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ABSTRACT To prevent and mitigate the environmental impact of the transportation and extraction of oil and
its derivatives, the conception, design, development, and implementation of an embedded system for wireless
sensor networks (WSN) is presented is this paper. The proposed embedded system is a static sensor node that
detects and classifies pollutants in aquatic environments using machine learning and IoT (Internet of Things)
approaches. The article presents the development of the sensor node, which consists of three phases. In the
first phase, the conception and modeling of the embedded system are presented, including mathematical
modeling of the node, the node’s power supply system, WSN communication structure, pollutant detection,
and classification via machine learning and IoT. The implementation of the static sensor node is presented
in the second phase of the project, which includes functional modeling of the measurement, the architecture
of the embedded system, and its physical structure. In the last phase, the detection and classification tests
of the proposed sensor node are presented, including implementing five sensors. They are evaluated indoors
by analyzing seawater samples with gasoline and diesel, pH and turbidity measurements of seawater and
freshwater with gasoline, and experiments through direct and indirect measurements of seawater and diesel.
Since the initial results of the indoor experiments are satisfactory, the proposed sensor node is regarding as
a promising device for detecting and classifying pollutants in real-world aquatic environments.

INDEX TERMS Embedded systems, IoT, wireless sensor network, high performance computing,
machine learning detection, tracking, pollutants in aquatic environments, fuel oil and petroleum products,
connectivity, coverage.

I. INTRODUCTION
The relevance of Wireless Sensor Networks (WSN) for mon-
itoring and controlling industrial activities, transportation,
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agriculture, and aerospace are already ubiquitous in con-
temporary society. In these networks, sensor nodes play
an essential role, that is, they are the main components to
perform measurements of certain variables. To contribute for
detecting pollutants in aquatic environments, an innovative
methods to the design and development of static sensor
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nodes for WSNs is presented in this article. The processing
core of the measurements and information collected by the
node’s sensors are based on theoretical and technological
foundations supported by machine learning [12], [22] and
embedded systems approaches [20]. Also, a dedicated
embedded system for solving the problem of detecting and
classifying petroleum product spills in marine environment
and distributed signal processing in WSN is presented in this
paper. The estimationmethods are embedded and evaluated in
sensor networks with static nodes for detecting and tracking
oil product spills [2] at sea using case studies.

The development of embedded systems for processing and
communication is based on high performance architectures
[10], such as RISK, and the local and distributed fusion of
sensor signals. In order to detect and classify the pollutant,
be it seawater or oil-based fuel, the signals measured by
the sensors are processed using machine learning techniques
[6], [32]. The proposed method is evaluated on fuel oil and
petroleum product leaks [30]. Given the approximations of
the proposed models and the amount of available data that
are crucial for the estimation of the states of a given process,
aiming at the detection and tracking of petroleum products
[2], the guarantee of convergence, stability, and robustness
for machine learning methods is a property of the proposed
method.

The motivation for choosing the topic oil spill in aquatic
environment is due to its importance for the environment,
as can be seen in [9], [16], and [11]. Companies linked tomar-
itime transportation and its complex dynamic characteristics
in relation to a concise online tracking, data are exposed in
technical reports and scientific article [3]. The estimation and
control strategies are fundamental in this process to ensure
energy efficiency [1], [15], [31], [14] and safe operation,
to achieve the desired properties and to prevent and minimize
environmental impacts damage [4].

This paper presents the state-of-the-art in the context of
WSN, relating to sensor nodes, embedded systems, IoT and
machine learning. The importance of embedded systems lies
in their penetration in to most human activities. Moreover,
activities increasingly depend on their real-time capabilities,
such as sensing, processing, communicating, and acting
[17]. Regarding the need to address problems that arise
due to the complexity of embedded systems, the authors
[22], [24] state that complexity and applications with IoT
impose design constraints that demand the development of
methods to find the best compromise between the different
design objectives of the embedded system. A low-cost sensor
node for a WSN is presented in [7], can detect through a
sensor array, accelerometers, gyroscopes, Global Positioning
System (GPS), and infrared thermal sensors based on oil films
that emit heat more slowly than the surrounding water during
the day. However, the process is reversed during the night,
making it vulnerable to lighting conditions. The captured
signals are processed, and their estimated information is
transmitted by telemetry, alerting the occurrence of a possible

oil spill and informing the location and thickness of the
slick. Recently, advances in hardware and software oriented
towards AI applications in embedded systems and IoT
[20] with limited resources and energy for a wide range
of applications have increased the importance of finding
effective solutions to the mentioned problems [17], [21].

Because of the importance of embedded systems for
operation and their ability to support decision-making,
relevant questions, such as security, protection, and reliability
are raised, which directly impact physical and data security.
Additionally, control, validation, self-testing, and observabil-
ity of embedded systems in their programmed or acquired
operations are significant concerns for their acceptance
in critical infrastructures or operations. Furthermore, cost,
energy, and maintenance requirements must be considered,
given the high number of embedded systems for IoT
applications [17], [30]. The cited reference also emphasizes
the importance of embedded systems for transferring data
for remote processing, fostering a faster real-time response
and reducing dependency on data connections. This way,
it contributes to improving scalability and increasing security.

Regarding the design of the embedded system, the
suggestions and techniques presented in the references that
deal withmodeling, synthesis, and analysis are considered for
the design and implementation of the proposed sensor node.
In [10], the authors present modeling, synthesis, and verifica-
tion for the design of embedded systems. In [18], the authors
introduce embedded systems, emphasizing a cyber-physical
systems approach. In [20] and [21], the authors present
the design of an embedded system, emphasizing embedded
systems, cyber-physical systems (CPS) fundamentals, and
IoT. In [34], the authors present principles of Embedded
Systems Design and distributed computing.

