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ABSTRACT Recently, deep neural network (DNN) acceleration has been critical for hardware systems
from mobile/edge devices to high-performance data centers. Especially, for on-device AI, there have been
many studies on hardware numerical precision reduction considering the limited hardware resources of
mobile/edge devices. Although layer-wise mixed-precision leads to computational complexity reduction,
it is not straightforward to find a well-balanced layer-wise precision scheme since it takes a long time to
determine the optimal precision for each layer due to the repetitive experiments and the model accuracy,
the fundamental measure of deep learning quality, should be considered as well. In this paper, we propose
the layer-wise mixed precision scheme which can significantly reduce the time required to determine the
optimal hardware numerical precision with Signal-to-Quantization Noise Ratio (SQNR)-based analysis.
In addition, the proposed scheme can take the hardware complexity into consideration in terms of the
number of operations (OPs) or weight memory requirement of each layer. The proposed method can be
directly applied to inference, meaning that users can utilize well-trained neural network models without the
need for additional training or hardware units. With the proposed SQNR-based analysis, for SSDlite and
YOLOv2 networks, the analysis time required for layer-wise precision determination is reduced by more
than 95% compared to conventional mean Average Precision(mAP)-based analysis. Also, with the proposed
complexity-aware schemes, the number of OPs and weight memory requirement can be reduced by up to
86.14% and 78.03%, respectively, for SSDlite, and by up to 51.93% and 50.62%, respectively, for YOLOv2,
with negligible model accuracy degradation.

INDEX TERMS Deep neural network (DNN), mixed-precision, signal to quantization noise ratio (SQNR),
complexity-awareness.

I. INTRODUCTION
Recently, Artificial Intelligence (AI) is considered a pow-
erful technique in the 4th industrial revolution and its
various applications, such as object recognition [1], [2], [3],
image classification [4], [5], voice recognition [6], [7],
are widely used in emerging fields including manufacturing
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and autonomous driving. The complexity of AI Algorithms
is significantly increasing to improve the accuracy of AI
services, which leads to a growing demand for the hardware
accelerator to process DNNs efficiently. Although DNN
acceleration becomes necessary in mobile/edge devices as
well as in high-performance data centers, the performance of
the DNN model at mobile/edge devices is inferior due to its
limited hardware resources [8], [9], [10], [11]. Accordingly,
research on lightweight DNN that has a small model size
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FIGURE 1. Overview of neural network process and contribution of the proposed method.

and reduced computational requirement is being actively
conductedwhilemaintaining the accuracy of the trainedDNN
model [12], [13], [14].

For efficient DNN acceleration without model accu-
racy degradation, there have been many studies regarding
lightweight deep learning techniques such as network
pruning [15], [16], clustering [17], [18], knowledge dis-
tillation [19], [20] and hardware optimization [21], [22].
These techniques can be considered for lightweight DNN
processing, but it is not easy to apply in practical applications
due to their irregularities and dependencies on the neural
network [23]. On the other hand, a quantization technique
has been proposed as the simplest and most powerful
method of lightweight DNN. AdaRound is developed where
the rounding is applied to minimize the change in output
activation caused by quantization [24]. For further reduction
in bandwidth or computation complexity, IBM has proposed
a 4-bit quantization scheme, ACIQ [25]. Data-Free Quanti-
zation is also possible to create an 8-bit model without fine
tuning the data as accurately as 32-bit model [26]. Aside from
this, research to create low-bit precision using quantization is
being conducted [27].

In DNN acceleration, with these low-precision num-
ber representation, it is possible to reduce computational
resources and memory requirements. However, if aggressive
uniform quantization with low precision is applied to all
layers, it results in degradation of model accuracy, the
fundamental measure of deep learning quality. To over-
come these limitations, mixed precision-based quantiza-
tion has been proposed which enables aggressive model
compression and provides tradeoff between the model

accuracy and the hardware complexity for DNN acceleration
[28], [29].

