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ABSTRACT Fog computing allows for energy-efficient and low-latency offloading of computationally
intensive tasks from wireless devices to nearby servers. The integration of this technology in drone
communications enables the managing of challenging tasks such as the ones found in remote areas with
complex civil protection environments, such as disaster areas and emergency zones. In this paper, we propose
a joint resource allocation scheme that optimizes both radio and computational resources for fog-assisted
drone communication networks. Each drone decides whether to execute its task locally on its edge node
or offload it to a fog node deployed on the base station (BS). Our scalable solution effectively minimizes
service latency and energy consumption jointly, while taking into account physical- and application-layer
constraints. Specifically, we allocate the CPU frequency capacity of both the local edge node and the
remote fog node, as well as link bandwidth. Wireless channels to access the BS are limited, so only the
most beneficial drones offload their tasks, while others use their local edge nodes. We formulate the power
dissipation of various electronic circuits in the network using practical models. To develop the bi-objective
minimization for each drone, we apply the Tchebysheff theorem, which derives the Pareto boundary between
the two objectives (service latency and energy consumption). The competition among drones is modeled
using the non-cooperative game framework, and the existence and uniqueness of the Nash equilibrium
(NE) are proven. NE is computed using an algorithm based on subgradient projection. Numerical results
concerning both theoretical aspects and a practical case study are presented to corroborate the efficiency of
the proposed solution.

INDEX TERMS Bi-objective optimization, drone communications, fog-assisted networks, non-cooperative
game theory, pareto boundary, resource allocation, Tchebysheff method.

I. INTRODUCTION
The growth of the mobile applications industry has outpaced
that of the electronic sector for wireless device CPUs and
batteries. With the advent of new applications, people expect
to run more computation-intensive tasks on their mobile
devices. However, these tasks often consume vast amounts
of energy, demand powerful computation capacity, and have
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strict delay constraints, while wireless devices are usually
resource-constrained with limited computation capability
and battery life, making such sophisticated applications
impractical. To overcome these challenges, edge computing,
and fog computing have been introduced. These technologies
enable processing and storing data at the network’s edge,
bringing computing resources closer to the end-users, thereby
significantly reducing latency for computation-intensive and
time-sensitive applications. Edge computing involves compu-
tation at the edge of a wireless device network in computing
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servers named edge nodes. In contrast, fog computing is an
extension of cloud computing and is a layer between the edge
and the cloud. Fog nodes are more powerful than edge nodes.
However, in traditional fog-assisted networks, computing
servers are usually embedded in fixed base stations (BSs),
making it challenging to meet the increasingly complex and
dynamic computing demands.

Aerial computing has drawn extensive attention due to
drones’ mobility, flexibility, and maneuverability. Drones
equipped with edge nodes can provide agile computing
services to wireless devices. Additionally, drones can be
quickly deployed to support wireless communications in
remote areas with complex civil protection environments,
such as disaster areas and emergency zones. The deployment
of edge/fog nodes in drone communications has recently
attracted wide attention from industry and academia.

In this work, we consider a single-cell fog-assisted network
where one fog node is deployed on the BS to serve a
number of drones, each of which is equipped with an
edge node. Each drone decides whether to compute its task
on its local edge node or offload it to the remote fog
node. The fog node executes the offloaded tasks by sharing
its computing resources with the drones. Our goal is to
develop an efficient radio and computing resource allocation
algorithm that jointly minimizes the energy consumption
and service latency of all drones while considering their
constraints and requirements. Radio resources refer to the
bandwidth that is allocated to the drones that decide to offload
their tasks, while computing resources include the frequency
of the CPUs on the local edge nodes and the remote fog
node.

A. MOTIVATION
Task offloading solutions in fog-assisted drone communica-
tions offer an opportunity to execute complex tasks on nearby
fog nodes, thereby enhancing the computing capabilities
of otherwise resource-constrained wireless devices. This
opportunity, however, presents a critical challenge: the
simultaneous minimization of service latency and energy
consumption, two often conflicting objectives.

In fog-assisted drone communications, the balance
between service latency and energy consumption is pivotal.
Reducing latency can lead to increased energy consumption,
while optimizing energy efficiency can slow down the
service. The specific challenges in this context lie in the
intricate interplay between physical and application layers,
as well as the dynamic nature of drone tasks and movements.
Achieving this balance is vital to ensure the efficient
performance of latency-critical applications [1] and also to
tackle one of the paramount challenges in wireless networks,
that of reducing energy consumption while maintaining QoS,
particularly service latency [2].

The need to optimize these conflicting goals gives rise to
our approach: the derivation of a Pareto front between latency
and energy. This Pareto front represents the efficient frontier
of tradeoffs, providing a critical tool for network designers

in the unique and complex domain of fog-assisted drone
communications.

In the study presented in [3], the significance of task
offloading in fog-assisted drone communication networks is
emphasized, revealing potential benefits in terms of energy
savings and decreased processing durations. However, given
that their evaluations were performed without specific radio
or computing resource allocation, their findings also point to
an imperative need for a refined resource allocation strategy.
This strategy should effectively address the intricate rela-
tionship between service latency and energy consumption,
underscoring the importance of our proposed approach.

Given the complexities and limitations imposed by Shan-
non’s law, and the drone communications potential for
significant air-ground interference, the joint minimization of
service latency and energy consumption becomes essential.
Our work aims to address this challenge by proposing
a resource allocation technique specifically designed for
fog-assisted drone communications, with the goal of simulta-
neously minimizing these two crucial parameters.

In conclusion, efficient task offloading, mindful man-
agement of both radio and computing resources, and the
intelligent minimization of both service latency and energy
consumption are key motivators for our proposed approach.
We believe that our work will not only enhance network
performance but will also contribute significantly to the
broader understanding and advancement of resource alloca-
tion techniques in the emerging field of fog-assisted drone
communications.

B. RELATED WORKS
Fog-assisted networks are pivotal in resource allocation,
aiming at different objectives:
Objective Function of Type (i):Minimizing overall energy

consumption subject to a constraint on latency. Recent works
investigate multi-cell networks [4], mobile terminals [5], [6],
[7], stochastic network optimization [8], game theory [9],
[10], and mixed-integer non-linear programming [11].
Objective Function of Type (ii): Minimizing service

latency while considering energy constraints. Notable contri-
butions address multi-tiered systems [12], [13], [14], multi-
cell networks [15], and drone communications [16], [17].
Game theory [18], [19], and auction-based approaches [20]
are used to model competition among devices.
Objective Function of Type (iii): Minimizing a weighted

sum of energy and latency. This is tackled through machine
learning [21], [22], [23], graph theory [24], genetic algo-
rithms [25], blockchain [26], [27], and by decoupling
offloading decisions [28], [29], [30].

For networks with multiple accessible fog nodes, various
methods have been applied, such as game theory [9], genetic
algorithms [25], Petri nets [31], and blockchain [26].
Game-theoretic approaches, including non-cooperative

games [32], [33], [34], [35], and the Stackelberg game [36],
are employedwith techniques like the Bellman equations [33]
and greedy algorithms [34].
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In fog-assisted drone communications, recent research
targets objective function types (i) [37], [38] and (ii) [16],
[17]. However, in mentioned drone communications works,
no radio and computing resource allocation is performed and
the aim is choosing the best fog node to offload the task.

Overall, the review incorporates a diverse range of method-
ologies and objectives, synthesizing the recent literature in
fog-assisted networks.

The review of the existing related works shows that the
existing problem formulations suffer from the following
major drawbacks:
1) Existing works did not consider a practical/industrial

model for power consumption of electronic circuits of
wireless devices. They usually set a fixed amount for
it, while the power consumption of electronic circuits
involved in communication, e.g., radio frequency (RF)
and baseband (BB) electronic circuits, are variables and
functions of the data rate. Based on the conducted study
in [39], by considering practical models, the behavior
of spectral and energy efficiencies changes significantly
compared with considering non-practical models.

