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ABSTRACT Recorded Electroencephalogram (EEG) signals are typically affected by interference and
artifacts, which can both impact eye reading and computer analysis of the data. Artifacts are induced by
physiological (noncerebral) activities of the patient, such as muscular activities of the eyes, or the heart,
or the body, while interference may be of external or internal origin. External interference can be induced
by electrical machines if the latter are in the same room as the patients, while internal interference can
be caused by abnormal breathing, or body movement, or electrode malfunction, or headset movements.
Interference may cause severe distortion of EEG signals, resulting in loss of some segments of brain signals,
while artifacts are additive signals to brain signals. Therefore, in order to analyze the brain activity signals
of a patient, we need to identify and eliminate interference and isolate artifacts. In this paper, we analyze
the EEG signals that were recorded using a headset with fourteen channels placed on the heads of comatose
patients at the National Institute of Neurology in Tunis, Tunisia. We identify the interference using a robust
statistical method known as projection statistics and we separate the brain signals from the artifacts cited
above by applying an independent component analysis method. Finally, we show the multifractal behavior
of the EEG signals without interference by applying the wavelet leader method and analyze their properties
using the singularity spectrum.

INDEX TERMS Electroencephalogram signals, artifacts, interference, independent component analysis,
projection statistics, multifractal analysis, EEGlab toolbox.

I. INTRODUCTION
EEG signals are recordings of the bioelectric activity of the
brain using electrodes placed on the scalp of a person [1].
Their real-time analyses using the brain-computer interface
have made remarkable progress in recent years [2]. These
analyzes provide valuable information about the neural
activities of the brain, allowing us to perform diagnostic
tests of brain diseases such as epilepsy and metabolic
encephalopathy, among others. However, EEG recordings
suffer from two major problems that stem from their
vulnerabilities to (1) interference picked up by the electrodes
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from the environment or the human body and (2) artifacts
caused by the physiological activities of the body. In order to
overcome these problems, many approaches and techniques
have been proposed in the literature [3], which can be grouped
as follows.

1) Deletion: Abnormal segments of an EEG signal that
strongly deviate from the remaining part are manually
identified and deleted [3]. However, this method is
unreliable because it may either miss the detection of
interference signal segments or delete valuable EEG
signal segments.

2) Filtering: A number of signal filtering techniques
have been proposed to improve EEG recorded
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signals [4], [5]. The most efficient ones include a band-
pass filter where the lower cut-off frequency is selected
between 0.5Hz and 1Hz to reduce the electrode drift.
For mobile EEG recordings, it is suggested to select a
higher cut-off frequency in the range of 2Hz to 3Hz [6].
Concerning the upper cut-off frequency, it is chosen
between 49Hz and 59Hz depending on the noise level
in the region where the recordings are performed.

3) Regression Methods: Using regression methods, asso-
ciated artifacts are removed by processing two dif-
ferent databases of EEG signals, which are recorded
separately or simultaneously; here, one is marked as
the reference database, while the other is marked
as the headset database [7]. For example, in addition to
the headset placed on the head of a patient, electrodes
are also placed either on every eye to record the artifacts
generated by eye blinking and eye movements, or on
the heart, or on the neck muscles. Evidently, this
approach will provide unreliable results if the artifacts
occur simultaneously or if there is interference, which
is typically the case in practice.

4) Blind Source Separation (BSS): This method is applied
when only the mixed signals are available while
both the source signals and the mixing functions are
unknown. A version of BSS has been applied mainly
to EEG signals as indicated in [8] and [9].

The most successful methods proposed by signal process-
ing researchers and used by neurologists to isolate artifacts in
recorded EEG signals without utilizing additional recorders
are Independent Component Analysis (ICA) methods [10],
[11]. These methods assume statistical independence and
additive mixing of recorded signals. They have been applied
to detect certain special brain activities such as epileptic
activities [12] or to extract specific artifacts such as eye
blinking [13] or skeletal muscle movements [14], to name a
few. Despite their popularity, ICA methods do not provide
good results when there is either (1) an insufficient number
of electrodes that is smaller than that of the mixed signals,
or (2) a high level of interference induced by the proximity
of electrical machines, or (3) a distortion of the EEG signals
due to the displacement of the headset from its initial position
following the patient’s head movement or the movement of a
person near the headset when the latter is recording.

To overcome these weaknesses, in this paper, we propose
to first estimate projection statistics to detect and remove the
spikes of the EEG signals induced by interference. Projection
statistic is a robust version of the classical Mahalanobis
distance, which allows us to reliably identify and delete
outliers in the EEG signals. Then, we execute an ICA
method to separate the artifacts from the signals generated
by the brain. Finally, we analyze the multifractal properties
of segments of EEG signals without interference using the
wavelet leader method and the derived singularity spectrum.

The paper is organized as follows. Section II defines
and classifies the interference and artifacts of recorded
EEG signals. Section III defines the projection statistics

and provides the algorithm for their calculation. Section IV
outlines the most popular ICAmethods. Section V reveals the
multifractal properties of the EEG signals using the wavelet
leader and the bootstrapping method. Section VI highlights
the properties of the recorded EEG signals. Section VII
provides conclusions and outlines some future work.

