
Received 27 September 2023, accepted 14 October 2023, date of publication 18 October 2023, date of current version 23 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3325727

PAC-GPT: A Novel Approach to Generating
Synthetic Network Traffic With GPT-3
DANIAL KHOSH KHOLGH AND PANOS KOSTAKOS
Center for Ubiquitous Computing, University of Oulu, 90570 Oulu, Finland

Corresponding author: Panos Kostakos (panos.kostakos@oulu.fi)

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Program (IDUNN Project)
under Grant 101021911, and in part by the Academy of Finland 6Genesis Flagship Program under Grant 318927.

ABSTRACT The application of machine learning models, particularly in cybersecurity, has surged
significantly in the past few years. However, the effectiveness of thesemodels is predominantly tethered to the
quality and breadth of the training data they ingest. The scarcity of realistic datasets within the cybersecurity
field constitutes a considerable challenge to the development of industry-grade tools intended for real-world
application scenarios. Specifically, current datasets are either significantly outdated or fall short on both
qualitative and quantitative fronts, primarily because many organizations exhibit reluctance in data sharing,
stemming from privacy concerns or the potential threat to trade secrets. To address this challenge, the paper
introduces PAC-GPT, a novel framework to generate reliable synthetic data for machine learning methods
based on Open AI’s Generative Pre-trained Transformer 3 (GPT-3). The core components of this framework
are two modules, namely a Flow Generator, which is responsible for capturing and regenerating patterns
in a series of network packets, and Packet Generator, which can generate individual network packets given
the network flow. We also propose a packet generator based on LLM chaining and then proceed to assess,
compare, and evaluate its performance using metrics such as loss, accuracy and success rate, concluding that
transformers are a suitable approach for synthetic packet generation with minimal fine-tuning performed.
Lastly, a streamlined command line interface (CLI) tool has been devised to facilitate the seamless access of
this innovative data generation strategy by professionals from various disciplines.

INDEX TERMS Artificial intelligence, cybersecurity, generative pre-trained transformer, GPT-3, machine
learning, NLP, transformer, LLMs.

I. INTRODUCTION
The global surge in cyber attacks and their significant
financial implications have intensified the importance of
cybersecurity for public and private entities alike. To mit-
igate these threats, organizations are required to process
vast quantities of data, but the scale of the task makes
manual analysis highly impractical. Machine learning (ML)
tools, especially Deep Learning (DL) models, have been
successfully used for cybersecurity applications thanks to the
ever-increasing availability of data. Malware detection [1],
[2], [3], spam filters [4], [5], [6], and phishing detection [7],
[8] are just a number of applications to mention. However,
the efficacy of machine learning approaches in the field

The associate editor coordinating the review of this manuscript and

approving it for publication was S. K. Hafizul Islam .

of cybersecurity is hampered by the significant shortfall
in the quality of the current training datasets, a critical
requirement for these methods. The majority of currently
accessible cybersecurity datasets suffer from either outdated
information or insufficient quantity and quality, rendering
them inadequate for meeting the demanding requirements
of machine learning (ML) algorithms [9]. Conversely, high-
quality realistic datasets from real network environments hold
personal and sensitive data, which can compromise privacy,
thus presenting obstacles for data scientists when acquiring
appropriate data for model training. Various solutions have
been suggested to address data privacy concerns. The three
most notable methods include non-cryptographic anonymiza-
tion, cryptographic anonymization, and differential privacy,
a type of perturbation technique. Nevertheless, these methods
have drawbacks like the exposure of private information,

114936


 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-8020-2264
https://orcid.org/0000-0002-8545-599X
https://orcid.org/0000-0002-2703-0213


D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

unsuitability for large datasets, and deterioration of data
quality, rendering them less ideal for machine learning
tasks [10].

Based on our previous work which focused on generative
modeling architectures like GANs and Transformers [11],
we propose here an innovative Large LanguageModel (LLM)
Chaining technique which enables us to produce synthetic
network traffic closely resembling real data and thereby
providing a suitable alternative for machine learning tasks
within the cybersecurity domain. Specifically, our main aim
is to create high-quality synthetic network traffic that can be
applied to various tasks, such as training intrusion detection
systems (IDS).

To accomplish our objectives, we initially developed a
robust ‘packet generator’, designed to produce network
packets on demand. The primary aim of our frameworkwas to
achieve this through the exploration of various transformer-
based models, which were evaluated using a diverse range of
metrics. Subsequently, we employed a collection of Python
scripts to establish a ‘flow generator’ capable of injecting a
series of custom packets into the network. These two integral
components were amalgamated into a single command-line
interface (CLI) tool, designed to seamlessly manage the data
generation pipeline from start to finish. Lastly, we conducted
a thorough investigation into the viability of this synthetic
alternative for various cybersecurity tasks. Our primary goal
was to assess whether this methodology could effectively
substitute real data.

To summarize, the aim is to answer the following research
questions:

• 1: How do transformers perform while tasked with
generating different types of network packets?

• 2:How useful is the tool for generating network packets,
when considering various threat modeling frameworks?

• 3: What impacts does synthetic network traffic genera-
tion have on the industry? Or more precisely, which type
of end users could benefit (or suffer) from this tool?

We introduce in this work an end-to-end tool called PAC-
GPT, which is capable of generating high quality synthetic
network traffic at a low cost. We propose novel framework
consisting of multiple GPT-3 large language models chained
together. To the best of our knowledge, this technique has not
been utilized before for generating synthetic network packets.
This data in turn can be used in various cybersecurity tasks as
an alternative to authentic data, which is very costly to acquire
especially in large quantities. All of the implementations and
data that we used and generated in this work are publicly
available.1

II. RELATED WORKS
Over the past ten years, academic research in computer net-
working has experienced significant expansion. Conducting
thorough research experiments with network topologies that
mirror real-world networks in terms of node and link quantity

1https://github.com/dark-0ne/NetworkPacketGenerator

and variety has become significantly easier. As a result, there
is a growing need for realistic traffic workloads in testing
environments. However, since actual production-level traffic
data is typically inaccessible to academic researchers due
to privacy concerns [12], traffic generators have become
widely used in network science and engineering research.
Even when privacy is not a concern, the challenges of
scaling a production traffic capture for a test-bed can be
overwhelming [13], [14]. Additionally, replaying existing
traffic traces is only useful for specific research experiments
where the local topology matches the network where the
packets were initially captured. In other words, the ability to
replay these traces is considerably limited when the network
topologies differ greatly from the original capture network
[9]. Consequently, researchers often turn to alternative
methods to create traffic workloads for their experiments,
with traffic generators being a popular choice. In this context,
the remaining section presents a chronological overview of
various traffic generation techniques.

A. CHRONOLOGICAL SURVEY OF NETWORK TRAFFIC
GENERATORS
Network traffic generators and simulators have historically
served as an alternative data procurement strategy in the realm
of academic research. The timeline of synthetic network
traffic creation can be roughly divided into three generations,
with each being explored briefly in the following:

1) FIRST GENERATION: NETWORK TRAFFIC SIMULATORS
A packet simulator or packet builder is a program that gen-
erates random packets or enables users to create customized,
detailed packets. This software produces packets that allow
users to examine and evaluate network setups, protocols,
and system designs without requiring actual network traffic.
Users can either use a predefined set of random packets or
create their own, specifying the individual components of the
packet, such as header information and payload data. As a
result, this software becomes an essential tool for network
engineers and administrators who need to test and fine-tune
their networks on a large scale with consistent repeatability.
Some traffic generators are designed to stress test network
devices and software, while others are intended for creating
packets to assess performance and verify the accuracy of
behavior [15].

Throughout the years, a considerable amount of research
has emerged in the domain of network traffic generation [16],
[17]. The primary focus of these investigations is to explore
the applications of network traffic workloads for validating
different aspects, such as the precision of algorithms,
protocols, and network functions. These workloads also serve
to evaluate the influence of novel and evolving technologies
on network performance.

Multiple studies, especially in the early phases, concen-
trated on performing benchmark assessments of various
tools and technologies. Kolahi et al. [16] compared the

VOLUME 11, 2023 114937

https://github.com/dark-0ne/NetworkPacketGenerator


D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

performance of four network traffic generators (Iperf, Net-
perf, D-ITG, and Internet Protocol (IP) Traffic) in a lab
setting, and found that these tools can yield significantly
different results, even when deployed on Windows operating
systems over a 100 Mbps (Megabits per second) link with
differences in TCP (Transmission Control Protocol) connec-
tion speed reaching up to 16.5 Mbps among the mentioned
monitoring tools. Mishra et al. [18] performed a similar
analysis of six traffic generators (D-ITG, PackETH, Ostinato,
Iperf, Netperf, and IP Traffic) in terms of performance under
different scenarios. The results of their study also revealed
that each generator outperformed others in distinct metrics
under diverse conditions. Therefore, the authors deduced that
no single traffic generator is appropriate for every network
type, and that different generators are suitable for addressing
the unique requirements and features of a specific network
and application.