2) Existing works have not fully explored the potential
of fog-assisted networks in achieving the joint mini-
mization of both service latency and energy consump-
tion objectives. The use of a weighted-sum objective
function, which is commonly employed in existing
works, does not result in the joint minimization of
both objectives as they are functions of both radio
and computing resource variables [40]. Furthermore,
the choice of the weight value can greatly affect the
results. Additionally, a weighted-sum function lacks a
common measurement unit, making it an unsuitable
network performance objective. In contrast, the Pareto
boundary is a crucial tool for network designers in bi-
objective networks, as it allows them to determine the
minimum possible service latency while a fixed amount
of energy is available, or vice versa [1]. However,
the investigation of the Pareto boundary in existing
works is inadequate, highlighting the need for a more
comprehensive approach.

3) Another significant limitation of existing works is their
failure to consider the capacity constraints of edge/fog
nodes as wireless receivers, which can only serve a
limited number of wireless devices at a time. This
constraint arises due to the limited number of available
wireless channels, as well as the physical limitations of
the RF and BB electronic circuits.

C. MAIN CONTRIBUTIONS
This paper presents a novel resource allocation method that
aims to overcome existing drawbacks in the literature on
fog-assisted drone communications. The specific contribu-
tions of this work include:
1) A resource allocation method for the uplink direction of

a single-cell fog-assisted wireless network is introduced.
Drones either use an edge node to execute their tasks

locally or can offload their computation to a more
powerful fog node deployed on the BS. The proposed
algorithm jointly minimizes service latency and energy
consumption by considering the limited number of
available wireless channels at the BS and efficiently
assigning channels to drones.

2) Practical models are utilized to compute the energy
consumption of both drones and the BS, encompassing
all electronic circuits involved in communication and
computing. Furthermore, the weighted Tchebysheff
method [41] is applied to tackle the bi-objective
minimization problem for each drone, deriving the
Pareto boundary between service latency and energy
consumption objectives. The Pareto boundary is of
great importance to network designers and industry
professionals as it provides a range of optimal solutions,
allowing them to choose a solution that best fits their
requirements.

3) The problem is formulated using a non-cooperative
game to allocate radio and computing resources to
competitive drones in an efficient manner. An algorithm
based on subgradient projection is developed to compute
the unique NE, taking into account the practical
limitations of wireless channels and efficient utilization
of available bandwidth and fog node CPU capacity.

4) Numerical results demonstrate that the proposed
algorithm outperforms algorithms that do not optimize
computingmode or network resource allocation, thereby
showing the effectiveness of the proposed solution in
minimizing service latency and energy consumption for
each drone.

D. STRUCTURE OF THE PAPER
The rest of the paper is organized as follows. The system
model and the problem statement are presented in Sect. II.
In Sect. III, service latency and energy consumption objec-
tives are formulated. To derive the latency-energy Pareto
boundary for each drone, in Sect. IV, a tractable bi-objective
optimization problem is formulated. The derived optimiza-
tion problem is converted to an equivalent convex one in
Sect. V. Then, in Sect. VI, the competition among drones is
modeled using non-cooperative games, and an algorithm is
developed to compute the unique NE point. Numerical results
are provided in Sect. VII. Finally, concluding remarks are
given in Sect. VIII.

II. NETWORK MODEL
In this section, we present the uplink direction of a single-cell
wireless network focusing on the utilization of K rotatory
wing drones as wireless transmitters, along with a fog node
deployed on the Base Station (BS). The critical elements and
their interactions of the network model are visually illustrated
in Figure 1.
Drones and Tasks: We define each drone k = 1, . . . , ,K ,

with an edge node whose computational capacity is consid-
erably less than the fog node on the BS. A computation task
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FIGURE 1. Network model.

for each drone k is expressed as a 2-tuple (Dk , ,Ck ), with
Dk indicating the task size in [bits] and Ck the required CPU
cycles for one-bit data computation. These tasks are atomic
and have strong dependence over different subtasks.
Computing Modes: The drones can operate in one of

two computing modes: 1) Local Computing Mode (LCM),
utilizing local resources for task execution; and 2) Remote
Computing Mode (RCM), offloading tasks to a remote fog
node for execution and result retrieval. The BS, limited
to N simultaneous transmitting drones, employs virtual
machine (VM) multiplexing and consolidation for parallel
computation of offloaded tasks.
Resource Allocation: The network operator aims to

efficiently allocate computing modes, bandwidth, and
CPU resources among drones, minimizing joint service
latency and energy consumption. This includes offload
time, execution time, and the energy consumption of all
involved circuits. We employ realistic practical models for
energy consumption evaluation at both drones and the
BS sides.
Communication and Interference: Drones communicate

with the BS without interference as they are served in a
non-overlapping frequency band. We introduce a distributed
algorithm that adjusts the computing mode, bandwidth, and
CPU frequencies for each drone, considering fixed and
known drone transmit power levels during task offloading.
The optimization of transmit power levels is neglected
as the power required for the drone’s flight operations
is much greater than the power needed for data trans-
mission, making the latter’s consumption comparatively
negligible [42], [43].
Assumptions: Several assumptions guide our model. Small

computation result sizes and high transmission power at
the BS enable faster downloading. Continuous bandwidth
and CPU frequency simplify our analysis, though discrete

resources can also be considered. We assume that the
drones are stationary during task offloading, a condition
that aligns with specific real-world scenarios such as
controlled environments, energy efficiency considerations,
and maintaining data integrity. The stationary assumption
facilitates the analysis by allowing for focused energy usage
during computation, reducing the potential for interference,
and offering compatibility with existing systems.

A. SERVICE LATENCY AND ENERGY CONSUMPTION
OBJECTIVES
Let us denote by a binary variable xk the computing mode of
each drone k . For the sake of later convenience, we define
xk ∈ {−1, 1} such that drone k is admitted for RCM if
xk = 1, and xk = −1 otherwise. The limitation on the number
of simultaneous transmitting drones imposes the constraint∑K

k=1(1 + xk )/2 ≤ N . For available CPU resources, let
us denote by f k and f 0 in [CPU-cycle/s] the maximum
computational capacity of each drone k and the fog node,
respectively, where we have f 0 is (much) larger than f k .
We denote by B0 in [Hz] the whole amount of available
bandwidth on the BS. A drone with LCM must only adjust
its local CPU frequency cycle to fk , which is upper-bounded
by f k (1 − xk )/2. That is, 0 ≤ fk ≤ f k if xk = −1 and
fk = 0 otherwise. The computational capacity of the fog
node is allocated to the drones with RCM, xk = 1. Those
drones need to offload their tasks to the fog node on the
BS at a fixed power level using its allocated bandwidth Bk .
The constraints on the allocated bandwidth are represented
by

∑K
k=1 Bk ≤ B0 and 0 ≤ Bk ≤ B0(1 + xk )/2 for all k .

That is, if xk = −1, the second constraint forces the variable
Bk to be equal to zero; otherwise, it is redundant with the
first one. For a drone with xk = 1, the fog node has to
adjust the CPU frequency cycle of the assigned VM to f0, k
subject to

∑K
k=1 f0, k ≤ f 0 and 0 ≤ f0, k ≤ f 0(1 + xk )/2 for

all k . These two constraints work as follows: if xk = −1,
from the second constraint f0, k is set to zero, otherwise,
it is redundant with the first one. The critical variables are
illustrated in Figure 1. For a drone k with LCM, the service
latency includes only the time T loc

k to execute the task on
the local edge node. While, for a drone that is allowed to
offload its task, the total service latency T rem

k includes both:
1) the time T rem

k; tx it needs to offload its task to the BS and 2)
the computing time T rem

k; ex the assigned VM takes to execute
the task. Therefore, the total service latency of a drone k is
computed by Tk = T rem

k (1 + xk )/2 + T loc
k (1 − xk )/2 in [s].