As the schemes for mixed-precision, Mixed-Precision
Quantization(MPQ) search problem is proposed. To avoid the
iterative search and reduces search time, the proposedmethod
is a joint training scheme that use one-time integer linear
programming(ILP) problem [30]. Progressively decreasing
bitwidth, which reduces weight bitwidth by going back to
layer, is also proposed as a mixed-precision scheme [31].
Hessian AWare Quantization (HAWQ), which has an auto-
matic selection of relative quantization precision of each layer
based on the layer’s Hessian spectrum, is proposed [32]. Bit-
Mixer, Hardware-aware AutomatedQuantization (HAQ), etc.
are also proposed [33], [34], [35]. In addition, research on
mixed-precision with other data type, not integer type, are
also proposed. These studies usually use Floating-Point(FP)
for reducing the accuracy drops [36], [37], [38].

However, in the previous studies, the proposed schemes
such as [30], [31], [32], [33], [34], and [35] of related
works are applied in the training process. These schemes
need separate schemes or retraining. Otherwise, they have
additional hardware overhead to apply special schemes.
These problems make it difficult to apply in the actual
industry. On the other hand, schemes using Floating-Point
for mixed-precision such as [36], [37], and [38] have
more hardware overhead compared with an Integer type.
In addition, the determination of optimal layer-wise pre-
cision is considerably time-consuming. Fig. 1 illustrates
the use of mAP in traditional analysis, which necessitates
time-consuming post-processing based on Non-Maximum
Suppression (NMS). The top of the figure shows an overview
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FIGURE 2. Overall process of proposed layer-wise mixed-precision scheme.

of the conventional neural network process, which consists
of pre-process, inference, and post-process. Although there
have been significant improvements in the inference process
due to algorithmic and hardware optimizations, relatively
little research has been conducted on accelerating post-
processing [39], [40], [41], [42], [43], [44]. Furthermore, it is
necessary to perform the evaluation process iteratively for
each layer in the network, repeating it as many times as the
number of layers. Additionally, to prevent any degradation
in model accuracy, it is imperative to confirm the inference
result (mAP) at each iteration, thereby imposing a significant
computational burden that results in extended analysis
runtime. If only the accuracy is considered in determining
layer-wise mixed-precision, it does not adequately address
the hardware complexity or memory requirements, which
are the most important concerns in mobile and edge
devices [29].

In this paper, we propose layer-wise mixed-precision
scheme for effective application of uniform quantization.
As shown in Fig. 1, the bottom of the figure illustrates
two challenges of the analysis method for mixed-precision,
which are the time-consuming mAP-based analysis method
and only accuracy consideration for mixed-precision consid-
eration. And the center of the figure shows the final layer-
wise mixed-precision results and this paper’s contributions.
We can apply different precision (4-bit / 8-bit) for each
layer while maintaining model accuracy. Although we use
4-bit precision for low-precision and 8-bit precision for
high-precision in our study, this can be fixed for all
applications or can be configured differently to achieve
the desired performance in certain applications. With the
modified Signal-to-Quantization Noise Ratio (SQNR)-based
analysis, the proposed analysis scheme uses only interme-
diate results of inference, which is the output activation,
without time-consuming post-processing. Consequently, the
proposed scheme provides much faster analysis compared to

the conventional mAP-based approach, while also reducing
hardware complexity through a complexity-aware scheme.
Furthermore, the proposed schemes can be readily applied
to pre-trained open-source neural network models without
the need for additional training or hardware units. This brief
is organized as follows. Section II presents the proposed
layer-wise mixed-precision scheme with fast analysis and
hardware complexity consideration. Experimental results for
SSDlite and YOLOv2 networks are provided in Section III,
and Section IV concludes this brief.

II. PROPOSED LAYER-WISE MIXED-PRECISION SCHEME
A. OVERALL LAYER-SELECT ALGORITHM FOR MIXED
PRECISION
The overall process of the proposed layer-wise mixed-
precision scheme is illustrated in Fig. 2 where several layers
are chosen to be with low-precision (4-bits) and others are
with high-precision (8-bits). The layer-wise mixed-precision
is composed by using our proposed analysis scheme. For
an optimized result from the proposed layer-wise mixed-
precision, it is important to determine which layers can
be processed with low-precision or high-precision. The
following three steps summarize how to determine the layers
with low precision:

STEP-1: For each layer, perform the evaluation of
the layer sensitivity to low-precision with the complexity
consideration. Through the iterative process, the sensitivity
of each layer is calculated. In this step, we use our proposed
score function, which considers both layer sensitivity and
complexity. Also, the difference in the proposed SQNR values
is used as a layer-wise sensitivity factor.