In a similar fashion, Emmerich et al. [19] explored the
potential issues that could emerge when a particular traffic
pattern must be generated reliably at high speeds. This is
a crucial factor in evaluating a packet generator, as the
generated pattern can impact the performance of a system
being tested. As a result, the authors categorized software
packet generators into two groups: i) traditional software
packet generators that rely on the kernel’s interface for packet
IO (e.g., 1 Gbit (Gigabit) platforms), and ii) modern software
packet generators that utilize specialized frameworks to
bypass an OS’s entire network stack (e.g., 10 Gbit platforms).

Molnár et al. [17] examined numerous traffic generators
and classified them into five groups based on the metrics used
for validation purposes. These categories consist of:

1) Replay Engines, which capture and replay network
traffic to reproduce real-world patterns.

2) Maximum Throughput Generators, created to opti-
mize network throughput.

3) Model-Based Generators, which produce network
traffic using mathematical models to emulate various
traffic types.

4) High-Level and Auto-Configurable Generators,
which enable user-defined parameters to generate
tailored network traffic.

5) Special Scenario Generators, utilized to generate
traffic for specific testing situations.

In a more recent review, Adeleke et al. [9] present an
extensive survey of 92 frequently cited generators over a
13-year period from 2006 to 2018. This survey emphasizes
an in-depth classification of functional behaviors. Expanding
on the classification offered by Molnár et al. [17], the study
proposes various categories of traffic generators:

1) Constant or maximum throughput generators: This
category of traffic generators sends packets at a
constant rate or the maximum possible rate (in bits
per second (bps) or packets per second). Examples
include iperf2 and netperf. These generators are often
the simplest to use and are suitable for rapid network
throughput stress testing.

2) Application-level generators: Specialized generators
(e.g., httperf) generate network packet traffic for a
specific type of application or higher-layer protocol.
Researchers can run actual applications and execute a
specified set of workloads, using their data exchanges
to generate traffic. This workload generation method
can produce more realistic packet variations for a
specific application or protocol.

3) Trace file replay tools: These traffic generators
reproduce network traces based on recorded data
(e.g., pcap files, a common file format for storing
and analyzing network packets). This allows users to
simulate conditions from previous experiments or real-
life cyber-attacks and can be used for testing purposes
such as performance evaluation or Intrusion Detection
Systems (IDS) debugging.

4) Model-based traffic generators: These generators
create realistic network traffic by sending packets that
adhere to random distributions in terms of time inter-
vals, packet sizes, and other parameters. By selecting
the appropriate random distributions, the generator
can produce traffic that closely resembles specific
real-world traffic workloads.

5) Trace Driven Model-Based Traffic Generators: In
addition to the model-based approach, some traffic
generators use trace file input or log files from
actual production networks as a source. This involves
analyzing the input files to fit traffic parameters to
random distributions, which are then used to generate
packets that are statistically similar to the real packets
seen in the corresponding production network trace or
log file.

6) Script-Based Traffic Generators: These generators
provide users with the flexibility to adjust the entire
range of packet header and content data using complex
coding logic. They enable users to create any packet
typewith customizable header values and the capability
to modify packets during runtime.

2) SECOND GENERATION: TRAFFIC GENERATION AND
CLASSIFICATION USING ML
Traffic generators play a vital role in evaluating network
systems’ performance and are used to test communication
protocol designs, detect malware traffic, and assess network
infrastructure capabilities (e.g., IDS). However, conventional
traffic generators have their limitations. They either emulate
traffic patterns using probability distributions, which may
not accurately represent real-world packet traffic, or they
require an extensive setup of targeted applications with user
modeling, which can be a challenging and time-consuming
process. Wu et al. [20] point out that while some traffic
generators offer advanced distributions that account for
bursty traffic and anomalies, the actual bottleneck is that
packet lengths in real-life network traffic are categorical
(i.e., limited to specific values or ranges like IP addresses
and port numbers), not continuous. Categorical data refers

114938 VOLUME 11, 2023



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

to data that can be divided into distinct categories or
bins, while continuous values are those that can take any
value within a given range. Consequently, these distributions
cannot precisely model the multiple peaks in packet length
probabilities that occur in real-life networks.

The challenges of generating datasets for modern net-
working applications have been intensified by the success
of machine learning approaches in surpassing traditional
methods for various cybersecurity tasks. This makes machine
learning a promising solution for addressing communication
and networking issues, including anomaly and intrusion
detection. Several frameworks have been introduced to
generate datasets (and classify network flows for IDS
applications [21]) suitable for a wide range of applications,
facilitating the implementation of machine learning advance-
ments in real-world network environments. These datasets
aim to significantly impact production networks, overcom-
ing the limitations of previous methods. The proposed
methods differ from traditional protocol-based data genera-
tion/classification, which relies on rules, heuristics, or infor-
mation about IP, port numbers, and signature protocols.
Several methods, including Bayesian methods (specifically
neural networks), modified Association algorithms, Support
Vector Machines, Venn Probability Machines, k-Nearest
Neighbor, and k-means clustering algorithms, have been
employed to produce class probability distributions [22].
Also, neural networks, particularly deep neural networks,
have demonstrated tremendous potential in the area of
generation [21], [22].

Machine learning models are often developed to recognize
and categorize various forms of network traffic, such as
regular traffic, malicious traffic, and suspicious activities.
These models are generally benchmarked against a dataset
of network traffic to assess their accuracy and effectiveness.
In the following list, we outline some key datasets com-
monly used for benchmarking machine learning models in
cybersecurity:

• The DARPA dataset [23] is a frequently used benchmark
dataset for machine learning models in cybersecurity.
It is based on both audit logs and network traffic and
includes seven weeks of training data and two weeks of
testing data. These were gathered in two parts: an offline
evaluation using network traffic and audit logs collected
on a simulation network, and a real-time evaluation
through Air Force Research Laboratory (AFRL).

• The KDD’99 dataset [24] remains the widely accepted
standard for machine learning in networking, despite
its limitations. Composed of Ethernet transmissions
captured for identifying known malware activity, it was
released for use in developing intrusion detection
systems and has been used in network research, either
in its original form or the improved NSL-KDD version.
Despite its shortcomings, KDD’99 is still frequently
cited in current research papers [25], [26].

• The TON_IoT datasets [27] are a new generation of
Industry 4.0/Internet of Things (IoT) and Industrial IoT

(IIoT) datasets designed for evaluating the accuracy and
efficiency of various cybersecurity applications based on
Artificial Intelligence (AI), specifically Machine/Deep
Learning algorithms. These datasets can be utilized for
validation and testing of a wide range of AI-based
cybersecurity applications, including intrusion detection
systems, threat intelligence, malware detection, fraud
detection, privacy preservation, digital forensics, adver-
sarial machine learning, and threat hunting.

3) THIRD GENERATION: SYNTHETIC TRAFFIC GENERATION
The limited availability of cybersecurity data has led to
the emergence of various unsupervised machine learning
techniques. Recently, deep generative models like GANs
[28], Variational Autoencoders (VAEs) [29], and Trans-
formers [30] have gained considerable popularity due to
their capability to generate high-quality synthetic images,
audio, and text. Moreover, deep generative models have
made substantial contributions to the cybersecurity field
through the application of machine learning. They have
been employed in tasks such as traffic classification and
network packet generation, proving to be valuable assets in
the development and testing of cyber defense tools. We will
have a look at two prominent architectures GANs and
Transformers, which have both gained significant attention
in cybersecurity domain recently.

a: GENERATIVE ADVERSARIAL NETWORKS
GANs are a class of deep learning models introduced by
Ian Goodfellow et al. [28] in 2014. GANs have found
numerous applications across various domains such as image
synthesis [31], [32], super-resolution [33], anomaly detection
[34], [35], and even natural language processing [36], [37],
[38]. GANs have also found a more prominent role in the
cybersecurity field. GAN-based architectures have become
capable of comprehending intricate data distributions at
the packet level and producing comparable outcomes with
minor differences throughout the recent years. This has
been achieved through certain modifications made to the
model, as described in [21] and [22]. GAN implementations
commonly generate data in three different formats: packet,
flow, or tabular. When generating data in the packet
format, individual packets are created, while the flow format
produces connected packets transmitted between hosts. In the
tabular format, data is presented in a structured table,
with each row representing a data point and each column
indicating a characteristic or attribute of that data point.
We will mention some of the most recent works in each
category in the following.

Packet-level data pertains to the unprocessed information
gathered from individual network packets, whichmay contain
data such as source and destination IP addresses, packet size,
and protocol type. Cheng’s PAC-GAN, as explained in [39],
proposes amethod of usingGANs to create authentic network
traffic data at the IP packet layer for the application in cyber
and network security tasks.With the help of GANs, the author

VOLUME 11, 2023 114939



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

was able to demonstrate the possibility of generating real
traffic flows, including Internet Control Message Protocol
(ICMP) Pings, Domain Name Service (DNS) queries, and
Hyper Text Transfer Protocol (HTTP) web requests. The
paper suggests an alternative encoding of network traffic data
into a Convolutional Neural Network (CNN) GAN model,
where experiments indicate that the generated traffic can be
transmitted successfully through the internet and generate the
desired network responses. This novel application of GANs
in the cybersecurity domain employs CNN GANs and an
encoding scheme for network traffic data into image-based
matrix representations.

