
Received 20 September 2023, accepted 5 October 2023, date of publication 18 October 2023, date of current version 25 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3325742

Enabling Plug-and-Play in Cyber-Physical
Systems Using MPSoC-FPGAs
DANIELE PASSARETTI 1, (Graduate Student Member, IEEE), MAX STEIGER 2,
AND THILO PIONTECK 1, (Member, IEEE)
1Institute for Information Technology and Communications, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
2Department of Simulation and Graphics, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany

Corresponding author: Daniele Passaretti (daniele.passaretti@ovgu.de)

This work was supported in part by the Federal Ministry of Education and Research within the Project KIDs-CT under
Grant 13GW0229A, and in part by the Open Access Publication Fund of Magdeburg University.

ABSTRACT Cyber-Physical Systems (CPSs) combine computation, networking, and physical processes.
ACPS consists of various independent subsystem components with different interfaces and protocols defined
by vendors. Utilizing different interfaces and protocols with the necessity for flexible, dependable, and
extensible CPSs poses new challenges for controlling, communicating, and synchronizing the components.
In this paper, we propose a Centralized Control Unit (CCU) for CPSs and the associated Communication
Infrastructure that enable the support of subsystem components as ‘‘plug-and-play’’ modules. Our CCU
consists of a hardware-software architecture that handles physical signals as well as real-time and non-
real-time tasks implemented on a single MPSoC-FPGA. To enforce the dependability and flexibility of the
communication between components of different vendors, we model the Communication Infrastructure in
layers with communication classes. In addition, we propose three vendor-agnostic application protocols,
which are also implemented in the CCU. To validate our work, we have implemented and integrated the
CCU with the communication infrastructure into an open-interface Computed Tomography (CT) scanner,
where sensors/actuators can be added in a ‘‘plug-and-play’’ fashion. We have also evaluated the effort of
integrating an additional detector into our scanner. The CCU runs on an AMD-Xilinx Zynq-7000 XC7Z045,
and it uses only 10% of the hardware resources.

INDEX TERMS Computed tomography, cyber-physical systems, MPSoC FPGA, centralized control unit,
industry 4.0.

I. INTRODUCTION
Cyber-Physical Systems (CPSs) are the core of the new indus-
trial revolution called ‘‘Industry 4.0’’ [1], [2], [3]. They are
widely used in many application areas: automotive systems,
medical instruments, and aerospace control technologies.
In the medical field, CPSs are used in various categories of
devices [4], [5], [6]. Medical CPSs include small implantable
items such as mobile devices for monitoring and alarming,
and heavyweight stationary systems such as Computed
Tomography (CT), Positron Emission Tomography (PET),
or Magnetic Resonance Imaging (MRI) systems [7].
At the device level, a CPS consists of components

that control processes while taking care of physical and

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

computational requirements like sensitivity, stability, reliabil-
ity, dependability, speed, and noise reduction [8]. To achieve
the proposed capabilities at the device level, CPSs utilize a
management control system with different control units for
the various components (e.g., the physical sensor/actuator
and the control processing system) [9]. These control units
are connected to the main control unit that can be centralized,
distributed, or decentralized along edge nodes, sensors, and
actuators on single or multiple chips [10].

A. MOTIVATION
In recent years, the rising number of sensors/actuators and the
integration of autonomous and intelligent systems into CPSs
have increased the complexity of control, synchronization,
and data processing algorithms [11]. In order to meet
all requirements in real-time, CPS vendors tend to use

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 116219

https://orcid.org/0000-0001-7154-8354
https://orcid.org/0000-0002-0979-0905
https://orcid.org/0000-0001-6518-1226
https://orcid.org/0000-0003-3181-4480


D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

solutions based on Centralized Control Units (CCUs) that are
implemented on a single chip like Multi-Processor System-
on-Chips Field Programmable Gate Array (MPSoC-FPGAs).
Although these hardware platforms can fulfill the implemen-
tation requirements of CPSs, they open new challenges in
terms of interoperability, flexibility, and scalability of the
CPS [12], [13]. For example, Hoffman [14] highlights that
easy and flexible integration of sensors will be crucial for the
widespread acceptance of CPS concepts. These challenges,
which include the communication and interoperability of
components and the control unit of the CPS, are often
addressed in the literature as ‘‘plug-and-play’’ capability [15],
[16], [17], [18], [19].

To address these challenges in medical CPSs, the Medical
Device Plug-and-Play (MDPnP) initiative has been pro-
moted, which aims to create new models, architectures,
and standards to support plug-and-play extensions to the
system [17], [18], [19].

B. CONTRIBUTION
This paper proposes a Communication Infrastructure with
associated protocols and a CCU architecture for MPSoC-
FPGAs, which provide the plug-and-play capability, consid-
ering real-time requirements. These facilitate the interoper-
ability and integration of CPS components. In contrast to
previous works, the proposed Communication Infrastructure
supports components with standard and custom protocols.
In order to provide the ‘‘plug-and-play’’ capability without
affecting latency and dependability, we have modeled our
Communication Infrastructure in three layers that group
communication interfaces, transport, and application pro-
tocols. Each layer has three classes: non-real-time, real-
time control/synchronization, and real-time data classes that
allow to fulfill the different task requirements. In addition,
we have proposed an application protocol for each class,
which permits synchronization and inter-communication of
components at the application protocol layer.

The CCU is a node instance of the Communication
Infrastructure. To design the CCU architecture, we have
used a hardware/software co-design methodology, where
real-time protocols and application tasks are implemented as
hardware modules and non-real-time tasks are implemented
as software modules. To enable the ‘‘plug-and-play’’ feature
in the CCU and to have the possibility to integrate new
hardware modules, we use an MPSoC-FPGA, which is a
reconfigurable device.

For validation and evaluation purposes, we have used the
Communication Infrastructure and the CCU to interconnect
and control components of an open-interface Computed
Tomography (CT) scanner. This is an example of an MDPnP
CPS [17] where it is possible to add Detector Management
Systems (DMSs), X-ray tubes, and collimators in a plug-
and-play fashion. This plug-and-play feature also impacts
medical aspects because it facilitates the exploration of
new clinical acquisition techniques such as multi-modality

imaging [20]. In addition, it permits updating the components
in the CT scanner, which is an open challenge pursued by
the high cost of CT scanners [21]. Moreover, thanks to
the CCU architecture, the components can be synchronized
in real-time in the order of a few clock cycles, and the
whole open-interface CT can collect and process data
in real-time, which is essential for medical intervention
applications [22], [23].

Finally, the CCU architecture with the communication
infrastructure should lay a base framework for further
research or implementation projects, providing a starting
point for implementing complex CPSs with few constraints
at the device level.

C. STRUCTURE
The rest of this paper is organized as follows: Sec. II
reports the related work on CCU architectures and medical
CPSs system architectures. Sec. III describes the proposed
Communication Infrastructure and the Application protocols.
Sec. IV presents the software-hardware architecture of the
CCU. Sec. V presents the implementation of the CCU
and the Communication Infrastructure for the open-interface
CT. Sec. VI discusses the results of the CCU and the
Communication Infrastructure on the running open-interface
CT, compared with state-of-the-art performance and features.

II. RELATED WORKS
The design of cyber-physical systems that can provide
interoperability and flexibility between sensors and actuators
is a well-known problem in the literature at [2], [12], and [24].
To solve this problem at the system and communication level,
the National Institute of Standards and Technology (NIST)
has established the Cyber-Physical Systems Public Working
Group (CPS PWG) [12]. It is an open public forum that
supports designers and aims to develop a generic framework
for cyber-physical systems. It starts by considering the three
facets of CPSs: conceptualization, realization, and assurance.
In relation to them, the framework proposes activities for
defining the different CPS models. During these steps,
it points out the interoperability problems between different
components in the CPS caused by the incompatibility of the
different protocols used. In his literature review, Hofer [2]
also identifies component interoperability as a challenge in
the different analyzed CPS architectures.

While these previous works point out the interoperability
and extensibility problem of CPS and show that the
communication infrastructure and the control unit are the key
elements to address this problem, they do not propose any
software/hardware architecture at the device level. However,
several solutions have also been proposed at the CPS device
level to solve such a problem [25], [26], [27]. These show
that besides the different domains and their applications to
provide interoperability and extensibility, a major challenge
at the device level should be solved: designing control units
that provide plug-and-play capability for vendor components
that use custom and standard protocols. The various solutions

116220 VOLUME 11, 2023



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

FIGURE 1. Control unit models.

for designing control units are based on a Centralized,
a Distributed, and a Decentralized architecture [10], as shown
in Fig. 1.
In CPSs, which process a huge amount of data in real-

time, the centralized solution is mainly used. For instance,
Tesla and AMD-Xilinx have introduced a Full Self-Driving
(FSD) hardware architecture for Advanced Driver-Assistance
Systems (ADAS) [25], [26]. Both are examples of dedicated
CCU architectures for CPSs with a dedicated hardware
architecture, the first targeting Application Specific Inte-
grated Circuits (ASICs), and the second being synthesized
on MPSoC-FPGAs [28]. Although these FSDs collect and
acquire data from different sensors/actuators in real-time,
they are not extensible in a plug-and-play fashion.