II. INTERFERENCE AND ARTIFACTS OF THE RECORDED
EEG SIGNALS
A. SIGNAL RECORDINGS
The recordings were made with an EMOTIV EPOC X-14
channel wireless EEG headset. The 14 headset channels are
labeled AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, andAF4. The headset waswirelessly connected to an Intel
Core i3 laptop, which is placed between 1 and 2 meters from
a patient. The sampling rate was set at 256 Hz with a filter
band of 1Hz to 49Hz. More than 50 signals were recorded
from 22 patients. Among them, we chose only 15 signals
to be cleaned from interference and separated into artifacts
components and brain signals components. These signals
contain all the interference and artifacts that may affect a
recorded EEG signal from a comatose patient in an intensive
care room.

B. INTERFERENCE
Definition 1:An interference is a distortion of the EEG signal
that results in the loss of some segments of the brain signal.

The causes of internal and external interference include the
following:

• Electrodermal activity: Electrodermal interference orig-
inates from changes in the electrolyte concentration of
the EEG electrodes.

• Heavy breathing and respiratory devices: Chest move-
ments due to breathing can induce movements of the
head and therefore of the electrodes on the pillow,
resulting in slow and rhythmic potential changes in these
electrodes. Heavy breathing from a comatose patient
causes a distortion in the EEG signal.

• Abnormal movements: Small and a fortiori large move-
ments of a comatose patient affect the EEG signals by
causing deviations of the EEG electrodes. Furthermore,
the movements of another person near the EEG headset
disturb the EEG signal, especially if it is a portable
headset.

• Electric machines: External interference is induced by
the electric machines located in the reanimation room.

C. ARTIFACTS
Definition 2: An artifact is an additive signal to the brain
signal that is not a noise.

Artifacts are classified as follows:
• Ocular (EOG): Ocular artifacts, known as EOG arti-
facts, are of two types. The first type is caused by
the six extraocular muscles that move the eye, which
are the superior rectus, inferior rectus, lateral rectus,
medial rectus, superior oblique, and inferior oblique.
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The second type is caused by the movements of
the eyelids (blinks). Slow or rapid eye movements
contaminate EEG signals because they induce changes
in the electric fields around the eyes due to eye
movement. Artifacts due to vertical or horizontal eye
movements can have large amplitudes. The former are
found at the front polar sites, with an exponential decay
towards the occipital sites, while the latter are found
at the front temporal sites, with opposite signs for the
left hemisphere, the right hemisphere, and a linear slope
between these two extremes [12].

• Muscular (EMG): Muscle artifacts, known as EMG
artifacts, are signals generated by different muscles in
the body such as those in the hands, legs, or neck.
They appear as isolated spikes or smooth signals.
Their amplitudes vary from small to large. Scalp and
neck muscle movements result in the largest amplitude
artifacts because they are the closest to the electrodes.

• Cardiac (ECG): Cardiac artifacts, known as ECG
artifacts, are generated by the heart. An ECG artifact is
dependent on the orientation of the electrical dipole of
the heart and is seen simultaneously on several sensors.
Pulse artifacts, on the other hand, usually affect only one
sensor as they are due to pulsating scalp arteries lying
directly under the electrode.

It should be noted that, unlike interference, artifacts do not
distort the brain signal.

D. ARTIFACTS AND INTERFERENCE IN REAL RECORDED
SIGNALS
During the period when we recorded the EEG signals at
the National Institute of Neurology in Tunis, we noticed the
occurrence of real-time interference that is not only due to
nearby electric machines, but also to unexpected movement
of the patient’s atrium or heavy breathing. This type of
inference cannot be avoided. Another type of interference
that occurs during intensive care treatment, which can be
avoided, is caused by nurses who are moving around to clean
or touch the head of the patient having a headset. To avoid
these problems, it is recommended to make the recordings
outside of nursing periods. Regarding EOG artifacts, they
occur only when the patient is awake. Therefore, they can
be avoided by making recordings during the period when the
patient is sleeping. Another action that can affect the recorded
EEG signals and that can be avoided is someone touching the
bottom of the electric machines.

As shown in Figs. 1 and 2, the signals registered in
intensive care patients are the most contaminated. They are
also the most challenging to analyze. Indeed, in Fig. 1, a high-
amplitude interference affected Channel T8 for one-second
duration starting from 56th second. This does not have an
important impact on the visual reading and analysis of the
signals, but surely affects the multifractal properties and leads
to a poor analysis of the EEG signals.

Regarding the EEG signals shown in Fig. 2, we observe
that they are significantly more contaminated than the ones

FIGURE 1. Significant interference affects one EEG signal recorded on
Channel T8 from a comatose patient in the intensive care room.

FIGURE 2. Significant interference affects the lower EEG signal recorded
on Channel AF4 and the four upper signals recorded on Channels FC5, F3,
F7, and AF3 from a comatose patient in the intensive care room.

shown in Fig. 1. Concretely, significant interference affects
the lower signal around 34th second and the upper four
signals from 35th second to 37th second, making visual
reading impossible. Analyzing the multifractal aspect of
this part of the data is also impossible. Most neuroscience
analysts and doctors ignore this portion of the data and, as a
result, they lose a large amount of clean data because of
the contaminated channels AF3, F3, and FC5. We can also
see some minor artifacts in Channels O1, O2, P8 around
33.2th second.We call into question the traditional methods of
using additional sensors to capture and remove environmental
noises. By contrast, automated processing of contaminated
signals allows us to analyze and model them without the
need of human intervention. In this paper, we propose to first
identify and remove interference using projection statistics
and then apply the ICA method to separate artifacts from
brain signals.