The PcapGAN architecture, as mentioned in [40], shares
similarities with the CNN GAN model discussed earlier and
comprises an encoder, a generator, and a decoder, working
together in a hybrid structure to produce realistic pcap
data. The encoder’s job is to extract information from pcap
data format and convert it into appropriate formats, such
as graphs, images, or sequences. PcapGAN also introduces
the concept of ‘‘style’’ as a vector value to efficiently
express host2host relationships, such as the C&C server-
botnet connections. The generator is designed based on the
edge style, and advanced GAN models generate new data
for each data format extracted by the encoder. Finally, the
decoder combines the generated information to reconstruct
a valid pcap file, making PcapGAN an effective method
for generating authentic pcap data with high levels of
customization.

On the other hand, network flow data is a collective
representation of network traffic over a specific duration,
including data such as the number of packets, bytes,
connections, and statistical features like mean and variance.
In Ring et al. [41], WGAN-GP, a deep learning technique
incorporating a Two Time-Scale Update Rule, was used to
transform and regenerate the continuous attributes obtained
from flow-based network traffic. This involved treating
network attributes as numerical values, creating binary
attributes from categorical attributes, and using IP2Vec
[42] similarity measures to learn vector representations
from categorical attributes. Furthermore, the researchers
extracted features such as IP addresses, Destination Ports,
and Transport Protocols from the flow-based network traffic
and converted them into one-hot vectors. The neural network
employed in this process had an input and output layer, each
with the same number of neurons as the vocabulary size,
and a hidden layer with fewer neurons than the input layer.
Ultimately, the output layer leveraged a Softmax Classifier
to predict the probability of each value of the vocabulary in
the same flow as the input value, with the sum of all output
neurons normalized to 1.

Lastly, tabular data refers to data that is organized in
tables or spreadsheets, with rows representing individual
records and columns representing features or attributes.
In Bourou et al. [21], the use of GANs is discussed in
generating synthetic IDS data for network security. The paper
highlights popular GAN architectures such as VanillaGAN

[28] and concentrates on tabular data generation models like
CTGAN [43], CopulaGAN [44], and TableGAN [45].

b: TRANSFORMERS
Lately, transformer models have emerged as a groundbreak-
ing development in the field of natural language processing
(NLP) and deep learning. Introduced by Vaswani et al. [30],
transformers are an innovative architecture that departs from
the traditional recurrent neural networks (RNNs) and CNNs
previously used for sequence modeling tasks. Since their
introduction, transformers have rapidly become the de facto
standard for various NLP tasks, includingmachine translation
[46], sentiment analysis [47], text summarization [48], and
question-answering systems.

Transformers have also become very prominent in the
network and cybersecurity domain over recent years.
Bikmukhamedov et al. [49], [50] introduced a new generative
transformer-based model for network traffic that serves the
purpose of generating and classifying network data. The
model uses packet size and inter-packet time sequences as
flow features to simplify inputs and can be trained in two
ways: for generating network traffic and as a network flow
classifier. To design the model, the researchers utilized the
well-known GPT-2 [51] architecture, optimizing its configu-
ration by making numerous changes including altering layers
in the architecture, modifying input dimension, quantizing
packets, and using a specific dataset for training. The results
of the study showed that the model’s generated traffic
quality was comparable to that of a first-order Markov chain
trained independently on each traffic class. Additionally,
enriching the dataset with external traffic from various
domains improved the quality of the generated traffic on
target classes. The researchers also found that generative
pre-training had a positive impact on the traffic classification
task’s quality, with the classifier outperforming the ensemble
by an average of 4% according to the F1-macro metric when
all model parameters were trained.

Wass [52] studied the need for improved resource utiliza-
tion in mobile networks, given the high costs and limitations
of network resources, as well as the growing demand for
mobile data. Lin et al. [53] have introduced a new model
called ET-BERT for classifying encrypted communication.
The proposed model can pre-train deep contextual datagram-
level traffic representations from vast quantities of unlabeled
data and effectively categorize encrypted traffic for numerous
situations using only a modest quantity of task-specific
labeled data.

Various studies have proposed pre-trained transformer
methods to address various cybersecurity topics, such as
IntrusionDetection System [54], Honeypot Log analysis [55],
Distributed Denial of Service (DDoS) [54], anomaly detec-
tion classifier [55] and encrypted traffic classification [56],
[57]. These methods are designed to analyze and classify
data related to cyber-attacks and security breaches, enabling
the identification of potential threats and improving network

114940 VOLUME 11, 2023



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

security. By leveraging the power of pre-training, these
models can achieve high levels of accuracy and performance
with minimal fine-tuning on task-specific datasets. However,
the potential of using these models for generating network
data has not been fully explored.

B. EVALUATING SYNTHETIC NETWORK TRAFFIC DATA
Just as the data generation methods themselves, evaluation
techniques for synthetic network data has also gone through
a number of advancements throughout the years. Ensuring
the quality and applicability of the generated data is vital
when dealing with synthetic data. Therefore, a great number
of prior works have focused on this aspect as well. In this part
we will have a look at some of the most common evaluation
methods for synthetic network traffic data.

Emmerich et al. [19] assessed the rate control capabilities
of the examined packet generators based on three criteria
(bandwidth, accuracy, and precision) to regulate the gener-
ated traffic to adhere to specific characteristics. These criteria
are briefly defined as the following:

1) Bandwidth: Indicates the maximum transmission
capacity achieved during the generation process, i.e. the
speed of packet transmission measured in packets per
second.

2) Accuracy: Refers to systematic errors, representing
statistical bias, and gauges the proximity of the
observed average rate to the set rate.

3) Precision: Refers to random errors, which measure
statistical variability, and determines the deviation of
individual inter-packet gaps from the established value.

Molnár et al. [17] study devised a classification system
for the measurements employed to validate network traffic
sources. The four categories include:

1) Packet-LevelMetrics:Thesemetrics assess individual
packet characteristics, such as packet size, packet inter-
arrival time, and packet loss rate.

2) Flow-Level Metrics: These metrics evaluate flow
characteristics, including flow size, flow duration, and
flow inter-arrival time.

3) Scaling Characteristics: These metrics gauge a traffic
generator’s ability to scale up or down concerning the
number of flows, the number of packets, or the packet
generation rate.

4) QoS/QoE Related Metrics: These metrics determine
a traffic generator’s quality of service (QoS) or quality
of experience (QoE), considering factors like packet
delay, jitter, and throughput.

Ring et al. [41] use several approaches to evaluate the
quality of their generated datasets, including:

• Visualizing attributes of both the generated data and real
data and comparing them.

• Calculating Euclidean distances between generated and
real flow-based network data attributes to evaluate the
diversity and distribution of the generated data.

• Designing domain knowledge checks, a novel method
to evaluate the quality of the content and relationships

between attributes within a flow. This is done through
automated test procedures on the basis of experts’
domain knowledge.

Cheng [39] introduces the following two novel metrics
for evaluating the data generated by their GAN model,
as traditional GAN evaluation schemes can not be applied to
synthetic network data:

• Success Rate: The success rate of a traffic generator is
defined as the ratio of the number of packets successfully
sent to the total number of packets generated by the
generator. When a packet is sent on the Internet and an
acceptable network reply is sent back, such as a ping
response, a DNS query answer, or the HTTP server’s
webpage, then it is safe to assume a packet has been
correctly generated. In the context of synthetic network
data generation, the success rate is one of the most
important evaluation measurements. Generators that fail
to generate data that can be transmitted over the network
are not practical and hardly have any utility.

• Byte Error: This metric measures how erroneous a
packet is when compared to a properly formed packet
by averaging the number of byte errors in every packet.
In other words, this metric checks whether or not
packet headers are according to well-defined network
standards.

III. METHODOLOGY
The problem statement and the proposed research questions
outline the main purpose of this work: To find out a suitable
approach for generating synthetic network traffic data to be
used for various tasks such as training ML-based intrusion
detection/prevention systems. In this section, details about
different methods and techniques utilized to achieve this end
will be discussed. We start by defining our novel synthetic
network traffic generation framework and then delve into the
details of PAC-GPT, our proposed transformer-based packet
generator, and discuss how it was trained. After that, the
methods and metrics used in order to evaluate the quality
of generated data will be examined. Lastly, a CLI tool is
introduced that is based on the mentioned models and can
be utilized for end-to-end network traffic data generation.

A. NETWORK TRAFFIC GENERATION
In this subsection, we will delve deeper into the functioning
of our traffic generation method. We initially lay down the
foundation with the description of our framework for network
traffic generation. This is succeeded by the introduction of
our novel packet generator, termed as PAC-GPT, which is
fundamentally based on the GPT-3 model.