Also, in the medical field, various CPS architectures have
been proposed for CT, MRI, or similar medical devices [2],
[5], [27], [29], [30], [31], [32], [33]. Reference [29] describes
an architecture for CT that uses a distributed control unit,
also proposed by AMD-Xilinx. It is divided into three
components: the ‘‘System Sequencer’’, the ‘‘High Voltage
Supply Control’’, and the ‘‘Data Acquisition & Gantry
Control’’ systems. The System Sequencer is responsible for
synchronizing the various components. The High Voltage
Supply Control monitors and controls the voltage for the
X-ray tube and the detectors; this implements safety-critical
tasks that regulate the X-ray dose. The Data Acquisition &
Gantry Control collects data and controls the DMS and
the gantry. This distributed approach avoids the problem
of isolating different tasks and communication interfaces.
However, it is not scalable, and components cannot be
added in a plug-and-play fashion. In fact, in order to
integrate a new component (e.g., detector or X-ray tube),
tasks must be divided into subtasks and mapped across the
distributed control units. This problem is discussed in Sec. VI,
where we also compare our work with the AMD-Xilinx
solution.

In PET applications, Min et al. [31] developed a low-cost
CPS using an FPGA as a CCU. In this system, the DMS can
be configured before each scan to acquire and process the data
before transmitting them to the host PC. Due to the speed
limitations of the USB connection between the acquisition
system and the host PC, it can only be used for applications
that reconstruct the image offline. The system is optimized
for the specific application, using hardware modules without
a software stack that limits future extensions.

In a similar way, Korcyl et al. [32] define a custom
architecture with a CCU for a configurable PET system.
The CCU controls the DMS using a configuration set that
is sent by the host PC. Furthermore, the CCU processes and
transmits the acquired data via an optical link. The CCU can
only be reprogrammed for the different PET configurations
and cannot be used for other CPS applications.

A more generic CPS architecture for image acquisition is
proposed by Fysikopoulos et al. [33] as a customized solution
for nuclear medicine applications. The architecture uses an
FPGA as a CCU that can be reprogrammed to use other
DMSs. In order to communicate, this CCU uses Ethernet with
UDP and a custom datagram protocol for data acquisition.

Most of the related works in [2], [5], [30], [31], [32],
and [33] present custom CCU architectures where the CPS
itself is only exploited vertically from the cyber to the
physical level. They do not consider the Communication
Infrastructure, its implications on the CCU implementation,
and the problem of having a universal generic CPS at the
device level. In fact, they propose architectures for specific
sensors/actuators for the targeted application, without consid-
ering the interoperability and extensibility issues. These CPS
challenges are highlighted by Liu et al. [27], who propose to
shift the research to a more general proposal of frameworks
for a wide range of applications.

III. COMMUNICATION INFRASTRUCTURE
In this section, we describe our Communication Infrastruc-
ture, which is the glue between the different subsystem
components. It defines the internal communication of the
CPS at the device level and defines the component inter-
faces as well as the transport and application protocols.
Furthermore, the Communication Infrastructure aims to be
vendor-agnostic and to provide plug-and-play support for
new sensors/actuators. In contrast to related works, the
proposed communication infrastructure is not limited to a
standard protocol, but it can also be implementedwith custom
interfaces and protocols. For example, components of the tar-
getedmedical application domain often use custom protocols,
and the Open Platform Communications Unified Architec-
ture (OPC UA) cannot be used for these custom protocols.

To achieve a Communication Infrastructure that is
vendor-agnostic and provides plug-and-play capability for
new sensors/actuators, we have defined components as nodes
and modeled them with layers and classes, as shown in Fig. 2

VOLUME 11, 2023 116221



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

FIGURE 2. Communication infrastructure.

and in Fig. 3. There are two types of nodes: themaster-server
node and the slave-client node. All slave-client nodes are
connected to themaster-server node. This centralized solution
facilitates task interactions for real-time requirements. Each
node has three layers: the communication interface layer, the
transport protocol layer, and the application protocol layer.
This layered organization is the key element upon which the
proposed plug-and-play solution is based. For managing the
different types of interfaces, protocols, and tasks per layer,
we have defined different classes per layer, which are the
real-time control class, the real-time data class, and the non-
real-time class. As shown in Fig. 2, these classes are based
on their common timing and dependable communication
properties. Using different classes for the various task types
permits the designer to easily associate the protocols of new
components with the proper application protocol. In addition,
it permits the optimization of the deadline in relation to the
task properties.

The layered architecture with classes permits the designer
to add components to the CPS as plug-and-play modules.
In fact, when a new component is added to the CPS, a new
node with associated interfaces and protocols is defined
in the Communication Infrastructure. Based on the node’s
communication requirements, interfaces, and protocols are
associated with the appropriate class for each layer.

At the communication interface and transport protocol lay-
ers, we consider the various interfaces and protocols provided
by vendors. At the application protocol layer, we propose a
component-agnostic protocol per class, unifying the different
vendor protocols and enforcing them in the CCU.An example
of a single node with different protocols (UART, IPv4, etc.)
is shown in Fig. 3, where the proposed protocols for the
application protocol layer are written in red. In the following
paragraphs, we describe the types of node, the interfaces, and
the protocols involved in the Communication Infrastructure.

A. NODES
Nodes represent independent subsystem components of the
CPS (e.g., sensor, actuator, controller, and data processing
units). The Communication Infrastructure has two types of
nodes: the master-server node and the slave-client node.

Themaster-server node controls and synchronizes slave-
client nodes. It implements the server used for non-real-
time communication and the masters used for master-slave

real-time communication. Due to the heterogeneity of the
tasks and protocols, the CCU that implements this node
is designed to be implemented on an MPSoC-FPGA. This
platform allows easy integration of new custom interfaces
and protocols that can be implemented on the Programmable
Logic (PL) and controlled by tasks implemented on the
Processing System (PS).

The slave-client node is responsible for controlling
the onboard sensors/actuators or processing tasks. Each
slave-client node has its own local control unit. In this way,
in the event of communication failures, each slave-client node
runs autonomously in safe mode without propagating errors.
Slave-client nodes correspond to internal components, and
they usually are provided by one or more vendors. For this
reason, they may use different protocols and interfaces that
cannot communicate directly with each other. Depending on
the functionality of the task, they can be implemented using a
workstation PC, a microcontroller, an MPSoC, or an FPGA.

To be compatible with the Communication Infrastructure,
a component must have at least one control interface, which
can be real-time or non-real-time; nodes cannot have only the
real-time data interface, otherwise they cannot be controlled
or triggered. For example, in Fig. 4, we show an example with
the possible node cases.

In Fig. 4, nodes 3 and 4 have only one interface, which
is the non-real-time and the real-time control interfaces,
respectively. Both can be controlled and synchronized by the
CCU. In fact, if these nodes need to communicate with each
other, the CCU handles the respective communication tasks
at the application level.

B. COMMUNICATION INTERFACE LAYER
As mentioned, each node may have one or more interfaces
with different timing and dependability requirements. For
this reason, we propose the following three classes of
communication interfaces, as shown in Fig. 3.

1) NON-REAL-TIME INTERFACE CLASS
This class is used for the communication between non-real-
time tasks of different nodes (e.g., asynchronous setting-up
of sensors/actuators, data logging, and asynchronous control
tasks). The key idea behind this class is to group all interfaces
that will use the client-server class in the upper layer.
Examples of interfaces are Ethernet and Wi-Fi connections.
Although these interfaces have different data rates, they use
the same class in the protocol layer.

2) REAL-TIME CONTROL INTERFACE CLASS
This class handles control signals, synchronizes nodes, and
communicates between real-time control tasks of different
nodes. Interfaces of this class support real-time communica-
tion. Examples of instances for this communication interface
class are the interfaces of UART, SPI, I2C, EtherCAT
protocols, and/or custom protocols using custom signals. All
of these interfaces use master-slave protocols.

116222 VOLUME 11, 2023



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

FIGURE 3. Model of the node in the communication infrastructure.

FIGURE 4. Example of node interconnection and interface layer.

3) REAL-TIME DATA INTERFACE CLASS
This class groups interfaces associated with real-time data-
flow tasks, where large amounts of data are transmitted
from sensors to the collecting system. To support high-
speed communication, the transceiver can require a dedicated
reference clock. For this reason, interfaces of this class are
usually mapped with transceivers, which are placed on the PL
part of the MPSoC-FPGA. The key idea behind this class is
to provide support for master/slave communication in stream
fashion on the upper layer, independently by its data rate.