STEP-2: Sorting the layers according to the results from
STEP-1. The list is composed of the layer-wise score. The
scores are sorted in descending order. In the sorted list, the
higher-ranking layers are more suitable for low-precision.
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FIGURE 3. Proposed SQNR-based sensitivity estimation.

STEP-3: With the low-precision layer selection algorithm,
find the low-precision layers progressively while keeping
the model accuracy better than target lower-bound mAP.
If the network accuracy or complexity reaches the target
value, the layer-wise mixed-precision is configured with the
result of layer selection.

B. FAST ANALYSIS WITH THE PROPOSED SQNRAVG
In STEP-1 of the proposed scheme, the layer sensitivity to
low-precision of each layer, Slayer , can be evaluated with
the quality factor, Q, which are either mAP or SQNR. Due
to analyze the effects of low-precision compared to high-
precision, the baseline quality factor, Qbase, is set to the
scenario where all layers are in high-precision. For each
layer, low-precision (4-bit) is applied and the quality factor,
Qlayer [n] for n-th layer, is evaluated. Accordingly, the Slayer
is determined by the following (1).

Slayer [n] = Qbase − Qlayer [n] (1)

When mAP is used as the quality factor(Q), the layer-wise
mixed-precision scheme can provide good overall results in
terms of accuracy. However, it is too time-consuming due to
its n times iterative process and the number of computations
to obtain mAP values. The deeper the neural network, the
longer the analysis time to find optimal layer-wise mixed-
precision takes much longer. Therefore, as shown in Fig. 3,
we propose a method of measuring the sensitivity by using
the SQNR. Generally, SQNR is ‘‘Signal to Quantization Noise

Ratio’’, which means the ratio between the original signal
and noise of applying quantization. In this instance, the
quality factor, Q, is defined as SQNR. The layer sensitivity,
Slayer , is determined by subtracting Qlayer [n] (which is the
SQNR when low-precision is applied in the n-th layer) from
Qbase (which is the SQNR when high-precision is applied
in each layer). As expressed in (2), we use SQNRdB as
layer quality values. fpv is the value in 32-bit floating
point mode and qv is the value in quantization mode. But,
in this paper, we want to compare the effects of applying
quantization with high-precision or low-precision. Therefore,
the proposed SQNRconv is defined with the output activations
in high-precision mode and low-precision mode as expressed
in (3). The top portion of the figure depicts the conventional
SQNR determined by equation (3).

SQNRdB = 10 · log10
Psignal
Pnoise

= 10 · log10

∑
fpv∑

(fpv− qv)2
(2)

SQNRconv = 10 · log10

∑
hv2∑

(hv− lv)2
(3)

where hv is the value in high-precision mode and lv is the
value in low-precision mode.
SQNR-based analysis has much lower computation than

mAP-based analysis. The SQNR-based analysis is obtained
by each layer during only one inference of neural network
whereasmAP-based analysis uses accuracy which is obtained
by inference of the whole neural network. Therefore, each
layer’s mAP has to be obtained by total n times inference.
Although the computation of SQNRconv is much simpler than
that of mAP, the use of SQNRconv as a quality factor does
not show consistent correlations between layers with mAP-
based approach as shown in Fig. 3, which leads to suboptimal
layer-wise mixed-precision results. For the front-end layers,
SQNRconv was measured to be relatively higher than that
of mAP (Over-Estimation), and in the case of the back-
end layers, mAP was measured to be higher than SQNRconv
(Under-Estimation).

In order to improve the correlation with conventional
mAP-based approach, we propose the SQNRAvg where the
magnitude of the output activation, T , is considered in (4).