1) SYNTHETIC NETWORK TRAFFIC GENERATION
FRAMEWORK
In response to the objectives and research inquiries articulated
in section I, as well as the definitions outlined in section II,
the problem of network traffic generation is addressed at both

VOLUME 11, 2023 114941



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

FIGURE 1. An overview of synthetic network traffic generation process.

the flow and packet levels. The main pipeline of this process
is as the following:

1) User requests network traffic either using a specific
scenario (e.g., normal traffic data, a Ping-of-Death
attack, etc.) or by specifying a set of network protocols
(e.g., ICMP, DNS, etc.)

2) A Flow Generator, which is a Python script complete
with a Command Line Interface in our case, produces
network flow in text format. That is, it generates the
sequence and textual summary of packets that make
up the network traffic, although not creating the actual
packets themselves.

3) Lastly, the flow summary is passed to the Packet
Generator, which is a transformer-basedmodel capable
of creating packets using the network flow. The packet
generator then creates the specified packets and writes
them in PCAP format to a file.

Figure 1 outlines this process thoroughly. The upcoming
subsection will delve into the specifics of the packet
generator, while Section III-C will elucidate the workings of
the Flow Generator.

2) PAC-GPT
As previously discussed, transformers are one of the more
recent architectures in the generative modeling field that
have received a great deal of publicity thanks to the success
of models such as GPT-3. While most of their applications
remain in the text generation domain like chatbots, they can
be utilized for other purposes including synthetic network
traffic generation. Some of these approaches were mentioned
in section II but here a novel method of using transformers
for generating network packets is explained.

The transformer-based model is based on GPT-3 [58]
introduced by OpenAI. GPT-3 is a state-of-the-art language
model pre-trained on a massive corpus of text data, learning
language patterns, grammar, syntax, semantics, and even
some factual knowledge during this unsupervised pre-
training phase. It has gained significant attention due to
its performance on zero-shot or few-shot learning tasks,
where the model can quickly adapt to new tasks without
extensive fine-tuning on task-specific labeled data. This
has made GPT-3 a versatile language model capable of
addressing a wide array of challenges including network
packet generation. Its flexibility to adapt to solving new
tasks (i.e., few-shot learning) is the main reason it was

chosen for this research but the model has the capability
to be fine-tuned on specific tasks as well, which was also
taken advantage of as part of our work. This fine-tuning is
facilitated through OpenAI API,2 which gives access to a
flavor GPT-3 models each with different parameter sizes,
speeds, and performances.

The pipeline for constructing the transformer-based gener-
ator is illustrated in Figure 2 and its details are as follows:

1) Network packets (i.e., training data) are converted into
a text representation. For this purpose, tcpdump3— a
powerful command-line packet analyzer— was used to
extract the summary of each packet in the dataset. Some
data pre-processing and cleaning were also carried out,
with the final output of this step shown in Figure 3. For
this part, a total number of 10000 sample packets were
randomly selected from ToN IoT Dataset [27], [59],
[60], [61], [62], [63], [64], equally consisting of ICMP
and DNS packets.

2) Extracted packet summaries are first fed to GPT-3
‘‘DaVinci’’ model, the largest and most capable vari-
ation offered by OpenAI API at the time this work
was carried out. DaVinci is then used to generate
Python code for creating the packets given their
text summary, through a technique known as prompt
engineering. Prompt engineering is a method used to
guide the language models to generate desired outputs
for specific tasks and is used here to enhance the
few-shot learning process. An example of this process
can be seen in Figure 4. As a result of this step,
800 training samples are acquired, each consisting of
a packet summary and the equivalent code to generate
that packet in Python.

3) The training samples compiled in the previous step
are in turn now used to fine-tune ‘‘Babbage’’, another
variation of GPT-3 which is much smaller and con-
sequently faster and cheaper compared to DaVinci.
Utilizing this fine-tuned model allows us to skip many
tokens required by DaVinci as prompt engineering is
no longer needed, and therefore generate packets more
efficiently and inexpensively. Figure 5 demonstrates
an input/output pair of Babbage. The model was
fine-tuned on the 800 samples generated in the last step
using OpenAI APIs.

2https://platform.openai.com/docs/api-reference
3https://www.tcpdump.org/

114942 VOLUME 11, 2023



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

FIGURE 2. Packet generation process using GPT-3.

FIGURE 3. Sample output of packet summarization step after
pre-processing.

FIGURE 4. Sample input and output of DaVinci model while used for
generating more training data. The first part is the prompt/input, while
the second highlighted part is generated text/output.

4) Finally, the code generated by the fine-tuned Babbage
model is executed to create the concrete packets
using Python and Scapy.4 Scapy, a Python-written
framework for packet manipulation, is extensively used
in networking scripts. In our case, it is employed
not only for packet creation, but also for crucial
post-processing actions such as checksum correction,
saving the packets to a file, and, if needed, replaying
them on the network.

B. EVALUATION METRICS
A number of methods and metrics were used for evaluating
the models, which can be divided into two groups:

4https://scapy.readthedocs.io/en/latest/api/scapy.html

FIGURE 5. Sample input and output of Babbage fine-tuned model while
used for generating the packets. The top part is the input without any
prompts, whereas the lower part is generated code capable of creating
the packets with Python and Scapy.

• Intrinsic metrics: As the core of our proposed gen-
erators are deep learning models, they come with a
set of metrics to evaluate the performance of the
model and sometimes even control the learning process.
These metrics include training loss, training sequence
accuracy, and training token accuracy.

• Extrinsic metrics: Since the ultimate goal of a packet
generator is to create authentic high-quality packets,
it is vital to also assess whether or not the generated
packets are legitimate network packets resembling real
data. Intrinsic metrics fail to indicate this as they are
only designed to reflect the performance of underlying
machine learning models. Therefore, a method similar
to [39] was used in order to evaluate the quality of the
generated packets. This metric is ‘‘success rate’’, which
as mentioned before is the ratio of packets that are sent
and have received a response in return proportionally to
the total number of packets generated by the models. In
other words, to measure the quality of generated packets
we replay them in a live network and observe how many
of them are transmitted correctly and receive a proper
response in return. The valid response would be a ping
reply received from destination of ping request, and a
hostname resolved for a DNS query. This way, we can
be sure that generated packets are of the same quality as
authentic ones.

VOLUME 11, 2023 114943



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

FIGURE 6. An overview of CLI tool for generating network traffic.

C. CLI TOOL
A network flow is a series of packets that comprise
the network traffic. The described packet generators only
generate individual, separate packets and are unable to create
this flow on their own. Therefore, a Python script was
implemented to generate this network flow required by the
packet generators. The script is developed as a CLI tool
and is not only capable of generating the flow but can also
handle necessary calls to packet generator models and is
essentially a wrapper around them. In addition, it offers some
utility features such as writing generated packets to PCAP
file format and transmitting the generated packets using a
network interface. Figure 6 is a screenshot of this CLI tool
and some of its options, which are explained below:

• ip_file: Path to a configuration file utilized by the flow
generator while setting sender and receiver IP fields in
a packet. The IPs can either be specified individually or
by a subnet. The file can also include the IPs of attackers
and victims in case a specific malicious scenario is used.

• output_file: Path to save the output PCAPfile containing
generated synthetic packets.

• n:Number of packets to generate. This number is used as
an approximate, as the flow generator takes into account
also other factors such as the scenario and also because
some of the packets created by the packet generator are
erroneous and need to be dismissed.

• protocols: Network protocols which packets should be
generated for.

• scenario: Scenario which packets should be generated
for. Options include Normal network traffic, ping smurf,
ping flood, and DNS flooding.

• replay_packets: Boolean option to indicate whether
generated packets should also be replayed on the
network or not.

As described above, the CLI tool has a number of options
for creating the flow. Each of these ‘‘scenarios’’ can be briefly
defined as the following:

• Normal: Indicates a normal flow of traffic in the
network with no particular cyber attack present. Specif-
ically, in this mode flow is generated randomly between
all the nodes in the network based on indicated
protocols.

• Ping of Death Attack: A Ping of Death is a form of
cyber attack that exploits a specific characteristic of the
Internet Control Message Protocol (ICMP), which is
typically used to send error messages across network

devices and to help troubleshoot network connectivity
issues. ICMP operates at the Network layer of the
Open Systems Interconnection (OSI) model, where IP
packets are processed. The ICMP protocol includes
a request-response mechanism used for diagnostic
purposes, commonly known as the ‘ping’ operation.
Normally, the sender transmits an echo request to a
target, which in turn sends an echo reply back. This
operation is beneficial in ensuring that a network host
is reachable and in determining round-trip packet times.
A Ping of Death attack manipulates these innocuous
operations by sending IP packets that exceed the
maximum allowable size of 65,535 bytes. This is
accomplished by fragmenting the large packet into
smaller segments that individually comply with the
Internet Protocol’s maximum transmission unit (MTU)
but exceed it when reassembled at the target machine.
When a system receives such an oversized packet, it may
result in buffer overflow conditions. Depending on the
system’s vulnerability to such conditions and how it
handles them, this can cause system crashes or induce
undefined behavior, thereby achieving the objective
of the DoS (Denial of Service) attack. The way this
scenario is handled in our CLI tool is that in addition
to a number of normal traffic packets generated for the
whole network (similar to the normal scenario), there are
also some malicious packets created with the discussed
specifications originating from a specified attacker node
in the network targeted at a victim node in the network.