For a drone k with LCM, the energy consumption includes:

1) E loc
k; ex: the energy consumed by the local edge node to

execute the task of drone k ,
2) E loc

k; on: the power required to keep drone and local edge
node functioning within the whole service latency T loc

k .
The drone includes both the power consumed by flight
operation and control electronic circuits. The edge node
includes the power consumed by different components,
e.g., RAM and storage.
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Thus, the total energy consumption for a drone with LCM is

E loc
k = E loc

k; ex + E loc
k; on [Joule]. (1)

For a drone k with RCM, the total energy the drone
consumes to offload its task and the BS consumes to receive
and execute the task include:
1) E rem

k; tx: the total amount of power consumed over the
duration of T rem

k; tx to offload the task. It includes both
radiative transmit power level and the non-radiative
power consumed by the baseband (BB) and radio
frequency (RF) electronic circuits in the connected
mode,

2) E rem
k; rx: the power consumed by the electronic circuits of

the BS for radio signal processing over T loc
k; tx to receive

the task of drone k ,
3) E rem

k; ex: the energy consumed by the assigned VM on the
fog node to execute the task of drone k ,

4) E rem
k; on: the power required to keep drones, the fog

node, and the BS functioning within the whole service
latency T rem

k . For drones, it includes both the power
consumed by flight operation and control electronic
circuits. While on the edge node, fog node, and BS,
it includes the power consumed by different electronic
and computing components, e.g., RAM, storage, and
cooling equipment.

Therefore, the total energy consumption for a drone with
RCM reads as

E rem
k = E rem

k; tx + E rem
k; rx + E rem

k; ex + E rem
k; on [Joule]. (2)

We can formulate the total energy consumption of a drone
k by Ek = E rem

k (1 + xk )/2 + E loc
k (1 − xk )/2 in [Joule]. As it

can be seen, Ek represents the total amount of radiative and
non-radiative power consumption at both drone and BS sides
over the whole service latency.

B. LATENCY-ENERGY TRADEOFF
The circuit power for communication highly depends on
the number of samples to be processed per second, i.e., the
system sampling rate, which is proportional to the bandwidth.
The amount of consumed power strongly depends on the
signal processing load due to the coding, decoding, also
backhauling of signals at the BS. This is also proportional
to the data-rate and, in turn, to the bandwidth [39], [44], [45],
[46], [47]. Instead, increasing bandwidth, based on Shannon’s
theorem, increases the data rate and, thus, decreases the
time required to offload a task. In computing resources,
on the one hand, increasing the CPU frequency of each VM
reduces the execution time; on the other hand, it increases
the energy consumption of the CPU. As it can be understood,
for drones with RCM, the bandwidth, and the CPU frequency

FIGURE 2. The parameters of channel model in drone communications.

have contradictory effects on the service latency and energy
consumption. That is, increasing these two parameters results
in increasing the power consumption and simultaneously
results in decreasing the service latency. The main trade-off
is between service latency and energy consumption. They
are interconnected through f0, k and Bk and are in essence
conflicting. As in fog-assisted wireless networks, the key
performance objectives are energy consumption and service
latency; thus, we need to minimize both these performances
jointly. In turn, we need to jointly optimize all xk , fk , f0, k and
Bk for all drones while respecting the imposed constraints and
limitations of all K drones, e.g., size of the tasks and wireless
channel conditions, with the goal of joint minimization of
service latency and energy consumption.

C. WIRELESS COMMUNICATION MODEL
During offloading and executing a task, we assume all drones
are stopped in the air. We denote the coordinates of BS
antenna as (x0, y0, z0), while the coordinates of drone k
is (xk , yk , zk). Moreover, we call rk the Cartesian distance
of drone k from the BS antenna. Inspired by [48] and
[49], the propagation channel is modeled to account for
the randomness associated with the line-of-sight (LoS) and
non-line-of-sight (NLoS) communications links. To this end,
a suitable model is given by [48] and [49]

Prk (LoS) =
1

1 + φ exp (−β (θk − φ))
(3)

where φ and β are constant values that depend on the
carrier frequency and type of environment (e.g., rural, urban,
or dense urban), and θk [rad] is the elevation angle (see
Figure 2) given by θk = arcsin ((zk − z0)/rk) [rad]. Note that

Rk (Bk) =

∑
m∈{LoS,NLoS}

Prk (m)Bk log2

(
1 +

pk
Gk(m)BkN0

)
[bits/s ] (5)
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TABLE 1. Equations of the power consumptions PBB
k and PRF

k in [mW] [44].

Prk (NLoS) = 1−Prk (LoS). The path loss for LoS andNLoS
links is mathematically modeled as [48] and [49]

Gk (LoS) = ηLoS

(
4π fcrk
c

)α
, LoS link

Gk (NLoS) = ηNLoS

(
4π fcrk
c

)α
, NLoS link

(4)

where fc is the carrier frequency, α is the path loss
exponent, ηNLoS > ηLoS > 1 are the excessive path loss
coefficients in the LoS and NLoS cases, and c is the speed of
light.

For offloading a task, the transmit power level of each
drone k is fixed at pk . Since we assumed drones are stopped,
we can also assume that Gk(LoS) and Gk(NLoS) are fixed
and also we assume the duration of task offloading is large
enough to set the expected value of the fast fading part of
all wireless channels to one. In the above circumstances,
the (ergodic) data rate of drone k for a specific bandwidth
allocation profile B = {Bk}∀ k is as (5), shown at the bottom
of the previous page, with N0 being the spectral density of the
Gaussian noise in [W/Hz].

III. SERVICE LATENCY AND ENERGY CONSUMPTION
FORMULATION
The goal is to assign the computing mode of the drones
optimally and to allocate the available radio and computing
resources among them to jointly minimize energy consump-
tion and service latency of the drones. In the following,
we compute different terms of the service latency and the
energy consumption for each drone k .

A. SERVICE LATENCY
For each drone k admitted for RCM, the total service latency
includes both the time necessary to offload and compute
the task on the fog node. Otherwise, its service latency
is only the time required to execute the task on its edge
node.

1) COMPUTING T loc
k

The duration time of local computing a task of Dk bits is
computed byCkDk/fk . To prevent division by zero, we add to
the denominator a constant ε very close to zero, and rewrite
the formula as

T loc
k (fk) =

CkDk
fk + ε

[ s]. (6)

2) COMPUTING T rem
k; ex

Similarly, the remote execution time T rem
k; ex on the fog node is

computed by

T rem
k; ex

(
f0,k

)
=

CkDk
f0,k + ε

[ s]. (7)

3) COMPUTING T rem
k; tx

For a drone k at data-rate Rk (Bk ) [bits/s ], the time necessary
to transfer Dk bits is computed by

T rem
k; tx (Bk) =

Dk
Rk (Bk)+ ε

[ s]. (8)

4) COMPUTING T rem
k

The total service for a drone k that is admitted to executing
its task remotely is thus given by

T rem
k

(
Bk , f0, k

)
= T rem

k; ex

(
f0, k

)
+ T rem

k; tx (Bk) [ s]. (9)

Therefore, the total service latency of a drone k can be
formulated by

Tk
(
xk , Bk , fk , f0, k

)
=

{
T rem
k

(
Bk , f0,k

)
if xk = 1;

T loc
k (fk) otherwise,

[ s]. (10)

B. ENERGY CONSUMPTION
Total energy consumption includes the energy consumption
for offloading a task, the energy consumption by computation
resources, and the energy consumption by flight operations
and wireless network electronic circuits at both BS and drone
sides. Here, first, we formulate different terms of energy
consumption for RCM.

1) ENERGY CONSUMPTION OF RCM
a: COMPUTING E rem

k; tx
The total radiative and non-radiative energy consumption for
task offloading is evaluated based on the wireless terminal
power consumption model proposed by [44] and [45]. In the
adopted model, the energy consumption for a transmission
includes transmitting power level and network electronic
circuits. It is evaluated as

E rem
k; tx (Bk) =

(
Pck + PBBk + PRFk + pk

)
T rem
k; tx (Bk) [Joule]

(11)

where
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TABLE 2. Hardware characterization constants.

• pk : quantifies the fixed radiative transmit power during
the time required to offload the task.

• Pck is the power consumption of the active transmission
chain in the connected mode (e.g. power amplifier). It is
equal to 1.35 W, according to experimental assessments
in [44].

• PBBk quantifies the power consumption of the BB
components (e.g. encoder circuit). It depends on the
uplink data rate Rk (Bk ), and thus Bk , following the cor-
responding equation in Table 1. Note that, in the
corresponding equation in Table 1, the value of input
parameter Rk (Bk ) is in [Mbits/s], and the result of PBBk
is in [mW] that needs to be converted to [W] in (11).