C. TRANSPORT PROTOCOL LAYER
On top of the Interface layer, there is the transport protocol
layer. Depending on time and dependability requirements,
we have grouped the different protocols into three classes:

1) CLIENT-SERVER CLASS
This class contains client-server protocols for non-real-time
communication. It includes all protocols from the Data link
layer up to the Transport layer of the OSI model stack (e.g.,
IPv4 and TCP/UDP’’ [34]). The key idea behind this class is
to group protocols that are unified in the application protocol
layer.

2) CONTROL MASTER-SLAVE CLASS
This class considers protocols where data or commands
are transmitted for real-time controlling/synchronization
purposes. In fact, there aren’t any real-time protocols in this
class where a large amount of data needs to be transmitted.
Instead, themain requirement is the dependability of the com-
munication. For this reason, we also propose a Handshake
Protocol on the application level. Examples of protocols in
this class are UART, I2C, SPI, and Ether-Cat. Also, custom
protocols that use control signals are encapsulated in packets
at this level.

3) DATA MASTER-SLAVE CLASS
This class includes protocols where data are transmitted in
real-time in stream mode. The transceivers implementing
these protocols also use a stream protocol within the node
architecture (e.g., AMBA 4 AXI4-Stream protocol [35]).
This allows data to be sent/collected and processed on-the-
fly, which is essential for the application layer. Examples of
protocols in this class are Aurora 8b/10b and PCI-Express
configured in stream mode.

D. APPLICATION PROTOCOL LAYER
On top of the communication stack, as shown in Fig. 3,
we have the application layer, which also consists of three
classes: non-real-time, real-time control/synchronization,
and data class. In contrast to the previous layers, where
protocols are usually defined by vendors, for this layer we
have proposed a single protocol per class. With a unique
protocol per class node, it is possible to exchange information
between nodes with different interfaces and transmission
protocols, and it is possible to provide plug-and-play support
for new components.

1) APPLICATION NON-REAL-TIME CLASS
This class groups non-real-time tasks that use client-server
communication. Messages for these types of tasks can range

VOLUME 11, 2023 116223



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

in size from a few bytes to several megabytes. To unify them,
we have proposed the Application Datagram Protocol.
In this protocol, data are sent in messages that are variable
in size and flexible in the data format to be sent.

Each message encapsulates from 0 to N data packets, and
each packet has its own variable size and data format. In this
way, commands and data packets can be encapsulated in
two packets of a single message. As shown in Fig. 5, the
application datagram protocol has three segments: header,
data, and tail. The sizes of the internal fields are multiples
of 16 bits. If a command is smaller than 16 bits, spare bits are
added during the transmission.

FIGURE 5. Message structure of the application datagram protocol.

TheHeader segment has four mandatory fields, as shown
in Fig. 5. The Version field defines the client-server protocol
version in use. If a client sends a request message with a
different protocol version than the server, the communication
is closed. Each request or application message has a Unique
Identifier (UID); if the size of an applicationmessage exceeds
the Maximum Transmission Unit, it is split into multiple
messages, and the UID is incremented by 1. The Operation
field specifies the operation associated with the message.
In relation to the slave-client node, each operation has a
number of commands and/or task operations. This number
is specified by the field Counter; if it is equal to 0, the Data
segment is skipped.

The Data segment contains the commands and data tasks
as data packets of variable size. For this reason, each of
them has the fixed fields Length and Type, which specify the
number of bytes and the data type of the Data fields. These
fields allow the receiver to dynamically calculate the data
packet size, the amount of Data fields, and their encoding.
For instance, in the implemented used case, the pongmessage
has the Length field of 8 and the Type of 4, so the data packet
contains 2 data fields of 4 bytes each. At the end of the
message, there is theTail segment, which contains the Cyclic
Redundancy Check (CRC) field that specifies the 32-bit CRC
of the previous segments.

2) APPLICATION REAL-TIME CONTROL CLASS
This class groups real-time control/synchronization commu-
nication tasks and signals using standard or custom real-time
protocols. Due to their diversity and real-time requirements,

it is not possible to define a generic application protocol for
them, such as the Application Datagram Protocol. Instead,
we have proposed a Handshake Protocol on top of them,
which handles eventual errors and lost messages in real-
time. It is implemented in the PL part of the CCU side and
connected to each transceiver instance. In this way, slave-
client nodes do not require additional implementations.

The transport protocols must fulfill two requirements for
supporting the Handshake Protocol. First, the communication
must only start from themaster side. Second, the master-slave
protocol must send an acknowledgment (ACK) for each
message received. If a control/synchronization message does
not contain a CRC field (e.g., single signal), a separate
acknowledgment signal is required (e.g., valid/error signals).

Based on these assumptions, the Handshake Protocol has
the following two phases, as shown in Fig. 6:

• Transmitting phase: In this phase, the master initiates
the communication with a slave-client node. After
sending a message, it waits for the corresponding ACK.
For messages sent in burst mode, it can be set to receive
a single ACK after the last message or a burst of ACKs.
After sending messages, the master enters the Receiving
phase while the receiver waits for the message.

• Receiving phase:When themessage arrives at the slave-
client node, the Receiving phase takes place on its side.
In this phase, the receiver checks the integrity of the
message and sends back theACK. TheACK contains the
ID of the received message, depending on the specific
transmission protocol. If the ACK arrives on the master
side within the timeout and the ID contained in the
ACK message matches with the corresponding sent
message, the communication is successfully completed,
as shown in Fig. 6. In the case shown in Fig. 7,
where first the master does not receive the ACK and
then the ID of the received ACK does not match,
a lost message and an error message are detected,
respectively. In this scenario, the master automatically
retransmits the original message for a maximum number
of retransmissions. If no correct ACK is received beyond
the maximum number of retransmissions, an error flag
is set in the corresponding status register. Depending on
the severity, the error event is propagated to the related
software module that handles it (e.g., the CPS runs in
safe mode).

To manage these errors in real-time and avoid denial-of-
service attacks, the Handshake Protocol is implemented in
the PL with Finite State Machines (FSMs) that control the
associated transceiver. This permits the handling of timeout
events and the support of a retransmission mechanism with

FIGURE 6. Handshake protocol in case of no errors.

116224 VOLUME 11, 2023



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

appropriate signals that are physically connected to the
related transceivers. In addition, if a malicious slave attempts
to initiate a communication with the master, the received
message is blocked within the Control-Synchronization Unit.
Since all these events are handled in the PL, they do not affect
the software scheduler and the execution time of the other
tasks.

FIGURE 7. Handshake protocol. Message lost and CRC error use case.

3) APPLICATION REAL-TIME DATA CLASS
This class groups communication tasks that use the data
master-slave class on the layer below. In this class, we assume
serial communication protocols with a variable message
size and simplex communication (i.e., one-direction channel
only). Due to the lack of synchronization signals of the
simplex communication, the receiver must be synchronized
with the transmitter at the application layer. For these reasons,
we propose an Application Stream Protocol that uses
various commands in and between messages, as shown in
Fig. 8. Commands and messages consist of packets, which
are the smallest amount of information that can be sent. The
packet size is fixed and set at design time.

FIGURE 8. Application stream protocol.

Synchronization takes place between messages. When the
CPS is powered-up, each transmitter is set to idle mode, and
synchronization commands (i.e., packets) are sent. Packets
are encoded and sent as a stream of bits that the receiver
must decode and align. In this phase, the synchronization
commands are used to match the alignment with the received
message. When a message is sent, the receiver is already
synchronized. A message starts with a preamble command,
which is a sequence of three packets. After this command,
the data packets are sent until the CRC command, which is
used to identify the CRC packet. In this way, the receiver can
check the integrity of the message and accept or discard it.

As shown in Fig. 8, a synchronization command consists
of only one packet because it is sent between messages
and cannot be misread as a data packet. Instead, the other

commands consist of multiple packets because they are part
of the message and could be wrongly misread as data packets.

IV. CENTRALIZED CONTROL UNIT
In this section, we describe the architecture of the proposed
CCU, which implements the master-server node and the
proposed protocols of the Communication Infrastructure.
For mapping real-time and non-real-time tasks in the CCU,
we have used a hardware/software co-design methodology,
resulting in themulti-layer architecture shown in Fig. 9. In the
CCU architecture, each layer has internally isolated modules
that can only communicate with the corresponding module
in the adjacent layer. Furthermore, to fulfill the predictable
time execution of the real-time tasks, we implemented them
in dedicated modules on the Hardware layer. However,
we implemented the non-real-time tasks as a module in the
Application layer. For instance, we have implemented the
real-time classes of the Application Protocol layer in the CCU
Hardware layer and the non-real-time class in the CCU
Application layer.

FIGURE 9. Illustration of the CCU architecture.