• Ping Flood: In a standard operation ping packets are
used to check the availability of a network device by
sending an ICMP Echo Request and waiting for its
ICMP Echo Reply. However, in a Ping Flood attack,
the attacker sends an overwhelming number of these
packets to a target device without waiting for the ICMP
EchoReply. This flood of incoming packets saturates the
target’s network bandwidth and consumes its resources
to process the incoming traffic, potentially leading to
service disruption. For this scenario, the flow was
generated in such a way that in addition to normal
network traffic, there are also bursts of ICMP Echo
Requests sent from the attacker’s IP to the victim’s IP.

• Ping Smurf: Similar to ping flood attack, Ping Smurf
attack attempts to overload the victim’s system through
a large number of ICMP packets, though it achieves
through a different method. In a Smurf attack, the
attacker uses a forged ICMP Echo Request packet with
a spoofed source IP address - typically, the IP address
of the intended victim. This packet is sent to an IP
broadcast network. An IP broadcast network consists
of a range of IP addresses wherein any packet sent
to the broadcast address is automatically forwarded to
all hosts within that network. The hosts, behaving as
expected, respond to the Echo Request by sending an
ICMP Echo Reply. However, since the source IP address
in the original ICMP packet has been spoofed to that

114944 VOLUME 11, 2023



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

of the victim, all replies are sent to the victim’s IP
address. This can result in an overwhelming flood of
traffic that consumes network bandwidth and potentially
disrupts the target’s services. This attack is imitated in
the CLI flow generator by generating a large number of
ICMP Echo Request packets with the source IP address
spoofed to the victim’s, and the target address set to
nodes in the network. Additionally, ICMP Echo Reply
packets are generated in response to the requests.

• DNS Flood: Domain Name System (DNS) servers
are integral components of the Internet’s infrastructure,
responsible for translating human-readable domain
names into machine-readable IP addresses. In a DNS
Flood attack, the attacker aims to overwhelm a DNS
server with a barrage of requests, with the intention of
exhausting the server’s resources, such as processing
capacity and network bandwidth. In executing a DNS
Flood attack, the attacker typically uses multiple devices
to send a high volume of DNS request packets to
the target server. These requests can be legitimate or
malformed; in either case, the goal is to inundate the
server and consume its resources. This flood of requests
leads to slower responses to legitimate requests, or in
severe cases, the DNS server can become entirely
unresponsive, disrupting the target network’s access to
the Internet. This type of attack is simulated through the
flow generator by making a great number of DNS query
requests from the attacker’s nodes to the victim’s system
in addition to the normal traffic data.

IV. RESULTS
In the previous section, a proposed framework for generating
synthetic network traffic data was discussed, following with
an examination on how different architectures can be utilized
for the task at hand. Also, some of the details of the training
processes were mentioned. In this part, we will go over the
results of these experiments in terms of the defined evaluation
metrics. The section starts off with the intrinsic metrics of
each model and then we proceed to compare all of them using
the extrinsic metrics.

A. INTRINSIC METRICS
As defined before, intrinsic metrics refer to those that are
defined and employed by the underlying machine learning
models used in this work. One of themost common evaluation
metrics in machine learning is the loss function value, which
is primarily used to optimize themodels but it can also be seen
as an evaluation metric to gauge models’ training progress.
In addition to loss value, transformer-based models also have
other metrics that are discussed in the following.

For this part of our experiments, we fine-tuned three
variations of GPT-3 using the OpenAI API: DaVinci, Curie,
and Babbage. Among these, DaVinci represents the largest
model, while Babbage is the smallest and fastest. Curie
occupies a middle ground between these two extremes.

FIGURE 7. Loss values for GPT-3 models during fine-tuning process.

FIGURE 8. Sequence accuracy for GPT-3 models during fine-tuning
process.

Figure 7 shows the loss function value for these models over
the course of their training.

Other than the loss function value, OpenAI API [65]
provides two other evaluation metrics, namely Training
Sequence Accuracy and Training Token Accuracy, which are
defined below:

• Training Sequence Accuracy: The percentage of
completions in the training batch for which the model’s
predicted tokens matched the true completion tokens
exactly for all tokens. For instance, if the batch size is 3
and the completions are ([1, 2], [0, 5], [4, 2]), while
the model’s predictions are ([1, 1], [0, 5], [4, 2]), the
accuracy would be calculated as 2/3, resulting in 0.67.

• Training Token Accuracy: The percentage of tokens
in the training batch that were correctly predicted by the
model. For example, with a batch size of 3, if the data
contains the completions ([1, 2], [0, 5], [4, 2]) and the
model predicted ([1, 1], [0, 5], [4, 2]), this accuracy will
be 5/6 = 0.83.

Figures 8 and 9 show training sequence accuracy and training
token accuracy respectively for all GPT-3 fine-tuned models.

B. EXTRINSIC METRICS
An additional performance metric was used to evaluate the
proposed packet generation methods from an end-to-end

VOLUME 11, 2023 114945



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

FIGURE 9. Token accuracy for GPT-3 models during fine-tuning process.

TABLE 1. List of Ping IPs and DNS Hostnames used for evaluation.

perspective. This extrinsic metric is the success rate, which
was defined earlier. Here, the results of all models are
presented on this metric.

Models were trained with three sets of data based on
the network packet types: ICMP packets which were ping
requests and replies, DNS packets which included DNS
query requests and responses, and ICMP/DNS which is the
combination of both. Each dataset consisted of 200 pairs
of prompt-completion, with each pair containing five packet
summary-code rows, resulting in 1000 training samples. All
previously discussed models were trained on each dataset,
resulting in three GPT-3 fine-tuned variations. Additionally,
a pre-trained DaVinci model was also included in these
experiments. This pre-trained model is the base model
offered by OpenAI and unlike the other GPT-3 variations
experimented with in our work, does not benefit from any
fine-tuning which means it was necessary to use prompt
engineering methods mentioned in section III-A2 to have it
generate the specified packets.

For the experiments, each model had to generate 100 pack-
ets corresponding to the type of data they were trained on
(i.e., if a model was trained on only ICMP packets, it gen-
erated only ICMP packets during evaluation). Furthermore,
to reduce the effect of random noise, each experiment was
run 5 times, and the best and worst-case results were included
in the following. To effectively test the capabilities of the
packet generation models, the models generated packets to
and from a list of public IPs and hostnames (for ICMP and
DNS packets, respectively) on the internet. The list of these
IPs and hostnames is indicated in Table 1.
Table 2 reports the success rate metric for models on

each dataset while generating normal traffic flow. The lower

TABLE 2. Success Rate for packet generation models for normal network
flow.

TABLE 3. Success Rate for packet generation models for malicious
network flow (Ping flood scenario).

number is the minimum value of the metric for five tries, and
the higher number is the maximum value for the experiments.
Similarly, Table 3 reports this metric while generating packets
for amalicious flow scenario, specifically, a ping flood attack.

V. DISCUSSION
The key outcomes of our experimental work using diverse
metrics were laid out in the preceding section. In this segment,
we will scrutinize these results to address our research
questions, along with an analysis of the implications and
limitations associated with our research.

A. INTERPRETING THE RESULTS
We begin by addressing the first proposed research question:
How do the implemented generative models perform when
taskedwith network packet generation? To gauge this, wewill
examine the intrinsic metrics of each model as indicators of
their training efficiency. Subsequently, these models will be
compared from an end-to-end perspective using an extrinsic
metric.

Our GPT-based models seem to be performing somewhat
similarly to one another, with some minor differences in their
training process. Figure 7 shows each model’s loss during
training, and as can be seen, all models eventually reach
stability. However, an important observation here is that,
in terms of the loss values, Curie seems to face a shallower
initial learning curve compared to Babbage and DaVinci.
This pattern is also evident in Figure 8, reinforcing that
Curie’s training progression is relatively slower than the other
two models. Babbage, although needing more training time
than DaVinci, is in line with our expectations considering
DaVinci’s larger capacity among the three models. Lastly,
Figure 9 reports token accuracy, and accordingly DaVinci is
slightly outperforming the other two again with Curie this
time having an easier time getting fine-tuned compared to
Babbage. Mostly, these results align with our expectations,
with the notable exception of Curie’s performance being
inferior to Babbage in some instances. This is somewhat
unexpected, considering that Curie is theoretically a larger

114946 VOLUME 11, 2023



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

TABLE 4. Summary of core papers for synthetic network traffic generation using generative modeling.

and thus more potent model than Babbage. Furthermore,
both models were trained on identical data for an equivalent
duration, making this discrepancy quite unusual.

Beyond the intrinsic metrics covered so far, there are also
extrinsic metrics that warrant our attention and discussion.
Starting with the success rate for normal and malicious
network flows (Tables 2 and 3 respectively), the models
mostly perform well when faced with the task of ICMP
packet generation. Babbage and DaVinci perform adequately
when fine-tuned, sometimes producing packets that are
100% transmittable and all receive responses. Impressively,
DaVinci manages to achieve similar results even without
the fine-tuning process. This model is capable of generating
equally high-quality packets solely through pre-training and
prompt-engineering techniques, albeit at a marginally higher
cost per packet, as previously explained. This also holds
true for experiments involving malicious scenarios, such
as a ping flood attack. This is the anticipated outcome
given that the malicious scenario is managed by the flow
generation component, and the packet generation models
operate entirely independent of the flow generator module.

