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ABSTRACT Monocular depth estimation in outdoor scenes presents significant challenges due to ambiguity
from occlusions and structural variations. One important challenge lies in effectively incorporating loss
functions while considering the distribution of ground truth pixels and structural variations of the scene. The
utilization of conventional loss functions, such as scale-invariant loss and gradient loss without considering
contribution of each loss in relation to the structural variation of the scene may lead to suboptimal outcomes.
To solve this problem, we propose an Adaptive Momentum-based Loss Rebalancing (AMLR) to balance
loss functions for monocular depth estimation in outdoor scenes. Our method utilizes the scale-invariant
loss and gradient loss, with the proposed balancing term inspired by traditional weight optimizer, Adam.
By dynamically updating the loss weights using momentum and considering the increase and decrease
of individual losses, we facilitate convergence of the total loss and consequently obtain more accurate
results. We observed the gradient loss with an appropriate weight serves the role of assistant to the overall
loss convergence. Experimental results on the KITTI benchmark demonstrate that our approach achieves
performance comparable to state-of-the-art, achieving an absolute relative difference of 0.049. This work
contributes to advancing the field of monocular depth estimation in challenging outdoor scenes.

INDEX TERMS Monocular depth estimation, Adam, loss rebalancing, scale-invariant loss, gradient loss.

I. INTRODUCTION
Estimating accurate depth information has become an essen-
tial requirement in numerous computer vision tasks, owing
to the growing challenges associated with understanding
and analyzing 3D space. Conventionally, spatial information
including depth has been acquired through point cloud
data generated by Light Detection and Ranging (LIDAR)
sensors. Extensive research has been conducted to handle this
information, primarily leveraging point cloud data [1], [2].
However, due to high cost of LIDAR sensors and substantial
memory usage of point cloud data, generating per-pixel depth
prediction map only using monocular image becomes a very
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attractive task. Although monocular depth estimation is an
attractive task, there exist several challenges that need to
be addressed. The problem is fundamentally ill-posed, and
particularly in outdoor scenes, accurately predicting depth
maps is significantly more challenging due to the presence
of various structural variations and occlusions compared to
indoor scenes.

Due to these challenges, the utilization of proper loss
functions, reflecting the characteristics of outdoor scenes
has emerged as one of the important problems to be
solved. Previously, many monocular depth estimation meth-
ods, particularly for outdoor scenes, have been proposed
relying solely on the utilization of scale-invariant loss [3].
Conversely, the utilization of the gradient loss [4] has
been predominantly limited due to the lack of ground truth
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FIGURE 1. Overview of the proposed Adaptive Momentum-based Loss Rebalancing (AMLR). Loss rebalancing is performed using loss
function which is computed using output of depth prediction network and ground truth value. The total loss function is dynamically
reweighted at each rebalancing step, while ensuring no interference with the backpropagation process.

values and its misalignment with the objective of increasing
accuracy. The gradient loss is more sensitive to the absence
of a ground truth value compared to the scale-invariant loss
because the absence of a single ground truth value hinders
the computation of gradient loss for a pair of pixels, while
hindering the computation of scale-invariant loss for a single
pixel. In addition, the gradient loss compares the relative
difference of adjacent pixels, which means it disregards
the objective of minimizing the absolute value difference
between the ground truth value and the prediction. However,
by appropriately weighting gradient loss with scale-invariant
loss, they can serve as valuable supplements to the overall
loss and enhance the performance of the entire network.
Balancing the weights assigned to each loss is a critical
component of this process, enabling the allocation of proper
weights for each loss.

Recently, loss rebalancing method between several loss
functions in indoor depth estimation was proposed by Lee
and Kim [7]. However, this method is applicable primarily
to indoor scenes, because it applies various loss functions
without consideration of effect of missing ground truth value.
Furthermore, the rebalancing method merely considers the
relative proportions of each loss in the total loss, without
accounting for the tendencies of individual loss functions to
increase or decrease.