SQNRAvg = 10 · log10

∑
hv2∑

(hv− lv)2 · T · α

= 10 · log10

∑
hv2∑

(hv− lv)2
− βlog10T

= SQNRconv − β · log10T (4)

where α and β are the parameters that adjust the quantity
of output activation. Those two parameters, alpha and
beta, can be empirically determined between 1 to 10 to
ensure the correlation improvement between mAP and the
proposed SQNRAvg. Although the parameters are empirically
determined, the proposed analysis time is much smaller
than the conventional mAP-based method and the total
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FIGURE 4. Proposed neural network complexity consideration.

time for determining β is about a few minutes. In Fig. 3,
the blue box highlights the SQNR with output activation
consideration and the impact of the proposed SQNRAvg. The
output activation consideration is shown as the average factor
of SQNRAvg as shown in yellow box of the figure. As illus-
trated in the figure, the proposed SQNRAvg demonstrates a
good correlation with mAP compared to the conventional
SQNRconv method. Furthermore, the analysis time required
for the proposed layer-wise mixed-precision scheme can be
significantly reduced when compared to the traditional mAP-
based approach. This is due to the fact that the proposed
analysis scheme utilizes only the intermediate results of
inference, namely the output activation.

C. COMPLEXITY CONSIDERATION FOR EACH LAYER
In order to reduce the hardware complexity, which is
critical especially in mobile/edge devices, the proposed
layer-wise mixed-precision scheme can consider the hard-
ware complexity in Scorelayer [n] evaluation in Fig. 2. The
top of Fig. 4 shows the proposed score function for
mixed-precision, which takes into account the layer-wise
complexity. The complexity of neural networks refers to
the extent of intricacy in processing inference, which is
affected by the operation method of layers and the amount
of data. There are two types of complexity considerations
and the type of complexity is determined based on the

network bottleneck: computation bottleneck and weight size
bottleneck. Mixed-precision involves using low-precision in
some layers to reduce the complexity in computation and
weight size. Since both complexity and accuracy are critical
for neural networks, the value of mixed-precision comes
from effectively managing the trade-off between reducing
complexity and maintaining accuracy. To achieve the optimal
trade-off, it is more effective to select specific layers for
low-precision rather than uniformly applying to all layers.
Although applying low-precision to certain layers can reduce
both the computational intensity andweight size requirement,
the primary bottleneck source in these networks varies based
on conditions specific to the neural network, including
computation types, layer configurations, memory bandwidth,
and other factors. For instance, when the neural network
has substantial computational requirements, the computation
bottleneck should be resolved for better inference speed.
Likewise, for the given memory bandwidth, excessive weight
sizes increase the weight preparation time required for
fetching weight values from DRAM to the internal buffer
before computation. In such cases, the weight size reduction
should have a higher priority in optimization consideration.
In the proposed mixed-precision score function, we can
choose which complexity parameter is more considered
when selecting the low-precision layers for the given neural
network conditions. Fig. 4 depicts Type 1 (in blue color) and
Type 2 (in red color) to illustrate the purposes and effects
of each complexity type, respectively, where the complexity
parameter of n-th layer, Clayer [n], can be set according to
the optimization goals: Type 1 is mainly for computational
complexity reduction and Type 2 is defined to reduce the
memory requirement for weight values where the total
amount of computation and the total weights size defined
in (5) and (6), respectively, can be used the complexity
parameter.

Computationtotal = k · r · s · C ·W · H (5)

Weighttotal = k · r · s · C (6)

where k is the number of weight kernels, the width and height
of the kernel are r and s, respectively, C is the number of
input activation channels, and the width and height of output
activation are W and H . The total computation means the
computation amount required for convolution calculation,
where the computation amount is the number of operation
cycles in the computation unit. In other words, it is the number
of calculations until the convolution of the one layer is fin-
ished. As illustrated in Fig. 4, the computational complexity
can be decreased with the low-precision operations although
the total number of operations is the same. Also, by applying
the multi-mode Multiply-Accumulate (MAC) unit which
can support multiple precisions, the overall throughput in
neural network inference can be increased since multiple
low-precision operations can execute in parallel [45], [46],
[47]. On the other hand, the total weight size means the
memory requirements for storing the weight parameters.

117804 VOLUME 11, 2023



H. Kim et al.: Complexity-Aware Layer-Wise Mixed-Precision Schemes

FIGURE 5. Accuracy disparity of SQNRConv and SQNRAvg.

TABLE 1. Correlation ratio of SQNRCONV and SQNRAVG.