Unfortunately, the same level of performance does not
translate to the DNS packet generation process. When
tasked with creating code for generating DNS packets,
all models significantly underperform, with the Pre-trained
DaVinci managing the best outcome, but still at a rather
low success rate of only 10%. From our observations,
this underperformance appears to be linked to Scapy, the
underlying Python framework that takes care of packet
generation post the model’s code generation. The syntax

Scapy uses to handle DNS packet creation is considerably
more extensive (and more complex) compared to that for
ICMP packets. This is reasonable considering that DNS is a
more intricate network protocol than ICMP.

Finally, the integration of the two protocols appears to
yield slightly better results, with models receiving responses
for nearly half of the packets in general. However, this
doesn’t necessarily imply that themodels have improved their
understanding of DNS header fields. As half of the dataset in
the final experiment (i.e., the ICMP/DNS dataset) consists of
ICMP packets, it’s possible that the models are simply more
proficient at generating ICMP packets.

We have also provided a brief summary of our model and
other related works in Table 4. It should be noted though
that Table 4 is not meant as a comparison of PAC-GPT
with these other models since measuring and comparing the
performance of synthetic network traffic generators is not
an straightforward task and is still an open area of research
in the field. Instead, Table 4 is intended to give the reader
an overview of existing works related to PAC-GPT, their
methodology and their evaluation strategies.

B. IMPLICATIONS
So far, we have analyzed the experimental results from a
technical standpoint to address our first research question.
We will now turn our attention to the remaining two
research questions, exploring them from a more interpretive
perspective. Specifically, this section will delve into how the
results obtained can be integrated into existing cybersecurity

VOLUME 11, 2023 114947



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

frameworks and the potential applications they may have
within the cybersecurity domain.

Firstly, the principal utility of the tool, particularly the
packet generator, is the generation of synthetic network
traffic. This synthetic traffic can be used for testing existing
network architectures and security systems. For instance,
a red team could use the model to generate a large number
of packets to evaluate an IDS running on the network or to
stress-test certain parts of the network using specific packets.
Many tools exist to evaluate a network from different aspects,
ranging from performance tests (throughput, latency, packet
loss, etc.) and network traffic analysis to penetration tests and
vulnerability scanning. The way most of these tools work is
by generating specific types of packets either through preset
scripts or built-in network functions in the system; but as an
alternative, the mentioned traffic generation tool can be used
instead to generate the necessary packets for this purpose.

Additionally, the developed CLI tool can help a secu-
rity architect/engineer develop custom-fit security measures
by generating customized network traffic. This is espe-
cially helpful when implementing a machine-learning-based
IDS/IPS (Intrusion Detection System or Intrusion Prevention
System), as these systems require a large amount of training
data to be developed and the CLI tool can easily provide users
with an arbitrary amount of network data. The implemented
‘‘malicious scenarios’’ were specifically designed for this
purpose, as training an IDS/IPS requires both positive and
negative sample data (i.e. normal andmalicious traffic). In the
sense of NIST threat framework [70], this puts the tool at
the detection layer where the purpose is to detect anomalies
in the network, where usually an IDS resides to monitor the
network for malicious activities. Additionally, it could also be
useful in the protection layer, where an IPS could be trained
not only to detect malicious activity but also takes proactive
measures to thwart any such attempt.

Lastly, another potential use case for the tool is training
and educating security personnel in the cybersecurity domain.
It enables security professionals and students to gain
hands-on experience in analyzing, detecting, and responding
to different types of network traffic and security incidents,
without exposing real systems to risks. Training personnel is
always a costly endeavour for companies not only because
of the required time and money needed for instructing new
recruits but also due to the fact that allowing untrained
personnel to probe around production environments and
infrastructure has the potential to result in major disruptions
for the company infrastructure. This challenge is further
complicated by the fact that the data traversing through a
company’s network is often highly sensitive and confidential.
Exposing such information to new personnel poses an
unacceptable risk for most organizations. Conversely, the
availability of synthetic data circumvents these concerns. The
risk of personnel inadvertently (or perhaps even intentionally)
meddling with the existing infrastructure is eliminated, and
the potential for private data breaches becomes insignificant
when synthetic network traffic is utilized instead.

It should also be mentioned that just like any other
cybersecurity tool set, there are some possible ‘‘misuse’’
cases in addition to the mentioned potential use cases. In the
simplest case, a malicious user could use the CLI tool
to generate a massive amount of traffic to transmit on a
network. This would render some parts (or even the whole)
network inoperable by overloading bottleneck if necessary
precautions are not put into place.

Another, more sophisticated malicious use case of the CLI
tool is to reverse engineer AI-based IDS/IPS. Very much like
a security analyst, an attacker could also develop their own
ML-based IDS/IPS using the synthetic data to test. Then, they
could try to find vulnerabilities to circumvent these systems
in a production environment. They could also gain a great deal
of insight into the strengths and weaknesses of these systems
as they can explore and analyze the data they are trained with.

C. LIMITATIONS
Thus far only the results and implications of our research have
been discussed, but as with any work, there are also a number
of limitations and constraints on what has been achieved,
especially in practice. Some of these will now be discussed.

The first limitation of the paper is that only 2 basic network
protocols, namely ICMP and DNS, were considered. This
was done due to the fact that these protocols are easier to
generate as they do not have as many header fields as other
TCP or User Datagram Protocol (UDP) sub-protocols. But on
the other hand, this severely limits the usefulness of the tool
as most network traffic consists of protocols in addition to
the two considered in our work. Future endeavors could try
to improve on this by including protocols other than ICMP
and DNS.

The next limitation is the amount of training data and
training duration for the models used. The GPT-3 models
were only trained on 200 pairs of prompt-completions, which
is barely more than the minimum recommended number of
training samples indicated byOpenAI.Most of the low results
and achieved performance could also be attributed to this fault
in the authors’ opinion, as like any other machine learning
task more data could benefit some (if not all) of the models.
Currently, this high cost severely limits the potential of the
tool in practical settings.

Another constraint is the number of scenarios defined
using the CLI tool. Those implemented so far were only done
so to indicate the potential use cases of such flow generators
but by no means is an exhaustive list of malicious network
scenarios that can be imitated by an AI-based flow generator.
In fact, the malicious scenarios we have considered here are
of the most basic ones and hardly ever considered a threat any
more. For the tool to be potentially useful, future works may
have heavily expand upon malicious scenarios.

There is also the matter of evaluation of course. A number
of methods and metrics (both intrinsic and extrinsic) were
used to measure the performance and potential utility of
the models and tools implemented; but even so, there is no
consensus among the academia at the time of writing as to

114948 VOLUME 11, 2023



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

how to evaluate synthetic network data, with every other
work proposing a novel approach or metric to measure this
performance. Therefore, the ultimate practicality of the work
remains to be determined by the experts in the field at a later
time.

Lastly, it must be noted that accurately reproducing certain
aspects of the experiments we conducted may prove to
be extremely challenging or even unfeasible due to the
intricate nature of Large Language Models (LLMs) and the
inherent randomness in their text generation capabilities. For
example, as previously mentioned, we employed DaVinci to
generate some training samples, utilizing prompt-engineering
techniques for subsequent stages. Achieving identical train-
ing samples using the same prompt we utilized would be
highly improbable. This variance would significantly impact
subsequent phases of our proposed framework.

VI. CONCLUSION
A. SUMMARY
This study explored synthetic network traffic generation and
proposed a framework for end-to-end traffic generation using
LLMs. Additionally, several methods capable of achieving
this were implemented within the proposed framework.
To summarize the results of our research, the following
outcomes were derived:

• A number of transformer-based models were trained
and tested to generate network packets for ICMP and
DNS protocols, and their performance was compared
using different evaluation metrics. The main conclusion
was that transformers perform adequately well when
generating simple network packets such as ICMP
protocol packets even without fine-tuning, but struggle
to do the same for more complex protocols like DNS.

• A new end-to-end network traffic generator framework
was proposed and implemented. The framework consists
of two components: a packet generator and a flow
generator. This compartmentalization was done not only
to help with the technical aspects of implementing the
research but also to make it possible to individually
exchange and improve each of these tasks in the larger
scheme of generating synthetic network data.

• A CLI tool was implemented using Python libraries to
take care of the flow generation part in the framework
and to facilitate the packet generation pipeline for end
users. Furthermore, several malicious scenarios were
included in the CLI tool that provides alternatives in
addition to the normal traffic generation.

B. FUTURE WORK
Finally, in this section, we will have a brief look at the
possible directions for the research that can be expanded in
the future.