III. PROJECTION STATISTICS
Outliers may occur in EEG signals in many different ways.
For instance, they may occur due to either interference
from other medical instruments located in the room or large
communication noises that have the same amplitudes as the
brain signals of the patient. In that case, the identification
of outliers becomes much more difficult and requires
sophisticated algorithms to ensure reliability.

The conventional method to identify outliers in a multivari-
ate point cloud is based on the Mahalanobis Distance (MD),
which is a measure of the distance of the associated point
with respect to the bulk of the point cloud. The MD of an
n-dimensional vector, hi, which is the i-th column vector of
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the observation matrixHT and has a sample mean given by h
and a sample covariance matrix given by Ĉ, is defined as

MDi =

√
(hi − h)T Ĉ−1(hi − h). (1)

If we assume that the hi’s are drawn from a normal
distribution, N (µ,C), then MD2

i will approximately obey a
chi-squared distribution with n-degrees of freedom, that is,
χ2
n . The classic outlier identification method flags all data

points having MDi >
√
χ2
n,0.975. However, this method is

not robust because it is prone to the masking effect; indeed,
a sufficiently large outlier can bias the sample mean and
inflates the sample covariance matrix to the point where
a second outlier closer to the bulk will stand below the
confidence threshold

√
χ2
n,0.975. As a result, the tolerance

ellipsoid covers in part or in total the set of outliers, including
the failure of the MD to reveal some or all of them, which can
cause a total breakdown.

Stahel [15] and Donoho [16] independently showed that
the MD can be written as

MDi = max
∥v∥=1

|hTi v −
ˆµ(hT1 v, . . . ,h

T
mv)|

σ̂ (hT1 v, . . . ,h
T
mv)

, (2)

where µ̂ and σ̂ are the sample mean and the sample standard
deviation of the projections of the data points hi on the
direction of the vector v. It is well-known that the sample
mean and sample standard deviation estimates are not robust
against outliers.

Motivated by (2), Stahel [15] and Donoho [16] proposed a
robust version of the MD by replacing the sample mean with
the samplemedian and the sample standard deviation with the
Median-Absolute Deviation (MAD) from the median, which
is defined as

MAD = 1.4826med
i

|hTi v − med
j
(hTj v)|. (3)

Specifically, a PS of a multivariate data point relative to a
multivariate point cloud is defined as the maximum of the
absolute values of the standardized projections of that data
point on the straight lines that pass through the coordinate-
wise median and the data points [17]. We can then write the
robust version of the projection statistic as

PSi = max
∥v∥=1

|hTi v − median
i

(hT1 v, . . . ,h
T
mv)|

1.4826 cmmedian
i

|hTi v − median
j

(hTj v)|
. (4)

Here, the maximum is taken over all the normalized vectors v,
that originate from the coordinate-wise median of the vectors,
hi. As for the constant cm, it is a dimensionality correction
factor, which is defined as

cm = 1 +
15

m− n
, (5)

where m is the number of datapoints and n is the number of
dimensions. Typically,m is much larger than n. But because it
is not practical to consider all possible directions as described

above, Gasko and Dohoho [18] proposed to investigate only
those directions originating from the coordinate-wise median
of the point cloud and passing through each of the data points,
yielding a total of directions equal tom to be examined. Given
the observation matrix H, the PSs are calculated using the
algorithm described in Table 1.

TABLE 1. Projection statistics steps.

IV. INDEPENDENT COMPONENT ANALYSIS
ICA is the most popular method used to recover the brain
signals from recorded EEG signals. It is based on the
assumption that the mixture of the recorded signals, denoted
by X, is related to the source signals contained in S via

X = A S, (6)

where A is the mixing matrix. The goal of ICA is to recover
the signal S through the unmixing matrixW , which is defined
as

W = A−1. (7)

Using an estimator Ŵ of W , the recovery signal S ′ of S is
derived as

S ′
= Ŵ X . (8)

A number of algorithms were proposed in the literature to
estimate W . One of them minimizes the mutual information
of m stochastic signals, s′i(t), i = 1, ..m, contained in S ′,
yielding

I (s′i(t) =

m∑
i=1

H (s′i(t)) − H (S ′(t)), (9)

where H (s′i(t)) is the differential entropy defined as

H (s′i(t)) = −

∫
ps′i(t)(η) log ps′i(t)(η)dη. (10)
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Referring to (8), we can rewrite (9) as

I (s′(t)) =

m∑
i=1

H (s′i(t)) − H (X (t)) − log | detW |. (11)

Another popular method minimizes the negentropy of a
stochastic signal, x(t), which is defined as

J (x(t)) = H (xGauss(t)) − H (x(t)), (12)

where x(t) and xGauss(t) are Gaussian stochastic signals with
the same covariance matrix.

An alternative method is the maximum a posteriori
estimator based on the assumption that ˆp(X (t)) is the
estimated probability density function of the mixed signal
X(t). Formally, we have

p̂(x(t)) =
ps(A−1X (t))

| detA|
. (13)

Hence, we can define the likelihood function of the mixed
signal as

L(A) = E[log2 p̂(X (t))]

=

∫
px(X (t)) log2 ps(A

−1X (t))dx

− log2 | detA|. (14)

Referring to (14), we can write the log-likelihood function as
follows:

L(W ) ≈
1
n

m∑
i=1

log2 ps(WX (t)) + log2 | detW |, (15)

where m is the number of the source signals and n is the
number of the mixed signals. There are a few other methods
that are less widely used, such as the nonlinear principal
component analysis and the kurtosis maximization method.
Because the minimization of the mutual information method
and the Infomax method perform a simultaneous estimation
of all the components and do not requite prior knowledge of
the recorded signals, they may be considered as the two best
methods proposed so far. To estimate theW matrix, a number
of algorithms may be utilized. Next, we present two of the
commonly used ones, the gradient descent algorithm and the
quasi-Newton algorithm.