The total amounts of filters in the figure is the required
total weight size. If the low-precision is applied for the
weights, the memory requirements for weights are reduced.
If the target network has computation bottleneck, Type 1
can be chosen, and the number of Ops can be reduced
with the proposed layer-wise mixed-precision scheme while
maintaining model accuracy. Whereas, if the target network
has weight size bottleneck, Type 2 can be chosen, and
the proposed layer-wise precision scheme leads to the
memory requirement reduction. In other words, by taking the
complexity into account for the score that decides the layers
to apply low-precision, much more complexity reduction is
possible.

III. EXPERIMENTAL RESULTS
The proposed complexity-aware layer-wise mixed-precision
schemes are applied to two object detection model, SSDlite
network where MobileNet-v2 is applied as backbone to
SSD network, and YOLOv2 model and evaluated using
Pascal-VOC dataset with uniform quantization. Also, per
channel quantization is applied to weights, and per layer
quantization is applied to activations.

FIGURE 6. Analysis time with the proposed scheme.

TABLE 2. Analysis time comparison.

A. EFFECTIVENESS OF PROPOSED SQNRAVG
In this study, mean Average Precision(mAP) provided by
the object detection network is used as an indicator for
accuracy evaluation. Fig. 5 shows the accuracy disparity
of SQNR-based scheme, which is the degree of accuracy
degradation compared tomAP-based scheme. In other words,
the accuracy disparity is calculated as the difference in
accuracy(mAP[%]) between the mAP-based analysis and the
SQNR-based scheme. The figure displays the impact of β

on SQNRAvg for two object detection models, SSDlite and
YOLOv2. The yellow box indicates the lowest accuracy
disparity for each model. As shown in Section II-B,
with the empirically determined constant, SQNRAvg shows
small accuracy disparity compared to SQNRconv due to the
consideration of output activation size. Table 1 denotes the
average disparity according to different β values for SSDlite
and YOLOv2 networks. The more the average disparity
smaller, the more similar results to mAP. SQNRconv shows
the largest average disparity. In the case of the SQNRAvg, the
average disparity can be reduced from 1.46% of SQNRconv to
0.59% in SSDlite networks. In the YOLOv2 network, it can
be reduced from 0.70% to 0.24%. As a result, β is 5 in both
SSDlite and YOLOv2 networks.

Fig. 6 show the analysis runtime comparison between the
proposed SQNRAvg-based scheme and the conventionalmAP-
based scheme, Baseline, described in Fig. 2. The analysis
time is measured in SSDlite and YOLOv2. The experiment
environment and details of the analysis time can be found in
Table 2. In this study, analysis runtime is measured in the
experiment environment where 16.04 Ubuntu was used as
operating system, with an Intel(R) Core(TM) i7-8750H CPU,
32GB DRAM and RTX-2060 6GB GDDR6. The analysis
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FIGURE 7. Complexity reduction and accuracy comparison between
baseline and proposed scheme for (a) SSDlite network and (b) YOLOv2
network.

runtime is the time interval between the start the inference
and the completion of the computation, which includes task
such as inference in mAP-based analysis or convolution in
SQNR-based analysis. The reduction ratio in Table 2 means
how much the analysis time is reduced through the use of
SQNR-based analysis compared to mAP-based analysis. For
SSDlite network, mAP-based method takes 4456.7s whereas
proposed scheme takes only 84.41s with 98.11% reduction.
Also, for YOLOv2 network, it shows 95.77% reduction

FIGURE 8. Complexity reduction comparison for each type.

in analysis time similarly. If this method is applied to a
different new neural network model, the optimal beta can
be determined by evaluating mAP accuracy, computation
reduction, or weight memory reduction for several possible
values ranging from 1 to 10. As the analysis time for a given
beta value is still very fast similar to Table 2, within 5% of the
time compared to the existing method, it has the advantage of
still being very fast.

