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ABSTRACT Hyperglycemia, a stress-induced physiological condition, is associated with severe
complications, including sepsis, multiple organ failure, and higher mortality rates. The seminal 2001 Leuven
study highlighted the potential for strict blood glucose control (80-110 mg/dL) to lower mortality rates by
34% among critically ill surgical patients. Consequently, monitoring blood glucose levels in ICU patients
has become imperative. This study aims to use recent medical technology advancements to streamline the
monitoring of blood glucose levels, traditionally requiring trained personnel to operate a blood glucose
monitor. We used the OptiScanner to collect patient blood data, separate plasma, and acquire mid-IR-
related data. XGBoost was used to improve the prediction of blood glucose concentration based on patient
classification types and its performance was compared with two other machine learning algorithms. We also
used the LASSO model to predict plasma blood glucose concentrations. Additionally, we applied SHAP
(SHapley Additive exPlanations) to identify critical wavelengths in the classifier and compared these with
the functional groups corresponding to the actual IR spectrum. Our experimental findings demonstrate that
XGBoost exhibits promising performance. Furthermore, the interpretation of the model is in alignment
with domain knowledge. Through this study, we emphasize the potential of advanced medical technology,
particularly machine learning algorithms such as XGBoost, to improve the efficacy and precision of blood
glucose monitoring in ICU settings.

INDEX TERMS Hyperglycemia, blood glucose monitoring, OptiScanner, XGBoost, machine learning,
LASSO model, SHAP, infrared spectrum, intensive care.

I. INTRODUCTION
Diabetes, a chronic disease that affects the way the body
converts food into energy, is one of the leading causes of death
worldwide [1]. Implementing a strategy for tight glycemic
control is crucial to reduce the risk of diabetes-related
complications, such as coronary heart disease and ischaemic
stroke [2], [3]. Alongside a healthy diet, continuous monitor-
ing of blood glucose is essential, making self-monitoring of
patient blood glucose levels at home important [4]. Various
devices, including handheld glucometers and continuous
glucose monitoring devices, have been developed to facilitate
home-based glucose monitoring.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sajid Ali .

Evidence supports that appropriate methods for glucose
monitoring improve the quality of life of patients. Several
studies have highlighted the importance of glycemic control
in intensive care unit (ICU) patients, associating strict glucose
control protocols with improved survival rates [5]. Thus,
research on the definition of healthy glucose ranges is of great
importance [6]. However, tight glucose control necessitates
precise, frequent sampling and prompt availability of reliable
results. Unfortunately, few methods offer accurate routine
point-of-care glucose level measurements in the ICU. The use
of handheld meters has demonstrated inaccuracies [7] and
requires the assistance of nursing staff, which could lead to
a reduced collection frequency due to time constraints [8].
On the contrary, real-time automated continuous glucose
monitoring systems (CGMS) can accurately detect glucose
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concentration every few minutes [9]. Furthermore, CGMS
can be integrated with insulin automation devices to regulate
insulin delivery and shut-off at predefined glucose levels [10].

Machine learning (ML) techniques have become indis-
pensable in various industries [11], [12], with applica-
tions ranging from computer vision and natural language
processing to biological studies [13], [14], [15]. Central
to ML’s efficacy is its capability to autonomously derive
predictive models from data while handling complex or
high-dimensional data types without assuming an underlying
data distribution. This adaptability makes ML increasingly
valuable in instrumental analysis, which explains its growing
adoption in recent years [16], [17], [18].
On the other hand, mid-infrared (mid-IR) spectral tech-

nology employs the principle of infrared light absorption to
detect changes in the vibrations of covalent bonds. These
changes, specific to different molecules, allow the detection
and quantification of glucose within the mid-IR region [19].
Furthermore, mid-IR spectral technology has demonstrated
significant potential in identifying plasma components [20].
To exploit this potential, we utilize data collected through
OptiScanner, a mid-IR spectroscopy tool connected to an
existing blood access port for patients in the ICU, to develop
predictive models.

In this paper, we use the strengths of ML in conjunction
with mid-IR spectral technology to predict blood glucose
concentrations. However, a notable drawback of ML is
the opacity of its algorithms; many function as ‘‘black-
box’’ models, making it challenging for practitioners to
understand the rationale behind model predictions. This lack
of interpretability hinders the seamless deployment of ML
models in production environments, thus underscoring the
importance of research into explainable AI (XAI).