To handle these problems, we propose an Adaptive
Momentum-based Loss Rebalancing method (AMLR), with
applying the gradient loss [4] and scale-invariant loss [3].
By integrating the advantages of the Adam optimizer [8],
our proposed method effectively reflects the past changes
of individual loss functions, thereby enabling adaptive
rebalancing. With this term, application of gradient loss with
an appropriate weight in outdoor scenes can facilitate the
convergence of the loss based on per-pixel differences and
enhance the generalization capabilities of the overall network.
We additionally applied a masking technique to pixels
for which gradient computation is not feasible, including
missing pixels and those with zero disparity. These masked
pixels were then averaged with the number of computable
pixels to facilitate more accurate gradient computation. Our
proposed rebalancing method can be employed in other
tasks involving multiple loss functions without the need

for explicit modifications to the loss function or network
architecture.

Our contributions can be summarized as follows:
• We applied a classical optimizer to the loss rebalancing
term, thereby enhancing the flexibility and suitability
of the loss rebalancing process according to predefined
conditions.

• We masked pixels for which we cannot compute the
gradient, thus enabling more accurate computation of
gradient loss.

• Our method achieves comparable results to state-of-
the-art performance for monocular depth estimation on
KITTI benchmark both quantitatively and qualitatively.
Specifically, we have achieved an absolute relative error
of 0.049, surpassing the performance of the previous
state-of-the-art (SOTA) methods [6], [9], [10].

II. RELATED WORK
Depth estimation has emerged as a crucial task in various
domains, including self-driving, virtual reality (VR), and
augmented reality (AR). In prior approaches, depth esti-
mation was predominantly achieved through the utilization
of stereo cameras, capitalizing on principles rooted in
epipolar geometry. In light of the recent advancements in
deep learning and computer vision techniques, numerous
methodologies have been introduced, harnessing the potential
of stereo cameras for depth estimation [11]. Concurrently,
over the past decade, there has been a substantial body of
research focused on monocular depth estimation, a technique
accomplished using a single camera. These researches have
primarily focused on investigating network architectures, loss
functions, training methodologies, and other related areas.
In this section, we focus on recent deep learning based
monocular depth estimation methods, which can be divided
into two categories: supervised monocular depth estimation
and self-supervised monocular depth estimation. We also
discuss about loss functions and their rebalancing methods
at the end of the section.

A. SUPERVISED MONOCULAR DEPTH ESTIMATION
Monocular depth estimation using a supervised approach can
be regarded as both classification and regression problem.
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FIGURE 2. Illustration of the network architecture in (a) and multiple depth prediction results obtained using our network in
(b). SiLU activation [5] is applied after each Deconvolution and Convolution layer in the Decoder. The Encoder utilizes a
pretrained Swin Transformer v2 [6].

Eigen et al. [3] approached the depth estimation problem
as a regression task. They trained two separate networks,
one for coarse estimation and the other for fine estimation.
The outputs of these networks are combined in the final
stage to incorporate both coarse and fine perspectives. On the
other hand, Fu et al. [12] and Bhat et al. [13] tackled
the depth estimation as a classification task. Fu et al. [12]
discretized the depth values into bins and employed ordinal
regression techniques to predict the depth category. Similarly,
Bhat et al. [13] discretized the depth into bins, but with an
adaptive binning strategy tailored to the specific domain.
Kim et al. [14] proposed selective feature fusion module to
reflect both global and local features of the scene. They also
introduced vertical cutdepth, data augmentation method for
depth estimation, which is based on the understanding that
incorporating vertical context plays a vital role in accurate
depth prediction [15]. Recently, the trainingmethodology uti-
lizing masked image modeling (MIM) on Swin Transformer
v2 [16], as demonstrated by Xie et al. [6], has exhibited
remarkable performance in dense prediction tasks such as
semantic segmentation and depth estimation.

