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ABSTRACT In this study, we formulate and implement 14 widely used battery-equivalent circuit mod-
els (ECMs) in a MATLAB/Simulink environment and extract the parameters using the hybrid pulse power
characterization (HPPC) test results based on the parameter estimator app working on the curve-fitting
method. Using the extracted parameter values, which are either state of charge-dependent sixth-degree
polynomials or constants, we perform an error fluctuation deviation analysis on two different real flight
test results by loading 0 kg and 10 kg payloads on a hexacopter unmanned aerial vehicle for the ECM
characteristic evaluation. According to the error characteristic analysis, the Liu ECM resulted in the lowest
root mean square (RMS) (0.0376 V), standard deviation (SD) (0.0343 V), and maximum errors (0.6159 V)
for the HPPC test, the Rint ECM resulted in the lowest RMS (0.0702 V) and maximum errors (0.6844 V) for
the real flight test carrying a 0 kg payload, and the Shepherd ECM resulted in the lowest RMS (0.0875 V)
and SD errors (0.0872 V) for the real flight test carrying a 10 kg payload. In conclusion, we recommend
the Shepherd ECM with constant parameters owing to its fast parameter optimization convergence time and
flexibility to the dynamic discharging load with a smaller error.

INDEX TERMS Battery management systems, equivalent circuit model, unmanned aerial vehicle.

ACRONYMS
BMS Battery Management System.
CCV Closed-Circuit Voltage.
DP Dual Polarization.
ECM Equivalent Circuit Model.
EV Electric Vehicle.
GNL General NonLinear.
HPPC Hybrid Pulse Power Characterization.
KF Kalman Filter.
OCV Open-Circuit Voltage.
PCM Protection Circuit Module.
PNGV Partnership for a New Generation of Vehicle.
RC Resistance-Capacitance.
SD Standard Deviation.
SOC State of Charge.
SOH State of Health.
SOP State of Power.
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I. INTRODUCTION
A. BACKGROUND
Unmanned aerial vehicles (UAV) have becomemainstream in
civilian markets. Technologies comprising UAV are similar
to electric vehicle (EV) technologies in that both systems
receive commands from a ground-based pilot/driver, acquire
electricity from Li-ion batteries, drive electric motors, and
eventually operate wheels/propellers. EVs have evolved from
gas-turbine engines and hybrid engine-based UAVs, similar
to the EVs that have evolved from internal combustion engine
vehicles, hybrid electric vehicles, and plug-in hybrid electric
vehicles [1]. Electric UAVs stand out owing to their increased
wariness in terms of fuel costs, environmental pollution, and
noise problems [2], [3], [4], [5], [6].

Both UAVs and EVs consist of the main subsystems,
including the controller, inverter, motor, and battery pack,
which are simplified systems compared to traditional internal
combustion engine-powered vehicles. This simplified sys-
tem resulted in fewer malfunctions than before; however,
the dependency of both UAVs and EVs on the subsystems
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increased simultaneously. Therefore, the accurate monitoring
of each subsystem is vital.

A battery management system (BMS) is an electronic
system necessary for managing battery packs in normal con-
ditions by collecting cell current, voltage, and temperature
data. However, most remotely controlled UAVs only use a
protection circuit module (PCM) for battery packs and col-
lect closed-circuit voltage (CCV) data to estimate the usable
energy residuals. Therefore, accurate battery state estimation
cannot be guaranteed because the system voltage changes
dynamically depending on the requested current load owing
to the IR-drop phenomenon. A PCM-based battery pack has
minimal battery protection functions, including overcharg-
ing, over discharging, overcurrent in/out, short circuiting,
over/under temperature, and additional functions, including
cell balancing and sleep mode operation.

To overcome the limitations of PCMs, researchers have
begun applying special state-estimation algorithms. Most
advanced battery state estimation algorithms, including
the complementary filter, extended Kalman filter (KF),
unscented KF, and particle filter, use current, volt-
age, and temperature data to estimate the battery state
of charge (SOC), state of health (SOH), and state of
power (SOP), and have been implemented in the BMS [7],
[8], [9], [10], [11], [12]. The accurate monitoring of the states
of UAVs is much more significant than that of EVs because
the inaccurate battery state estimation of the UAV mid-flight
may result in the destruction of the entire system.