A. GRADIENT DESCENT ALGORITHM
As explained in [19] and [20], the gradient descent algorithm
searches for the minimum of a function first by computing
the gradient at an initial guess, then bymoving in the opposite
direction of the gradient with a suitable step, and finally by
repeating this process until convergence is reached. A few
modifications have been made to this algorithm to reduce its
complexity, yielding the so-called stochastic gradient descent
algorithm, as described in [21] and [22].

B. QUASI-NEWTON ALGORITHM
The first application of the quasi-Newton algorithm to the
ICA of EEG signals was made by Palmer et al. [23]. Later,
by comparing different iterative methods, Delorme et al. [24]
and [25] concluded that this algorithm is the most effective
one for the ICA application, as it does not involve any step
parameter, while showing a fast convergence rate compared
to the gradient descent algorithm.

V. MULTIFRACTAL PROPERTIES OF THE EEG SIGNALS
EEG signals are highly irregular signals with many inter-
esting properties. Multifractal analysis, along with other
analysis techniques, can help us identify the unique features
of the signal. These features can then be compared to
dynamics or chaos theory, other instances that have a known
multifractal signature.

A fractal is an object for which one of its characteristics
is replicated on many scales, leading to self-similarity. This
object consists of either multiple copies of the same feature
or multiple statistical copies. Unlike most objects that we
are familiar with, the dimension of a fractal is usually
not an integer. Fractal and multifractal behavior has been
observed in many naturally occurring signals and phenomena
as Mandelbrot [26] noted the following: ‘‘Clouds are not
spheres, mountains are not cones, coastlines are not circles,
and bark is not smooth, nor does lightning travel in a straight
line.’’ When the dimension is a spectrum of values, the signal
is said to have a multifractal property; this can be seen as
fractals intertwined with fractals.

Due to the high irregularity of the fractal signals, they
are analyzed using the wavelet transform instead of the
conventional Fourier transform [27], [28]. First developed by
Haar [29], the wavelet transform decomposes a signal into
a sum of basis functions that are in the time and frequency
domains. The second advantage is that the coefficients
produced are more numerically stable than those of the
Fourier power spectrum. This is due to the fact that the phase
transitions are localized in fractal analysis, but are spread
throughout the Fourier power spectrum. The third advantage
is that they can be applied to signals where the characteristic
time scale is a significant fraction of the signal.

Progress in the wavelet transform was slow until the
1980s. Then, it speeded up with the development of the
continuous wavelet transform by Grossmann and Morlet
[30], which was expanded on by Stephen Mallat and other
researchers [31]. The continuous wavelet transform produces
a lot of redundant data because the transformed values of
two different scales that differ slightly are highly correlated.
On the other hand, the discrete wavelet transform uses only
discrete values for the scales, typically a power of 2, and is
invertible, which allows applications in noise removal and
compression. Daubechies [32], [33], [34], [35] expanded
the Haar transform by creating a compact transform with
minimal overlap of information, known as the Daubechies
wavelet family.
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FIGURE 3. Diagram of a three level discrete wavelet transform [48].

Discrete wavelet transforms have been utilized in a
number of applications in various forms along with neural
networks and fuzzy logic. For example, they have been
applied to detect faults in rotary equipment [36] and in
induction motors [37]. They have been used in economics
[38], in the JPEG 2000 compression standard [39], [40],
and in medical image analysis such as mammogram image
processing for the detection of breast cancer [41] and other
ultrasound images [42]. Furthermore, they have been utilized
to analyze EEG, ECG, and other human biometric signals
[43], [44], [45], [46].

In [47], the Wavelet Transform Modulus Maxima
(WTMM) and Multifractal Detrended Fluctuation Analysis
(MFDFA) were used to calculate the singularity spectrum
of EEG signals of healthy people and patients with paranoid
schizophrenia and patients with depression. They showed that
the width and position of the singularity spectrum differed
between the groups. The width of the singularity spectrum
indicates multifractality versus monofractality, while the
position indicates persistence versus antipersistence. In this
paper, we use the wavelet leader method with bootstrapping,
which provides us with a more in-depth analysis of these
signals.

A. DISCRETE WAVELET TRANSFORM
The discrete wavelet function is defined as

ψj,k (t) =
1√
sj0

ψ

(
t − κτ0s

j
0

sj0

)
, j, k ∈ Z, s0 > 1, (16)

where j is the level of the wavelet transform; k is the position
within that level; ψ is the base wavelet function; and ψj,k is
the wavelet function shifted in time and scale. An important
property of the discrete wavelet transform is the concept of
vanishing moments. The vanishing moment is the degree of
the highest polynomial that can be suppressed by the wavelet.