To mitigate the environmental and socio-economic risks
caused by oil spills, monitoring the sea using remote sensing
plays a crucial role in detecting and combating marine
pollution. Fuel spills represent a serious environmental risk,
causing significant damage to marine life, coastal ecosystems
and fishing resources. In addition, these events have negative
socio-economic impacts, affecting the health of coastal
communities, the tourism industry, fishing activity and port
economic activities. To combat these risks, it is essential
to have an efficient, low-cost, real-time monitoring system
capable of accurately measuring water quality indicators,
combined with machine learning techniques to perform
local detection and classification of pollutants spilled by
accidents and incidents involving fuels and oil products in
coastal environments. To date, existing detection methods
have shown limitations in fully meeting these requirements.
It is therefore necessary to develop monitoring techniques for
detecting pollutants in water.

In view of the problem set out in the previous paragraph,
let’s establish the problem as follows. Given an aquatic
environment with a high level of pollution from the melting
of petroleum products, the problem consists of detecting
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and classifying the pollutants present in the environment in
question. Detection is carried out by a static sensor node of
a WSN, which is composed of hardware with four contact
sensors on the water surface and communication with a
base station to receive the detected signals and the node’s
estimates. Classification is carried out by an artificial neural
network.

The remaining sections of the article discuss the theoretical
framework and its associations to enable the proposedmethod
and the performance evaluation results for various pollutant
detection scenarios. Section II presents the necessary content
for the development of the proposed approach. The topics
covered are focused on technology involving concepts related
to hardware and the system for capturing and observing
the physical phenomenon. The content includes wireless
sensor networks, embedded systems, and intelligent sensing.
In Section III, the proposed concept and modeling of the
embedded system are presented, covering topics related to the
problem and general and particular solutions. In Section IV,
the process of developing the project and implementing
a static sensor node is presented. The results of tests for
the sensor node for detecting and classifying pollutants are
presented in Section V. The conception and design of sensor
nodes to WSN are presented in Section VI.

II. PRELIMINARY
Themain concepts of sensor nodes andmachine learning, and
embedded systems are presented in this section. Specifically,
the approaches necessary for developing the design method-
ology and implementing the embedded system and intelligent
framework for identifying and classifying pollutants on the
water surface are presented descriptively.

A. WIRELESS SENSOR NETWORK
According to [27], wireless sensor networks are networks of
devices with autonomous sensor sets, which may or may not
have actuators, where communication is performed through
wireless channels, and the spatially distributed sensor nodes
to monitor physical or environmental phenomena [23], [27],
[28]. The sensor nodes are positioned at certain distances
from the phenomenon to be observed, which is not possible
with traditional sensor networks. WSNs are used to monitor
areas with difficult access or inhospitable, areas such as
military confrontation, deserts, volcanoes, dumps, forests and
industrial areas [19].

The gathered sensors form a wireless data collection
network, locally processing the information and disseminat-
ing the resulting data from one point to another. Telecom-
munication, instrumentation, embedded systems, computer
architecture, computational intelligence, and electronics are
all study areas directly related to WSNs [33]. WSNs com-
bine sensing technologies, computing (local and distributed
processing), and overlay networks to provide computing,
storage, networking, sensing, and actuation capabilities
(technologies linked to long-distance transmission). These
networks are formed by several sensor nodes (static and

mobile) communicating with each other and the base station
through wireless radio links [19].

B. INTELLIGENT SENSOR NODES AND EMBEDDED
SYSTEMS FOR WSN
Embedded systems methods and algorithms for WSN are
presented in this section. Smart sensors are devices that
perform a series of signal processing operations of the embed-
ded sensor, with the help of microprocessor/microcontroller
electronic circuits, using computational resources to perform
predefined internal functions, detect parameters, and perform
processing and transmission of the acquired signals through
communication systems [5], [29].
The sensitivity of the sensors must be planned in terms

of long-term measures to increase their lifetime, as technical
needs are required to obtain acceptable measurements in
harsh environments. Because the sensors are designed to
be used for an extended period of time, data collection
is continuous and the veracity of the estimated signals,
and power consumption must considered. Smart sensors
and intelligent sensors meet the requirements for robustness
in measurement. The smart Wireless sensor, which is an
evolution of the smart sensor, is the most recommended in
the sensing application of unhealthy and harsh environments
because it has independent processing and wireless signal
transmission. They have a significant advantage over tradi-
tional wired sensors, which are not a cheap and viable option
for this type of application [5].

C. METHODS, ALGORITHMS AND MACHINE LEARNING
The evolution of computing, signals/data processing provided
advances in machine learning. Therefore, a new era of
opportunities to embed computational intelligence within
IoT devices has emerged. Applying low-cost IoT learning
techniques, such as microcontrollers to perform tasks such
as detection, decision-making, classification, regressions,
sensory fusion, among others [25], which are applied in
several activities, such as: monitoring of environmental and
critical areas, air quality, navigation, energy measurements,
wireless sensor networks in an industrial environment for
monitoring risk activity. These methods limit the computing
device’s payload resources and require the deployment of
lightweight hardware and inference pipelines. Traditionally,
microcontrollers operate with low-dimensional structured
sensor signals using classical methods. Significant efforts are
being made to embed machine learning algorithms in less
complex devices as these methods evolve [25], [26].