However, there is a trade-off between model accuracy
and explainability in ML. Highly accurate models typically
involve intricate, non-linear transformations, whereas more
straightforward, linear models often fail to deliver accurate
predictions for most complex problems. To address this issue,
our work advocates using post hoc explainability techniques
to elucidate the predictions made by the developed ML
model.

Our research focuses on training ML models, including
Partial Least Squares Regression (PLS) [21], Lasso [22], and
XGBOOST [23], to predict plasma glucose levels. We extend
our model development to include patients treated with
hetastarch, an agent used to prevent hypovolemia (a condition
marked by decreased blood plasma volume, also known
as ‘‘shock’’). To improve the accuracy of concentration
predictions, we construct ML models, such as the support
vector machine (SVM) [24], XGBOOST, random forest [25],
logistic regression [26], and K nearest neighbor (KNN) [27],
aiming to distinguish between regular ICU patients and those
treated with hetastarch. Finally, we employ SHAP [28] to
elucidate the relationships between chemical structures and
key features identified by our model.

The contributions and novel aspects of this paper are as
follows:

1) We innovatively integrate mid-IR spectral technology
with ML algorithms to achieve precise prediction of
glucose levels in ICU settings.

2) Our work extends existing model development by
incorporating patients treated with hetastarch, offering
a more comprehensive predictive model.

3) We implement post hoc explainability techniques to
provide insights into the ‘‘black-box’’ nature of ML
algorithms, effectively bridging the gap between model
accuracy and interpretability.

II. RELATED WORK
Diabetes mellitus is a complex endocrine disorder charac-
terized by elevated blood glucose levels, leading to various
complications such as heart disease, stroke, and dementia.
Therefore, strict glycemic control is essential for effective
diabetes management, making continuous monitoring of
blood glucose crucial for patients.

Nie et al. [29] explored non-contact blood glucose
detection through imaging photoplethysmography (IPPG).
They used a near-infrared camera to capture facial videos
and extracted 26 time-domain features from the IPPG
signals. Four ML algorithms, including principal component
regression (PCR), partial least-squares regression (PLS), sup-
port vector regression (SVR), and random forest regression
(RFR), were used for predictive modeling. Their results
highlighted RFR as the most accurate method. Similarly,
Alfian et al. [30] devised a blood glucose predictionmodel for
Type 1 diabetes (T1D) using time-domain features. Testing
the model on 12 patients with T1D showed that Artificial
Neural Networks (ANNs) yielded the best results.

Personalization in blood glucose prediction is crucial
due to patient-to-patient variations. However, collecting
sufficient patient-specific data for model training is both
challenging and expensive. To address this, Daniels et al. [31]
introduced a multi-task learning approach using hard param-
eter sharing techniques. The model architecture comprises
shared, clustered, and individual-specific layers. Shared
layers are trained on aggregated data from all subjects, while
individual-specific layers use data from particular subjects.
Clustered layers, situated between shared and individual-
specific layers, aim to group individuals according to their
glycemic variability.

Predicting near-future glucose levels is of significant
importance. Martinsson et al. [32] utilized recurrent neural
networks to forecast blood glucose levels up to an hour
in advance. Distinctively, their study relied exclusively on
historical glucose level data from individual patients for
model training. While this approach simplifies data collec-
tion, it neglects other potentially valuable information, such
as demographic data. Gómez-Castillo et al. [33] advocated
using Long Short-Term Memory (LSTM) ) [34] networks
to predict future glucose levels. Their model was trained
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on the OhioT1DM database, which consists of eight weeks
of continuous glucose monitoring, insulin administration,
physiological sensor data, and self-reported life events for
each of the 12 individuals with T1D [35]. The study yielded
promising results in predicting glucose levels.