B. SELF-SUPERVISED MONOCULAR DEPTH ESTIMATION
On the other hand, a self-supervised approach was also
utilized for monocular depth estimation. Typically, this
approach involves capturing the geometric relationship
between consecutive frames and reconstructing one frame
using information from the other. Subsequently, a reprojec-
tion loss is computed by comparing the reconstructed scene

with the original scene. Godard et al. [17] proposed the first
self-supervisedmonocular depth estimationmethod using the
aforementioned approach. They employed separate networks
for depth estimation and pose prediction, where the depth
network predicts the depth map and the pose network predicts
the transformation matrix between two scenes. With utilizing
the baseline method of Godard et al. [17], Guizilini et al.
[18] suggest encoder-decoder structure using 3D convolution
to preserve spatial information. They also proposed a
velocity loss based on the concept that the norm of the
translation matrix is proportional to the product of velocity
and time. Lyu et al. [19] proposed Unet ++ [20] based
architecture as an enhancement to the standard encoder-
decoder architecture to decrease semantic gap between
corresponding stage of encoder and decoder information.
Liu et al. [21] specifically focused on depth estimation of
nighttime. They only used invariant features to estimate
depth, which were extracted using the orthogonality between
the a nighttime image synthesized through Cycle-GAN [22]
and original image. Recently, Wang et al. [23] attempted to
find the transformation matrix by not solely relying on the
network but also incorporating a correspondence matching
method using RANSAC [24] and finding the fundamental
matrix.

C. LOSS FUNCTION AND REBALANCING
Eigen et al. [3] proposed the scale-invariant loss to handle
the ambiguity of global scale in monocular depth estimation.
Finding global scale in monocular depth estimation is
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challenging since we cannot distinguish whether a given
photo represents the actual scene or a miniature represen-
tation. The scale-invariant loss computes the relationships
between pixel values in the scene, irrespective of the
absolute global scale. Subsequently, gradient loss [4] was
also proposed to deal with comparison of difference between
adjacent pixels.

From the perspective of loss rebalancing, achieving
a balance between different loss functions has been a
fundamental challenge in the domain of multi-task learning
[25], [26], [27]. Recently, a multi-loss rebalancing algorithm
was introduced for monocular depth estimation specifically
focused on indoor scenes [7]. This approach incorporates a
total of 78 loss functions, with weight of each loss varying
based on spatial scale and the type of loss.

While numerous loss functions can be employed for the
task of monocular depth estimation, we specifically utilized
the scale-invariant loss [3] and gradient loss [4] to ensure
stable convergence of the total loss. Our emphasis is placed
on determining the optimal weight ratio between these two
loss functions and aiming to enhance the effectiveness of the
gradient loss as a supportive component to the scale-invariant
loss employed previously.

III. PROPOSED METHOD
Figure 1 presents our proposed AMLR algorithm. In this
section, we will begin by reviewing the network architecture
and loss function of our proposed method and subsequently
provide a detailed description of the proposed rebalancing
term.

A. ARCHITECTURE
Figure 2 provides an overview of our overall architecture
and several depth prediction results. We utilize the baseline
architecture proposed by Xie et al. [6] which consists of a
Swin Transformer [16] encoder and a decoder composed of
deconvolution and upsampling layers.

The Swin Transformer [16] stands as a specific category
within the domain of ViT(Vision Transformer) [28], specif-
ically devised to tackle the inherent difference between the
expressive capacity of an individual image patch and that
of a single word. Elaborating further, the Swin Transformer
initiates its process with smaller patches, each of which
can be succinctly represented using a predetermined number
of embedding vectors. Subsequently, through a hierarchi-
cal approach, these smaller patches are merged to form
larger patches. This tiered structure empowers the Swin
Transformer with the capacity to effectively process high-
resolution images.

In figure 2, each swin transformer [16] block consists of
patch merging layer and two self attention blocks. The patch
merging layer merges patches and transmits a merged patch
to the subsequent layer. A self-attention block consists of two
components: a window multi-head self-attention block and
a shifted window multi-head self-attention block. Through
the shifting of the window during the attention computation

process, the shifted window multi-head attention block
enables attention computation not only within the designated
window but also between adjacent windows.