III. CONCEPTION AND MODELING OF THE EMBEDDED
SYSTEM
The design phase of a sensor node is one of the key points.
During this phase, the project specifications in the abstraction
phase of the proposed architecture and the components that
constitute the node, such as the types of sensors and micro-
controller, are presented while observing their consumption
and processing power. These specifications directly impact
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FIGURE 1. Architecture of sensor nodes, peripherals and modules of
functional and support systems.

embedded system architecture. Another critical point is the
selection of radio technology for transmitting and receiving
signals, which directly impacts the size of the board’s power
supply system, and the appropriate choice ensures a longer
life for the sensor node. The block diagram in Figure 1
represents the architecture of the proposed sensor node,
highlighting the functional blocks around the processing and
control unit (CPU) with the main and auxiliary subsystems of
the sensor node, such as: power, computing, interfaces, and
communication.

Figure 1 shows the basic architecture of a WSN smart
sensor node. In addition to the classic sensor structure,
it includes an interface for the actuation system. It is not a
passive system that observes its surroundings but is actuated
by predefined decisions made during programming or by a
remote user.

The design and modeling of the embedded system are
discussed in this section, highlighting the composition of the
physical layers of the WSN and the architecture of the sensor
nodes. However, the main theoretical and technological
elements that make up the development of the methodology
design and implementation of static sensor nodes are
highlighted. The main elements are the mathematical model,
node power system, communication structure, and detection
and classification via machine learning and IoT. Moreover,
each element is presented individually, highlighting the
functionality for developing the sensor node.

A. MATHEMATICAL MODELING OF THE NODE
A mathematical model is developed in the physical structure
based on set theory for a better understanding. This modeling
allows the systematization for theoretical and experimental
development of the proposed embedded systems.

Initially, it is established that the node set structure of a
WSNs which is given by

WSNnds = {sn1, sn2 . . . sni . . . snn} , (1)

where sni (i = 1, . . . , n) is the i−th node of the sensor
network WSNnds with n nodes. The physical structure of a
WSN with n sensor nodes is represented by the setWSNnds.

In terms of physical structure, the i−th node of the sensor
network with n nodes is formed by a finite set of elements
that represent the main and auxiliary functional systems of
the architecture of the sensor node in Figure 1. Peripherals,
and functional modules is expressed in terms of a set that
are connected to the managing element of the services or
tasks that are performed to accomplish the goal of the node.
Specifically, the nodes are designed to perform the task of
detecting and classifying pollutants in the environment.

According to the previous paragraph, the abstraction of the
physical structure of the i−th node of the WSNnds network
with n nodes that represents the architecture of the sensor
node in Figure 1 is given by

sni =
{
sp1, sp2, . . . , spj, . . . , spk

}
, (2)

where spj represents the j−th group of the i−th node (sni)
of theWSNnds network with k groups. Moreover, each group
has different characteristics or functionalities representing the
architecture, as shown in Figure 1.

For the element spj of the group, the elements of the j−th
group are formed by the finite set which is given by

spj =
{
spj1spj2 . . . spjm . . . spjp

}
, (3)

where spjm is them−th element of the group jwith p elements.
In a unified way, the relationships between sets (1), (2),

and (3) are summarized in terms of set operations. The new
representation of the physical structure of the sensor network
and its nodes is given by

WSNnds =

{
∪
k,p
j=1,m=1spjm ⊆

n
i=1 sni

}
. (4)

The mathematical model represented by set (4) establishes
the complete structural basis of a sensor network with the
architecture given in Figure 1. In contrast to the relations (2)
and (3), which provide detailed representations of the groups
and their set elements,WSNnds represented by (1).
The outputs resulting from the estimates and tasks

performed by the sensor network nodes are mappings of
information from sets (1), (2), and (3) that are synthesized
by the set (4). Consequently, the output of the i−th sensor
node of the network is given by

ŷq(spjm ) = fnds
(
∪
k,p
j=1,m=1spjm

)
, (5)

where ŷq(spjm ) is the q−th estimated or filtered output of
sensor node sni of networkWSNnds with n nodes.

B. SENSOR NODE POWER SUPPLY SYSTEM
The block diagram in Figure 2 represents the power supply
of the logic operation of the sensor node in the network.
The power supply system is composed of three main parts
that function independently of the central control unit of the
embedded system shown in Figure 2, and namely: (1) mini
photovoltaic cells, (2) battery charge/discharge controller
with embedded system power supply control, and (3) a pack
with two 3.7V- 1400mAhLi-Po (LithiumPolymer) batteries.
The central processing part is represented by (4), the sensing

VOLUME 11, 2023 117043



Y. F. da Silva et al.: Conception and Design of WSN Sensor Nodes

FIGURE 2. Sensor node power supply organization block.

part (5) with its subdivisions: (5.1) liquid contact sensors
and (5.2) internal sensing. The signal transmission part is
represented by (6), which is the final transmission stage.

Mini photovoltaic cells are used in the battery power
system to utilize the sun’s energy. It also considers the
difficult access to the hardware after installation, which
makes maintaining the sensor nodes difficult. A power
supply system was designed for the longevity of the system,
with mini cells that operate during the day supply energy.
The battery pack is recharged in parallel (working only
to compensate for interruptions in the supply), and in the
absence of the sun, the use of the batteries is 100%, as shown
in Figure 2. It has a microcontroller structure (ATtiny85)
responsible for controlling the loads and power supply of
the embedded system, together with the counter unit with
voltage/current sensor, load sensor, voltage converters, and
the control unit of the power supply system, and as an
under-actuated system that has direct communicationwith the
central control unit of the embedded system (ESP32).