Software and hardware modules communicate with each
other via AXI4-Lite interfaces, mapping the memory of
the Hardware layer to the global memory space of the
Operating System (OS), which constitutes the OS layer.
The latter is responsible for the task scheduling and for
converting the virtual address of each application into the
corresponding physical address in the Hardware layer,
guaranteeing memory isolation where it is required.

A. HARDWARE ARCHITECTURE
The Hardware layer consists of three main modules,
implemented on the PL part, as shown in Fig. 9:
Control-Synchronization Unit: This module implements

the control and synchronization tasks related to the Real-Time
Control/Synchronization communications, implementing the
real-time control class, the masters of the control master-
slave class and the Handshake Protocol of the application
real-time control class. To control the different nodes, the
CCU uses isolated instances for each external slave node.
As shown in Fig. 10, each instance has the transceivers,
the control/status registers, the data registers, the prepare-
packet unit, the control-flow unit, the retransmission unit, and

VOLUME 11, 2023 116225



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

FIGURE 10. An instance of the control-synchronization unit associated
with a single component.

the integrity packet unit. The non-real-time tasks running on
the PS write data asynchronously into associated registers
mapped in the global memory space through the AXI
interface; these registers are also read/written in real-time by
the other hardware modules of the Control-Synchronization
Unit.

The control-flow unit checks the availability of the
transceiver to send data. If it is available and there are
data to send, it activates the prepare-packet unit and the
transceiver that sends the data with its protocol. When the
data is sent, the retransmission unit waits for the reply/ack
from the transceiver. If no correct message has been received
within the maximum time set, it enables the retransmission
signal, which is connected to the control control-flow unit.
The retransmission unit and the control-flow unit have an
FSM to check the various states of this component and to
generate the signals explained. The transceiver implements
the transmitter/receiver for the protocol of the associated
slave. For instance, in the targeted use case, the DMS
uses a custom protocol, and the collimator an i2c protocol.
During communication, the Integrity Packet Unit blocks any
malicious messages before they reach the AXI interface.
Data-Flow Unit: This module collects data from

slave-client nodes through the proposed Application Stream
Protocol. Then, it forwards them to the Processing Unit
or to slave-client nodes that are designated for Data
Processing. This module is implemented in a data-flow
architecture presented in our previous work [36]. It consists
of independent internal pipes per slave-client node. Each
internal pipe implements the transmitter/receiver and the
decoder/encoder for the Application Stream Protocol. Since
the protocol can be configured for different data rates, each
pipe has its own clock domain with a fixed clock frequency
depending on the data rate of the collected/forwarded data.
Due to the different pipe clock frequencies, a Crossing

Domain Clock (CDC) is also implemented within the
dataflow architecture.
Data-Processing Unit: This module implements real-time

data processing tasks, such as artificial intelligence engines or
any high data processing acceleration. It has an AXI4-Stream
interface with the Data-Flow module and an AXI4-Lite inter-
face to communicate with the PS. For instance, in the open-
interface CT use case, we have used it to implement the image
pre-processing step described in our previous work in [37].

B. SOFTWARE ARCHITECTURE
This section describes the software architecture running on
the CCU. The software architecture consists of the OS layer
and the Application layer.
The OS layer supports one or more OSs and bare-metal

applications running on CPU cores in the PS. In addition,
if the selected MPSoC-FPGA supports hypervisors, it is
deployed at this layer. This layer also contains the First
System Boot Loader (FSBL), which is responsible for
configuring and booting the PL part and PS parts of the
MPSoC-FPGA. The OS layer provides the scheduler for the
different tasks and communication modules. For instance,
the user sets up a structure (e.g., C struct) that contains all
the communication and scheduler parameters for the Software
layer. The communication parameters consist of the static
or dynamic connection (e.g. DHCP, IP, TCP port per slave-
client node) implemented through an input configuration file.
Furthermore, the type of scheduler and default priorities for
each task are also set, as well as possible defaults for other
settings.

The Application layer implements the server for the
client-server class and the proposed datagram protocol for the
Application non-real-time class. In fact, it executes the non-
real-time tasks that mainly interact with slave-client nodes.
In order to manage the different tasks associated with the
different slave-client nodes in our software, we have divided
the Application layer of the CCU architecture into four
modules: Communication, Timer, Command, and Execute.
Each module is responsible for a specific part of the
communication as described below:

• Communication module: This module is responsible
for creating server-socket instances and accepting all
incoming client connections.

• Command module: Within the server-socket instance,
it handles the communication with the connected client,
which can run a single command thread at that time. For
this reason, there is one ‘‘singleton instance’’ [38] per
client. All received messages are decoded and passed to
the specific Execute thread by using the FSM shown in
Fig. 11.

• Execute module: This module executes the operations
related to the received command task. These operations
realize the ‘‘business logic layer’’ [39] of the CPS
software architecture. For this purpose, non-real-time
tasks are mapped on the PS, and real-time tasks on
the PL. Furthermore, this module is also responsible for

116226 VOLUME 11, 2023



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

FIGURE 11. States of the Execute module during the execution of a
received and decoded message from a slave-client node.

controlling and interacting with the hardware modules
implemented on the PL part and accessed via the
AXI4-Lite interface. Finally, it sends the response
message of the requested command task, the operation
status, and the requested data to the client. To manage all
these execution steps, we have implemented the FSM
shown in Fig. 11 that uses different states for each
execution step.

• Timermodule: During the communication, this module
manages TIME_OUT events. It triggers the timer task
that is set to N seconds, and it resets the timer COUNTER
for each correct message or Ping message received
from the respective client. When a TIME_OUT event
occurs, the client connection is closed, and the tasks of
the corresponding Execute and Command modules are
terminated.

These software modules run on a Real-time Operating
System (RTOS), using different instances and TCP ports for
each slave-client node. In this way, different instances can be
associated with different isolated domains, and the software
architecture is scalable by supporting priority handling of
run-time tasks. For managing the different tasks and priorities
at run-time, the RTOS uses a task scheduler that is set
up before the system execution starts. When the system is
running, each module sets the following priority hierarchy:
1. Timer module (Real-Time priority)
2. Command module (High priority)
4. Execute module (Medium Priority)
5. Communication module (Low Priority)
This hierarchy prevents software starvation caused by

running operations that depend on unresponsive input
commands. Furthermore, to avoid a deadlock race condition
caused by a TIME_OUT event, the timer generates an
interrupt that terminates all operations of the other modules
for the lost connection. It uses the RTOS timer to do this.
In addition, when an Execute module is running, a priority

schema between commands is set based on the operation ID
of the received datagram message.

C. EXECUTION EXAMPLE OF THE CENTRAL CONTROL
UNIT
A typical scenario involving all CCU layers and several
slave-client nodes is shown in Fig. 12. In this UML sequence
diagram, we have two slave-client nodes: the first (left side)
exchanges non-real-time messages through the Application
Datagram Protocol (client-server protocol), and the second
(right side) exchanges real-time control/synchronizationmes-
sages using the Handshake Protocol (master-slave protocol).
It reports a case where real-time and non-real time tasks
interact without affecting deadlines and using software and
hardware modules. In Fig. 12, the colors of the black,
orange, blue, and green arrows represent the powering-up
process of the CPS, the client-server communication, the
communication of internal software and hardware tasks
with associated threads, and the master-slave communication
between the CCU and a slave-client node, respectively.

At themoment that the CPS is powered up, the FSBL inside
the CCU configures the PL part and boots the PS part with
the RTOS. After all internal hardware/software modules are
configured, they send the setup configuration to all the slave-
client nodes, as shown by the black arrow in Fig. 12. In the
UML sequence diagram, we have shown only two nodes with
separated interfaces for ease of reading.

Once all the nodes are ready, the Communication module
creates a server socket for each client connection, and it waits
for N other client connections according to the configuration
file. For each client connection established and server socket
created, the Communication module creates a specific client
socket that starts theCommandmodule thread. TheCommand
module also creates a specific client timer task that waits for
messages from the newly accepted client.

When a message arrives, the Command module decodes
the message and checks the CRC packet, according to the
datagram protocol explained in Sec. III-D1. In case of a
CRC error, the CCU discards the message and sends another
error message to the client. For each decoded command, the
operation ID and data are passed by the FSM placed in the
Execute module, as shown in Fig. 11; to do so, a thread
with the received command data is created. Furthermore, each
created thread is stored in an array for all running operations
using the Execute module thread to handle multiple
operations. This module performs the predefined operation
associated with the operation ID on the internal and external
hardware and stores received data. When the operation is
finished, a response message with the stored data and success
status is sent to the client based on the datagram protocol.
After successful transmission, the Execute module deletes all
stored data, and the thread is terminated and removed from
the array of running operations.