We made several modifications to enhance performance of
previous architecture based on [6] and [16]. One significant
modification involved adjusting the channel configuration of
the decoder layers. In the original architecture, the channel
dimension of the feature map is reduced from 1536 to 32 in
the first deconvolutional layer. Furthermore, a channel size
of 32 is preserved across three consecutive deconvolutional
layers. However, such a drastic reduction in channels can
potentially result in information loss. To mitigate this issue,
we gradually decreased the channel size in the decoder
layers. Additionally, we incorporated the SiLU activation [5]
function to introduce more diverse expression in the feature
maps.

B. LOSS FUNCTION
We employed both scale-invariant loss [3] and gradient loss
[4] in our AMLR method. From Eigen et al. [3], the scale-
invariant loss is stated as the subtraction of the ratio between
pixel pairs in the predicted depth map from the ratio of pixel
pairs in the ground truth depth map. It is commonly employed
to mitigate the influence of absolute scale ambiguity in
depth estimation tasks as it measures difference between
the relationships of pixel pairs rather than the difference of
absolute values.

Specifically, the scale-invariant loss LSi is defined as

LSi =
1
n

n∑
i

d2i −
1
n2

(
n∑
i

di)2,

=
1
n2

n∑
i,j

d2i −
1
n2

n∑
i,j

didj,

=
1
2n2

n∑
i,j

((log yi − log yj) − (log y∗i − log y∗j ))
2,

=
1
2n2

n∑
i,j

((log
yi
yj
) − (log

y∗i
y∗j

))2, (1)

where n is the total number of pixels, with pixel index i and j.
LSi is calculated by the difference in logarithmic depth (di =

log yi − log y∗i ) between the ground truth depth (yi) and the
predicted depth (y∗i ).
Meanwhile, the gradient loss Lgr (2) is defined as

LGr =
1
n

m,n∑
i,j

[(∇xdi,j)2 + (∇ydi,j)2], (2)

where the variablesm and n represent the width and height of
the image, respectively. The indices i and j are used to denote
the positions along the x and y axes. The gradient terms∇xdi,j
and ∇ydi,j are defined by

∇xdi,j = (log yi+1,j − log yi,j) − (log y∗i+1,j − log y∗i,j),

∇ydi,j = (log yi,j+1 − log yi,j) − (log y∗i,j+1 − log y∗i,j). (3)
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FIGURE 3. Example of computing gradient difference for x-axis. Initially, a gradient mask is generated for pixels where the
gradient can be computed. In this process, we set the last column of shifted non-zero mask to zero. Subsequently, using
this mask, gradient maps are calculated for both the ground truth and predicted depth value. Finally, the computed
gradient differences are averaged with respect to the sum of the gradient mask. The gradient difference for the y-axis can
be computed in the same manner along the vertical axis.

Lgr is calculated by the average of both the horizontal gradi-
ent difference and vertical gradient difference. We employed
the forward difference method to compute the gradients of
each pixel, which is described in equation (3). Additionally,
we masked the pixels for which gradient computation
was not possible due to missing values or zero disparity.
By applying a masking technique, we were able to achieve
improved accuracy in the computation of the gradient loss.
Computation of gradient with masking is illustrated in
Figure 3.

Finally, with the equations (1) and (2), the overall loss Ltot
is defined as:

Ltot =

2∑
i

wiLi = wSiLSi + wGrLGr , (4)

where wSi and wGr represent the respective weights assigned
to the scale-invariant loss and gradient loss.

C. LOSS REBALANCING ALGORITHM
In this section, we provide a review of the Adam optimizer
and subsequently discuss the two crucial components of
our Adaptive Momentum-based Loss Rebalancing method
(AMLR), including loss initialization and loss rebalancing.
Our loss rebalancing algorithm is rooted in the concept
of momentum [29] and penalizing significant changes in
loss values while assigning greater weight to loss functions
that exhibit relatively smaller variations. This approach
aims to stabilize the training process by mitigating the
impact of abrupt or drastic fluctuations in the loss function.

While rebalancing helps ensure proper weighting, incorrect
initialization can lead to catastrophic results due to the
utilization of momentum and exponential moving average
(EMA) for loss calculation at each timestep. Therefore,
we carefully initialized each weight based on fundamental
hypotheses regarding gradient loss, number of ground truth
pixels and empirical observations. As a result, these two key
components contributed to the achievement of comparable
results to state-of-the-art approaches. Detailed explanations
are given in the following subsections.