Ensemble learning methods, which combine multiple ML
algorithms, have also been explored for their potential
to improve predictive performance. Saiti et al. [36] inte-
grated several glycemia prediction algorithms using three
ensemble methods: linear, bagging, and boosting. For small
datasets, their results indicated that a bagging meta-regressor
outperformed individual algorithms across all prediction
horizons. Furthermore, Nemat et al. [37] used a stacking
approach, combining linear models, vanilla LSTM [34],
and bidirectional LSTM, to predict blood glucose levels in
patients with T1D. Their ensemble models showed superior
performance compared to non-ensemble benchmarks.

III. PRELIMINARY
Infrared (IR) spectroscopy is a powerful analytical technique
that examines the interactions between infrared radiation and
matter through mechanisms such as absorption, emission,
or reflection. The infrared spectrum covers wavenumbers
ranging from approximately 12,800 to 10 cm−1 and wave-
lengths from 0.78 to 1,000µm. Depending on the application
and instrumentation, the IR spectrum is generally divided into
three sub-regions, as outlined in Table 1: near-IR, mid-IR, and
far-IR.

TABLE 1. IR spectral regions.

Mid-infrared spectroscopy, a common spectroscopic tech-
nique, is based on molecular interactions with electro-
magnetic radiation in the mid-infrared region. It enables
the exploration of fundamental vibrations and associated
rotational-vibrational structures of chemical bonds. Yu
et al. [19] proposed a minimally invasive method to measure
glucose concentration using mid-IR spectroscopy, paired
with a tunable carbon dioxide (CO2) laser and a compact
fiber-based ATR sensor. Kasahara et al. [20] developed
a non-invasive blood glucose measurement method using
mid-infrared absorption spectroscopy, employing specific
wavenumbers to measure blood glucose concentration.

IV. MATERIALS AND METHODS
A. DATA
The dataset used in this experiment originates from glucose
concentration measurements from ICU patients, comprising
25 wavelength bands ranging from 7 to 10µm and associated
labels. The glucose concentration of each patient was

determined by a blood test using the YSI STAT 2300. This
device employs a steady-state measurement methodology in
which glucose oxidase, embedded in a membrane, catalyzes
the conversion of glucose into gluconic acid and hydrogen
peroxide.

Due to privacy regulations and the sensitive nature
of the data used in this study, the raw data cannot be
publicly accessible. Data were used under license for the
current study. Data are, however, available from the authors
upon reasonable request and with the permission of the
original data source. The research team has ensured that all
results presented in this paper are reproducible based on
the processed data, methodologies, and statistical analyzes
detailed in the text. In addition, the authors declare that they
have no conflict of interest with the content of this article. The
code pertinent to this study has beenmade publicly accessible
on GitHub.1

The OptiScanner, an automated plasma-based bedside
glucose monitoring system equipped with mid-IR spec-
troscopy, collected glucose wavelength information. This
system specifically utilizes 25 spectral bands between 7 to
10 µm within the mid-IR range, as this longer wavelength
range yields sharp and pronounced glucose peaks [38]. The
spectral measurement method involves introducing the blood
sample into a cuvette which is then positioned between a
light source and a detector. To expose the sample to specific
wavelengths, the full spectrum of light from the source is
filtered by an optical filter. Finally, the detector will receive
the transmitted light.

In our dataset, the label differentiates patients who received
hetastarch treatment, since its usage alters the composition of
the blood. It is important to recognize that blood, a cocktail
of numerous components, contributes to the spectrum at
all wavelengths; hence, no single wavelength in the blood
spectrum can predict glucose concentration. According to
patient-specific conditions, medical professionals adminis-
tered hetastarch to certain patients in the ICU.

B. XGBOOST
This section briefly discusses the XGBoost algorithm,
a widely recognized ensemble learning method based on
gradient boosting. The objective function of XGBoost is to
minimize the loss term and a regularization term to prevent
overfitting. The algorithm trains additively and iteratively
refines the predictions.

XGBoost employs the second-order Taylor expansion
to approximate the objective function, helping in efficient
optimization. The algorithm also incorporates gradient and
Hessian information for each data point and uses them to
calculate optimal leaf weights. Moreover, XGBoost deploys
regularization terms that control the complexity of the
individual trees in the ensemble. This results in a scoring
function that allows a greedy algorithm to determine the

1Repository Link: https://github.com/clliu168/Blood-Glucose-Concen-
tration-Prediction
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optimal tree structure. Following a series of equations, Eq. (1)
shows the scoring function to measure the quality of a
tree structure q. For a detailed mathematical formulation of
XGBoost, we refer the reader to the seminal paper by Chen
and Guestrin [23].