B. EFFECTIVENESS OF COMPLEXITY-AWARENESS
In order to evaluate the effectiveness of the complexity
consideration in the proposed scheme, Fig. 7 and Fig. 8 shows
that the proposed scheme can reduce the hardware complexity
according to the target optimization: Type 1 for the number
of Ops and Type 2 for the weight memory requirement,
where baseline indicates all layers are in high-precision
mode and conventional mAP-based scheme is considered
without complexity-awareness. At this experiment pro-
cess,the amount of complexity reduction considers the total
quantity of parameters applied with low-precision or high-
precision. These factors are evaluated through (5) and (6) in
Section II-C. As illustrated in Fig. 7 and Fig. 8, itBaseline,
represent the results with high-precision whereas Type 1 or
Type 2 show the results with target optimization. Fig. 7
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TABLE 3. Comparison with prior works using mixed-precision.

shows the evaluation results with all proposed schemes
including SQNRAvg-based fast analysis and the complexity
consideration. In the figure, itType 1 has a higher complexity
reduction at the same model accuracy, mAP result, compared
to the baseline for both SSDlite and YOLOv2 networks. For
the case of the same computation reduction, Type 1 shows
higher mAP results compared to the baseline. Similarly,
Type 2 shows better model accuracy for the same weight size
compared to the baseline. Also, for the same model accuracy,
the proposed scheme with Type 2 can reduce the memory
requirement significantly, for both SSDlite and YOLOv2
networks. Fig. 8 presents the best performance of results
shown in Fig. 7, demonstrating performance comparison of
complexity reduction while maintaining the same accuracy.
For the comparison, we define the complexity of the network
composed only of high-precision layers as 100%. And the
results show the percentage of reduced complexity achieved
by applying mixed-precision. Specifically, compared to the
Baseline, the number of operations of Type 1 is reduced from
90.92% to 86.14% in SSDlite and from 60.31% to 51.93% in
YOLOv2. Additionally, the memory requirement of Type 2
is reduced from 87.63% to 78.03% and from 56.18%
to 50.62% for each network, respectively. The mAP(%)
results for each type are displayed at the top of Fig. 8.
The accuracy is similar across all types, but the proposed
method shows a greater reduction in complexity compared to
the conventional method, Baseline. Therefore, the proposed
complexity-aware layer-wise mixed-precision scheme shows
better model accuracy at the same complexity requirement
or provides intended complexity reduction according to the
optimization target at the same target model accuracy. In our
proposed method, the degree of optimization can slightly

affect the level of accuracy and complexity reduction within a
certain range. However, our method consistently shows good
results in all aspects of accuracy and complexity reduction.
Therefore, our approach demonstrates the ability to select
layers that achieve complexity reduction while minimizing
accuracy degradation.

C. COMPARISON WITH PRIOR WORKS
As denoted in Table 3, the proposed work is compared with
other papers using mixed-precisions. In this work, a uniform
quantization type is used and any additional quantization
scheme isn’t required. The final precision, accuracy drops,
and compression ratio are shown in the table. The simulation
network includes 38 layers for SSDlite and 20 layers for
YOLOv2. In the end, 4-bit precision is used in 21 out of the
38 layers of the SSDlite network, resulting in a precision level
of 4.93 bits. In a similar fashion, low precision is used in
10 out of the 20 layers of the YOLOv2 network, resulting
in a precision level of 4.37 bits. In other papers, training
and special quantization methods are basically necessary to
configure the network in low-precision. Additional schemes
for quantization incurs hardware implementation overhead.
Also, despite the application of a special scheme, the model
accuracy degradation was greater than the proposed model as
shown in comparison with [31]. In compared with [29], the
compression ratio is smaller than in this work. Although the
accuracy degradation and comparison ratio are better in [28]
than in this work, they have difficulty in that it has to retrain
for quantization. On the other hand, the proposed scheme
has better performance without any other special scheme
and provides fast analysis as well. It is possible to apply
low-precision of symmetric and uniform quantizationwithout
a separate training process.

IV. CONCLUSION
In this paper, we proposed efficient layer-wise mixed-
precision scheme. Instead of using the conventional time-
consuming mAP-based analysis, the proposed scheme uses
simple SQNRAvg-based analysis to reduce the time amount
required for layer-wise mixed-precision determination. Also,
by considering the complexity of each layer, the proposed
scheme provides the way to optimize the hardware com-
plexity in terms of either the number of operations or the
weight memory size. The proposed scheme shows more than
95% reduction in analysis runtime and dramatic hardware
complexity reduction both in the number of operations and
weight memory size while maintaining the model accuracy.
Also, with the proposed method, users can readily apply it
to inference tasks and leverage pre-trained neural network
models without requiring any further training or additional
hardware units.
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