1) ADAM OPTIMIZER
In our proposed approach, we incorporated the concept of
a weight optimizer, specifically Adam [8]. Adam combines
the advantages of RMSprop [30], which applies individual
penalties to different parameters, and momentum, resulting
in accelerating the training process.

mt = β1mt−1
+ (1 − β1)

∂Lt

∂θ t−1 , (5)

vt = β2vt−1
+ (1 − β2)(

∂Lt

∂θ t−1 )
2, (6)

wheremt represents the momentum term at timestep t , which
is calculated using the exponential moving average (EMA)
method. Similarly, vt in equation (6) corresponds to the
RMSprop term at timestep t , also computed using the EMA
method. Moreover, β1 and β2 are decay rate in the EMA for
momentum and RMSprop term respectively. Higher decay
gives more weight to recent value, resulting faster update
of the moving average. Lt is loss of current timestep with
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θ t−1 indicating parameter before update. With incorporating
these terms and learning rate η and ϵ as a small value(e.g.,
ϵ = 1 × 10−8), Adam optimization method [8] is defined
follows:

θ t = θ t−1
− η

mt
√
vt + ϵ

. (7)

By incorporating the Adam optimizer in the weight rebal-
ancing process, we can take advantage of penalizing loss
functions that are relatively easy to optimize. Moreover, this
allows us to preserve the weight tendencies for each loss
component.

2) LOSS INITIALIZATION
As mentioned earlier, we initialized the weights of each loss
function based on the underlying hypotheses and empirical
observations. It was hypothesized that in terms of enhancing
accuracy, the scale-invariant loss [3] imposes a stronger
constraint compared to the gradient loss [4]. This is due to
the scarcity of ground truth pixel values in outdoor scenes.
In the calculation of gradient loss, the absence of ground truth
values for individual pixels hinders the computation of pixel
pairs, whereas scale-invariant loss restricts the computation
solely to the corresponding pixel. Consequently, in outdoor
scenes where ground truth pixel values are often lacking,
the limitation of computing a relatively small number of
gradient losses imposes a weaker constraint compared to the
scale-invariant loss. Furthermore, the gradient loss, by solely
measuring the differences between adjacent pixels, may fail
to capture the overall image representation adequately. This
implies that the scale-invariant loss should assume a more
significant role than the gradient loss and thus carry a greater
weight. Therefore, we initialized the scale-invariant loss as a
primary loss and the gradient loss as a secondary or assistant
loss.

Specifically, the initialization process of the loss function
involves two timesteps. In the first timestep (t = 0), we set the
loss weights for both the scale-invariant loss and the gradient
loss to be the same. In the following timestep (t = 1),
we establish different weighting factors to the loss weights,
with the scale-invariant loss being designated as the primary
loss and the gradient loss as the secondary loss. Concretely,
the loss weights at timestep t = 0 and t = 1 are defined as:

w0
i =

1
nw

, (8)

w1
i =

L1
tot

L1
i

× rL1
i
, (9)

where nw represents the number of loss functions, which is
set as 2. In equation (9), rL1

i
denotes the weighting factor

of ith loss component L1
i in the timestep t = 1. The

superscripts of both w and L indicate the timestep t in our
rebalancing algorithm, while subscripts of them indicate the
index of the loss function. By appropriately initializing the
loss, it became possible to guide the weighting of the loss
during the rebalancing step.

3) ADAPTIVE MOMENTUM-BASED LOSS REBALANCING
Loss rebalancing is an important factor when dealing with
more than two loss functions. Every individual loss function
inherently contributes to the overall convergence of the
composite loss, albeit with distinct magnitudes of influence.