There are increasing reports of UAV accidents owing to the
various risks associated with batteries used in both UAVs and
ground control stations [13]. To prevent mishaps in advance,
the characteristics of the different types of batteries should be
fully understood, appropriate protection hardware and soft-
ware should be embedded, and periodic maintenance should
be performed. A high proportion of the increased number of
UAV accidents is related to the absence of a BMS or a min-
imally functioning PCM; therefore, researchers are looking
for solutions by implementing additional concepts, including
battery discharge prediction and remaining useful life, which
complexifies battery pack-related systems [14], [15].
A BMS manages the cells in a module to monitor their

conditions and prevent potential failure. In EVs, several
hundred cells are typically used to drive vehicles weighing
thousands of kilograms; therefore, modular types contain-
ing BMSs would be some of the many applicable choices
for effective battery pack replacement or extra maintenance.
However, in small- andmedium-sized electric vertical takeoff
and landing UAVs, which is the focus of this study, only
dozens of cells are used; therefore, the centralized type of
BMS would be sufficient. Although the centralized BMS is
simple, it is still necessary to estimate the exact SOC, SOH,
and SOP for the UAV as accurately as for the EV. The typical
estimation accuracy ranges of the SOC, SOH, and SOP for
EV are approximately 5%, 5%, and 10%, respectively; similar
battery state estimation accuracies are necessary for UAV as
well [16], [17], [18].

All the above-mentioned state estimation algorithms are
built on the battery equivalent circuit model (ECM), which
is mainly composed of resistors and capacitors, to calcu-
late the open-circuit voltage (OCV). Most state-estimation
algorithms calculate the current SOC value, and the newly
calculated SOC data are used as feedback to extract the
ECM parameters that are inserted into the state-estimation
algorithms to recalculate the current SOC value. These state
estimation algorithms are robust against environmental noises
or initial offsets but are weak to the innate flaws of the ECM.
That is, the ECM accuracy determines the overall SOC, SOH,
and SOP state-estimation algorithm accuracy; therefore, the
selection of the appropriate ECM depending on the mission
characteristics must be prioritized.

B. LITERATURE REVIEW
Many studies have reviewed the most commonly used
lumped-parameter-based ECMs, as listed below.

1) The Rint ECM is one of the simplest battery models
with only one resistance [19], [20], [21].

2) The Thevenin ECM is an extended version of the
Rint model that describes the dynamic character-
istics of a battery by including an additional RC
branch with a polarization resistance and equivalent
capacitance [22].

3) The partnership for a new generation of vehicles
(PNGV) ECM is a slightly improved version of the
Thevenin ECM, which adds one more equivalent
capacitance to describe the variant OCV [19], [20].

4) The dual polarization (DP) ECM, which is an
improved Thevenin ECM, was achieved by adding
an additional RC ladder to the original Thevenin
ECM [19], [22].

5) The general nonlinear (GNL) ECM introduces an RC
ladder in addition to the PNGV ECM for the bulk
OCV polarization capacitance characteristics [23].

6) The improved RC ECM contains two capacitors and
three resistors, such as the RC ECM developed by the
SAFT Battery Company; however, their locations are
slightly different, which is intended to represent the
surface effects and the capability to store chemical
charges [19], [20], [24].

7-9) The Shepherd [25], [26], Unnewehr Universal [26],
and Nernst [26] ECMs are among the most popular
classical ECMs that have been used as foundations
for various extended ECM versions, particularly the
Plett ECM, which is a combination of all three classic
ECMs.

10) To account for the drastically varying battery behav-
iors, the Fang ECM uses two additional time con-
stants compared with the Nernst ECM [27].

11) To account for fast-current dynamics, the Liu ECM
uses a parameter, I∗L , representing the low-pass-
filtered current [28].

12-13) The Tremblay1 ECM [29] and Tremblay2 ECM
[30], [31] use similar parameters to those used in
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FIGURE 1. Exterior appearance of the Tattu battery pack.

TABLE 1. Specifications of the Tattu battery pack.

Liu ECM but have a considerably simpler approach
for calculating those parameters, requiring only
three data point sets:

(
Ufull,Qmax

)
,
(
Uexp,Qexp

)
, and

(Unorm,Qnorm), from the discharge curve.
14) The Plett ECM is a mixed model of the Shep-

herd model, the Unnewehr universal model, and
the Nernst model, and performs better than any of
these [9], [10], [32].

C. CONTRIBUTION
In this manuscript, in comparison to most review arti-
cles [33] which just express narratively the uniquemethodical
characteristics of other articles, we discuss the specificity
of 14 ECMs by presenting a schematic diagram and the corre-
sponding equations. We applied real flight current patterns to
evaluate the characteristics of 14 ECMs based on fluctuation
deviation analysis with the parameters extracted using hybrid
pulse power characterization (HPPC) test results based on the
curve-fitting method. We focused on evaluating the ECM in
terms of accuracy (mean, root mean square (RMS), standard
deviation (SD), and maximum values).