L̂(t)(q) = −
1
2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT . (1)

Here, gi and hi symbolize the gradient and Hessian of the
loss function, respectively, γ and λ are hyperparameters that
control the weights of these two regularization terms. Further-
more, we introduce Ij to denote data samples classified into
leaf j and T is the number of leaves in the tree.

FIGURE 1. Research flow.

C. RESEARCH PROCESS
This paper uses patient blood wavelength data in the
ICU acquired via the OptiScanner, a mid-IR spectroscopy
device. This research aims primarily to leverage these data
to predict glucose concentration levels. In particular, ICU
medical professionals use hetastarch to treat hypovolemia,
a condition that may result from severe trauma, including
significant blood loss. However, the use of hetastarch could
affect the prediction of glucose concentration. Hence, our
interest lies in discerning whether glucose concentration
predictions could be improved by distinguishing patients who
have received hetastarch. Experimental procedures are then
carried out to compare glucose concentration results with and
without this patient classification.

Our proposed methodology consists of two primary stages.
Initially, a model is trained using the designated training set,
following which the test set is used to evaluate the model.
The prediction results and associated labels are subsequently
analyzed to generate a confusion matrix. The second stage
involves the creation of regression models tailored to the
various labels of the training set. The performance of each of
these models is then verified using the test set. The workflow
of our proposed methodology and the baseline approach for
comparison are depicted in Figure 1.

For the classification task, a variety of ML algorithms
are used, including logistic regression (LR), random forest
(RF), XGBoost (XGB), support vector machine (SVM), and

K nearest neighbor (KNN). In terms of regression, methods
such as random forest (RF), LASSO, and partial least-squares
regression (PLS) are utilized. Through these algorithms,
we conduct experiments comparing the performance of these
methods to identify the most appropriate prediction model
for the given dataset. Additionally, all algorithmic model
parameters are optimized using grid search. For evaluating
model performance, we use the confusion matrix to compute
the accuracy of the classification models and the root mean
square error (RMSE) for assessing the regressionmodels. The
RMSE is defined as the square root of the average of squared
differences between predicted results and actual observations.
The definition of RMSE is listed in Eq. (2), where yi and ŷi
are ground truths and predictions, respectively.

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (2)

In addition to experimental results, we employ the SHAP
(SHapley Additive exPlanations) method [28] to explain
our model’s predictions. SHAP derives from coalitional
game theory and calculates Shapley values to estimate the
contribution of each feature to a given instance’s prediction,
x. This approach significantly differs from traditional feature
importance measures, which merely indicate influential
features without providing an in-depth explanation. Instead,
SHAP provides a more comprehensive analysis, providing
both positive and negative relationships between predictors
and the target variable. This enhanced understanding aligns
with practical business practices and offers insights into why
each case obtains its specific prediction, based on its unique
predictor values.

V. RESULTS
A. CLASSIFICATION
Our study included a total of 1021 patients. We separated the
patients into training and test sets. The training set comprises
523 patients in the normal ICU and 110 with hetastarch. On
the other hand, the test set has 356 patients in the normal ICU
and 32 with hetastarch.

Initially, we trained five distinct classification models.
Subsequently, we compared the performance of these five
models based on the accuracy derived from the confusion
matrix. The accuracy can be formulated using elements of
the confusion matrix as shown in Eq. (3).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
. (3)

Here, TP refers to the true positives, which are the correctly
predicted positive values. TN refers to true negatives,
representing correctly predicted negative values. FP stands
for false positives, indicating negative instances incorrectly
classified as positive. Finally, FN represents false negatives,
meaning positive instances that are incorrectly classified as
negative. This matrix offers a comprehensive view of the
model’s accuracy while providing details about the actual
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FIGURE 2. Experiment results for normal ICU patients.

FIGURE 3. Scatter plots of predicted glucose concentrations and reference glucose concentrations for normal ICU patients without/with
classification.

and predicted classes. We utilize the training set for model
training and hyperparameter tuning and perform a five-fold
cross-validation. The results are illustrated in Table 2.