In this paper, we proposeAMLR employing scale-invariant
loss [3] and gradient loss [4].While conducting training using
a supervised approach, it is reasonable to posit that the scale-
invariant loss, which is rooted in mean square error, assumes
a more substantial role in the training process compared
to the gradient loss. From an alternative standpoint, neigh-
boring pixels show a strong interdependence, and gaining
insights into these relational complexity might be crucial for
developing a understanding of the depth characteristics of
objects. For example, the 7th row of Figure 4 demonstrates
that by accounting for the interplay among adjacent pixels,
the uniformity of the depth pertaining to the traffic sign is
significantly improved. Building upon the aforementioned
insights, we postulated that the incorporation of gradient loss
could offer utility in the context of representing the depth
characteristics of individual objects.

Our loss rebalancing term is formulated based on the
proportion of a specific loss with respect to the total loss
at the current timestep t . The proportion of the specific
loss at timestep t can be expressed as Pi = Lti/

∑
i
wtiL

t
i ,

where wi represents the corresponding weight assigned to
each loss function and Li represents individual loss function.
The percentage difference of Li between two consecutive
timesteps can be computed as 1Pti = Pti − Pt−1

i .
Based on the aforementioned concepts in equation (5), (6)

and (7) and notations, our rebalancing weights at timestep
t ≥ 2 are defined as:

mti = β1m
t−1
i + (1 − β1)

1Pti
Pti

wt−1
i , (10)

vti = β2v
t−1
i + (1 − β2)

(
1Pti
Pti

wt−1
i

)2

, (11)

wti = wt−1
i −

mt−1
i√

vt−1
i + ϵ

λ. (12)

Here, wti represents the weight of the loss function Li
at timestep t , while mti and vti denote the corresponding
momentum and RMSprop terms respectively. β1 and β2 are
decay rate in the EMA for momentum and RMSprop term
respectively just as mentioned in equation (5) and (6).

These equations provide a mechanism for updating the loss
weights based on the percentage differences (1Pti/P

t
i ) and

the previous weights (wt−1
i ). The momentum term (mti ) and

the RMSprop term (vti ) help adjust the weight updates, taking
into account the historical information of the loss variations.
Finally, the weight update equation incorporates these terms
and the learning rate λ to determine the new weights wti . The
employment of momentum and RMSprop terms enhances
the effectiveness of the rebalancing process by accounting
for historical weights and trends, contrasting with relying
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FIGURE 4. Qualitative comparison results of GLPDepth [14], Swin v2-L-MIM [6] and Ours with KITTI [31] dataset in (a), and scale-invariant loss, gradient
loss and total loss on training process of KITTI dataset in (b). Several qualitative improvements are observed in the output results between our network
and previous networks. In row 7 of (a), more explicit prediction of a billboard and upper body of pedestrian is discernible. In row 8, we can observe that
our network successfully distinguishes two adjacent trees that were previously indistinguishable by the preceding network.

exclusively on the proportional adjustment of individual loss
components [7].

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
For KITTI [31] dataset, we employ a single NVIDIA A100
GPU for training our model with 30 epochs and batch
size of 6. In the timestep t = 1, the initial weighting
factor rL1

1
for the scale-invariant loss and rL1

2
for the

gradient loss in equation (9) were empirically determined as
0.99 and 0.01, respectively. This determination was based
on the observations and hypothesis that the scale-invariant
loss serves as the primary loss while gradient loss serves
as secondary loss. We adopted the learning rate schedule
proposed by Xie et al. [6] for our training process. The
learning rate gradually increased until the midpoint of the
entire epoch and then reverted to its initial value, with an
initial learning rate of 3e-5 and a midpoint learning rate of
5e-4. We updated the learning rate after every single batch
and the depth range was defined as 0 to 80 meters.

Furthermore, we conducted experiments on the NYUv2
[32] dataset to substantiate the efficacy of our approach. The
experiments involving the NYUv2 dataset was conducted
under nearly identical conditions to those of the KITTI [31]
dataset, with the exception of variations in depth range and

training epochs. For the NYUv2 dataset, we executed training
for a total of 20 epochs andwith depth range as 0 to 10meters.