D. ARTICLE ORGANIZATION
The remainder of this paper is organized as follows.
Sections II and III present the model preparation, experimen-
tal preparation, results, and analysis. Finally, the conclusions
and future work are explained in Section IV.

II. MODEL PREPARATION
A. BATTERY PACK
A fresh battery pack (Fig. 1 and Table 1) was prepared for the
HPPC (dis)charging tests.

B. ECM
A total of 14 battery ECMs are prepared as presented
in Table 2.

FIGURE 2. HPPC test: (a) schedule, (b) current profile.

C. PARAMETER
1) HPPC TEST
The OCV data acquisition process, that is, the HPPC test, was
necessary to derive the ECM parameters. Under a constant
environmental temperature of 25 ◦C, a 1 C-rate of the HPPC
current pattern is applied using the direct current (DC) elec-
tronic load and DC power supply to retrieve both the dynamic
response voltage data and the OCV data per level of SOCs
from 100% to 0% with a 10% gap (Fig. 2).
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TABLE 2. List of ECMs (dis/charge equations are the same if not divided).
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TABLE 2. (Continued.) List of ECMs (dis/charge equations are the same if not divided).

a: PARAMETER IDENTIFICATION 1
In the cases of the (1) Rint, (2) Thevenin, (3) PNGV, (4) DP,
(5) GNL, and (6) improved RC ECMs in Table 1, the
ECM parameters vary depending on the SOC, temperature,
and humidity, (dis)charging state, and C-rate. In this study,
we focused only on the SOC effect by fitting sixth-degree
polynomials (Eq. 37). Curve fitting with higher-order poly-
nomials could result in enhanced approximation, but requires
a longer data fitting time, and vice versa.

Uoc = UL + ILR0 + f (Ri,Ci,Ki,A,B) (37)

where Ri =
∑6

k=0 Ri,kz
k , Ci =

∑6
k=0 Ci,kz

k , Ki =
∑6

k=0

Ki,kzk , A =
∑6

k=0 Akz
k and B =

∑6
k=0 Bkz

k .

b: PARAMETER IDENTIFICATION 2
In the cases of (7) Shepherd, (8) Unnewehr Universal, (9)
Nernst, (10) Fang, (11) Liu, (12) Tremblay1, (13) Tremblay2,
and (14) Plett in Table 1, the ECM parameters are indepen-
dent of the SOC, temperature, humidity, (dis)charging state,
and C-rate. Therefore, instead of curve-fitting polynomials,
the simulated data were curve-fitted to the measured battery
pack CCV, UL , and data to determine the constant variables
resulting in the minimum voltage difference based on the
parameter estimator app available in Simulink (Eq. 38).

Uoc = UL + ILR0 + f (Ki, τi, tc,A,B) (38)

where Ki, τi, tc, A and B are all constant parameters.

Here, the measured data are the measured battery pack
voltage data from the HPPC test (Fig. 2), whereas the
simulated data are the simulated battery pack voltage data
generated using one of the listed ECMs (Table 2).

Curve fitting with constant parameters can result in a fast
optimization convergence time, but normally loses the flexi-
bility to adapt to new discharge current patterns.

2) OPTIMIZED PARAMETERS
Throughout the parameter identification process described in
the previous subsection, the optimum parameter data result-
ing in the minimum difference between each ECM and the
OCV data from the HPPC test were obtained, as illustrated
in Table 3, and the corresponding OCV profiles are shown
in Fig. 3.

Here, the OCV profile named ‘‘Reference’’ is the OCV
data obtained from the HPPC test (Fig. 2).

III. EXPERIMENT
A. PREPARATION
To evaluate the performance of the 14 candidate ECMs,
two real-flight current patterns obtained using a hexacopter
UAV (Fig. 4) carrying 0 kg and 10 kg payloads were used.
It is obvious that the flight time with the 10 kg payloads is
much shorter than that with the 0 kg payloads by more than
half, owing to the approximately doubled discharge current
magnitude.
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FIGURE 3. Battery pack voltage profiles of Uoc : (a) voltage profile,
(b) fluctuation deviation.

FIGURE 4. Exterior appearance of Hexacopter UAV.

Real-flight current patterns were applied following the
schedule (Fig. 5(a)) using a DC electronic load (Fig. 5(b)).
Here, CC-CV represents the constant current-constant volt-
age, VOC is the open-circuit voltage (V ), and UV is the
undervoltage limit (V ).
Depending on the characteristics of the real flight patterns

(either flight or driving patterns) and battery ingredients,
the dynamic response of the ECMs might be altered a bit
but the general performance characteristics of the individual
ECMwill be similar even if the application changes since the

FIGURE 5. Flight test: (a) schedule, (b) current profiles.

dynamic response is dependent on variables consisting of the
ECM rather than the given load profile.