A moment is defined as

µn =

∫
xkψ(x)dx. (17)

A vanishing moment makes the moment equal to zero, that
is, ∫

xkψ(x)dx = 0, (18)

where k is its order. Each discrete wavelet function in its
family is defined by the number of vanishing moments it
has, with higher levels of the family having more vanishing
moments. For example, the Haar wavelet function has one
vanishing moment while Daubechies 2 has two vanishing
moments. Since the discrete wavelet transform is often
defined as a Finite Impulse Response (FIR) filter, the number
of vanishing moments also corresponds to the number of
coefficients in the filter. In the Daubechies wavelet family, for
example, the number of coefficients in the filter is twice that
of the number of vanishing moments. Vanishing moments
eliminate polynomial trends in the data, which are expressed
as

f (x) = g(x) + N (x). (19)

With the discrete wavelet transform, each wavelet function,
ψ , has a scaling function, φ. The relationship between ψ and
φ is given by ∫

φ(x)ψ(x)dx = 1. (20)

A diagram of the three level discrete wavelet transform is
shown in Figure 3.

B. WAVELET LEADER METHOD
There are many different ways to detect multifractility in a
signal. In this paper, we apply the wavelet leader method
based on the discrete wavelet transform [49]. Wavelet leaders
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utilize the Dyadic cube, which is known as the box covering
in fractal analysis. It is defined as

λ =

[
k1
2j
,
k1 + 1
2j

)
× . . .×

[
kd
2j
,
kd + 1
2j

)
, (21)

where k = (k1, . . . , kd ) ∈ Zj and d is the topological dimen-
sion of the set. Wavelet leaders extend this procedure by
making the dyadic cube given by (21) have the same center
while being three times wider to cover the neighbors of the
cube as well, which yields

λ =

[
k1 − 1
2j

,
k1 + 2
2j

)
× . . .×

[
kd − 1
2j

,
kd + 2
2j

]
)
,

(22)

hµ(x0) = lim
j→∞

inf
(
log(µ[3λj(x0)])

log(2-j)

)
, (23)

where µ is a non-negative measure of the set defined on Rd.
The discrete wavelet transform generates many coefficients
that have small magnitudes, which can cause numerical
instabilities with negative and fractional values. In addition
to having one level of coarse coefficients, its output has,
as shown in Figure 3, many levels of detail coefficients that
are used by the wavelet leader method. The first level is
calculated by taking the supremum of the absolute value of
the detail coefficient and its two neighbors as follows:

L(1, k) = sup
{
|d1,k−1|, |d1,k |, |d1,k+1|

}
, (24)

where k is the index of the detail coefficients. A well-
known problem with the discrete wavelet transform is how
to handle the edges. There are several solutions to deal
with this problem; one of them is to exclude the edge
coefficients, which is what the wavelet leader method does.
Other solutions are mirroring or treating the coefficients
beyond the edges as zero or some other constant, among
others. The leaders for the subsequent levels are calculated
from the supremum of the absolute value of the detail
coefficient at that level along with the two neighboring
leaders from the previous level as follows:

L(j, k) = sup
{
L(j− 1, 2(k − 1) + 1), |d(j, k)|,
L(j− 1, 2(k − 1) + 2)

}
, (25)

where j is the level of the discrete wavelet transform.
Another way to enhance the numerical stability of the

wavelet leader calculations is to apply a thresholding function
when calculating the wavelet leader functions. Specifically,
we set their values to zero when they are below a small
threshold, ϵ, say 10-10. The thresholded wavelet leader
function is defined as

LQX (q, j, k) =

{
0 LX (j, k) ≤ ϵ

LX (j, k)q LX (j, k) > ϵ,
(26)

where q is the moment. A special case is q = 0, yielding a
value of one for the thresholded wavelet leader function. The

structure function is defined as the average of the thresholded
wavelet leader function over k , that is,

SL(j, q) =
1
nj

nj∑
k=1

LQX (q, j, k) = Fq|2j|ζ (q), (27)

where nj is the number of wavelet leaders at the level j
of the discrete wavelet transform. The structure functions
are calculated at several levels of q and j. A typical range
for q ranges from -7 to 7 at fractional intervals, such
as 0.1. Following [49], we derive the scaling function by
rewriting (27) as

ELX (j, ·)q = Fq2jζ (q). (28)

If (28) is finite, as is almost always the case, then we can
rewrite it as follows.

lnE eq lnLX (j,·) =

∞∑
p=1

CL(j, q)
(
qp

p!

)
, (29)

where CL(j, p) are the cumulants of order p of lnLx(j) and p
is an integer ≥ 1. Usually p ≤ 5. This yields the singularity
exponent function given by

ζ (q) =

∞∑
p=1

cp
qp

p!
. (30)

From the scaling exponents, we take the Legendre transform,
which yields the following dual equations:

D(h) = 1 + min
q

[qh− ζ (q)], (31)

and

ζ (q) = 1 + min
q

[qh− D(h)]. (32)

The Legendre transform is difficult to apply to actual data.
Therefore, [49] proposed to use estimators based on the log-
cumulant functions given by (29). The estimator of the scaling
exponents ζ (q) is defined as

ζ̂ (q) =

j2∑
j=j1

wj log2 S
L(j, q), (33)

and the estimator of the cumulant coefficients cp is given by

ĉp = (log2 e)
j2∑
j=j1

wjĈL(j, p). (34)

The estimators ofD(h) and h given by (31) and (32) expressed
in terms of q are given by

D̂(q) =

j2∑
j=j1

wjUL(j, q), (35)

ĥ(q) =

j2∑
j=j1

wjV L(j, q). (36)
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Regarding UL(j, q), V L(j, q), Rqx(j, k), they are defined as
follows:

UL(j, q) =

nj∑
k=1

Rqx(j, k) log2 R
q
x(j, k) + log2 nj, (37)

V L(j, q) =

nj∑
k=1

Rqx(j, k) log2 Lx(j, k), (38)