If the response message transmission fails, two additional
attempts are made with a delay of 500ms. If both addi-
tional attempts fail, the Execute module thread triggers the

VOLUME 11, 2023 116227



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

FIGURE 12. UML sequence diagram for the client-server communication and the interaction between modules in operation. Orange
indicates TCP/IP operations, green PL and external hardware communications, and blue PS parts.

TIME_OUT software interrupt and then terminates all the
related threads.

V. CASE STUDY: OPEN-INTERFACE CT
This section illustrates our Communication Infrastructure and
the CCU in an open-interface CT scanner assembled in our
laboratory.

The aim of having an open-interface CT is to provide a CT
scanner that supports real-time control and data processing
for exploring new clinical acquisition techniques such as
medical intervention and multi-modality imaging [20], [40].
In addition, doctors or researchers can use internal parameters
that are not accessible in commercial CT scanners. In fact,
our Communication Infrastructure and CCU enable real-time

116228 VOLUME 11, 2023



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

FIGURE 13. Components of our open-interface CT system. (a): Experimental CT complete system with (1) X-ray tube,
(2) Cooling system, (3) Generator, (4) Gantry subsystem, (5) Multiline DMS, (6) Patient table. (b): Detailed view of the DMS
and CCU implemented on the Xilinx ZC706 Evaluation Kit: (7) Multiline DMS, (8) FPGA Extension-board, (9) Xilinx ZC706
Evaluation Kit.

capabilities and allow designers and researchers to integrate
new components into the existing open-interface CT as plug-
and-play sub-modules. For this purpose, the discussion will
also analyze the cost of adding an additional flat-panel
detector to our open-interface CT scanner.

TheCT scanner is a CPSmainly composed of the following
subsystem components: patient table, gantry subsystem,
DMS, X-ray tube subsystem, collimator, and reconstruction
subsystem, as shown in Fig. 13. The gantry module, patient
table, and the image reconstruction system are fixed on the
ground, which is called stationary side. All other components
are mounted on the rotating disk of the gantry, which is
called rotating side [41], [42]. These two sides communicate
with each other using the slip-ring technology [43], [44],
which is an electromechanical device capable of transmitting
high-speed communication signals. It consists of concentric
circular rings parallel to the gantry axis [42].

A. COMMUNICATION INFRASTRUCTURE
In the open-interface CT, the components are modeled as
independent interconnected nodes. To properly interconnect
them according to their interfaces and protocols, we have uti-
lized the proposed Communication Infrastructure, described
in Sec. III. Fig. 14 shows the diagram with the nodes, their
interfaces and protocols, and their interconnection links. The
non-real-time interfaces use Ethernet, which requires a switch
to interconnect them.

As described above, the communication between the
stationary and rotating sides is done via slip-ring technology.
Due to the fact that is expensive and is limited in speed and
number of transceivers, it is the communication bottleneck
of the CT. In addition, all the CT sensors and actuators,
such as the DMS and X-ray tube, which need to be
controlled and synchronized in real-time, are located on the

FIGURE 14. Node interconnection and interface layer for the
open-interface CT.

rotating side of the gantry. For these reasons, we placed
our master-server node (implemented by the CCU) of the
Communication Infrastructure on the rotating side. As shown
in Fig. 14, the CCU communicates with the stationary side
using the Application Datagram Protocol and the non-real-
time interface realized over the Gigabit Ethernet.

Furthermore, the CCU collects image data from the DMS
node and forwards them to the Reconstruction Unit node,
which we have designed as a slave-client node in our
Communication Infrastructure, called Reco-PC in Fig. 14.
For this communication, we use the Application Stream
Protocol at the application layer, while at the Interface layer,
we have implemented a Gigabit Transceiver (GTX) [45]
in the PL part of the MPSoc-FPGA. In this specific case,
it streams data at a rate of 6.250 Gbit/sec with 8b/10b
encoding using a Small form-factor pluggable (SFP+) port.

During the image acquisition, to control and synchronize
the DMS, the collimator, and the X-ray tube with the

VOLUME 11, 2023 116229



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

gantry position, we use the Control master-slave class
over the Real-time control interface class, where messages
are sent as synchronization signals. All these components,
as shown in Fig. 14, have a custom physical interface with
a custom protocol provided by the vendor and implemented
in the CCU with the enhancement of the handshake. For
implementing the Handshake Protocol, we have utilized
two independent FSMs: the first is responsible for the
retransmission mechanism, and the second is for the control
flow transmission.

B. CENTRALIZE CONTROL UNIT
The CCUmanages all tasks and interactions within our open-
interface CT. As shown in Fig. 13, the CCU runs on the Xilinx
Evaluation board ZC706 having the FPGA model XC7Z045.
In theHardware layer, the Control/Synchronization Unit and
the Data-Flow Unit are modeled at Register-Transfer Level
(RTL) and described using SystemVerilog. Instead, the Data
Processing Unit is described with C and implemented using
High-Level Synthesis (HLS). The OS and Application layers
are implemented on the Application Processing Unit, which
has a dual-core Cortex-A9. Since the selected MPSoC-FPGA
has no isolation mechanism, we have used Protection Units
(PUs) IP cores, as proposed in our previous work [46].
These PUs provide isolation support between PS-PL and PL-
PL communication for MPSoC-FPGAs of the AMD-Xilinx
series 7 family. Fig. 15 shows the proposed CCU architecture
for the open-interface CT, where all the module instances for
each CCU layer of the open-interface CT have been reported.

FIGURE 15. Illustration of the CCU architecture for the open-interface CT.

In the Hardware layer, the Control-Synchronization Unit
has isolated modules for each slave-client node that com-
municates with the master-slave paradigm. The only shared
module is the synchronization module, which handles the
enabling signals for starting and stopping the X-ray tube
during acquisition and for synchronizing the gantry encoder,
collimator, X-ray tube, and DMS. In addition, if an error
occurs during the acquisition, this module is responsible for
catching it and stopping the acquisition in the next clock
cycle. In relation to the Communication Infrastructure, this
Unit realizes the Real-time control interface class and the
Control master-slave class. The DMS, collimator, gantry
encoder, and X-ray tube use custom interfaces and protocols
associated with the Real-time control interface class and
the Control master-slave class. For the custom interfaces,

we have built an extension board, shown in Fig. 13,
which is connected through an FPGA Mezzanine Card
(FMC+) Interface using the VITA 57.4 FMC+ Standard.
In this way, we have connected the custom interfaces to
the FPGA GPIO ports and implemented the transceivers
inside each related hardware module. These transceivers are
also modeled at RTL. The Hardware layer also implements
the Data-Flow Unit, where the data are collected from the
DMS and forwarded to the Data-Processing Unit and the
External Reconstruction Unit. In the actual implementation,
the Data-Processing Unit implements the I0-correction
algorithm [37], which is a real-time data processing task.
On theOS layer, we tested PetalinuxRTOS and FreeRTOS.

FreeRTOS provides a powerful and small kernel without
any additional layers provided by the OS. In fact, under
FreeRTOS, tasks written as bare-metal source code access
the physical memory address space directly, while Petalinux
provides a virtual memory address space. On the other hand,
Petalinux provides a small Unix kernel with high support of
libraries running in C/C++. In terms of timing performance,
both RTOSs gave us the same results, but Petalinux offered
us compatibility with external libraries provided by the X-ray
tube manufacturer and a simpler environment for future
implementations using additional sensors/actuators. Between
these RTOSs, we chose Petalinux for its compatibility and
scalability features which are important requirements for the
open-interface CT and multi-modality imaging research.

On the Application layer, we have implemented the non-
real-time tasks associated with the real-time communication
classes. As shown in Fig 15, there is a software module
for each sub-module of the Control Synchronization Unit.
Furthermore, the Application layer implements the server
and the Datagram protocol for the Application non-real-
time class. The server uses the configuration file explained
in Sec. IV-B, where we set static IP addresses for all the
nodes. In the server, for decoding the messages of the
communication tasks, we configure a struct that describes
the acceptable data packet. The Data packets used for the
open-interface CT are shown in Fig. 16.

FIGURE 16. Structure of four typical message data sections and Pong
with exemplary bit-sizes used in the open-interface CT.

In the Communication module, the maximum number
of client connections is set to 4, which is the number of
clients in our system architecture in Fig. 14. Separating the
connections into different sockets gives us an independent
endpoint for each major acquisition system control. This
prevents unexpected connections from being opened, and if
malicious connections try to connect to the server, theywill be

116230 VOLUME 11, 2023



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

rejected. In addition, if multiple connections attempt to access
the same socket and the number of connections exceeds the
maximum, then the open-interface CT is put into safe mode
to prevent unnoticed CT operations.

Due to the safety requirements of the X-ray tube and
the rest of the system, we have set the TIME_OUT of the
Timer module to 2 seconds. In case of a TIME_OUT event,
the CT is also set in safe mode. For doing this, the DMS
and the X-Ray Tube are disabled, and the CCU hardware
and software modules are set to default values and/or are
deactivated.