B. EXPERIMENTAL RESULT
Figs. 6 and 7 show the CCV and fluctuation deviation profiles
corresponding to the flight tests carrying 0 kg and 10 kg
payloads. Here, the CCV profile named ‘‘Reference’’ is the
CCV data obtained from a real flight test (Fig. 5).

C. ANALYSIS
We summarized the mean, RMS, SD, and maximum errors
(Table 4) and observed the following three phenomena.

1) In the case of the HPPC test (orange), that is, Uoc,
(11), the Liu ECM worked best, resulting in the lowest
RMS (0.0376 V ), SD (0.0343 V ), and maximum errors
(0.6159 V ).

2) In the case of the real flight test (colored green), that
is, Ucc, carrying a 0 kg payload, (1) the Rint ECM
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TABLE 3. Optimized ECM parameter data.
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TABLE 3. (Continued.) Optimized ECM parameter data.

FIGURE 6. Battery pack voltage profiles of Ucc with 0 kg: (a) voltage
profile, (b) fluctuation deviation.

worked best, resulting in the lowest RMS (0.0702 V )
and maximum errors (0.6844 V ).

3) In the case of the real flight test (colored blue), that is,
Ucc, carrying a 10 kg payload, (7) the Shepherd ECM

FIGURE 7. Battery pack voltage profiles of Ucc with 10 kg: (a) voltage
profile, (b) fluctuation deviation.

worked best, resulting in the lowest RMS (0.0875 V )
and SD errors (0.0872 V ).

By analyzing the above phenomena, we derived the gener-
ally applicable characteristics of the 14 ECMs, as described
below.
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TABLE 4. Error analysis.

1) Heavier ECMs containing more arguments (represen-
tatively, (11) Liu ECM) resulted in a smaller error, but
had weaker adaptability to the dynamic discharging
loads, resulting in a larger error.

2) Lighter ECMs containing fewer arguments (representa-
tively, (1) Rint ECM) resulted in a larger error but had
great adaptability to the dynamic discharging loads,
resulting in a smaller error.

3) ECMs containing varying parameters with sixth-degree
polynomials depending on the SOC ((1) Rint,
(2) Thevenin, (3) PNGV, (4) DP, (5) GNL, and
(6) Improved RC ECMs) resulted in worse error values,
longer data fitting times, and difficulties in real-life
implementation because of the use of more memory
in the BMS chip.

4) We chose the (7) Shepherd ECM as the best candidate
ECM for real-life applications because it has the sim-
plest formula with only two constant parameters.

Each of the 14 ECMs listed in this manuscript consists
of different mathematical formats having different parameter
sets and this results in different reactance behavior which
brings differences for mean, SD, RMS, and max error val-
ues. The main purpose of this manuscript is to analyze the
different error dynamics upon a real flight current pattern.

IV. CONCLUSION
In this manuscript, we summarized a total of 14 well-
known ECMs by presenting a schematic diagram and the
corresponding equations which are implemented in the
MATLAB/Simulink environment. We first extracted ECM
parameters through the HPPC tests based on the curve-fitting
method. Then, we applied real flight current patterns to eval-
uate the error characteristics of 14 ECMs based on error
fluctuation deviation analysis. In particular, we focused on
evaluating the ECM in terms of accuracy (mean, RMS, SD,
and maximum values).

In summary, the Liu ECM resulted in the lowest RMS
(0.0376 V ), SD (0.0343 V ), and maximum errors (0.6159 V )
for the HPPC test, the Rint ECM resulted in the lowest RMS
(0.0702 V ) and maximum errors (0.6844 V ) for the real flight
test carrying a 0 kg payload, and the Shepherd ECM resulted
in the lowest RMS (0.0875 V ) and SD errors (0.0872 V ) for
the real flight test carrying a 10 kg payload.

Overall, we recommend the Shepherd ECM to obtain
constant parameters owing to its fast parameter optimiza-
tion convergence time and flexibility to dynamic discharging
loads with a smaller error. The opposite phenomenon was
observed in the ECMs with SOC-dependent parameters,
resulting in longer data-fitting times and larger errors.

In the future, as a successive work, we will analyze
well-known battery state estimation algorithms by combining
them with ECMs listed in this manuscript to determine the
fluctuation error characteristics.
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