effect was applied to the glow effect
area. The power modulation was confirmed in this process.
The sputtering glow variationwas observed through the trans-
parent window outside the gun body. The power value was
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FIGURE 3. Essential components of a power car propulsion system: (a) current collector, (b) knife switch box, (c) line switch
box and electrical equipment box, (d) traction motor, (e) wheel, (f) master controller, (g) line reactor.
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FIGURE 4. The GBNC production process.

FIGURE 5. Schematic diagram of the gun body model.

fixed after determining the argon volume. The time was at
least 30 minutes, and the duration was determined according
to the results of 3 to 5 tests.

The ideal graphene film load factor computing mode was
based on experience operating a transmission electron micro-
scope (TEM). The density and thickness-related values on the
graphene film can be expressed as the following equation to
calculate the graphene film load factor:

Wk =
Nw1fsLp
Nw2Bs

Qs (1)

where Wk is the load factor of the graphene film deposited
after nickel and carbon sputtering, Qs is the mol ratio car-
rier of surface atoms, Lp is the average atom content of
graphene, Bs is the area density, NW1 is the molecular weight
of graphene atoms, NW2 is the molecular weight of the
carrier atoms, and fs represents the graphene. The nickel
and carbon sputtering on the graphene film favor formed
uniform graphene film with several layers on the carrier
surface. TABLE 2 shows the nickel-carbon compounding
specifications for graphene.

TABLE 2. Nickel-carbon compounding specification sheet for the
graphene.

B. ANALYSIS OF GRAPHENE OF NICKEL CARBON
COMPOUNDING
Figure 6 shows the nickel metal deposited at 20 W power
and a magnification of 100 times observed through an
energy dispersive spectrometer (EDS). The carbon atoms
were adsorbed on the nickel film’s surface. The nickel film
had a face-centered cubic (FCC) structure. Over time, the
amorphous carbon atoms grew with nearby graphite film
along the nickel film, producing a large-area graphene film.
The nickel and graphite generated thermal stress during
cooling due to different thermal expansion coefficients. The
graphite film on the nickel film’s surface grew several stacked
wrinkles. According to the observation through EDS, the
carbon atoms were adsorbed on the surface of the transition
metal, which was diffused and separated from the transition
metal film’s surface. The graphite flaked aggregate under the
catalysis of the transition metal at high temperatures to form
a relatively smooth graphite film.

FIGURE 6. Nickel metal deposited at a power of 20 W (magnified
100 times).

IV. EXPERIMENTAL RESULTS
Figure 7 shows this study’s stereogram of the propulsion
system traction motor. Figure 7 (a) represents the side view
of the traction motor. Figure 7 (b) displays the traction motor
carbon brush.

Figure 8 displays the graphene film based on nickel car-
bon at a temperature of 1000 ◦C production with the EDS.
Fig. 8 (a) is magnified×1000 times. Figure 8 (b) is magnified
at ×2000 times. Fig. 8 (c) is magnified at ×7000 times.
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FIGURE 7. Stereogram of the propulsion system of a traction motor:
(a) side view of a traction motor, (b) traction motor carbon brush.

Figures 8 (a), (b), and (c) show how the nickel-carbon sput-
tering deposited a multilayer graphene film based on nickel
carbon. Nickel carbon has a good catalytic capability for
graphite. The graphite deposited on the transition nickelmetal
surface was flaky and stacked in a small area because the
nickel (111) and carbon (0001) had a good lattice match.

Figure 9 shows the graphene film based on nickel carbon
at a temperature of 1000 ◦C production using a Raman
spectrometer. There was no significant D peak (defect peak)
at 1350 cm−1. The peak intensity was about 1575 cm−1. At
1580 cm−1 (G band) and 2700 cm−1 (2D band), the peak
intensities were 2887 cm−1 and 2275 cm−1, respectively.
Therefore, the traction motor carbon brush prepared in this
study has the graphene feature. The G band intensity was
about 2887 cm−1. There were few layers, the 2D band
intensity was about 2275 cm−1, and the relative ratio was
about 0.79.

Figure 10 shows the graphene film based on graphite at a
temperature of 1000 ◦C production using a Raman spectrom-
eter. There is an obvious D peak at the position of 1350 cm−1.
Its intensity is relatively high compared with Figure 9, which
indicates that there are more defects and there may be more
wrinkles and the formation of a graphite film with a larger

FIGURE 8. The graphene film based on nickel carbon from a temperature
of 1000 ◦C production with the EDS: (a)×1000 times, (b)×2000 times, and
(c) ×7000 times.
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FIGURE 9. The graphene film based on nickel carbon from a temperature
of 1000 ◦C production with a Raman spectrometer.

FIGURE 10. The graphene film based on graphite from a temperature of
1000 ◦C production with a Raman spectrometer.

number of layers. If there is a product, its quality is relatively
poor.

TABLE 3 compares the experimental features of the
GBNC carbon brush and traditional graphite carbon brush.
The unit price of the GBNC carbon brush is 68.6 USD,
which is more cost-effective than the traditional graphite
carbon brush. The wear loss of the GBNC carbon brush
is 2.1 mm/year, lower than that of the traditional graphite
carbon brush. Additionally, the GBNC carbon brush performs
better than the traditional graphite carbon brush in terms of
conducting efficiency, thermal conductivity, and lubricating
properties.

TABLE 4 shows the comparison table of the failure data
of the GBNC and traditional graphite carbon brushes. There
are a total of 272 traction motors in 17 trains of the sub-
way company’s yellow line. According to statistics, 28 cases
of traditional graphite carbon brushes failed (failure rate of
10.3 %). The 272 traction motors were replaced with GBNC
carbon brushes and 3 cases failed (failure rate of 1.1 %).
The GBNC and traditional graphite carbon brushes usage

TABLE 3. Comparison table of the experimental features of the GBNC
and traditional graphite carbon brushes.

TABLE 4. Comparison table of the failure data of the GBNC and
traditional graphite carbon brushes.

time is 6 years and 3 years, respectively. Therefore, the pro-
posed GBNC carbon brush has better stability and safety.

V. CONCLUSION
This study developed a novel graphene process technology
based on nickel-carbon compounding. The GBNC was tested
using EDS and Raman spectrometers, proving its graphene
characteristics. It was also applied to the carbon brush of a
traction motor in a subway vehicle propulsion system. The
cost of the GBNC carbon brush was 20 % lower than the
traditional graphite carbon brush. The wear loss was reduced
by 30 %. It has good wear resistance, conducting efficiency,
thermal conductivity, and lubricating properties. The GBNC
carbon brush failure rate of 1.1 % is lower than the traditional
graphite carbon brush failure rate of 10.3 %. The proposed
GBNC carbon brush effectively reduces the traction motor
failure rate, enhances stability and vehicle safety, and reduces
maintenance costs.

The GBNC material can be applied to high-speed rail
or electric vehicle traction motors to maintain public traffic
stability and reduce maintenance costs. Moreover, graphene
with better performance can be developed for vehicles, indus-
trial electronics, and medical electronics in the future.
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