C. WSN COMMUNICATION FRAMEWORK
The communication structure of a WSN and an intelligent
sensor node is important to ensure stable communication,
and the transmission of observed and estimated signals/data
to the destination. The block diagram in Figure 3 represents
the WSN communication structure and its stages. The
communication mesh has three stages. The final step is
that the pre-processed signals/data from the sensor node
are accessible to users via a processing software, database,
or end-user human-machine interface.

As shown in Figure 3, the communication flow starts in
step (1), which is the sensor node, where the microcontroller
reads and processes the first measurement signals from the
sensors. The flow of the measurement signals is preprocessed
in the control unit, and other variables are estimated and
compressed following the wireless communication module
(in the case of implementation are used LoRa 433 MHz
and 5 GHz Wi-fi module embedded in the microcontroller
itself). The communication from the sensor node to the base
uses a long-distance radio frequency protocol (LoRaWAN)
for direct connection to the base station/gateway (2). The
signals/data are compressed and sent to the cloud (3) via

FIGURE 3. The communication system of the sensor node and the stages
of the communication flow are: (1) static sensor node, (2) gateway base
station, (3) signals stored in the cloud, (4) final destination of
measurements and estimates.

FIGURE 4. Detection, classification and artificial neural network of WSN
static nodes.

the message queuing telemetry transport (MQTT) protocol.
The gateway with the server/cloud, where the estimated
signals/data are stored, enables the final destination (4), data
access, and real-time monitoring of a given perimeter via
measurements and estimation of the quantities involved.

D. DETECTION AND CLASSIFICATION VIA MACHINE
LEARNING AND IOT
The use of signal processing techniques and machine
learning for classification, fusion, and state estimation
distinguishes intelligent sensor nodes from smart sensors.
These approaches enable a wide range of applications and
new possibilities for integration with other techniques, such
as IoT. Thus, new challenges or frontiers for developing
theory, algorithms, hardware, and applications of machine
learning methodology and embedded systems are observed.

The association of devices with the operation for detection
and classification of the sensor node in a WSN is presented
in Figure 4, highlighting the ANN that performs the tasks
of detecting and processing signals locally from the node’s
sensors.
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The measurement structure is based on the main states
to be observed, which are pH, turbidity, water temperature,
and electrical conductivity indices. In the initial tests, the
conductivity sensor is not used in conjunction with all the
sensors, and these measurement signals are fundamental for
the initial analysis of the environment.

Figure 4 shows the observed variables, with the main states
to be observed connected in red as input to the multilayer per-
ceptron (MLP) type ANN. The neural network can classify
whether the present compound is gasoline or diesel oil based
on measurements of pH, liquid temperature (compared to the
environment), turbidity, and conductivity. The neural network
consists of anMLPwith 4 layers, including an input layer and
2 hidden layers with 3 neurons each and one in the output,
which is the classifier. TensorFlowLite and the TinyML API
are used for supervised training, and the developed algorithms
are programmed in Micropython.

IV. DESIGN AND IMPLEMENTATION OF STATIC SENSOR
NODES
The core of the proposed methodology for designing and
implementing static sensor nodes is presented in this section.
The modeling of the embedded system for a sensor node
from Section III is applied in developing the proposed
methodology. The design of the sensor node with its
measurement structure and the construction of the sensor
node are also presented.

For the design of the sensor node with its measurement
structure and the construction of the sensor node, the choice
of sensors is based on Brazilian Standard CONAMA 357/05,
which ‘‘Provides for the classification of water bodies
and environmental guidelines for their framing, as well as
establishes the conditions and standards for the discharge
of effluents’’, and on IQA (WATER QUALITY INDEX -
National Sanitation Foundation).

A. FUNCTIONAL MEASUREMENT MODELING
The modeling of the measurement structure is based on sets
(2) and (3). For the development of the proposed embedded
system, and the application presented in this article, the
physical structure of the sensor node is represented by

sn =
{
spC1 , spC2 , spC3 , spin1 , spin2

}
. (6)

The internal sensors are divided into k groups. For
example, each node can be divided into two groups of sensors
spC (sensors in contact with liquids) and spin sensors inside
the node.

The generalization of the physical structure of the sensor
network is given by

WSNnds = {spC ∪ spin ⊆ sn} . (7)

The specific mathematical model for the embedded system
of the sensor node is represented by Equation (7), establishing
the structural basis of the sensing elements of each node,

forming the measurement structure of the WSN that is part
of a detection, processing, and signal transmission system of
the WSNnds.

Customizing set relations (6) for measurement structure,
and the proposed node structure is given by

spcφc =
{
TempLiq,CondLiq, pHLiq,TurbLiq

}
, (8)

In set (8), spinφin represents the state variables observed
through direct and indirect measurements, where the
observed variables are of the sensor type spC liquid
temperature (TempLiq), the electrical conductivity of the
liquid (CondLiq), hydrogen potential of the liquid (pHLiq), and
turbidity (TurbLiq). The representation of the sensor groups is
given by

spinφin = {PresEnv,TempEnv,Latin,Longin} , (9)

where the state variables are relative pressure of the envi-
ronment (PresEnv), temperature of the internal environment
of the sensor (TempEnv) and latitude coordinates (Latin) and
longitude (Longin). In set (9), this set of states is generated by
the sensor sets spinφin.
According to (5), combining the measurements performed

by the sensor node (8), and machine learning techniques, the
result is the estimation of new states presented by themapping
that is given by

ŷ(spcφc) = {gas, dieselfuel, polluting} . (10)

The set y(spcφc) presents the results, and they are the
observed and classified states/identification of the pollutants.
In this way, it can detect the presence of gasoline, diesel oil,
or other unlisted environmental pollutants (foreign bodies).