VI. ANALYSIS AND DISCUSSION
In this section, we discuss the evaluation for the realization of
our Communication Infrastructure and the CCU for the open-
interface CT, and we compare them in terms of qualitative
analysis with the proposed solution of AMD-Xilinx [29].
Finally, to evaluate the plug-and-play feature of our Commu-
nication Infrastructure and the CCU, we analyze the effort of
adding another detector into the open-interface CT.

AMD-Xilinx in [29] proposes a system architecture for
CT, based on a distributed control unit. As shown in Fig. 17,
the CT scanner consists of 4 subsystem components: High
Voltage (HV) Supply Control, Data Acquisition & Gantry
Control, Image Reconstruction and System Sequencer. The
Contro units is distributed on three of these components.

FIGURE 17. AMD-Xilinx system architecture for CT [29].

The HV Supply Control manages all the tasks inside the
X-ray tube: software parameters, high voltage supply, and
errors. For these tasks, they propose to use an MPSoC-FPGA
that can manage the HV modules in the PL and the software
tasks (e.g., error messages, set-up parameters, communica-
tion management) in the PS part. The Data Acquisition &
Gantry Control controls the DMS, collects the data from
it, and forwards them to the reconstruction system. The
Image Reconstruction and the System Sequencer implement
the reconstruction algorithm and the synchronization tasks
within the CT.

In contrast to the AMD-Xilinx architectural model,
we have implemented all data acquisition and control
tasks in the CCU. The proposed architecture handles time
issues of the various tasks, proposing different classes for
real-time control and data tasks and non-real-time tasks. This
enables us to meet real-time requirements and facilitates
the integration of additional components. For safety issues,
the various units responsible for different components are
isolated through the Protection Unit proposed by authors
in [46]. In fact, with the proposed solution, the slave-client
nodes, such as the DMS, X-ray tube, and the HV module,
must only implement the FSMs required for controlling
the internal modules and setting them for the safe mode.
In our system architecture, like AMD-Xilinx, we have
a reconstruction unit for reconstructing the image, but it
is a slave-client node that does not participate in the
synchronization.

If an additional component (e.g., DMS or X-ray tube)
needs to be integrated into the AMD-Xilinx CT system
architecture, all subsystem components must be modified.
Furthermore, new interfaces must be placed on all these
components according to the vendor protocols of the new
component. Conversely, with our CCU hardware/software
architecture and the proposed Communication Infrastructure,
we can easily add components in the open-interface CT as
plug-and-play modules and nodes, respectively.

In addition, the proposed communication infrastructure
can be implemented with custom and standardized protocols
and there are no architecture assumptions on the protocol
like the OPC UA, which is limited to CPS where all vendor
components communicate with their client-server protocol.
In our communication infrastructure, we can integrate OPC
UA at the application layer, but we can also use components,
that do not have any client-server interface, such as the DMS
in the open-interface CT.

Furthermore, with the proposed structure of the nodes and
application protocols, the CCU can guarantee the required
bandwidth to all the different nodes and types of tasks, e.g.,
real-time and non-real-time tasks, control/synchronization,
and data tasks. In addition, the proposed protocols enhance
the security of the CPS at the application protocol layer. The
datagram protocol provides a CRC at the application layer
where TCP/IPv4 security mechanisms are insufficient. For
example, if a malicious node tries to send an unexpected
command to the CCU, the TCP/IPv4 does not implement
a security feature to block it, but the Application Datagram
Protocol and the server on the CCU can block it. In fact, they
check the CRC, the ID Version of the command, the port that
must be different for each node, and the number of nodes that
are fixed. The Handshake Protocol also defines a common
handshake mechanism for master-slave communication by
guaranteeing that messages from the master to the slave
are correctly sent and received. If a message is lost or
corrupted at the link level, the Handshake Protocol triggers
the retransmission or notifies the error to the CCU Control-
Synchronization Unit.

VOLUME 11, 2023 116231



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

In addition to the qualitative analysis, we also consider
a quantitative analysis for the implementation of our CCU
architecture on the Xilinx ZC706 board, including the FPGA
model XC7Z045 [47]. For the synthesis, implementation,
and quantitative analysis, we have used the Vivado tool [48]
from AMD-Xilinx. To meet the timing requirements of the
various external components and the processing unit given
by the open-interface CT, we use different clock frequencies
for the different hardware units. TheControl-Synchronization
Unit uses a reference clock of 100 MHz. Within this
unit, different clock lines are implemented for the different
transceivers of the DMS, the X-ray tube, the gantry, and
the collimators. The Data Processing Unit uses a clock
frequency of 200 MHz. The Data-Flow Unit uses different
clock lines that are required for the various transceivers
associated with the external components and the CDC: the
user clock frequency is 100 MHz, and the reference clock
frequency for the transceivers is set to 156.250 MHz and
78.150 MHz. By setting these clock frequencies and with the
support of the CDC, the data are collected and processed on-
the-fly, meeting the real-time constraints.

In addition, the implementation of the CCU architecture
uses a low percentage of resource utilization for the PL part.
As shown in Fig. 18, the proposed CCU uses less than 10%
of resources for most types of FPGA slices. The resource
utilization doesn’t take into account the Data Processing Unit
because it only depends on the selected CPS application
and does not affect the plug-and-play capability. The low
resource utilization is the result of optimizing the mapping
of real-time and non-real-time tasks executed on PL and PS
parts, respectively. This result is essential for the plug-and-
play feature of the CPS, as it facilitates the scalability of the
systems when new sensors/actuators are added.

FIGURE 18. Resources’ utilization for the different slices in the CCU
implementation on the FPGA models XC7Z045 [47] (Vivado report).

In our CCU, we didn’t consider the Image Processing
Unit presented in [37] because it is not involved in CPS
communication, and it is not in the scope of this work.
Reference [37] also describes the configuration for using
the open-interface CT scanner, where different phantom data
are acquired and pre-processed with the proposed CCU,
and evaluated in terms of image quality. Moreover, in other

CPS applications, the available resources can be used for
implementing any real-time data processing tasks involved.

A. SYSTEM EXTENSION
To evaluate the proposed Communication Infrastructure and
the CCU in terms of plug-and-play capabilities, we consider
the effort of adding an additional DMS in the assembled
Open-Interface CT. In addition, we make some considera-
tions of adding the same DMS in a CT scanner that uses the
AMD-Xilinx CT architectural model, shown in Fig. 17.

For this study, we have selected the XC-Thor photon
counting detector [49]. It uses a Gigabit Ethernet interface
for non-real-time and real-time data communication and a
custom signal interface for real-time control/synchronization
communication.

In order to integrate this DMS in the open-interface
CT, we started adding it to the proposed Communication
Infrastructure. Here, the DMS represents a new slave-client
node having vendor interfaces and protocols at the interface
and communication layers. To differentiate the different
interfaces and communication tasks, we associate them with
the proposed classes for each node. Finally, on top of themwe
use theHandshake Protocol, theApplication StreamProtocol,
and the Datagram Protocol.

To connect the new node to the system, we connect
the Gigabit Ethernet interface to the switch that is on the
rotating side. The custom control/synchronization interface is
connected directly to the GPIO pins of the ZC706 Evaluation
Board. The GPIO pins are mapped as PL input/output ports.
In this way, the vendor protocols for the different interfaces
can be instantiated as IP cores in the PL part. The transceiver
for the Real-Time control interface class is instantiated in
the Control Synchronization Unit of the CCU, where the
Handshake Protocol can handle errors and lost messages.
The Application non-real-time class and the Data Real-Time
Class access the Gigabit Ethernet interface concurrently.
In setup mode, the non-real-time tasks communicate over
the Application Datagram Protocol, while the Application
Real-TimeData Class and its Stream Protocol are used during
the Data Acquisition.

In addition to the effort of adding the instances for the
different interfaces and protocols in the CCU for the interface
layer and the transport protocol layer, these have to be
mapped to the PS part as IO memory-mapped devices.
Furthermore, the software layer of the CCU architecture also
should be extended with an additional module for the new
DMS. This module contains the control logic for the new
detector, which is not discussed here, and the communication
part for the server.

Initiating the new module, a configuration file is defined
for the DMS. The file contains the connection settings, thread
scheduling, and necessary data packets related to the vendor
and system requirements. In this way, the server module is set
up to run independently of the first DMS on a single thread of
the CCU. To enable communication with the PL and PS parts

116232 VOLUME 11, 2023



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

of the extension, the existing FSBL must be extended with its
configuration to initiate both parts. Within the software layer,
the four modules of the server are adjusted to the new DMS,
fulfilling the vendor requirements.

The communication with the control side is established via
a new Ethernet port and a maximum number of clients by the
configuration file in the communication module.