• PRFk is the power consumption of radio RF components
(e.g. modulation circuit). It depends on the transmission
power pk following the equations and conditions in
Table 1. As in our systemmodel, the value of pk is fixed,
and the value of PRFk is fixed.

b: COMPUTING E rem
k; ex

Under the assumption of low CPU voltage, the energy
consumption for each CPU cycle at frequency f is computed
by Ecyc(f ) = µf 2 [50], [51] in [Joule/CPU-cycle], whereµ is
a constant determined by the computation electronic circuits.
Therefore, drone k’s energy consumption to execute the task
on its VM is computed by

E rem
k; ex

(
f0, k

)
= µf 20, kCkDk [Joule]. (12)

c: COMPUTING E rem
k; rx

To receive a task, the BS needs to consume power for the
signal processing and decoding. This amount is proportional
to the data-rate and the bandwidth. A realistic model is
derived by [46] and [47] as follows

E rem
k; rx(Bk) = (δ + ωBk + νBk + γRk (Bk))T rem

k; tx(Bk)

[Joule] (13)

where ω, ν, γ, δ ≥ 0 are hardware characterization constants
that are specified in Table 2.

d: COMPUTING E rem
k; on

It includes the power required by flight operation and
electronic circuits to keep the BS and the drone functioning.
To quantify the power consumption incurred by flight
operation, Wk , since it is assumed that drones are stopped
during task offloading and execution, based on Newton’s
second law, only vertical force must be balanced with the

drone’s weight. That is, Wk = mkg with mk being the drone
k’s mass in [Kg ] and g = 9.8 m/s2 being the gravity
acceleration. The whole amount of non-radiative power
consumption to keep different electronic circuits on edge
nodes, the fog node and the BS functioning strictly depend
on their architecture. For example, the power consumption
of a RAM on an edge node strictly depends on its frequency
and electronic structure. Work [52] provides a model for the
power consumption of edge nodes of various architectures.
Instead, the authors in [53] develop realistic power models for
BSs with different architectures with a focus on component
level, e.g., power amplifier and cooling equipment. Actually,
the power consumption of some components, e.g., cooling
equipment, strictly depends on the environmental condition,
and its amount could even be zero. We denote by Premon the
total amount of non-radiative power consumption on the
drone, the fog node, and the BS. For Premon we will set a
constant number based on the realistic models introduced in
the existing literature, e.g., [52], [53], [54], and [55]. The
amount of energy E rem

k; on is computed by the total power
consumption Wk and Premon within the service latency of the
RCM. Thus, we simply formulate E rem

k; on as

E rem
k; on

(
Bk , f0, k

)
=

(
Wk + Premon

)
T rem
k

(
Bk , f0, k

)
[Joule].

(14)

Thus, the total energy consumption of a drone for RCM is
computed by

E rem
k

(
Bk , f0, k

)
= E rem

k; tx (Bk)+ E rem
k; ex

(
f0, k

)
+ E rem

k; rx(Bk)+ E rem
k; on

(
Bk , f0, k

)
[Joule].

(15)

2) ENERGY CONSUMPTION OF LCM
We formulate different terms of energy consumption for
LCM as follows

a: COMPUTING E loc
k; ex

Similar to E rem
k; ex, the energy required to execute the task of a

drone on the local edge node is computed by

E loc
k; ex (fk) = µf 2k CkDk [Joule]. (16)

b: COMPUTING E loc
k; on

Similar to E rem
k; on, the total amount of energy consumption

incurred by flight operation and non-radiative power con-
sumption of local electronic components on the drone is
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computed by

E loc
k; on(fk) =

(
Wk + Plocon

)
T loc
k (fk) [Joule], (17)

where we consider a fixed value for Plocon in [W] based on
the realistic power consumption models provided by [52]
and [53]. Thus, the total energy consumption of a drone for
LCM is computed by

E loc
k (fk) = E loc

k; ex (fk)+ E loc
k; on(fk) [Joule]. (18)

Then, the total energy consumption is formulated by

Ek
(
xk , Bk , fk , f0, k

)
=

{
E rem
k

(
Bk , f0, k

)
if xk = 1;

E loc
k (fk) otherwise,

[Joule].
(19)

IV. JOINT LATENCY-ENERGY OPTIMIZATION PROBLEM
Given what we outlined about the network model, the service
latency, and energy consumption objectives, we define our
joint optimization problem here. The paper has to address
this optimization problem for each drone k . The bi-objective
optimization problem formulates the joint minimization of
two objectives in (20), as shown at the bottom of the page,
where x = {xk}∀k , B = {Bk}∀k , and f0 = {f0, k}∀k . As it can
be seen, the drones are mutually coupled through variables x,
f0, andB in global constraints (20d) while all other constraints
and the utility function are local for each drone k . We observe
that theminimization problem (20) is not a standard optimiza-
tion problem, so tackling it using conventional methods is
impossible. In the following, we convert it to a standard prob-
lem to tackle it using conventional convexity programming
methods.

A. REFORMULATION OF THE JOINT LATENCY-ENERGY
OPTIMIZATION PROBLEM
As discussed above, the service latency and the energy
consumption are in general contrasting objectives. Thus,
simultaneously minimizing both objectives in (20) is impos-

sible. Instead, one of the most widely-used methods is the
weighted Tchebysheff method that minimizes the maximum
between a weighted combination of the objectives [41].
To use the Tchebysheff method, first, we denote T k and
Ek as the minimum possible service latency and energy
consumption, respectively, a drone k can achieve. The value
of T k is given by solving

T k = min
xk & Bk≤B0 & fk≤f k& f0, k≤f 0

Tk (xk , Bk , fk , f0)

[ s]. (21)

By analyzing Tk (xk , Bk , fk , f0), it is easy to see that
the service latency is a decreasing function of fk , f0, k , and
Rk (Bk ). Moreover, inspecting the first derivative of the data-
rate Rk (Bk ) with respect to Bk and exploiting that y/(1+y) <
log(1 + y) for any y > 0 shows that Rk (Bk ) is an increasing
function ofBk . This yields, theminimum value T k is achieved
at the maximum values of fk , f0, k , and Bk . Therefore, we can
write

T k =

{
T rem
k ≜ T rem

k
(
Bk = B, f0,k = f 0

)
if xk = 1;

T loc
k ≜ T loc

k
(
fk = f k

)
otherwise,

[ s]. (22)

Similarly, Ek is given by solving (23), as shown at the
bottom of the page, where E loc

k is simply computed by setting
its first-order derivative to zero. However, differently from
E loc
k , for E rem

k does not exist a closed form solution. We will
discuss its convexity later and solve it using conventional
optimization methods.

For the case of problem (20), the weighted Tchebysheff
approach leads to considering the equivalent min-max
problem in (24), as shown at the bottom of the next page,
where η ∈ (0, 1) can be interpreted as the ‘‘weight’’ that
quantifies our desire to make each objective small or large,
e.g., if we care much less about the service latency, we can
take η small. It serves to find a balance between energy
consumption and service latency in our model. From drone
k’s viewpoint, for any η ∈ (0, 1), (24) has at least one
solution that is Pareto optimal for (24) [41, Ch. 3], and

min
x,B, fk , f0

[
Tk

(
xk , Bk , fk , f0, k

)
, Ek

(
xk , Bk , fk , f0, k

)]
(20a)

s.t. xk ∈ {−1, 1}; (20b)

0 ≤ fk ≤ f k (1 − xk) /2 & 0 ≤ f0, k ≤ f 0 (1 + xk) /2 & 0 ≤ Bk ≤ B0 (1 + xk) /2 (20c)
K∑
k=1

(1 + xk) /2 ≤ N &
K∑
k=1

f0, k ≤ f 0 &
K∑
k=1

Bk ≤ B0 . (20d)

Ek =


E rem
k ≜ min

Bk≤B0 & f0, k≤f 0
E rem
k

(
Bk , f0, k

)
if xk = 1;

E loc
k ≜ E loc

k

(
fk = min

(
3
√(

Wk + Plocon
)
/2λ , f k

))
otherwise,

[Joule]. (23)
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solving (24) for all η ∈ (0, 1) yields all the points on
the Pareto boundary of (24) [41, Theorem 3.4.5]. On the
other hand, the two extreme points η = 0 and η =

1 correspond to the single-objective minimization of the
energy consumption and of the service latency, respectively.
At the end, reformulate (24) in epigraph form, yields in the
following equivalent problem

min
x,B, fk , f0, yk

yk (25a)

s.t. (20b) & (20c) & (20d) ; (25b)

Tk
(
xk , Bk , fk , f0, k

)
≤
yk
η

+ T k ; (25c)

Ek
(
xk , Bk , fk , f0, k

)
≤

yk
1 − η

+ Ek ; (25d)

where yk is an auxiliary slack variable. Problem (25)
gives us the opportunity to tackle easier the problem at
end.