B. EMBEDDED SYSTEM ARCHITECTURE
The methodology for developing the hardware of the smart
sensor node is based on the functional model of the sensor
node, presented in Section III and the IEEE 1451.2 standard.
Figure 5 presents the architecture of the embedded system,
highlighting the components of its physical structure, such as
the power supply system, WSN communication, and sensors.
The embedded system manages the water contact sensors,
which are used to measure the liquid temperature, water
hydrogen ion potential (pH), and turbidity, allowing detection
and classification of the compound present in the aquatic
environment.

The proposed sensor node architecture in Figure 5 is
divided into three blocks, including a signal acquisition block
for contact sensors with liquids, a power and load control
block (responsible for the energymanagement of the system),
and the main block where the processing elements and
connection interface for signal transmission are grouped.

Figure 5 is divided into two parts, with the dashed lines
representing the logical part and the solid lines corresponding
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FIGURE 5. The Intelligent sensor node - the architecture of the embedded system.

to the physical part of the embedded system, as well
as the structure of the system and the distributed signal
acquisition network. The main components incorporated into
the structure are the network capable application processor
(NCAP-part of the structure that performs communications
between the STIM and the network), the smart transducer
interface module (STIM), and the communication interface
between the sensors and microcontroller/microprocessor
introducing the logical functions and online reprogramming
from an integrated development environment (IDE). The
software-programmable interface supports communication
interfaces compatible with NCAP and STIM in the same
embedded system structure, which compiles algorithms that
can capture and process signals on the device itself, and
enables connectionwith other devices through IoT techniques
via the 1451.1 protocol.

The proposed embedded system structure has a subsystem
that is responsible for powering the device, as shown
in Figure 5. The power subsystem has an independent
microcontroller to reduce the control functions in node power
management. However, there is direct communication and
hierarchical dependence on the microprocessor. The power
subsystem is responsible for controlling battery charging
and discharging and manages the power supply from the
photovoltaic panels to the embedded system. However, all
decision-making and response instructions are determined by
the central controller.

Internal and external communications are conducted by
the TX-RX ports (the ESP32 chip has more than one pair of
communication ports) and embedded Wi-Fi 2.4 and 5 GHz
in the chip itself. In the proposed system, the microcontroller
communicates through the TX1-RX1 ports with the power

subsystem, and for LoRa transmission uses the traditional
TX-RX ports, as shown in Figure 5.

The set of sensors shown in Figure 5 is divided into
two classes, liquid surface contacts and internal sensors.
Liquid contact sensors are responsible for carrying out
measurements and observations at the water level. The
sensors used in the application are: DS18b20 temperature
sensor, TDS V1.0 module conductivity of liquids, for pH
measurement is used the ph4502C sensor and for turbidity the
ST100. The GPS module is located inside and is responsible
for locating the static node and determining whether the
node is active or has been displaced by some external
factor. Another internal sensor, the BMP180 sensor, measures
pressure at sea level and ambient temperature. The transceiver
chosen is the RF module wireless LoRa (Long Range) 433
MHz radio frequency transmitter and receiver, featuring low
power consumption and long-distance communication.

C. SENSOR NODE PHYSICAL STRUCTURE
The proposed structure is based on studies and bibliographi-
cal research, access to materials and contact with researchers
in the field of Fisheries Engineering and Oceanography.
Modeling and testing of sensor node structure are performed
in software from Autodesk Inventor. In Figure 6, you can see
the model simulated in a computational environment.

In Figure 6, with the physical structure in green against
polyethylene (PE) plastic, which is used due to its phys-
iochemical properties. PE does not melt or deteriorate in
the presence of fuels, and due to its mechanical properties,
it is resistant to friction, salinity, and the effects of
prolonged sun exposure. For flotation a Class 1 Circular
Lifebuoy 70 cm is simulated, which has the following
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FIGURE 6. 3D Modeling of the sensor node for aquatic environments.

FIGURE 7. Physical structure of the sensor node - Prototype V1.

characteristics - Diameter: 70 cm - Weight: 2.5 kg. For open
sea vessels and platforms, the minimum breaking load is
500 kg. Made of cast polyethylene with UV protection and
internal filling of expanded polyurethane. Material resistant
to fungus, seawater, fresh water, oil and its derivatives.
Polypropylene cable of 10 mm braided into the float, fixed
at four points. Mini photovoltaic panels are used for power
supply, to recharge the batteries, distributed under a semi-
sphere of 180 degree.

Figure 7 shows the designed physical structure of the
proposed sensor node, first prototype, for the sensing
experiments. Figure 7 is divided into 5 parts, each of which
refers to a perspective of the prototype called ‘‘V1’’.

In Figure 7, (a) and (b) represent the mini photovoltaic
cells responsible for supplying the sensor node’s energy
supply, alongside the communication antenna. 7 (c) presents
the internal part of the embedded system, observing the
microcontroller, internal sensors and battery charge and

TABLE 1. Seawater and fresh water pH and turbidity sensor node
measurements.

discharge control. 7 (d) and (e) show the liquid surface contact
sensors: (1) the temperature sensor, (2) the turbidity sensor,
and (3) the pH sensor.