Rqx(j, k) =
Lx(j, k)q∑nj
k=1 Lx(j, k)

q
. (39)

In (35) and (36), w are the weights assigned as the confidence
given to each wavelet level. The set w must satisfy the
following conditions:

j2∑
j=j1

jwj ≡ 1, and (40)

j2∑
j=j1

wj ≡ 0. (41)

This yields the following solutions for w:

wj = bj

(
V0j− V1
V0V2 − V 2

1

)
, (42)

Vi =

j2∑
j=j1

jibj, i = 0, 1, 2. (43)

Here, bj represents the confidence given to each cumulant or
structure function. There are three possible settings for bj.
Setting bj to 1 for all j yields an unweighted fit. The second
possibility is to set bj to 1/nj for a weighted fit, where nj is
the number of wavelet leaders at level j. The third possibility
is to set bj as the reciprocal of the variance of bootstrapped
estimates for level j, which is the one we are using for this
paper.

C. BOOTSTRAPPING
When we are dealing with datasets, we usually only have
one realization of a signal to analyze. Bootstrapping enables
us to create multiple signals to analyze by resampling
with replacement of the original signal [50]. This allows
us to calculate confidence intervals for the signal, which
Wendt et al. [51] proposed to do for the wavelet leader
method. There is a short correlation with the discrete wavelet
function, which must be taken into account when doing a
bootstrapped resample of wavelet coefficients.

D. AUTOMATED RANGE SELECTION
The wavelet leader method requires you to select the j1
and j2 for the range in which to calculate the singularity
spectrum. Some programs that have implemented the wavelet
leader method do not require this, and they calculate the
singularity spectrum over the entire range of discrete wavelet
coefficients. However, the singularity spectrum may not
exist over the entire range of the detail coefficients. For

implementations that offer range selection, usually the ranges
that are selected are the ones that give the straightest line on
a log/log scale. This can be error-prone and difficult to do
for a large number of datasets. Automated range selection
works by finding the range that minimizes the sum of squared
residuals for the cumulants and the q functions [52]. The
minimum number of levels is typically 3, but can be higher if
desired. In addition, there can be different multifractals that
exist over 2 adjacent ranges.

E. SURROGATE DATA TESTING
When dealing with nonlinear series, we generate surrogate
data either by using the Fourier power spectrum or by
shuffling the recorded data to test whether the hypothesis
applies to the data, which is in this case the multifractal
assumption [53]. To do this, multiple random copies of the
data are created with the same property, and the test is applied
to all of them. In the case of the Fourier power spectrum,
we would create 2000 instances with the same Fourier power
spectrum as the original signal, but the underlying data is
different for each one.

F. ALTERNATIVE METHOD OF MULTIFRACTAL ANALYSIS
There are several other methods for multifractal analysis.
One of them is MultiFractal Detrended Fluctuation Analysis
(MFDFA) [54], [55], which is compared to the wavelet
leader method. TheMatlab code that implements this method
is available in [56]. Currently, the bootstrap method and
automated range analysis are not implemented for this
method. This will need to be implemented in future work.
MFDFA consists of the following main steps:

In Step 1, a profile of series is obtained by subtracting the
mean from the signal and taking a cumulative sum as shown
in the following equation:

Y (i) =

i∑
k=1

xk − ⟨x⟩, (44)

where i = 1, . . .N, and where N is the total number of points.
In Step 2, the signal is decomposed into Ns segments of

equal length, s. The total length of the signal does not have to
be a multiple of s, which can leave a remainder at the end of
the signal. When that occurs, the process is repeated starting
at the end of the signal so that 2Ns are obtained. This is done
so that the properties of the entire signal can be analyzed and
the remainder is not ignored. This is shown in Fig. 4.

In Step 3, a polynomial fit is calculated for each segment
using the least squares method, denoted as pv, where v is the
number of segments. This fit is subtracted from the series in
step 1:

Ys (i) = Y (i)− pv (i) . (45)

Here, Ys is the detrended segment for the segment size
specified by s. The degree of the polynomial is one of the
user-selected parameters for MFDFA.
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In Step 4, the variance for each of the segments is
calculated.

F2
s (v) = ⟨Y 2

s (i)⟩ =
1
s

s∑
i=1

Y 2
s [(v− 1) s+ i]. (46)

In Step 5, the square root of the average of the variance
calculated in Step 4 is taken to obtain the fluctuation function.

F (s) =

[
1

2Ns

2Ns∑
v=1

F2
s (v)

]1/2
. (47)

FIGURE 4. Brownian motion signal divided into equal segments of 100,
showing how MFDFA handles signals that are not evenly divisible by the
segment size.

For MFDFA, this equation is modified to calculate the
fluctuations for each q as follows:

F (s) =

[
1

2Ns

2Ns∑
v=1

[
F2
s (v)

] q
2

]1/q
. (48)

When q = 2, this is the standard DFA calculation.
In Step 6, the scaling properties are estimated from the

fluctuation functions previously calculated.
MFDFA shares some similarities with the wavelet leader

method. For instance, the vanishing moments for the wavelet
transform also remove polynomial trends from the data.

VI. ANALYSIS OF THE RECORDED EEG SIGNALS
The application of the wavelet method together with
ICA improves the removal of artifacts from EEG signals,
as mentioned in [57] and [58]. Furthermore, combining the
Empirical Model Decomposition and the ICA (EMD-ICA)
has a better performance for a specific application on EEG

FIGURE 5. Short segment of an EEG signal recorded from a single channel
EEG signal.