B. SELECTION OF TASK COMPUTING MODE
In the minimization problem (25), for a drone with LCM
xk = −1, the left hand side of constraints (25c) and (25d) are
replaced by T loc

k (fk) and E loc
k (fk), respectively. Otherwise,

for RCM, they become T rem
k

(
Bk , f0, k

)
and E rem

k

(
Bk , f0, k

)
,

respectively. We introduce ylock and yremk as the equivalents of
yk for xk = −1 and xk = 1, respectively. For xk = −1,
problem (25) becomes a simplified minimization problem as
follows

min
fk , ylock

ylock (26a)

s.t. 0 ≤ fk ≤ f k ; (26b)

T loc
k (fk) ≤

ylock
η

+ T loc
k ; (26c)

E loc
k (fk) ≤

ylock
1 − η

+ E loc
k ; (26d)

where T loc
k and E loc

k come from (22) and (23), respectively.
The constraints and the objective function in (26) depend
only on local variables of drone k , so each drone can
solve problem (26) independently to find its optimal values
(f ∗
k , y

loc, ∗
k ) without interacting with the other drones. For

xk = −1, the value of T loc
k (f ∗

k ) and E
loc
k (f ∗

k ) are computed
and used to find the Pareto boundary between service latency
and energy consumption at a given η.

From the network’s viewpoint, it is obvious that the
preferable mode is the LCM. A drone will opt for the RCM
only if it can achieve better performance by considering
the weight η. We can define a threshold to select the best

computing mode for a task as follows1

ν
loc, ∗
k = max

[
ηT loc

k (f ∗
k ), (1 − η)E loc

k (f ∗
k )

]
. (27)

and similarly, we define the following variable for RCM:

νremk = max
[
ηT rem

k
(
Bk , f0,k

)
, (1 − η)E rem

k
(
Bk , f0,k

)]
(28)

As a decision strategy, a drone k will select the RCM only
if νremk achieves a value less than the fixed threshold νloc, ∗k .
This translates to checking whether the resource allocation
optimization problem can guarantee the following constraint

1νk ≜ νremk − αν
loc, ∗
k ≤ 0 (29)

where the positive constant α is a network-centric parameter.
Setting a positive value close to zero for α forces the drones
to choose the LCM. Conversely, assigning a large value
to α will result in the drones selecting RCM. Assigning
RCM to all drones is a realistic approach when executing
tasks requires data integration across multiple activities or
interaction with a centralized database. This approach is
applicable in various fields, such as national security, health
monitoring environments, and disaster management [56].
To fully exploit the network resources and achieve optimal
performance, the parameter α should be set to a value around
one. By imposing constraint (29) and tuning α, we can
assign available wireless channels and fog nodes to the most
beneficial drones for task offloading.

Therefore, we introduce the minimization problem shown
in (30), as shown at the bottom of the next page, to address
this issue. In order to ensure that constraint (30d) can be
satisfied, we need to add a new constraint (30d) to the
joint minimization problem in equation (25). Additionally,
we must add constraints to (30e) for the variable νremk .
This converts the optimization problem in (25) into the
minimization problem presented in (30). Here, ε is a small
positive constant close to zero that ensures −1 ≤ ε1νk ≤ 1.
If 1νk ≤ 0, constraint (30d) is converted to 0 ≤ (1 − xk )/2.
Maximizing xk in the objective function results in xk equaling
one. Otherwise, if 1νk > 0, constraint (30d) is converted to
0 < (1 − xk )/2, and therefore xk will be set to −1. Thus, xk
will only equal one if condition (29) is met.

C. ACCESS STRATEGY TO THE BS
In the case of K > N , it is possible for constraint (29),
which governs the task computing mode, 1νk ≤ 0, to be

1Note that, we cannot use yloc, ∗k instead of νloc, ∗k since, for example, the
relation T loc

k (f ∗k ) − T loc
k ≤ T loc

j (f ∗j ) − T loc
j does not necessarily result in

T loc
k (f ∗k ) ≤ T loc

j (f ∗j ).

min
x,B, fk , f0

max
[
η

(
Tk

(
xk , Bk , fk , f0, k

)
− T k

)
, (1 − η)

(
Ek

(
xk , Bk , fk , f0, k

)
− Ek

)]
(24a)

s.t. (20b) & (20c) & (20d), (24b)
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satisfied by more than N drones. This scenario implies that
there are not enough wireless channels to offload all tasks
concurrently. The optimal solution is to allocate N wireless
channels toN drones that can benefit themost and achieve the
minimum νremk . In this regard, for drones with 1νk ≤ 0, the
values of νremk are sorted in ascending order, and only the first
N drones are assigned to RCM, while the rest are assigned
to LCM. To enable individual computing mode selection for
each drone, while considering the values of νremj of the other
drones with j ̸= k , we devise the following strategy.

For a drone k where the constraint 1νk ≤ 0 is feasible,
it checks whether it is in the first N most beneficial
drones for task offloading. This is determined by comparing
the number of opponents j ̸= k with 1νj ≤ 0 and
νremj ≤ νremk to the number of available wireless channels
N . If the number of such opponents is greater than or equal
to N , it means that the drone k is not beneficial for the
task offloading and sets xk = −1. To solve this access
strategy problem for each drone k , we introduceminimization
problem (31), as shown at the bottom of the page, where the
drone optimizes xk individually, taking into consideration the
values of {νremj }∀ j. To improve readability, we introduce the
optimization problem in (31) as a separate problem. However,
it will actually be integrated into the main problem defined
in (30) without any conflicts between the constraints and
objectives. When K > N , the minimization problem for each
drone k can be defined as shown in (31). Here, nk = nkj for

all j ̸= k are binary slack variables, ν = {νremk }∀ k , and ε
is again a small positive constant close to zero. For a drone
j ̸= k , if both conditions 1νj ≤ 0 and νremj ≤ νremk are
met, then constraints (31c) and (31d) will be converted to 0 ≤

(1−nkj)/2. Maximizing nkj results in it being set to 1. On the
other hand, if either of the conditions does not hold, then the
constraint will be converted to 0 < (1 − nkj)/2, and nkj will
be set to −1. In this way,

∑
j̸=k (1 + nkj)/2 gives the number

of drones j ̸= k with 1νj ≤ 0 that will be more beneficial
than drone k for task offloading. Drone k will be assigned for
task offloading only if both conditions

∑
j̸=k (1 + nkj)/2 ≤

N − 1 and1νk ≤ 0 are satisfied. This can also be verified in
constraint (31e). It is worth noting that constraint (30d) can
be substituted with (31e). Lastly, it is important to note that
the drones are mutually coupled through variables ν in the
global constraint defined in (31c). Summarizing the problem
at the end, the minimization problem of each drone is defined
as

If K ≤ N :
Problem (30)

If K > N :
Problem [(30), (31)]

This approach provides a fair and efficient way to allocate
tasks among multiple drones with limited wireless resources.
By allowing each drone to individually select its computing
mode based on the availability of wireless channels and
the remaining computation workload of other drones, the

min
B, x, f0, νremk , yremk

yremk + νremk − xk (30a)

s.t. Global constraints in (20d) ; (30b)

xk ∈ {−1, 1} ; (30c)

max (ε1νk , 0) ≤ (1 − xk) /2; (30d)

T rem
k

(
Bk , f0, k

)
≤
νremk

η
& E rem

k
(
Bk , f0, k

)
≤
νremk

1 − η
; (30e)

0 ≤ f0, k ≤ f 0 (1 + xk) /2 & 0 ≤ Bk ≤ B0 (1 + xk) /2 ; (30f)

T rem
k

(
Bk , f0, k

)
≤
yremk
η

+ T rem
k ; (30g)

E rem
k

(
Bk , f0, k

)
≤

yremk
1 − η

+ E rem
k ; (30h)

min
xk , ν,nk

−

∑
j̸=k

nkj (31a)

s.t. nkj ∈ {−1, 1} ; ∀ j ̸= k (31b)

ε1νj ≤
(
1 − nkj

)
/2 ; ∀ j ̸= k (31c)

ε
(
νremj − νremk

)
≤

(
1 − nkj

)
/2 ; ∀ j ̸= k (31d)

max

ε
∑
j̸=k

(
1 + nkj

)
/2−N + 1

 , ε1νk , 0

 ≤ (1 − xk) /2 (31e)
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approach maximizes the total offloading benefit while
avoiding congestion and ensuring fairness. The proposed
method can be used in various applications, such as surveil-
lance, search and rescue, and environmental monitoring,
where multiple drones need to coordinate their tasks to
achieve a common goal.