V. DETECTION AND CLASSIFICATION TESTS
The description of the procedure and the results of the
detection and classification tests for an indoor assessment
of the sensor node are presented in this section. The tests
measured the pH and turbidity of seawater and fresh water.
The results of experiments with gasoline and diesel oil
are presented to evaluate the algorithms’ performance in
detection and classification.

In the tests conducted at the Embedded Systems and
Intelligent Control Laboratory (LabSECI) at the Federal
University of Maranhão (UFMA), it is possible to detect
and classify the fuel present in the water. Water contact
sensors are used for testing pH, Turbidity, and Temperature.
The observed variables are liquid temperature, pH, and the
turbidity of the liquid given inNTU (Nephelometric Turbidity
Unit, which means that the instrument is measuring the
scattered light of the sample at an angle of 90 degree in
relation to the incident light) in addition to the parameters
of internal components of the embedded system, such as
pressure at sea level, liquid temperature, internal temperature,
and GPS location coordinates.

A. MEASUREMENT TESTS FOR PH AND TURBIDITY WITH
SEAWATER AND FRESH WATER
The first tests and calibration of the sensors are conducted
in the laboratory. In these first tests, the pH and turbidity
levels of fresh water and seawater, collected at Ponta d’Areia
beach in São Marcos Bay, São Luís, Maranhão, Brazil, are
measured.

Table 1 presents the results of the first test of the pH
level (hydrogen potential) of the analyzed water samples.
pH measures how acidic or alkaline water is, with 7 being
neutral. Values above 7 indicate an increase in the degree of
alkalinity, and below 7 (up to 0), an increase in the degree
of acidity of the medium. Some substances have their toxic
effects attenuated or amplified at extreme pHs, such as those
present in chemical residues.
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FIGURE 8. Measurement with sensor node - pH of fresh water and
seawater comparison.

The ph4502 sensor, 2000 ml of seawater, and 18 mea-
surements at 30 s intervals are used in the first experiments.
The results of seawater and fresh water pH measurements
are shown in Figure 8. In Table 1, it is observed that the pH
varied between 7.64 and 7.8. These variations occurred due
to sediments dissolved in the water, caused by the mouths of
two rivers in São Marcos Bay. The average pH of São Luís
beaches is between 7 to 8.

The freshwater pH measurement test was performed with
2000 ml, and the freshwater pH level measurements ranged
between 6.06 and 6.18, stabilizing the measurement at 6.13.
Following the pattern of 18 measurements with 30 s intervals,
the sensor took a few minutes to calibrate due to minimal
variation.

Knowing that acid solutions have a pH that ranges
from 0 to 7, it can be seen that fresh water has an acidic
character, and seawater has a character tending more toward
neutral.

The calibration of the ST100 sensor is initially performed
for the measurement of turbidity. Turbidity measures how
difficult it is for a beam of light to pass through a
certain amount of water, giving it a cloudy appearance.
This measurement is performed with a turbidimeter or
nephelometer, which compares the scattering of a light beam
passing through the sample with that of a beam of equal
intensity passing through a standard suspension. The greater
the scattering, the greater the turbidity. The table turbidimeter
on the side can measure turbidity in three scales: 0 - 20,
0 - 200, and 0 - 1.000 NTU, and in the 0 - 20 scale, the
resolution is 0.01 NTU. The main causes of water turbidity
are the presence of solid matter in suspension (silt, clay,
silica, colloids), finely divided organic and inorganic matter,
microscopic organisms, and algae. In addition to reducing
sunlight penetration into the water column, turbidity inhibits
algae photosynthesis. Because of the sensor’s sensitivity, the
graphs were plotted using a 1000 times scale.

In the measurements of the fresh water samples shown in
Table 1, two amplitudes can be seen between measurements

FIGURE 9. Measurements with sensor node and classification of gasoline
with seawater.

8 and 12. This noise occurs because the ST100 sensor is an
infrared optical sensor that is very sensitive to large light
sources and interferes with some measurements. In addition
to fresh water having greater transparency than seawater
(the number of particulate matter is minimal), thus having a
greater incidence of light, the container where freshwater was
stored is transparent, suffering more from external noise from
lamps, sunlight, and computer screens.

B. GASOLINE EXPERIMENTS
The second stage of the measurements is conducted with
all the sensors already embedded in the node prototype.
To perform the gasoline tests shown in Figure 9, 250 ml of
seawater and 100 ml of regular gasoline are used.

In Figure 9, presents the results of detection and classifi-
cation. To perform the classification, it is assumed that the
gasoline’s turbidity is between 2.36 and 2.42 NTU and its
pH is between 6.5, and 7, at ambient temperatures ranging
from 18 to 40◦C. The behavior of the turbidity indexes,
generated from the measurements of the gasoline press on
the seawater layer contained in the flask, is observed to vary
between 2.948 and 2.964 NTU. The peaks of variations in
the measurements were due to a large number of sediments
present in the seawater sample. The pH measurements of
gasoline with seawater shown in the table vary between
7.31 and 7.65, becoming stable at a value of 7.39. During the
pH test, there were no problems with its measurement.

The Figure 9 represent the set of 18 measurements of a) pH
of the environment with gasoline, b) relative pressure of the
environment, c) liquid temperature, d) internal temperature of
the sensor, and e) turbidity of the environment.