FIGURE 6. Normalized autocorrelation of the recorded EEG signal
showing the first zero crossing between lag 174 and 175.

signals such as the removal of eye blinking [59], [60]. Last
but not least, the analysis of the singularity spectrum and ICA
of the EEG signals allows us to enhance the suppression of
artifacts from a single channel as indicated in [60] and [61].

In this section, we analyze the recorded EEG signals by
combining the two methods previously described, namely
Projection Statistics and Independent Component Analysis
(PS-ICA). First, we filter the data with a bandpass filter
over the frequency range [1Hz, 49Hz] to avoid electrode and
electricity line noise. Then, we apply the PS to remove the
flagged outliers. Next, we replace the gaps that resulted from
the removal of the outliers with a segment equal to the sample
mean of the data in the channel. Finally, we apply AMICA,
which is considered one of the best ICA algorithms [24].

A. IDENTIFICATION OF EXTERNAL INTERFERENCE USING
PROJECTION STATISTICS
Fig. 8 displays a short segment of an EEG signal recorded
from one headset channel. It clearly shows large amplitude
spikes that are due to external interference. On the right-hand
side of the signal plot, it is observed that there are no spikes as
a result of interference. We use the autocorrelation function
of the signal to determine the number of dimensions of the
projection statistics. Based on mutual information, we look at
where the autocorrelation function first crosses the horizontal
axis, in this case between 173 and 174 as shown in Fig. 6.
We use this value as the dimension of the signal. We apply
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the PS to the signal to find the threshold that will be used
to identify outliers. The signal on which we apply the PS
has 284,800 data points. We implement a sliding window
algorithm with a window size of 6000 and an increment of
100. This leads to that each data point has 60 different values
of the PS, excluding the edges as shown in Fig. 9. We take
the sample median of each of the 60 values, which yields a
total of 284,400 values, which is equal to the number of data
points as shown in Fig. 10.We sort the values from the sample
median of the PS of the EEG signal and select a cut-off point,
in this case, the 95% quantile as shown in Fig. 11 for the PS of
the AF3 channel. We observe that the values increase sharply
after that threshold. We apply the statistical test to the PS and
identify the outliers. The outliers are shown in Fig. 12. These
outliers are then deleted, and the different adjacent segments
are joined as shown in Fig. 13. Note that the x-axis no longer
refers to the time position of the signal because parts have
been deleted. Due to the windowing, some outliers remain
but have been sharply reduced.

FIGURE 7. Fourier power spectrum of the clean section of the EEG signal
on a log/log scale with the 101 position moving mean is shown in red.
The power spectrum at zero frequency is excluded.

FIGURE 8. Recorded single-channel EEG signal shown in black, for which
the signal segments highlighted in red are those that deviate more than
3 times the MAD.

B. REMOVAL OF INTERFERENCE AND ARTIFACTS
After the detection and removal of interference recognized as
outliers by the PS algorithm, we fill the gaps by segments
to make the ICA application useful. The results of the

application of our method presented in Section II-D are
shown in Figs. 14 and 15.

FIGURE 9. Plot of the windowed projection statistics of the AF3 channel.

FIGURE 10. Plot of the windowed median projection statistics of the AF3
channel.

FIGURE 11. Plot of the sorted windowed median projection statistics of
the AF3 channel with the 95% cutoff line displayed.

The results of applying PS to the data presented in Fig. 1,
which is contaminated by one large interference in Channel
T8, revealed the excellent ability of our method to remove all
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FIGURE 12. Plot of the AF3 channel with the outliers identified by
windowed projection statistics in red.

FIGURE 13. Plot of the AF3 channel with the outliers identified by
windowed projection statistics removed.

contaminated data. The removed outliers are replaced by a
straight line to make the application of the ICA possible for
that part of the data (about 1 second) as shown in Fig. 14.
As seen in Fig. 15, the PS method removes about 90% of the
defective data in Fig. 2, but there are still some portions of
interference in the signal. So far, reading the EEG signals by
eyes has become possible, which allows us to avoid removing
non-distorted signal segments of about 3 seconds of duration.
To make this process automatic, we apply the PS for the
second time and notice that 100 % of the interference has
been removed. Then we apply the ICA approach using the
AMICA algorithm of the EEGlab toolbox [62] to identify
defective channels that contain artifacts. We realize that the
ICA decomposition improves as the dataset is shorter. For
this kind of problem, we prefer to use the ICA because of
its ability to remove artifacts such as EOG, EMG, and others
with small amplitudes that cannot be detected by the PS.

For the removal of flagged components after the appli-
cation of the decomposition by the ICA, the removal of
artifacts is possible by eyes or by some algorithms available
on EEGLAB, such as the IC artifact classification MARA
[63] or IClabel [64] for different kinds of artifacts. In the

case of the removal of a specific type of artifact, a number
of algorithms are available. Here we site AAR [65] for the
removal of EMG and EOG, the REGICA-Methodology [66]
for automated EOG rejection, and the cleanline [67] for line
noise rejection.

As indicated in [68], the AMICA algorithm can remove
artifacts in a large number of channels. To verify this claim,
we execute this algorithm on the recorded EEG signals for
5000 iterations; the higher the number of iterations, the
better the performance of the AMICA algorithm will be.
As shown to the left of Fig.16, an artifact severely affected
all channels for about 0.3 s (marked green) and then another
appeared with a smaller amplitude and a shorter period of
time (marked in yellow). On the right of Fig.16, the results
of the AMICA algorithm showed 13 artifact-free components
and one affected one. The latter has to be removed or zeroed
if needed for further application [69].
By removing both interference and artifacts presented in

the intensive care room from the EEG channels with the
conservation of the maximum possible clean data using
two automatic methods, we make it possible to apply
multifractal analysis or any other analysis without any human
intervention. In the following, we analyze the multifractal
properties of EEG signals recorded from comatose patients.