V. CONVEXIFICATION OF THE MINIMIZATION PROBLEM
The goal of our resource allocation problem is to share
available bandwidth and the CPU capacity of the fog node
among drones. As discussed above, the impacts of the
variables Bk and f0, k on different terms of service latency and
energy consumption are contrasting and so, we need to jointly
minimize both objectives to achieve the best tradeoff between
them. To this end, in Sect. VI, we will model the competition
among drones to achieve common resources using game
theory. Before, as it is needed by any optimization algorithm,
we check the convexity of the minimization problem of
each drone k . The convexity of the terms T loc

k (fk ), E loc
k (fk ),

E rem
k; ex

(
f0, k

)
, and E rem

k; on

(
Bk , f0, k

)
are simple to verify by

inspecting the second order derivative.

A. CONVEXIFICATION OF BINARY VARIABLES xk AND nk
We know that a binary variable is inherently non-convex.
In order to release this issue on 3k = {xk , nk}, we use the
method presented by [57]. We denote a slack vector variable
v = {vk , vk} ∈ RK with vk ≜ {vkj}j̸=k where vk corresponds
to xk and vkj to nkj. Following the method, the following
constraints need to be added

∥v∥22 ≤ K & −1 ≤ 3k ≤ 1 & vkxk + vTk nk = K .

(32)

The minimization problem can be solved iteratively over
x and v alternatively. The convergence of the algorithm is
guaranteed at the point v = 3k . At each iteration q, first,
given vq, we solve the minimization problem as a function of
3k to obtain 3q+1

k . Then, the following optimal solution for
v is defined [57]

vq+1
=

{ √
N3q+1

k /∥3
q+1
k ∥2, 3

q+1
k ̸= 0;

any 3k with ∥3k∥
2
2 ≤ N , otherwise.

(33)

B. CONVEXITY CHECK OF T rem
k

(
Bk , f0,k

)
The term T rem

k; ex

(
f0,k

)
is a convex function of f0, k . By neglect-

ing inessential constant terms with respect to Bk , the term
T rem
k; tx(Bk ), from convexity viewpoint, has the form 1/Rk (Bk ).

By exploiting the second-order derivative, we find thatRk (Bk )
is a concave function in Bk . As Rk (Bk ) is a strictly positive
function, its reciprocal is a convex one [40]. Therefore,
T rem
k

(
Bk , f0, k

)
is jointly convexwith respect to both variables

f0, k and Bk .

C. CONVEXITY CHECK OF T rem
k; tx

(
Bk

)
By neglecting inessential constant terms with respect to Bk ,
the term T rem

k; tx(Bk ) has the form 1/Rk (Bk ) that is a convex
function.

D. CONVEXITY CHECK OF E rem
k; rx

(
Bk

)
In E rem

k; rx(Bk ) (13) we set Rk (Bk )/(Rk (Bk ) + ε) = 1.
By neglecting inessential constant terms with respect to Bk ,
the energy consumption E rem

k; rx(Bk ) has the form Bk/Rk (Bk ).
By inspecting the second order derivative and exploiting that
1/(1+x) < log(1+1/x) < 1/x for x > 0, it can be seen that
Bk/Rk (Bk ) is a concave function. To tackle the non-convexity
of E rem

k; rx(Bk ), inspired by [58] and [59], we substitute it by an
equivalent convex function as

E rem
k; rx(Bk ; c) = (ω + ν)

(
c−

Bk
Rk (Bk)

)
+ γDk (34)

where c > 0 is given and at each iteration t it is being updated
iteratively by

ct+1
=

2Btk
Rk

(
Btk

) . (35)

Therefore, in the RCM, the total energy consumption of
each drone is converted to the following convex function

E rem
k

(
Bk , f0, k ; c

)
= E rem

k; tx (Bk)+ E rem
k; ex

(
f0, k

)
+ E rem

k; rx(Bk ; c)+ E rem
k; on

(
Bk , f0, k

)
.

(36)

Now, the formula Ek (23) is rewritten as the following convex
problem

Ek =


min

Bk≤B0 & f0, k≤f 0
E rem
k

(
Bk , f0, k ; c

)
if xk = 1;

min
fk≤f k

E loc
k (fk) otherwise,

[Joule]. (37)

Then, constraint (30h) is converted to

E rem
k

(
Bk , f0, k ; c

)
≤

yremk
1 − η

+ Ek . (38)

For convexification, while most existing papers in the
literature use the SCA method, there is always a gap between
the original non-convex function and the converted convex
one. In general, the gap is unknown and it could be large
since the SCA method replaces a non-convex function with
its first-order Taylor series. It is important to emphasize
that, here, E rem

k

(
Bk , f0, k ; c

)
is an equivalent convex function

of E rem
k

(
Bk , f0, k

)
and there is no any gap between them.

Therefore, our convexification process does not result in
optimality degradation.

E. CONVEX OPTIMIZATION PROBLEM OF EACH DRONE
Here, we define the feasible set of each drone. We integrate
optimization problems (30) and (31) and define the convex
feasible domain of each drone. Since min function is concave
and max function is convex [40], we can see the convexity of
the constraints in (30) and (31). We denote by F and Lk the
global and local constraints related to drone k , respectively,
which are defined by

F ≜ {(20d) & (31c) & (31d)} (39)
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and

Lk ≜ {(30d) & (30e) & (30f) & (30g) & (31e) &

& (32) & (38)}. (40)

Finally, theminimization problem of each drone k is rewritten
to the following convex one

min
B, x, f0, v,nk , ν

yremk + νremk − xk −

∑
j̸=k

nkj (41a)

s.t. F & Lk . (41b)

Unlike sub-problem (26), in convex sub-problem (41),
a drone k needs to exchange the information about the
variables (Bk , xk , f0, k , νremk ) to handle the global constraints
in F . In the next section, we will model the interaction
among the drones in (25) using non-cooperative game
theory and introduce an iterative distributed algorithm to
compute the NE. For later convenience, we denote wk ≜
(Bk , xk , f0, k , νremk ) as the variables of drone k which are
being exchanged with other drones and by w ≜ (B, x, f0, ν)
as the global variables through which the drones are mutually
coupled. We also denote by ψk ≜ (w, nk , v) as the state
of each drone k in sub-problem (41). We further denote the
feasible set of ψk by

Sk ≜
{
ψk ∈ R6K−1

+ : All the constraints in {F & Lk}
}
.

(42)

The convex optimization problem (feasible set) of each drone
k is thus rewritten as

min
ψk

uk (ψk) (43a)

s.t. ψk ∈ Sk (43b)

where uk (ψk) denotes the objective function of drone k
in (41). As optimization problem (43) is convex, based on
the weighted Tchebysheff theorem, for each η ∈ (0, 1) it
has a unique solution that is (strong) Pareto-optimal [41,
Ch. 3]. Therefore, by solving optimization problem (43) for
all values of η in the range of (0, 1), we will obtain the
Pareto boundary between the service latency and energy
consumption for a drone.