According to Figure 9, there are no significant variations
in liquid temperature measurement, as it is a controlled
environment where the liquid temperature remains almost
the same as the ambient temperature (laboratory), with a
difference of 2◦C in the liquid. The internal temperature of
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FIGURE 10. Measurements with sensor node and classification of diesel
oil in seawater.

the sensor node shows a greater variation due to the presence
of electronic components and internal heat dissipation, but
this variation is only 0.4 degrees.

C. EXPERIMENTS - DIRECT MEASUREMENTS OF H2O
SEAWATER AND DIESEL
A qualitative view of the behavior of the measured variables
of seawater with diesel oil is presented using the graphs
in Figure 10. The graphs presented are from direct mea-
surements of the pH, pressure, temperatures, and turbidity
sensors. Moreover, each graph is plotted for a set of
18 measurements taken by the proposed and implemented
sensor node, as presented in Figure 7, for the detection
experiments. The samples of seawater mixed with diesel has
a volume of 250 ml of seawater and a volume of 120 ml of
diesel oil.

The following parameters are considered to detect and
classify diesel: turbidity between 2.28 (2280) and 2.35 (2399)
NTU, and pH of 5.8 to 6.5 under ambient conditions.
Considering these values and pressure at sea level, it is
possible to classify diesel.

An analysis of the sensor’s ability to perform measure-
ments is presented in Figure 10. In the graph a) of Figure 10,
the pH measurement results of the environment with diesel
oil are presented, with pH values ranging between 7.9 and
8.4. The obtained values are different from their natural state
(before being contaminated/coming into contact with water),
which occurs due to the absorption of water molecules by the
diesel and the penetration of light into the environment.

Regarding the measurements related to internal pressure
presented in Figure 10, the pressure measurements are
relative to sea level. The relative pressure remains at
1005.48 hPa in Figure 10. According to the Government
Portal, the sea level pressure of São Luís - Maranhão is,
on average, 1014 hPa. This difference between the average
and the measured value is due to the precision error of the

TABLE 2. Detection and classification of mlp neural network - for
gasoline and diesel fuels.

sensor, which is 5%, and also because the relative pressure
takes into account the ambient temperature - the higher the
temperature, the lower the calculated relative pressure.

In graphics c) and d) of Figure 10, the temperature
variations of the liquid and the internal part of the sensor
are shown. Variations are minimal as the experiment was
conducted in a controlled environment. When performing
tests at sea, these circumstances tend to change since the
temperature of seawater and fuel has different thermal
conductivities, influenced by exposure to sunlight and marine
currents.

In graph e) of Figure 10, ambient turbidity measured in the
test with diesel between 2.55(2550) to 2.95(2950) NTU are
presented. As with gasoline turbidity in Figure 9, the values
obtained from the measurements suffer disturbances caused
by an external light source. However, it does not change the
final classification result.

D. DETECTION AND CLASSIFICATION VIA NEURAL
NETWORK FOR FUELS
The classification step was performed through an artificial
neural network embedded in the device. The Table 2 presents
the parameters and metrics of the multilayer neural network
tests for the detection and classification of gasoline and
diesel. To perform the classification, turbidity, pH, natural
water temperature, and temperature of the main types of
gasoline and diesel found on the market are considered, and
the ‘‘natural’’ pH of seawater is also considered. Seawater
samples are collected at Ponta d’Areia beach in São Luís-MA.
In this way, it is possible to develop a classifier based on an
MLP neural networkwith 4 neurons in the input layer and two
hidden layers, each with 3 neurons, with a backpropagation
training algorithm. Supervised training is performed with a
set of size 1984× 4 samples. The learning rate is η = 0.0001,
and the initial weights of the network are random variables
given by a Gaussian distribution with mean zero and variance
equal to 1. It is worth noting that the set of tests is performed
with the 100 measurements for each fuel present in seawater.

For a better evaluation of the model, a confusion matrix
was developed, as presented in Figure 11. The purpose of
the confusion matrix is to aid in the evaluation of machine
learning models for classification [8], [13].
According to the obtained results, it was possible to

correctly classify that 54 samples contained fuel presence
and predicted that 29 samples did not contain fuel, only
water. It misclassified 7 samples as fuel and 10 as water.
Analyzing the table allowed for an accuracy of 83%, as it
correctly predicted 83 out of 100 cases. Sensitivity was
88%, representing the probability of detecting the presence
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FIGURE 11. MLP classifier performance evaluation via confusion matrix.

of fuel in the water. Specificity was 74%, representing
the probability of correctly identifying the absence of an
event, given that it’s absent. The false alarm rate was 26%
(approximately 1/4 of the estimates), which is the probability
of misclassifying whether fuel presence is true or false.
Taking into account that the highest possible value of an
F-score, close to 1, indicates satisfactory precision and
sensitivity, and the lowest possible value is 0; if the precision
or sensitivity is zero, the rating is unsatisfactory/poor.
Consequently, due to the fact that the F-score metric value
reached 86%, it is said that the proposed MLP classifier
presented good precision and sensitivity.

E. ANALYSIS AND COMMENTS OF THE IMPLEMENTATION
AND TESTS
The results of the experiments are satisfactory, considering
the difficulty in differentiating between fuels. To improve
the sensor, one of the main parameters to be observed is the
electrical conductivity of the liquid. The range of fuels and
pollutants that can be detected and classified can be expanded
with this implementation in the next generation of sensors.

During the tests, difficulties arose regarding the conditions
of the fuels due to the odor and risk of sample contamination,
as well as the risk of damaging the sensors used in the
tests due to the chemical structure of the fuels employed.
Direct and indirect measurements were consistent with the
specifications, and it was possible to achieve the objectives of
classifying and detecting the presence of fuel in water. It was
also possible to embed a machine learning-based algorithm
that performed the classification of diesel and gasoline. One
of the expected contributions was in the indoor classification
of the compound present in the water.