To begin with, one of the main areas the whole data
generation process can be improved in is the network
protocols supported. As mentioned in section V-C, only two

protocols ICMP and DNS were focused on for their ease of
implementation, and this heavily limits the usefulness of the
tool for many practical purposes. ICMP and DNS packets
only make up a very low percentage of network traffic in most
scenarios. Adding support for TCP/UDP protocols could
drastically improve the diversity of the data generated and
consequently affect the utility of the synthetic data especially
for production environments. This will not be an easy task
to achieve though, as more sophisticated protocols may pose
new complications that our proposed models might not be
capable of handling for now.

Just like the packet generator, the flow generator’s
functionality could also be extended by incorporating more
scenarios. As of now, only a handful of straightforward
‘attack scenarios’ have been considered, but the inclusion of
additional, more complex scenarios could further enhance the
diversity and quality of the generated data, especially if more
network protocols are supported by the packet generators.

Another direction that future research might focus on
is the flow generation component of the data generation
pipeline. The CLI tool takes care of this part for now by
generating packet summaries through a set of customizable
scripts. However, these scripts are fairly static (in other words,
hard-coded) and hardly benefit from any AI-based logic.
By replacing this module with a smarter, more dynamic flow
generator that takes advantage of the recent advancements
in the field of text generation, the synthetic data could
incorporate a more meaningful flow of packets that closely
resembles authentic network data. Specifically, the same
transformer-based LLMs that were used in our work can
be utilized to generate this flow in addition to the packet
generation task they have been performing so far in this
research. This could result in a hierarchical architecture of
LLMs to facilitate synthetic network traffic generation.

Lastly, an area that could greatly benefit from further
research is the validation/evaluation of synthetic network
generation. Synthetic network data suffers heavily from a lack
of consensus on an evaluation method acceptable among the
community. A couple of techniques were utilized to broadly
measure the performance of the models and methods from
different aspects, but there is still room for improvement in
this regard.

REFERENCES

[1] R. Canzanese, M. Kam, and S. Mancoridis, ‘‘Toward an automatic, online
behavioral malware classification system,’’ in Proc. IEEE 7th Int. Conf.
Self-Adaptive Self-Organizing Syst., Sep. 2013, pp. 111–120.

[2] S. Sheen, R. Anitha, and V. Natarajan, ‘‘Android based malware
detection using a multifeature collaborative decision fusion approach,’’
Neurocomputing, vol. 151, pp. 905–912, Mar. 2015.

[3] A. Mohaisen, O. Alrawi, and M. Mohaisen, ‘‘AMAL: High-fidelity,
behavior-based automated malware analysis and classification,’’ Comput.
Secur., vol. 52, pp. 251–266, Jul. 2015.

[4] L. Zhu, A. Sun, and B. Choi, ‘‘Detecting spam blogs from blog search
results,’’ Inf. Process. Manage., vol. 47, no. 2, pp. 246–262, Mar. 2011.

[5] M. Luckner, M. Gad, and P. Sobkowiak, ‘‘Stable web spam detection
using features based on lexical items,’’ Comput. Secur., vol. 46, pp. 79–93,
Oct. 2014.

VOLUME 11, 2023 114949



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

[6] V. M. Prieto, M. Álvarez, and F. Cacheda, ‘‘SAAD, a content based web
spam analyzer and detector,’’ J. Syst. Softw., vol. 86, no. 11, pp. 2906–2918,
Nov. 2013.

[7] X. Gu, H. Wang, and T. Ni, ‘‘An efficient approach to detecting phishing
web,’’ J. Comput. Inf. Syst., vol. 9, pp. 5553–5560, Jul. 2013.

[8] J. Cao, D. Dong, B. Mao, and T. Wang, ‘‘Phishing detection method
based on URL features,’’ J. Southeast Univ.-Engl. Ed., vol. 29, no. 2,
pp. 134–138, Jun. 2013.

[9] O. A. Adeleke, N. Bastin, and D. Gurkan, ‘‘Network traffic generation: A
survey and methodology,’’ ACMComput. Surveys, vol. 55, no. 2, pp. 1–23,
Jan. 2022.

[10] A. Majeed and S. Lee, ‘‘Anonymization techniques for privacy preserv-
ing data publishing: A comprehensive survey,’’ IEEE Access, vol. 9,
pp. 8512–8545, 2021.

[11] D. K. Kholgh, ‘‘Synthetic network traffic generation using generative
modeling,’’ M.S. thesis, Univ. Oulu, Oulu, Finland, 2023.

[12] D. C. Sicker, P. Ohm, and D. Grunwald, ‘‘Legal issues surrounding
monitoring during network research,’’ in Proc. 7th ACM SIGCOMM Conf.
Internet Meas., Oct. 2007, pp. 141–148.

[13] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, ‘‘MAWILab: Combining
diverse anomaly detectors for automated anomaly labeling and perfor-
mance benchmarking,’’ in Proc. 6th Int. Conf., Nov. 2010, pp. 1–12.

[14] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, ‘‘Inside the social
network’s (datacenter) network,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 45, no. 4, pp. 123–137, Aug. 2015.

[15] V. Reddy, M. Safwan, D. Nn, G. Shobha, and S. Premkumar, ‘‘Network
traffic simulator from real time captured packets,’’ Int. J. Appl. Eng. Res.,
vol. 12, pp. 10134–10137, Jan. 2017.

[16] S. Kolahi, S. Narayan, D. Nguyen, and Y. Sunarto, ‘‘Performance
monitoring of various network traffic generators,’’ in Proc. UkSim 13th
Int. Conf. Comput. Modelling Simulation, Mar. 2011, pp. 501–506.

[17] S.Molnár, P.Megyesi, and G. Szabó, ‘‘How to validate traffic generators?’’
in Proc. IEEE Int. Conf. Commun. Workshops (ICC), Jun. 2013,
pp. 1340–1344.

[18] S. Mishra, S. Sonavane, and A. Gupta, ‘‘Study of traffic generation tools,’’
Int. J. Adv. Res. Comput. Commun. Eng., vol. 4, no. 6, pp. 4–7, 2015.

[19] P. Emmerich, S. Gallenmüller, G. Antichi, A. W. Moore, and G. Carle,
‘‘Mind the gap—A comparison of software packet generators,’’ in Proc.
ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS), May 2017,
pp. 191–203.

[20] C. Wu, Y. Chen, P. Chou, and C. Wang, ‘‘Synthetic traffic generation with
Wasserstein generative adversarial networks,’’ inProc. GLOBECOM IEEE
Global Commun. Conf., Dec. 2022, pp. 1503–1508.

[21] S. Bourou, A. El Saer, T.-H. Velivassaki, A. Voulkidis, and T. Zahariadis,
‘‘A review of tabular data synthesis using GANs on an IDS dataset,’’
Information, vol. 12, no. 9, p. 375, Sep. 2021.

[22] T. J. Anande andM. S. Leeson, ‘‘Generative adversarial networks (GANs):
A survey of network traffic generation,’’ Int. J. Mach. Learn. Comput.,
vol. 12, pp. 333–343, Nov. 2022.

[23] C. Thomas, V. Sharma, and N. Balakrishnan, ‘‘Usefulness of DARPA
dataset for intrusion detection system evaluation,’’ in Data Mining,
Intrusion Detection, Information Assurance, and Data Networks Security
2008, vol. 6973. Bellingham, WA, USA: SPIE, 2008, pp. 164–171.

[24] A. A. Olusola, A. S. Oladele, and D. O. Abosede, ‘‘Analysis of KDD’99
intrusion detection dataset for selection of relevance features,’’ in Proc.
World Congr. Eng. Comput. Sci. (WCECS), vol. 1. San Francisco, CA,
USA, Oct. 2010, pp. 20–22.

[25] M. Katzef, A. C. Cullen, T. Alpcan, C. Leckie, and J. Kopacz, ‘‘Wireless
network simulation to create machine learning benchmark data,’’ in Proc.
GLOBECOM IEEE Global Commun. Conf., Dec. 2022, pp. 6378–6383.

[26] G. Meena and R. R. Choudhary, ‘‘A review paper on IDS classification
using KDD 99 and NSL KDD dataset in WEKA,’’ in Proc. Int. Conf.
Comput., Commun. Electron. (Comptelix), Jul. 2017, pp. 553–558.

[27] N. Moustafa, ‘‘A new distributed architecture for evaluating AI-based
security systems at the edge: Network TON_IoT datasets,’’ Sustain. Cities
Soc., vol. 72, Sep. 2021, Art. no. 102994.

[28] I. Goodfellow, ‘‘Generative adversarial networks,’’ Commun. ACM,
vol. 63, no. 11, pp. 139–144, 2020.

[29] D. P. Kingma and M. Welling, ‘‘Auto-encoding variational Bayes,’’ 2013,
arXiv:1312.6114.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–11.

[31] A. Brock, J. Donahue, and K. Simonyan, ‘‘Large scale GAN training for
high fidelity natural image synthesis,’’ 2018, arXiv:1809.11096.

[32] Z. Qin, Z. Liu, P. Zhu, and Y. Xue, ‘‘A GAN-based image synthesis method
for skin lesion classification,’’ Comput. Methods Programs Biomed.,
vol. 195, Oct. 2020, Art. no. 105568.