The present study investigates the problem of joint radio
and computing resource allocation in fog-assisted drone
communications, with a focus on modeling the competition
among drones to access the available resources. To this end,
we adopt a non-cooperative game-theoretic framework in
our analysis. The key difference between a cooperative and
a non-cooperative approach lies in the extent to which the
players can be induced to cooperate. In a non-cooperative
game, cooperation is typically achieved as a result of self-
optimization, as unilateral deviations are not beneficial for
the players. Conversely, in a cooperative game, the players are
willing to cooperate and seek to reach a mutually beneficial
agreement. However, we note that algorithms based on
cooperative games suffer from significant computational

complexity and scalability issues, especially when the
number of variables and constraints is large [60], [61]. Given
that our minimization problem (43) involves a large number
of variables and constraints, we need to opt for a non-
cooperative game-theoretic framework, which is better suited
to handle such scenarios. Specifically, we choose a non-
cooperative game-theoretic model as it allows for efficient
and scalable solutions to the resource allocation problem,
even in scenarios with a large number of variables.

VI. NON-COOPERATIVE GAME FORMULATION
For a given η, a decentralized resource allocation algorithm
looks for the solution of the following K problems that
are mutually coupled through the variables w in global
constraints F :

arg min
ψk∈Sk(w\k)

uk (ψk) (44)

where Sk
(
w\k

)
is the feasible set Sk (42) given w\k ≜

{wj}∀ j̸=k . That is the values of wjs of all the competitors
of drone k . Note that in (44) we write uk (ψk) instead
of, as usual in the literature, uk

(
ψk ; w\k

)
since w\k does

not impact the objective function but the constraints in Sk .
We begin by modeling the interactions between K drones
as a non-cooperative game wherein each drone k wishes
to minimize its utility function uk (ψk) while satisfying the
associated constraints.

A. GAME FORMULATION
We denote our non-cooperative game by

G ≜
{
{k}Kk=1 ,

{
Sk

(
w\k

)}
∀ k , {uk (ψk)}∀ k

}
(45)

The K coupled problems in (44) define the best-response
dynamics (BRD) of the game, while the solution of the k-
th problem in (44) is the k-th drone’s best-response to the
other drones. We recall that, the best response brk (w\k ) of
each drone k to w\k is defined as

brk
(
w\k

)
≜ arg min
ψk∈Sk(w\k)

uk (ψk) . (46)

In general, a non-cooperative game may have zero, one,
or more (pure) equilibria. It is not guaranteed that the
BRD converges to an equilibrium even if one or more
equilibria exist. Therefore, it is essential to establish the
existence and uniqueness of an equilibrium and whether
the BRD converges to an equilibrium. However, unlike
conventional non-cooperative games, our scenario is more
challenging because the drones’ strategy sets are mutually
coupled through the global constraints in F . To address
this challenge, we use the category of generalized non-
cooperative games [62], [63], [64]. To proceed further,
we recall that ψ⋆ = {ψ⋆k }∀ k is a pure-strategy generalized
NE (GNE) vector of the game G, where each element ψ⋆k is
the BRD brk (w⋆\k ) to the coupled strategies w⋆

\k chosen by
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the competitors. Any fixed point of the BRD is a GNE of the
game.

B. ANALYSIS OF THE EQUILIBRIA
More restrictive conditions (than classical non-cooperative
games) have to be fulfilled for a unique GNE to exist and
for the best-response to converge. All this is addressed in the
following.
Lemma 1 (Existence and Uniqueness of GNE): The game

G admits a unique nonempty set of GNE points.
Proof:Observe that the existence of aGNE is guaranteed

under the following first three assumptions and the unique-
ness under the fourth condition [63]:

1) Existence: The drones’ feasible action set Sk
(
w\k

)
are nonempty, closed, convex, and contained in some
compact set Ck for all feasible values for the vector w\k .

2) Existence: The sets Sk
(
w\k

)
vary continuously with

w\k (in the sense that the graph of the set-valued
correspondence w\k → Sk

(
w\k

)
is closed).

3) Existence: Each drone’s utility function is continuously
differentiable in ψk given w\k .

4) Uniqueness: The feasible set of each drone, minimiza-
tion problem (43), is convex on ψk given w\k .

In our setting, as discussed above, the constraints in Sk
are convex. It is also simple to discuss that the set
Sk

(
w\k

)
is nonempty, closed, convex, and bounded for

each w\k . Moreover, each of them varies continuously
in their variables. The non-convex constraints are con-
vexified in Sect. V. Furthermore, as the utility functions
of the drones are linear functions and independent of
each other, they are continuously differentiable and convex
functions.

In the following, we introduce an iterative algorithm to
compute the unique GNE and prove its convergence. The
following parts are derived from the results in [65] and [66].

C. COMPUTE THE UNIQUE GNE
Here, we represent the best-response algorithm to converge
the unique GNE of our game G. For convenience, first,
we represent global convex constraints F in the standard
form of convex constraints and we denote them by the vector
F(w) ≤ 0. Let us also denote by F(wk ; w\k ) as a function
of wk given the values of w\k . We introduce the following
minimization problem for each drone k:

min
ψk

uk (ψk)+ λTF(wk ; w\k ) (47a)

s.t. ψk ∈ Sk
(
w\k

)
(47b)

From the duality theory [40] point of view, the vector
λ is the Lagrangian multipliers associated with the global
constraints F(wk ; w\k ). By doing this, we have incorporated
the global constraints as a part of the utility function. We will
show that the drones, by distributively optimizing (47), obtain
the GNE point. Equivalently, the BRD for each drone k is

Algorithm 1 Subgradient Projection Algorithm

1 solve convex problem (26) to obtain
(
f ∗
k , y

loc, ∗
k

)
for

all k = 1, . . . ,K ;
2 initialize t = 0; step size sequence {γ t }; λt ≥ 0; a
feasible xt , Bt , and ft0;

3 repeat

4 compute brt+1
k

(
wt

\k

)
=

arg min
ψk∈Sk

(
wt

\k

) uk (ψk)+ λt,TF
(
wk ; wt

\k

)
∀ k;

5 update λt+1
=

[
λt + γ tF

(
wt+1

)]+
;

6 set t = t + 1; //Iteration number;
7 until (convergence of λ);
8 set f ∗

k = f ∗
k

(
1 − x tk

)
/2; f ∗

0, k = f t0, k ; B∗
k = Btk ; ∀k;

9 return (f ∗
k , f

∗

0, k , B
∗
k ) ∀ k; //GNE obtained at

λt = λ⋆;

Algorithm 2 Solving brt+1
k

(
wt

\k

)
in Algorithm (1)

1 initialize v and c by feasible values;
2 repeat
3 repeat

4 solve brt+1
k

(
wt

\k

)
while fixing v, ν, B and f0;

5 update v as in (33);
6 until (3k = v);

7 solve brt+1
k

(
wt

\k

)
while fixing v and 3k ;

8 update c as in (35);
9 until (convergence of 3k and c);

represented by

brt
(
w\k

)
≜ arg min
ψk∈Sk(w\k)

uk (ψk)+ λTF
(
wk ; wt−1

\k

)
(48)

We denote by λ⋆ as the optimal value of λ. Of course,
the value of λ⋆ in (47) is unknown a priori, but it can
be found by, for example, subgradient method [67], that
is an iterative algorithm. Specifically, we can design a
double-loop algorithm: i) in the inner loop, given the
Lagrangian multiplier λ = λt and the global variables of
the competitors w\k = wt

\k , one distributively computes the
unique optimal solution of (47) for each drone k and obtain
(wt+1

k , nt+1
k , vt+1); ii) in the outer loop, the Lagrangian

multiplier λt is updated according to a subgradient-based
projection method. Optimization problem (47) in the inner
loop can be solved using standard convex optimization
techniques, e.g. log-barrier method [40], or using existing
optimization tool such as CVX [68] that is a Matlab-base con-
vex optimization framework.We summarize this double-loop
algorithm in Algorithm 1. The parameter γ t is the tth step
size. There are some well-known step size rules to guarantee
the convergence to the value of λ⋆. For example, one can
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use [67]

γ t → 0;
∞∑
t=1

γ t = ∞;

∞∑
t=1

(
γ t

)2
< ∞. (49)

One typical example is γ t = a/(b+ t), where a, b > 0.
The flowchart in Figure 3 provides a visual representation

of the integrated structure of Algorithms 1 and 2, illustrating
the iterative process and convergence criteria involved in the
problem transformation. According to our convexification
methods in Sect. V, in the inner-loop optimization (Line 4)
of Algorithm 1, there are two loops: one loop on the iteration
for the convexification of the binary variables 3 = {xk , nk},
and the second loop on the iteration for the parameter c
in (35). The procedure is summarized in Algorithm 2. The
best-response of brt+1

k

(
wt

\k

)
is computed using a standard

convex optimization solution. In the inner-loop optimization
(Line 4) of Algorithm 1, the only information required
by the t-th individual problem is the aggregate trading
vector of all the competitors, wt

\k . In the outer loop of the
algorithm, to update the Lagrangian vector λt (Line 5), the
computing server needs to collect the optimized value of
wt . For the convergence proof, we refer the reader to [65]
and [66]. The proof is based on the features of potential
games.