The commands of the new DMS are translated into the
structure of the Execute Module and linked to the CCU PL
based on the previous FSBL setup. In addition to the Execute
Module, the operation ID for the communication is added
to the command datagram, and/or new custom datagram
structures are set with the decode/encode functions from the
configuration file. Similarly, the operation IDs are mapped to
the command of the Execute Module, and schedule options
are configured.

In the final step, the timer module is set with vendors’
timeout in the hardware timer, while the timer for the
communication timeout remains the same. While in our
proposed work, all the hardware/software extensions affect
only the CCU, in the AMD-Xilinx architectural model,
all components are involved because HV supply control,
sequencer, data acquisition, and gantry control tasks are
implemented on different physical components. As a result,
the integration effort and costs are higher, and it is not
possible to provide the plug-and-play feature.

VII. SUMMARY
This work presented a Communication Infrastructure and
a CCU hardware/software architecture for MPSoC-FPGA,
providing a solution for the plug-and-play capability in
CPSs. It supports a wide range of CPS applications
that have numerous components with different interfaces
and custom protocols. Moreover, for the Communication
Infrastructure, various application protocols are proposed
for control/synchronization real-time, data real-time, and
non-real-time tasks. It also shows how to implement the
various proposed protocols and how to separate the dif-
ferent tasks inside and between PS and PL for the CCU
hardware/software architecture. For the evaluation scope,
the use case of the open-interface CT, assembled in our
laboratory, has been considered. Due to the fact that tasks are
mapped between PS and PL, the PL utilizes less than 10% of
Flip-Flops and LookUp-Tables in the PL. The low resource’s
utilization allows adding components and image processing
tasks to explore new clinical acquisition techniques such
as multi-modality imaging. Finally, this work discusses and
evaluates how a CPS component, such as a flat panel detector,
can be added to the open-interface CT in a ‘‘plug-and-play’’
fashion. The proposed Communication Infrastructure and the
CCU architecture define the base for a design framework
in CPS applications, where custom and standard protocols
coexist, and where the proposed protocols can be utilized for
integrating them. In fact, designers can use it for other CPS
applications.

REFERENCES
[1] P. Cicconi, A. C. Russo, M. Germani, M. Prist, E. Pallotta, and

A. Monteriu, ‘‘Cyber-physical system integration for industry 4.0: Mod-
elling and simulation of an induction heating process for aluminium-steel
molds in footwear soles manufacturing,’’ inProc. IEEE 3rd Int. Forum Res.
Technol. Soc. Ind. (RTSI), Sep. 2017, pp. 1–6.

[2] F. Hofer, ‘‘Architecture, technologies and challenges for cyber-physical
systems in industry 4.0: A systematic mapping study,’’ in Proc.
12th ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas., M. Oivo,
D. Méndez, and A. Mockus, Eds., New York, NY, USA, 2018,
pp. 1–10.

[3] J. Jamaludin and J. M. Rohani, ‘‘Cyber-physical system (CPS): State of
the art,’’ in Proc. Int. Conf. Comput., Electron. Electr. Eng. (ICE Cube),
Nov. 2018, pp. 1–5.

[4] F. Hu, Y. Lu, A. V. Vasilakos, Q. Hao, R.Ma, Y. Patil, T. Zhang, J. Lu, X. Li,
and N. N. Xiong, ‘‘Robust cyber–physical systems: Concept, models,
and implementation,’’ Future Gener. Comput. Syst., vol. 56, pp. 449–475,
Mar. 2016.

[5] N. Dey, A. S. Ashour, F. Shi, S. J. Fong, and J. M. R. S. Tavares, ‘‘Medical
cyber-physical systems: A survey,’’ J. Med. Syst., vol. 42, no. 4, pp. 1–13,
Mar. 2018.

[6] D. Brasse, B. Humbert, C. Mathelin, M.-C. Rio, and J.-L. Guy-
onnet, ‘‘Towards an inline reconstruction architecture for micro-
CT systems,’’ Phys. Med. Biol., vol. 50, no. 24, pp. 5799–5811,
Dec. 2005.

[7] R. Baheti and H. Gill, ‘‘Cyber-physical systems,’’ Impact Control Technol.,
vol. 12, no. 1, pp. 161–166, 2011.

[8] S. Ali, T. A. Balushi, Z. Nadir, and O. K. Hussain, ‘‘Distributed control
systems security for CPS,’’ in Cyber Security for Cyber Physical Systems
(Studies in Computational Intelligence). Cham, Switzerland: Springer,
2018, pp. 141–160.

[9] S.-H. Tseng and J. Anderson, ‘‘Synthesis to deployment: Cyber-physical
control architectures,’’ 2020, arXiv:2012.05211.

[10] S. S. Jogwar and P. Daoutidis, ‘‘Community-based synthesis of distributed
control architectures for integrated process networks,’’ Chem. Eng. Sci.,
vol. 172, pp. 434–443, Nov. 2017.

[11] W. Shi, M. B. Alawieh, X. Li, and H. Yu, ‘‘Algorithm and hardware imple-
mentation for visual perception system in autonomous vehicle: A survey,’’
Integration, vol. 59, pp. 148–156, Sep. 2017.

[12] E. R. Griffor, C. Greer, D. A. Wollman, and M. J. Burns, ‘‘Frame-
work for cyber-physical systems: Volume 1, overview,’’ Nat. Inst.
Standards Technol., U.S. Dept. Commerce, Gaithersburg, MD, USA,
Tech. Rep. 1500-201, 2017.

[13] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture.
Berlin, Germany: Springer, 2009.

[14] M. Hoffmann, S. Malakuti, S. Grüner, S. Finster, J. Gebhardt,
R. Tan, T. Schindler, and T. Gamer, ‘‘Developing industrial CPS:
A multi-disciplinary challenge,’’ Sensors, vol. 21, no. 6, p. 1991,
Mar. 2021.

[15] B. Bordel, D. S. De Rivera, and R. Alcarria, ‘‘Plug-and-play transducers
in cyber-physical systems for device-driven applications,’’ in Proc. 10th
Int. Conf. Innov. Mobile Internet Services Ubiquitous Comput. (IMIS),
Jul. 2016, pp. 316–321.

[16] E. Armengaud, G.Macher, A.Massoner, S. Frager, R. Adler, D. Schneider,
S. Longo, M. Melis, R. Groppo, F. Villa, P. O’Leary, K. Bambury,
A. Finnegan, M. Zeller, K. Höfig, Y. Papadopoulos, R. Hawkins, and
T. Kelly, ‘‘DEIS: Dependability engineering innovation for industrial
CPS,’’ in Advanced Microsystems for Automotive Applications. Cham,
Switzerland: Springer, 2018, pp. 151–163.

[17] Medical Device ‘Plug-and-Play (MD PNP) Interoperability Program.
Accessed: Jan. 17, 2022. [Online]. Available: https://mdpnp.org/team.html

[18] R. M. Hofmann, ‘‘Modeling medical devices for plug-and-play interoper-
ability,’’ Ph.D. thesis,Massachusetts Inst. Technol., Cambridge,MA,USA,
2007.

[19] T. Li, F. Tan, Q. Wang, L. Bu, J.-N. Cao, and X. Liu, ‘‘From offline toward
real-time: A hybrid systems model checking and CPS co-design approach
for medical device plug-and-play (MDPnP),’’ in Proc. IEEE/ACM 3rd Int.
Conf. Cyber-Phys. Syst., Apr. 2012, pp. 13–22.

[20] G. Wang, M. Kalra, V. Murugan, Y. Xi, L. Gjesteby, M. Getzin, Q. Yang,
W. Cong, and M. Vannier, ‘‘Vision 20/20: Simultaneous CT-MRI—
Next chapter of multimodality imaging,’’ Med. Phys., vol. 42, no. 10,
pp. 5879–5889, Oct. 2015.

VOLUME 11, 2023 116233



D. Passaretti et al.: Enabling Plug-and-Play in Cyber-Physical Systems Using MPSoC-FPGAs

[21] GE Healthcare. How Clinicians See Today’s CT Challenges-Article.
Accessed: Jan. 5, 2023. [Online]. Available: https://www.gehealthcare.
ae/insights/article/how-clinicians-see-today%E2%80%99s-ct-challenges

[22] E. Alcaín, P. R. Fernández, R. Nieto, A. S. Montemayor, J. Vilas,
A. Galiana-Bordera, P. M. Martinez-Girones, C. Prieto-de-la Lastra,
B. Rodriguez-Vila, M. Bonet, C. Rodriguez-Sanchez, I. Yahyaoui,
N. Malpica, S. Borromeo, F. Machado, and A. Torrado-Carvajal, ‘‘Hard-
ware architectures for real-time medical imaging,’’ Electronics, vol. 10,
no. 24, p. 3118, 2021.