[33] X. Zhu, L. Zhang, L. Zhang, X. Liu, Y. Shen, and S. Zhao, ‘‘GAN-based
image super-resolution with a novel quality loss,’’ Math. Problems Eng.,
vol. 2020, pp. 1–12, Feb. 2020.

[34] X. Xia, X. Pan, N. Li, X. He, L. Ma, X. Zhang, and N. Ding, ‘‘GAN-based
anomaly detection: A review,’’ Neurocomputing, vol. 493, pp. 497–535,
Jul. 2022.

[35] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar,
‘‘Efficient GAN-based anomaly detection,’’ 2018, arXiv:1802.06222.

[36] Y. Huang,W. Zhang, and Y. Zhou, ‘‘TD-GAN for chatbot text generation,’’
in Proc. CS Secur. Privacy Workshops, 2017, pp. 1–9.

[37] Z. Yang, W. Chen, F. Wang, and B. Xu, ‘‘Unsupervised neural machine
translation with weight sharing,’’ 2018, arXiv:1804.09057.

[38] N. Dang, A. Khanna, and V. R. Allugunti, ‘‘TS-GAN with policy
gradient for text summarization,’’ in Data Analytics Management. Cham,
Switzerland: Springer, 2021, pp. 843–851.

[39] A. Cheng, ‘‘PAC-GAN: Packet generation of network traffic using
generative adversarial networks,’’ in Proc. IEEE 10th Annu. Inf. Technol.,
Electron. Mobile Commun. Conf. (IEMCON), Oct. 2019, pp. 728–734.

[40] B. Dowoo, Y. Jung, and C. Choi, ‘‘PcapGAN: Packet capture file generator
by style-based generative adversarial networks,’’ in Proc. 18th IEEE Int.
Conf. Mach. Learn. Appl. (ICMLA), Dec. 2019, pp. 1149–1154.

[41] M. Ring, D. Schlör, D. Landes, and A. Hotho, ‘‘Flow-based network traffic
generation using generative adversarial networks,’’Comput. Secur., vol. 82,
pp. 156–172, May 2019.

[42] M. Ring, A. Dallmann, D. Landes, and A. Hotho, ‘‘IP2 Vec: Learning
similarities between IP addresses,’’ in Proc. IEEE Int. Conf. Data Mining
Workshops (ICDMW), Nov. 2017, pp. 657–666.

[43] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
‘‘Modeling tabular data using conditional GAN,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, 2019, pp. 1–11.

[44] S. Kamthe, S. Assefa, andM. Deisenroth, ‘‘Copula flows for synthetic data
generation,’’ 2021, arXiv:2101.00598.

[45] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim,
‘‘Data synthesis based on generative adversarial networks,’’ 2018,
arXiv:1806.03384.

[46] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao,
‘‘Learning deep transformer models for machine translation,’’ 2019,
arXiv:1906.01787.

[47] U. Naseem, I. Razzak, K. Musial, and M. Imran, ‘‘Transformer based deep
intelligent contextual embedding for Twitter sentiment analysis,’’ Future
Gener. Comput. Syst., vol. 113, pp. 58–69, Dec. 2020.

[48] U. Khandelwal, K. Clark, D. Jurafsky, and L. Kaiser, ‘‘Sample effi-
cient text summarization using a single pre-trained transformer,’’ 2019,
arXiv:1905.08836.

[49] R. F. Bikmukhamedo and A. F. Nadeev, ‘‘Generative transformer
framework for network traffic generation and classification,’’ T-Comm,
vol. 14, no. 11, pp. 64–71, 2020.

[50] R. F. Bikmukhamedov and A. F. Nadeev, ‘‘Multi-class network traf-
fic generators and classifiers based on neural networks,’’ in Proc.
Syst. Signals Generating Process. Field Board Commun., Mar. 2021,
pp. 1–7.

[51] A. Radford et al., ‘‘Language models are unsupervised multitask learners,’’
OpenAI Blog, vol. 1, no. 8, p. 9, 2019.

[52] D.Wass, ‘‘Transformer learning for traffic prediction in mobile networks,’’
KTH, School Elect. Eng. Comput. Sci. (EECS), TRITA-EECS-EX,
Tech. Rep. 2021:644, 2021, p. 47.

[53] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, and J. Yu, ‘‘ET-BERT: A
contextualized datagram representation with pre-training transformers for
encrypted traffic classification,’’ in Proc. ACM Web Conf., Apr. 2022,
pp. 633–642.

[54] Z. Wu, H. Zhang, P. Wang, and Z. Sun, ‘‘RTIDS: A robust transformer-
based approach for intrusion detection system,’’ IEEE Access, vol. 10,
pp. 64375–64387, 2022.

[55] F. Setianto, E. Tsani, F. Sadiq, G. Domalis, D. Tsakalidis, and P. Kostakos,
‘‘GPT-2C: A parser for honeypot logs using large pre-trained language
models,’’ in Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining,
Nov. 2021, pp. 649–653.

114950 VOLUME 11, 2023



D. K. Kholgh, P. Kostakos: PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3

[56] H. Wang and W. Li, ‘‘DDosTC: A transformer-based network attack
detection hybrid mechanism in SDN,’’ Sensors, vol. 21, no. 15, p. 5047,
Jul. 2021.

[57] R. Kozik, M. Pawlicki, and M. Choraundefined, ‘‘A new method of hybrid
time window embedding with transformer-based traffic data classification
in IoT-networked environment,’’ Pattern Anal. Appl., vol. 24, no. 4,
pp. 1441–1449, Nov. 2021.

[58] T. B. Brown, ‘‘Language models are few-shot learners,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 1877–1901.

[59] T. M. Booij, I. Chiscop, E. Meeuwissen, N. Moustafa, and
F. T. H. D. Hartog, ‘‘ToN_IoT: The role of heterogeneity and the
need for standardization of features and attack types in IoT network
intrusion data sets,’’ IEEE Internet Things J., vol. 9, no. 1, pp. 485–496,
Jan. 2022.

[60] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar, ‘‘TON_IoT
telemetry dataset: A new generation dataset of IoT and IIoT for data-driven
intrusion detection systems,’’ IEEE Access, vol. 8, pp. 165130–165150,
2020.

[61] N. Moustafa, M. Keshky, E. Debiez, and H. Janicke, ‘‘Federated TON_IoT
windows datasets for evaluating AI-based security applications,’’ in Proc.
IEEE 19th Int. Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom),
Dec. 2020, pp. 848–855.

[62] N.Moustafa, M. Ahmed, and S. Ahmed, ‘‘Data analytics-enabled intrusion
detection: Evaluations of ToN_IoT Linux datasets,’’ in Proc. IEEE 19th
Int. Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom), Dec. 2020,
pp. 727–735.

[63] N. Moustafa, ‘‘A systemic IoT–fog–cloud architecture for big-data
analytics and cyber security systems: A review of fog computing,’’ in
Secure Edge Computing. Boca Raton, FL, USA: CRC Press, 2021,
pp. 41–50.

[64] J. Ashraf, M. Keshk, N. Moustafa, M. Abdel-Basset, H. Khurshid,
A. D. Bakhshi, and R. R. Mostafa, ‘‘IoTBoT-IDS: A novel statistical
learning-enabled botnet detection framework for protecting networks of
smart cities,’’ Sustain. Cities Soc., vol. 72, Sep. 2021, Art. no. 103041.

[65] Openai Api Docs. Accessed: Jun. 13, 2023. [Online]. Available:
https://platform.openai.com/docs/api-reference

[66] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, ‘‘Flow-based
benchmark data sets for intrusion detection,’’ in Proc. 16th Eur. Conf.
Cyber Warfare Secur. (ACPI), 2017, pp. 361–369.

[67] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, ‘‘A detailed analysis
of the KDD CUP 99 data set,’’ in Proc. IEEE Symp. Comput. Intell. Secur.
Defense Appl., Jul. 2009, pp. 1–6.

[68] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, ‘‘Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,’’ Comput. Secur., vol. 31, no. 3, pp. 357–374,
May 2012.

[69] N. Moustafa and J. Slay, ‘‘UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),’’ in
Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), Nov. 2015, pp. 1–6.

[70] Framework for Improving Critical Infrastructure Cybersecurity, National
Institute of Standards and Technology, Gaithersburg, MD, USA, 2018.

DANIAL KHOSH KHOLGH received the B.S.
degree in computer engineering from the Khajeh
Nasir University of Technology, Tehran, Iran,
in 2020, and the M.Sc. degree in computer science
and engineering from the University of Oulu,
Finland, in 2023. He is currently a Researcher with
the Center for Ubiquitous Computing, University
of Oulu. His research interests include natural
language processing, recommender systems, and
cyber threat intelligence.

PANOS KOSTAKOS is currently a Senior
Research Fellow with the Center for Ubiquitous
Computing, University of Oulu. He leads the
ResearchGroup Cyber Security Informatics (CSI).
His research interests include the intersection of
AI, information security, and security orches-
tration, focusing on autonomous, mutable, and
cognitive cyber defence mechanisms.

VOLUME 11, 2023 114951