During the evaluation step, we incorporated the concepts
of the flip test and shifted window test. Firstly, the validation
image is divided into several overlapping sub-images, each
taking the form of a square with sides equal to the height
of the original image. Subsequently, through augmenting
these sub-images and obtaining their respective depth maps,
we were able to reconstruct the depth map of the original
image by averaging the depth maps of the sub-images. This
method resulted in notable improvements in our outcomes.
Table 1 demonstrates the improved performance obtained by
incorporating both the shifted window test and flip test.

B. DATASET AND EVALUATION METRICS
We used KITTI dataset [31] with eigen split [3] and garg
crop [38]. The dataset comprises a total of 23,158 training
images and 652 test images. Each image in the dataset
is accompanied by four corresponding sections. Notably,
the KITTI dataset is constructed based on a stereo camera
setup, resulting in the provision of both color and grayscale
images captured by the left and right cameras respectively.
Since our task only utilizes a single image per scene, our
approach only considers color images captured by the left
stereo camera. Prior to training, we crop image to size of
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TABLE 1. The comparison of the evaluation results obtained from the shift window test and flip test, juxtaposed with the results obtained without these
tests. ‘‘None’’ refers to the absence of the shifted-window and flip test, while ‘‘S/W, Flip’’ denotes testing with the inclusion of both the shifted-window
and flip test. The best performing results are highlighted in bold. The upward (↑) and downward (↓) arrows indicate the direction of improvement in each
metric.

TABLE 2. Quantitative comparison results on the KITTI Eigen split dataset. We reported result with 7 widely used metrics. State-of-the-art results are
highlighted in bold. We have achieved state of the art or comparable results in most metrics. We also reported result of our method with GLPDepth [14]
baseline. The upward (↑) and downward (↓) arrows indicate the direction of improvement in each metric.

1216 × 352 and applied common data augmentations such
as horizontal flipping and random cropping.

We evaluate the results of our method in indoor envi-
ronments using the NYUv2 [32] dataset. NYUv2 dataset
is comprised of video sequences from a variety of indoor
scenes with its depth captured by Microsoft Kinect camera.
It consists of 24k training split from 464 indoor scenes and
result was evaluated by 654 images from 215 indoor scenes.
Crop was done with the size of 448 × 576 and common
data augmentations such as horizontal flipping and random
cropping were also applied.

We evaluate our method with various metrics. With the
depth space d, themetrics consist of the absolute relative error
(Abs Rel) =

1
M

∑M
i=1 |di − d̂i|/di, the square relative error

(Sq rel) =
1
M

∑M
i=1(di − d̂i)2/di, the root mean squared error

(RMSE) = ( 1
M

∑M
i=1(di − d̂i)2)

1
2 , the log root mean squared

error (RMSE Log) = ( 1
M

∑M
i=1(log10di − log10d̂i)2)

1
2 , the

average log10 error (Log10) =
1
M

∑M
i=1 |log10di − log10d̂i|,

and the threshold accuracy δn = percent of pixels, such that
max(di/d̂i, d̂i/di) < 1.25n for n = 1, 2, 3, where di and d̂i
denote ground truth and predicted depth value at pixel index i
respectively andM is the total number of pixels in the image.

C. COMPARATIVE RESULTS
For KITTI [31] dataset, we compared our proposed method
with previous methods using 7 widely used metrics. Our
proposed method outperformed previous methods for almost
measures and achieved comparable results on others. The
results are reported in Table 2. Specifically, we achieved
state-of-the art result on Absolute Relative Error (Abs Rel),
Squared Relative Error (Sq Rel), and RootMean Square Error
(RMSE) metrics while achieving comparable results in other
metrics.

Qualitative results for KITTI dataset are illustrated in
Figure 4. The upper six rows present the outputs of different
networks for the same image. Specifically, in the seventh row,
our method demonstrates improved clarity in capturing the
shape of the billboard, background texture, and upper body
of the pedestrian compared to Swinv2-L-MIM [6]. Moreover,
in the eighth row, our method successfully achieves the
distinction between two adjacent trees, which the previous
network fails to accomplish. These achievements appear
attributable to the adaptive incorporation of the scale-
invariant loss and the gradient loss [4], which facilitates
object elucidation by learning the interplay between neigh-
boring pixels.
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TABLE 3. Quantitative comparison results on the NYUv2 dataset. We reported result with 6 widely used metrics. State-of-the-art results are highlighted in
bold. We also have achieved comparable results in most metrics even though our method was done for outdoor scene just as on KITTI dataset. The
upward (↑) and downward (↓) arrows indicate the direction of improvement in each metric.