B. REGRESSION
Furthermore, we trained ML models to predict plasma
glucose concentration, including PLS, Lasso and XGBoost
regression. To verify our hypothesis that implementing
classification is superior to not using classification, we first

trained models on a non-classified training set and evaluated
their performance using the validation set. Subsequently,
these results were compared to the performance of models
trained in a classified training set and evaluated in a classified
validation set.

Fig. 2 demonstrates that implementing classification first
improves the accuracy of the glucose concentration predic-
tion in standard ICU patients. Fig. 3 presents the scatter plots
and the fitting lines of the predicted glucose concentrations
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FIGURE 4. Experiment results for ICU patients treated with hetastarch.

TABLE 2. The performance of various classification models with testing
set.

versus the reference glucose concentrations in standard ICU
patients.

In line with these observations, Fig. 4 indicates that
first performing classification improves the accuracy of
glucose concentration prediction in ICU patients treated with
hetastarch. Furthermore, Fig. 5 shows the scatter plots and
the fitting lines of predicted glucose concentrations versus
reference glucose concentrations in patients in the ICU
treated with hetastarch.

VI. DISCUSSION
A. SHAPLEY ADDITIVE EXPLANATION (SHAP)
This study focuses on identifying which fragment signifi-
cantly impacts prediction results. To reveal the black box of
the developed model, we proposed using SHAP (SHapley
Additive exPlanations) [28] to explain and investigate the
model results. The SHAP is a game-theoretic approach
designed to explain the output of any MLmodel. It calculates
the contribution of each feature to a specific instance’s

prediction, treating feature values of a data instance as
players in a coalition. Shapley values then fairly distribute
the ‘‘payout’’ among the features, assigning each feature an
importance value for a specific prediction. SHAP has been
extensively applied to various supervised learning models.
For instance, Lin et al. [39] employed SHAP analysis to
evaluate the impact of each feature on their classifier.

In particular, the SHAP value is capable of reflecting
the influence of each feature on individual samples and
indicates both their positive and negative effects. The global
interpretability provides us with an understanding of the
direction and numerical scale of each feature’s impact on the
predicted value. Fig. 6 shows the global feature importance,
calculated by averaging the absolute Shapley values of
each feature across the dataset and sorting the features in
descending order of importance. Based on the magnitude of
the feature attributions, it is clear that wavelength 3 is themost
predictive variable for the trained XGBoost model.

Fig. 7 provides a summary plot showcasing the relationship
between a feature’s value and its impact on the prediction.
Each point on the summary plot represents a Shapley value
for a feature. As shown in Fig. 7, we deduce that wavelength
3 is the most important feature and has the most significant
value of the feature to determine the prediction.

To perform further investigation, we turn our attention to
individual predictions that were correctly determined. Fig. 8
and Fig. 9 both start from the same baseline value. The
prediction originates from this baseline, and its Shapley
values are the average of all predictions. Each Shapley value
is depicted with an arrow, indicating an increase (positive
value) or decrease (negative value) in the prediction. In
Fig. 8, we observe that wavelength 3 mainly contributes
negatively to predicting that the ICU patient did not receive
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FIGURE 5. Scatter plots of predicted glucose concentrations and reference glucose concentrations for ICU patients treated with
hetastarch without/with classification.

FIGURE 6. The average of the SHAP value of each feature, the
wavelength3 was the most important feature.

hetastarch treatment. On the contrary, wavelength 3 is a
substantial positive contribution to predicting that the ICU
patient received hetastarch treatment, as seen in Fig. 9. Upon
an overall examination of the force plots, SHAP clustering is
effective in grouping the Shapley values of each sample. As
shown in Fig. 10, it is a commonality that wavelength 3 serves
as a primary positive contribution in all ICU patients treated
with hetastarch.

B. ANALYSIS
Our trained model identifies wavelength 3 as the most
crucial feature, contributing significantly to the predictions

FIGURE 7. The summary plot indicates that Wavelength 3 is the most
important feature and possesses the most significant feature value.

it makes. In the mid-infrared (mid IR) range, wavelength
3 corresponds to a 7240nm wavelength, which can be
converted to 1381.22 cm−1 in wavenumbers. Understanding
the link between the chemical structure of hetastarch and
the mid IR could explain why wavelength 3 is integral to
our model’s predictive capacity, given the known differences
between two studied groups related to the use of hetastarch.