The node’s power consumption relationship is based on
its components and their usage over a period of time.
Therefore, in Table 3, we present the values (Ultra-Low-
Power, No signal transmission operations, only internal
processing, and with signal transmission via Bluetooth and
Wi-Fi according to the datasheet), as well as the tests
conducted comparing theoretical consumption with real
consumption at an ambient temperature ranging from 26◦C to
32◦C. The microcontroller used was the ESP32 NodeMcu -
DevKit v1, featuring a CPU: Xtensa®Dual-Core 32-bit LX6
with 448 kBytes of ROM memory, 520 kBytes of RAM, 4
MB of flash memory, and a maximum clock of 240 MHz.

The sensor node’s consumption for the real test was carried
out with internal processing (only logical functions and
the MLP algorithm functioning internally), resulting in a

TABLE 3. Processing system consumption µC ESP32 at 3.3 V.

TABLE 4. Power consumption of the sensor nodes.

consumption of 75 mA - 247 mW. This was achieved with
a sample sending rate interval of 15 s for each processed
sample. The execution of signal capture and processing led
to a consumption of 150 mA - 495 mW. The same sampling
criteria and capture interval were used, and the signal was
sent to a data storage server. In this manner, a consumption
and sending test was conducted over a 15 s interval for signal
transmission via Wi-Fi. It’s important to note that tests using
the Ultra-Low-Power mode were not performed; however,
the next step will involve the implementation of the new
consumption mode.

Comparative consumption tests for the node’s sensors were
conducted and are presented in Table 4. The table displays
the observed magnitude and the consumption of each sensor
according to the manufacturer’s specifications. It’s worth
noting that the table doesn’t consider losses and gains related
to thermal phenomena.

The tests results presented in Table 4 showed that the
sensors exhibited behavior consistent with what is described
in the datasheet. The only component that displayed behavior
different from what was specified was the LoRa radio
frequency technology. According to the manufacturer, it was
expected to have a consumption of 120 mA - 100 mW, but
in the communication tests involving data transmission and
reception, the consumption was around 400mW (rounded
value).

The components with the highest consumption were
the 433MHz LoRa communication module, which according
to its manufacturer has a consumption of 120 mA - 100 mW
for broadcast, but in the applied tests it was possible to
reach a consumption of 120 mA - 396 mW, and another
component with higher consumption was the pH sensor
due to the complexity and robustness of its secondary
circuit. This circuit not only measures the pH, but also
evaluates the temperature of the liquid. Total consumption
was approximately 1120 mW to 1200 mW, with standby
consumption of only 50 mW, which is passive and receives
information from the base station. All tests in operation were
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applied a voltage of 3.3 V for all components of the embedded
system.

For the next tests and experiments, a new watchdog will
be integrated and tested to monitor failures in readings
and communications. This, combined with a low-power
algorithm, will manage energy expenses more efficiently.

The work presents innovative concepts and structure,
which contribute to a mathematical model of measurements
based on set theory, internal processing and energy con-
sumption. Compared to [9], [11],and [23], the methodology
developed in this work uses contact sensors, analyzing
water quality indices and classifying them online, avoiding
common problems such as: image analysis (shading, photo
analysis problems, large database), as well as the energy
factor if drones are used (very high energy costs, even
covering a large area is a costly task from both an energy and
financial point of view).

One of the contributions is the implementation of an
artificial neural network that performs detection and classifi-
cation directly in the environment, facilitating more efficient
detection when compared to [7], which depends directly on
environmental conditions. The proposed system is capable
of operating 24 hours a day, since it has a flexible setup
and also uses energy harvesting techniques, extending the
useful life of the node. Compared to [7], [11], [21], [23],
[30], and [32], another positive point is the internal processing
technology and signal transmission over long distances.
Finally, compared to sensing techniques that are based on
images, this work contributes to the effective detection and
classification of oil-based pollutants, since current techniques
depend heavily on weather conditions, wind, among other
environmental points, and are very costly.

The aim of this work was to develop an architecture for an
intelligent sensor node, featuring a low-cost hardware struc-
ture, a mathematical structure for observing environmental
variables, energy harvesting with a charge and discharge
controller that aims to balance so as not to saturate the battery,
and an MLP-type artificial neural network that promotes
the detection and classification of indices based on direct
and indirect measurements through contact sensors. Another
differentiator is that the communication system can send the
signal in real time over a distance of up to 30 km, and all this
with low power consumption and easy assembly and proto-
typing. It can be attached to a variety of structures, buoys,
boats, ROVs and drones, allowing for greater versatility of
applications, whether at sea, in rivers or lakes.

VI. CONCLUSION
A methodology for the conception and design of WSN
sensor nodes based on embedded systems, MLP neural
networks, and IoT approaches was presented in this article.
The proposed methodology was applied for the detection
of pollutants in aquatic environments and it was found that
the proposed and developed static sensor node presented
satisfactory results in identifying and classifying the presence
of chemical compounds in a controlled environment.

The classification was conducted, with the measurement
and detection of the process having increased indices of
observed variables. As a result, the distributed processing
in the microcontroller cores contributed to a lower com-
putational effort, resulting in lower energy consumption
and increasing the node survival time. Notably the use of
distributed processing within the node’s processor cores
influenced a better detection response and classification of
the embedded MLP artificial neural network algorithm.
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