FIGURE 14. EEGLAB plot of the 14 EEG channels presented in Fig. 1 after
the application of projection statistics.

FIGURE 15. EEGLAB plot of the 14 EEG channels presented in Fig. 2 after
the application of projection statistics.

C. DETERMINING THE MULTIFRACTAL PROPERTIES OF
THE EEG SIGNAL
Applying the wavelet leader method with the bootstrapping
technique, we find multifractal behavior occurring between
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FIGURE 16. On the left EEG affected data in the hole 14 channels, on the
right the 14 components after the application of the AMICA algorithm of
the EEGLAB toolbox shows the reduction of artifact contamination to only
one component.

FIGURE 17. EEG signal that is used to analyze the multifractal spectrum.
The part that is analyzed is to the right of the red line from time index
1111.13 seconds to the end.

Levels 9 and 11 of the clean, recorded EEG signal segment
displayed in Fig. 17. This signal was sampled at a rate
of 128 hertz. So these levels correspond to a sample rate
between 0.25 Hz and 0.0625 Hz, that is, between 4 seconds
and 16 seconds. Table 2 shows the relationship between the
samples and the levels of the discrete wavelet transform for
a signal sampled at 128 Hz. The scaling exponent and the
singularity spectrum are shown in Fig. 18. The confidence
intervals shown are the result of histograms obtained by
bootstrapping. An example of histograms is displayed in
Figs. 21 and 22. These are histograms representing the values

FIGURE 18. Scaling exponents and singularity spectrum at 25%-75%
confidence intervals for levels 9-11 with 3 vanishing moments.

FIGURE 19. Scaling exponents and singularity spectrum at 25%-75%
confidence intervals for levels 9-11 with 5 vanishing moments.

taken by the Hausdorff dimension, D(h), versus the Holder
exponent, h, for values of q equal to −7 and +7 shown
in (31) and (32). The q values are the end points that have
the largest confidence intervals. As shown in Fig. 23, the
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FIGURE 20. MFDFA calculation of the singularity spectrum for levels 9-11
with M set to 1-15.

FIGURE 21. 3D Histogram for q = −7 with 3 vanishing moments.

shuffled surrogate data are represented by the light-shaded
curve, the iterative amplitude adapted Fourier transform is
represented by the dark-shaded curve, and the original signal
is represented by the normal shaded curve. The surrogate
signal for the IAAFT is approximately close to that of the
original signal, which means that the multifractal properties
of the signal are largely derived from the Fourier power
spectrum of the signal, as shown in Fig. 7. On a log-log scale,
we observe that it changes direction several times, indicating
that it is not a fractal, but a multifractal signal. Changing the
number of vanishing moments from 3 to 5 gives a slightly
cleaner singularity spectrum and scaling exponents in Fig. 19.
As observed in Table 3 and 4, the cumulative values are
mostly the same for 3 vanishing moments and for 5 vanishing
moments, respectively.

TABLE 2. Wavelet transform levels for a signal sampled at 128 hertz.

FIGURE 22. 3D Histogram for q = 7 with 3 vanishing moments.

TABLE 3. Cumulant values for 3 vanishing moments.

The results of the MFDFA analysis are shown in Fig. 20.
Compared to the Wavelet Leader analysis, it showed more
instability. The results showed a different spectrum for
each of the M values chosen, with the results converging
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TABLE 4. Cumulant values for 5 vanishing moments.

FIGURE 23. Surrogate scaling exponents and singularity spectrum with
3 vanishing moments. Blue curves represent positive q values and green
curves represent negative q values. The shuffled surrogate data are
represented by the light shaded curve, the iterative amplitude adapted
Fourier transform is represented by the dark shaded curve, and the
original signal is represented by the normal shaded curve.

around M = 6. Most MFDFA analysis consists of the use
of polynomials with M from 1-3. In addition, the bootstrap
technique has not been developed for MFDFA, so confidence
intervals cannot be computed. Automated range analysis
has also not been developed for the MFDFA method. Both
techniques need to be developed in the future for MDFDA
analysis. In this instance, the wavelet leader method gave
better performance. The results were more stable across
different wavelets.

VII. CONCLUSION AND FUTURE WORK
In this paper, we analyzed a set of EEG signals recorded
from comatose patients in an intensive care room. First,
we highlight the different causes of artifacts and interference
that can affect EEG signals. We then applied PS to identify
and remove interference from these signals. Next, we filled
the gaps with straight lines equal to the sample medians
of the remaining signals and applied an ICA method
to separate the artifacts from the brain signals. Finally,
we analyzed the multifractal properties of the EEG signals

using the wavelet leader and the singularity spectrum.
In future work, we will investigate methods that will reduce
the computing time of the PS. We will also study the
dependence properties of the EEG signals using metrics
based on copula estimation and we will apply machine
learning methods to extract their features and classify them.
The objective of this work is to characterize the different
types of comatose states. Automated range analysis and
bootstrapping need to be developed for other techniques of
multifractal analysis as they have been developed for the
wavelet leader method, so that multiple different multifractal
analysis can be performed and compared.
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