VII. NUMERICAL RESULTS
In this section, we present the simulation results to evaluate
the performance of the proposed algorithm.

A. NETWORK SETUP
Consider the system model described in Section II, with
system parameters as: N0 = −174 dBm/Hz, pk = 10 W,
f k = 1.2 GHz, f 0 = 12 GHz, the path loss exponent
α = 2, ηNLoS = 23 dB, ηLoS = 3 dB, ψ = 11.95,
β = 0.14, and fc = 2.4 GHz. The mass of a drone is
set by mk ∼ Unif[3, 4.5] Kg. We set the size of each
task by Dk ∼ Unif[4, 10] MBytes and the complexity
of each task by Ck ∼ Unif[100, 400] CPU-cycle/bit.
Based on assessments in [52] and [55], practical amounts to
Plocon ∼ Unif[2, 3.5] W and Premon ∼ Unif[3, 5] W are set.
By reading the specifications of various CPUs [69], [70], two
types of CPUs, denoted by {CPU-A, CPU-B}, are chosen
with power consumption coefficients µ = {10−25, 10−22

},
respectively.

B. THEORETICAL PERFORMANCE
Figure 4 demonstrates the Pareto boundary between energy
consumption and service latency for a network with K =

4 drones randomly located in a 70 m radius cell, considering
different configurations with settings B0 = {1, 5} MHz
and two different CPUs. Each figure reports four curves.
The blue solid and dashed lines depict the results of the
proposed Algorithm 1 with variations N = 4 and N = 2,
respectively, and by setting α = 1 in computing strategy
condition (29). The green dotted curve depicts the result of

FIGURE 3. Flowchart representing the integrated structure of
Algorithms 1 and 2.

the proposed algorithm when N = 4 drones are forced to
select RCM. To set xk = 1 for all k , it is enough to set a
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FIGURE 4. Pareto boundary between Energy consumption [Joule] and service latency [s] with K = 4.

large positive number for α in strategy condition (29) and
executing Algorithm 1 to optimize the variables (Bk , f0, k ).
The red dash-dotted curve depicts the case when all drones
are forced to LCM. In the case, xk = −1 for all k ,
each drone has to solve the minimization problem (26)
individually to optimize fk . It is obvious that changing
B0 does not impact red curves; those are impacted only by
changing the type of CPU (changing power consumption
coefficient µ).
The proposed algorithm outperforms both forced RCMand

LCM, especially with an increased number of wireless chan-
nels, giving more flexibility to satisfy computing strategy
condition (29). In cases where all drones choose RCM (green
dotted curve), energy consumption is higher, and offloading
time is greater than the proposed solution. Conversely, forced
LCM (red dash-dotted curve), as the task is executed by a
relatively low-capacity CPU, increases task execution time.
Interestingly, when η is close to one, increasing the B0 from
1 to 5 MHz leads to a decrease in energy consumption,
whereas it does not impact the range of service latency.

Figures (5) and (6) depict energy consumption and service
latency against available bandwidth B0 in a network with
CPU-B and with η = 0.01 and η = 0.99, in the
Tchebysheff problem formulation (24). The results affirm
that the proposed game theory-based solution consistently
achieves lower energy consumption and service latency than
non-optimized networks. Small B0 results in higher values,
while in optimized scenarios, drones do not necessarily utilize
the entire bandwidth, leaving some unused.

Comparing optimized bandwidth assignment (blue solid
curve) with non-optimized scenarios, it can be seen that
increased B0 reduces energy consumption to 0.6 of the green
dotted curve (forced RCM) and to 0.3 of the red dash-dotted
curve (equal bandwidth division among drones) at B0 =

10 MHz.
From Figure 6, increasing available bandwidth signifi-

cantly improves service latency in optimized scenarios. The
achieved latency by the blue solid curves reaches 0.5 of
the green dotted curves and 0.4 of the red dash-dotted
curves.
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FIGURE 5. Energy as a function of bandwidth with K = N = 4 and CPU-B.

FIGURE 6. Service latency as a function of bandwidth with K = N = 4 and CPU-B.

These comprehensive results underline the efficiency
and robustness of the proposed solution, demonstrating
substantial improvements in energy consumption and service
latency over conventional and non-optimized computing
modes, even with variations in bandwidth and computing
strategy.

C. COMPARATIVE DISTINCTION
While our proposed algorithm focuses on the unique
objective of jointly minimizing service latency and energy
consumption, it may appear natural to seek a comparison
with existing works. However, the specific formulation of
our problem, combined with the exacting convexification
techniques we employed, sets our work apart in a founda-
tional manner. It is imperative to note that due to the lack
of a gap in our convexification method, outperforming the
result we achieved is inherently infeasible. This ensures we
attain the absolute global optimum without compromising
efficiency, a criterion not directly comparable with many
prevalent methods. Nevertheless, we have illustrated the

advantages of our approach by contrasting it with networks
where the computing modes of drones are not optimized.
While this comparison might seem intuitive, it highlights
the significant gains realized through our methodology.
We believe that these distinctions, complemented by the
pioneering techniques introduced, underscore the novelty and
substantial contributions of our research.

D. CASE STUDY
As a case study, we consider a network with K = N = 4,
B0 = 5 MHz, and CPU type of CPU-B. We consider two
distances from the drones to the BS, short and long distances,
and two types of computational tasks, light, and heavy tasks.
As it is described in Table 3, drones 1 and 2 are close to the
BS, while the other two drones are at a long distance. Drones
1 and 3 have light tasks to execute, while the other two drones
have heavy ones. Figure 7 depicts the service latency as a
function of the transmit power level pk . As it can be seen,
at a low transmit power level, the service latency does not
change. This means all drones select the LCM. This happens
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TABLE 3. Case study with four drones.

FIGURE 7. Service latency as a function of the transmit power with
K = N = 4 and CPU-B.

since, at a low transmit power level the achieved data rate is
low and, in turn, offloading the task requires a relatively long
time, so selecting the RCM is not beneficial. As the transmit
power level increases, the time required to offload the task
decreases, so selecting the RCM to exploit the powerful CPU
on the fog node could be beneficial. It is obvious that this
happens at a lower transmit power level for drones at a short
distance to the BS and the drones with light tasks. For drone 4,
at a long distance with a heavy task, the RCM is preferred
only at a very high transmit power level.

VIII. CONCLUSION
In this paper, we introduced a resource allocation method
for fog-assisted drone communication networks, targeting
the joint minimization of energy consumption and service
latency while factoring in both physical and application layer
constraints. Our approach enables drones to choose between
local computing mode (LCM) and remote computing mode
(RCM) as per their requirements. The resource allocation
algorithm designed assigns bandwidth for drones in RCM
and modulates the CPU frequency of edge and fog nodes
to balance latency and energy usage. We incorporated
realistic models for drone electronic circuit power con-
sumption. Utilizing the Tchebysheff theorem, we established
a bi-objective minimization to pinpoint the latency-energy
Pareto boundary and ensured convexity for each drone’s min-
imization problem. We modeled drone interactions through
a non-cooperative game and introduced an algorithm, based
on subgradient projection, to determine the unique Nash
equilibrium. Simulations show our algorithm outperforms
networks with non-optimized drone computing modes or
evenly distributed bandwidth.
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