Investigating the Infrared (IR) Spectrum table in Table 3,2

we observe that the OH bending of alcohol occurs within
the mid-IR range, specifically between 1420 and 1330 cm−1.

2IR Spectrum Table and Chart from Merck https://www.sigmaaldrich.
com/TW/en/technical-documents/technical-article/analytical-chemistry/
photometry-and-reflectometry/ir-spectrum-table
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FIGURE 8. The sample 2: Correctly predicted the normal ICU patient was not treated with hetastarch.

FIGURE 9. The sample 385: Correctly predicted the ICU patient was treated with hetastarch.

FIGURE 10. The stacked SHAP explanations clustered by explanation similarity.

The Fig. 11 reveals that the chemical structure of hetastarch
contains numerous OH groups.3

TABLE 3. Function group.

Ioppolo et al. [40] provided mid-IR crystalline spectra
of the materials they studied. The OH-bend occurs at
7 um (1415 cm−1) in the spectrum of CH3OH , at 7.2 µm
(1390 cm−1) in the spectrum of HCOOH, and at 7.1 µm
(1410 cm−1) in the spectrum of CH3COOH . The absorption
of infrared light results in changes in a molecule’s covalent
bond vibrations.

3Hetastarch structure information fromNational Center for Biotechnology
Information https://pubchem.ncbi.nlm.nih.gov/compound/Hydroxyethyl-
starch

Therefore, we hypothesize that the importance of Wave-
length 3 to the prediction stems from its sensitivity to the
presence of numerous OH groups in hetastarch. These OH
groups exhibit characteristic absorption within the mid-IR
range from 1420 to 1330 cm−1, which correlates with the
predictive capabilities of our model.

FIGURE 11. Using IR spectrum table to look for the frequency of
Wavelength 3. Its frequency is 1381.22 cm−1 which correspond to OH
group. Hetastarch equips many OH groups.

VII. CONCLUSION
This research aimed mainly to formulate a method capa-
ble of increasing the precision of glucose concentration
predictions. Recognizing the frequent administration of
hetastarch to certain patients in the Intensive Care Unit
(ICU), it was imperative to integrate this factor into our
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modeling framework. The absence of such categorization
based on hetastarch treatment could potentially compromise
prediction fidelity. To this end, we initially began to train
a multitude of classification models designed to discern
between patients who had received hetastarch and those who
had not. Subsequently, the optimal model was selected for
a detailed analysis using the SHAP method to elucidate
the decision-making process embedded in the model. Our
findings were then enriched by integrating insights drawn
from extensive expertise in analytical chemistry, thereby
offering a more comprehensive interpretation of the SHAP-
derived explanations.

A. LIMITATIONS AND FUTURE WORK
While this study offers valuable insights into the predictive
power of ML algorithms combined with Mid-Infrared (mid-
IR) spectral technology for estimating blood glucose levels,
some limitations warrant discussion.

1) Small Dataset: The study employs a relatively small
dataset, which may impact the generalizability and
objectivity of the results.

2) Limited Feature Set: Our feature set is highly focused
on mid-IR spectral data and lacks additional infor-
mation, such as height, weight, age, or relevant
medical data. This absence of supplementary features
constrains the scope of the research and could limit its
adaptability to other domains or applications.

Future research could address this limitation by usingmore
extensive and diverse datasets, thereby enhancing the robust-
ness and applicability of the predictive models. Besides,
it may be beneficial to incorporate a broader set of features
beyond mid-IR data, including demographic and medical
information. By doing so, researchers could explore how
these additional variables influence the model’s performance
and potentially unlock new avenues for multidisciplinary
research in the healthcare domain.

Within the scope of this research, our attention was pri-
marily directed toward examining the influence of hetastarch
on glucose concentration predictions, primarily due to the
notable disparities in treatment protocols found in the ICU
patient dataset. As a pathway for future exploration, our aim
is to collate a more inclusive dataset that covers a wider
spectrum of treatment parameters and specific patient traits.
We believe that this would allow us to refine and further
enhance the predictive accuracy of our glucose concentration
models.
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