[23] R. Gupta, C. Walsh, I. S. Wang, M. Kachelrieß, J. Kuntz, and S. Bartling,
‘‘CT-guided interventions: Current practice and future directions,’’ in
Intraoperative Imaging and Image-Guided Therapy. New York, NY, USA:
Springer, 2014, pp. 173–191.

[24] M. V. García, E. Irisarri, F. Pérez, E. Estévez, and M. Marcos, ‘‘OPC-UA
communications integration using a CPPS architecture,’’ in Proc. IEEE
Ecuador Tech. Chapters Meeting (ETCM), Oct. 2016, pp. 1–6.

[25] E. Talpes, D. D. Sarma, G. Venkataramanan, P. Bannon, B. McGee,
B. Floering, A. Jalote, C. Hsiong, S. Arora, A. Gorti, and G. S. Sachdev,
‘‘Compute solution for Tesla’s full self-driving computer,’’ IEEE Micro,
vol. 40, no. 2, pp. 25–35, Mar. 2020.

[26] R. V. Chakaravarthy, H. Kwon, and H. Jiang, ‘‘Vision control unit in fully
self driving vehicles using Xilinx MPSoC and opensource stack,’’ in Proc.
26th Asia South Pacific Design Autom. Conf. (ASPDAC), New York, NY,
USA: Association for Computing Machinery, 2021, pp. 311–317.

[27] Y. Liu, Y. Peng, B. Wang, S. Yao, and Z. Liu, ‘‘Review on cyber-physical
systems,’’ IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 27–40, Jan. 2017.

[28] Zynq UltraScale+MPSoC Data Sheet: Overview, DS891, Rev. 1.9, AMD-
Xilinx, Xilinx, Inc., San Jose, CA, USA, May 2021.

[29] Medical Imaging With CT Scanners and MRI Machines.
Accessed: Mar. 28, 2021. [Online]. Available: https://www.xilinx.com/
applications/medical/medical-imaging-ct-mri-pet.html

[30] A. Gatouillat, Y. Badr, B. Massot, and E. Sejdic, ‘‘Internet of Medical
Things: A review of recent contributions dealing with cyber-physical sys-
tems in medicine,’’ IEEE Internet Things J., vol. 5, no. 5, pp. 3810–3822,
Oct. 2018.

[31] E. Min, K. Kim, H. Lee, H.-I. Kim, Y. H. Chung, Y. Kim, J. Joung,
K. M. Kim, S.-K. Joo, and K. Lee, ‘‘Development of compact, cost-
effective, FPGA-based data acquisition system for the iPET system,’’
J. Med. Biol. Eng., vol. 37, no. 6, pp. 858–866, Jun. 2017.

[32] G. Korcyl et al., ‘‘Trigger-less and reconfigurable data acquisition system
for positron emission tomography,’’ Bio-Algorithms Med-Syst., vol. 10,
pp. 37–40, Jan. 2014.

[33] E. Fysikopoulos, G. Loudos, M. Georgiou, S. David, and G. Matsopoulos,
‘‘A spartan 6 FPGA-based data acquisition system for dedicated imagers
in nuclear medicine,’’ Meas. Sci. Technol., vol. 23, no. 12, Nov. 2012,
Art. no. 125403.

[34] M. M. Alani, ‘‘TCP/IP model,’’ in Guide to OSI and TCP/IP Models.
Cham, Switzerland: Springer, 2014, pp. 19–50.

[35] Amba 4 Axi4-Stream Protocol, Version: 1.0 Specification, ARM Ltd.,
Cambridge, U.K., 2010.

[36] D. Passaretti and T. Pionteck, ‘‘Configurable pipelined datapath for
data acquisition in interventional computed tomography,’’ in Proc. IEEE
29th Annu. Int. Symp. Field-Program. Custom Comput. Mach. (FCCM),
May 2021, p. 257.

[37] D. Passaretti, M. Ghosh, S. Abdurahman, M. L. Egito, and T. Pionteck,
‘‘Hardware optimizations of the X-ray pre-processing for interventional
computed tomography using the FPGA,’’ Appl. Sci., vol. 12, no. 11,
p. 5659, Jun. 2022.

[38] K. Stencel and P. Węgrzynowicz, ‘‘Implementation variants of the
Singleton design pattern,’’ in Proc. OTM Confederated Int. Conf. Move
Meaningful Internet Syst. Berlin, Germany: Springer, 2008, pp. 396–406.

[39] S. T. Albin, The Art of Software Architecture: Design Methods and
Techniques, vol. 9. Hoboken, NJ, USA: Wiley, 2003.

[40] D. Passaretti and T. Pionteck, ‘‘A control data acquisition system
architecture for MPSoC-FPGAs in computed tomography,’’ in Proc. Int.
Symp. Appl. Reconfigurable Comput. Cham, Switzerland: Springer, 2023,
pp. 361–365.

[41] J. R. Wesolowski and M. H. Lev, ‘‘CT: History, technology, and clinical
aspects,’’ in Seminars in Ultrasound, CT and MRI, vol. 26. Amsterdam,
The Netherlands: Elsevier, 2005, pp. 376–379.

[42] D. Passaretti, J. M. Joseph, and T. Pionteck, ‘‘Survey on FPGAs in med-
ical radiology applications: Challenges, architectures and programming
models,’’ in Proc. Int. Conf. Field-Program. Technol. (ICFPT), Dec. 2019,
pp. 279–282.

[43] L. Faggioni, F. Paolicchi, and E. Neri, Elementi di Tomografia Computer-
izzata, vol. 4. Milan, Italy: Springer, 2011.

[44] Schleifring. Schleifring CT Gantry. Accessed: Oct. 1, 2023. [Online].
Available: https://www.schleifring.de/fileadmin/08_Downloads/CT-
Applications_January18.pdf

[45] Z7 Series FPGAs GTX/GTH Transceivers User Guide (UG476), AMD-
Xilinx, Xilinx, Inc., San Jose, CA, USA, Aug. 2018.

[46] D. Passaretti, F. Böhm, M. Wilhelm, and T. Pionteck, ‘‘Hardware isolation
support for low-cost SoC-FPGAs,’’ in Proc. 35th Int. Conf. Archit.
Comput. Syst. (ARCS), Heilbronn, Germany. Cham, Switzerland: Springer,
Sep. 2022, pp. 148–163.

[47] ‘‘ZC706 evaluation board for the Zynq-7000 XC7Z045 SoC,’’ Xilinx, Inc.,
San Jose, CA, USA, Tech. Rep. UG954 (v1.8), Aug. 2019.

[48] T. Feist, ‘‘Vivado design suite,’’ Xilinx Inc., San Jose, CA, USA, White
Paper WP416(v1.1), 2012, p. 30, vol. 5.

[49] DCA Varex Image Company. XC-Thor Photon Counting X-Ray Detector.
Accessed: Nov. 16, 2022. [Online]. Available: https://www.vareximaging.
com/wp-content/uploads/2022/01/XC-THOR_PDS.pdf

DANIELE PASSARETTI (Graduate Student
Member, IEEE) received the M.S. degree (cum
laude) in computer engineering from the Uni-
versity of Naples Federico II, Italy, in 2017.
He is currently pursuing the Ph.D. degree
with Otto-von-Guericke University Magdeburg,
Germany. He is also a Research Assistant
with Otto-von-Guericke University Magdeburg.
His research interests include digital design,
medical device design, computer architecture, and
reconfigurable technologies.

MAX STEIGER was born in Lübeck, Germany,
in 1995. He received the B.S. and M.S. degrees
in medical system engineering from Otto-von-
Guericke University Magdeburg, Germany, in
2019 and 20222, respectively. He is currently
working on digitalizing medical care with the
University Hospital Magdeburg, Germany. Since
2023, he has been a Research Assistant with the
Faculty of Computer Science, Otto-von-Guericke
University, as a sideline, focusing on medical

image processing, and tracking in interventional CT.

THILO PIONTECK (Member, IEEE) received
the Diploma and Ph.D. (Dr.-Ing.) degrees in
electrical engineering from Technische Univer-
sität Darmstadt, Germany, in 1999 and 2005,
respectively. In 2008, he was appointed as an
Assistant Professor in integrated circuits and
systems with Universität zu Lübeck, Germany.
From 2012 to 2014, he was the substitute of
the Chair of Embedded Systems with Technische
Universität Dresden, and the Chair of Computer

Engineering with Technische Universität at Hamburg, Harburg, Germany.
In 2015, he was appointed as a Professor with the Chair of Organic
Computing with Universität zu Lübeck, with research focus on adaptive
digital systems. Since 2016, he has been the Chair of Hardware-Oriented
Technical Computer Science with Otto-von-Guericke Universität Magde-
burg, Germany. His research interests include on-chip communication
architectures, heterogeneous 3D SoC designs, methodologies for systematic
design space exploration, and the runtime management of heterogeneous
system architectures.

116234 VOLUME 11, 2023