FIGURE 5. Qualitative comparison results of GLPDepth [14], Swin v2-L MIM [6] and Ours on NYUv2 [32] dataset.

In the realm of this backbone architectures and their
associated training methodologies, the foundation of our
works was laid by the Swin Transformer [16] and the work
of Xie et al. [6]. By comparing with previous method by
Xie et al. [6], incorporating adaptations such as gradient
loss integration and embracing a loss rebalancing approach,
we demonstrated competitive performance across a spectrum
of metrics, with particularly in the domain of absolute relative
error.

We also evaluated our method using NYUv2 [32] dataset.
While our method is primarily designed to address outdoor
environments, it achieved comparable results to previous
methods in indoor scenes. Quantitative comparison results for
NYUv2 dataset are reported in Table 3, where we compared
our method with previous methods using 6 widely used
metrics. We also presented comparisons between qualitative

results for several indoor scenes in Figure 5. Figure 5 shows
that objects in our results are clearer and sharper than those
of previous methods [6], [14]. For instance, our method
enhances the perceptual clarity of background chairs in the
first row and shelves in the second row within the obtained
results. This enhancement is attributed to the incorporation
of the gradient loss with the proposed adaptive loss weighting
algorithm through the consideration of relationships between
adjacent pixels.

D. ABLATION STUDY
During the training process, we conduct an analysis of the
convergence of the loss functions. While the scale-invariant
loss remained dominant throughout the entire training
process, we observe the convergence of the gradient loss
as well. This observation indicates that despite its relatively
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TABLE 4. Comparative analysis of incorporating different loss functions. The table presents the results of incorporating scale-invariant loss and previous
loss rebalancing method proposed by Lee et al . [7]. We also reported our result on the last row. The best performing results are highlighted in bold. The
upward (↑) and downward (↓) arrows indicate the direction of improvement in each metric.

small portion, the gradient loss still exerted influence on
the training process. Training loss of both loss functions are
visualized in Figure 4. We observe an initial rise in the total
training loss, consistent with the expected behavior during
the initialization and rebalancing stages where loss weights
are being stabilized. As the training progresses, this upward
trend subsides, indicating the achievement of loss weight
stabilization and subsequent convergence of the loss function.

Furthermore, we conduct separate tests under identical
conditions using only the scale-invariant loss and the
gradient loss, respectively. Incorporating our rebalancing
term, we observe a notable enhancement in performance
when utilizing both the scale-invariant loss and the gradient
loss, surpassing the individual utilization of each loss func-
tion. The comparative analysis regarding the incorporation
of different loss functions and rebalancing algorithm is
presented in Table 4. We also applied our method to
backbone of GLPDepth [14] architecture to validate the
effectiveness of our proposed AMLR approach. We noted
performance improvement of GLPDepth upon the application
of the proposed AMLR. Detailed comparisons using various
metrics are presented in Table 2.
We further note a degradation in the performance of our

networkwhen employing skip connections. This outcome can
be attributed to the placement of the skip connection at an
early stage of the decoder, impeding its intended function
of transmitting comprehensive global information from the
encoder to the decoder.

V. CONCLUSION
In this paper, we propose several changes to the architecture
of a previous monocular depth estimation network including
SiLU activation and modification of decoder channel.
We also incorporated a gradient loss into the depth prediction
task. To ensure that the gradient loss not to be dominant
loss during the learning process but rather serves as an
assisting loss to the scale-invariant loss, we introduce a
novel loss rebalancing term called as AMLR. Through our
methodology, we achieve state-of-the-art performance in
monocular depth estimation on the KITTI dataset with eigen
split.
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