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ABSTRACT In the field of engineering, complex problems often arise that require solutions. The
implementation of these algorithms plays a crucial role in achieving favorable outcomes with the available
resources. The Vehicle Routing Problem (VRP) has been a central topic in distribution and logistics
for decades. New VRP models and tools are developed to address the challenges of modern logistics.
The Energy Minimizing Vehicle Routing Problem (EMVRP) is a ‘‘green’’-oriented variant of the VRP
where the objective is to minimize the total amount of energy consumed by a fleet of vehicles. The VRP
literature has focused on solving the problem using a variety of approaches and techniques, including exact
methods, heuristics, metaheuristics, and hybrid algorithms. Hybrid algorithms combine different techniques
to obtain more effective and better solutions. This work presents four innovative hybrid algorithms to
address the EMVRP problem. These algorithms combine Machine Learning (ML) clustering techniques
with metaheuristic approaches inspired by an Ant Colony Optimization (ACO). The proposed algorithms
are: Free Ant + K-Means, Free Ant + K-Medoids, Restricted Ant + K-Means, and Restricted Ant + K-
Medoids. Each of them combines the benefits of clustering with the optimization capacity of ACO. Proposed
algorithms were subjected to testing using instances from CVRPLIB. Both Free Ant and Restricted Ant
efficiently solved EMVRP problems. The results obtained were analyzed and compared with the proposals
of other authors in the literature. Overall, the results are promising, but they also indicate a significant scope
for experimentation and parameter tuning of the proposed algorithms.

INDEX TERMS Complex problems, free ant, green-vrp, heuristics, k-means, k-medoids, machine learning,
metaheuristics, restricted ant, vehicle routing problem (VRP).

I. INTRODUCTION
One of the most widely known and oldest combinatorial
optimization problem is the Traveling Salesman Problem
(TSP), which involves determining the shortest possible route
that visits all cities (from a city list) exactly once and returns
to the starting city. Over time, the idea of optimizing routes
for a finite number of cities has been extended to find optimal
routes for vehicles from one or more depots to a set of
locations or customers, thus being understood as the natural
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evolution of the TSP. Since its inception, this problem has
generated significant interest among the Operations Research
and mathematical communities. These problems are known
as Vehicle Routing Problems (VRP) and belong to the field
of combinatorial optimization.

Introduced in the early 1960s, the VRP has been exten-
sively studied by the scientific community, primarily because
of its practical applications in the field of distribution and
logistics. Additionally, the VRP presents inherent compli-
cations that exist in this type of combinatorial optimization
problem, similar to the TSP, making it part of the NP-Hard
problem set. Whereas the TSP seeks the shortest route to visit
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a certain number of cities and return to the origin, the VRP
aims to determine the optimal set of routes for vehicles, visit
all customers once, and serve their associated demands per
vehicle. In the VRP, there is a finite number of routes, one
for each available vehicle, and the goal is to determine the
optimal set of routes. This characteristic makes the VRP a
generalization of TSP.

The formal definition of a VRP states that m vehicles
initially located at a depot must serve positive amounts of
goods to n customers. The objective is to determine the
K optimal routes used by the fleet of vehicles to fulfill
the demands of the n customers. VRP have many practical
applications, especially in transportation and distribution
logistics. Consequently, various VRP variants have been
developed to better represent our reality and involve variables
that approximate the actual costs associated with traversing
different vehicle routes. Models such as the Capacitated
Vehicle Routing Problem (CVRP), Dynamic Vehicle Routing
Problem (DVRP), and Vehicle Routing Problem with Time
Windows (VRPTW) are only a few current frameworks
within this problem class, and they can differ significantly
from one another or involve constraints from other types of
problems.

This article presents the results of a research project
focused on the Energy Minimizing Vehicle Routing Problem
(EMVRP), which is one of the most interesting models
in the field of vehicle routing optimization. This model
stands out for its ability to minimize both the financial
costs and environmental impact of a fleet of vehicles
while traversing different routes. Therefore, the EMVRP has
emerged as a valuable tool for addressing logistical and
environmental challenges in route planning and distribution.
Originally published by Kara et al. [1], the EMVRP is
a key problem within the Green VRP domain. In this
study, we propose an algorithm to solve EMVRP problems
using constructive metaheuristic techniques and clustering
algorithms. The study is divided into three parts: the EMVRP
problem, clustering algorithms, and the use of the Ant Colony
Optimization (ACO)metaheuristic technique. Our hypothesis
in this work is that we believe that mixed strategies combining
metaheuristics and machine learning propose better solutions
than these techniques separately. We present two innovative
metaheuristic algorithms for problem resolution based on the
Best-Worst Ant System algorithm proposed by Cordón et al.
[2]. These algorithms, named Free Ant and Restricted
Ant, are combined with clustering techniques, specifically
the K-Means and K-Medoids algorithms with capacity
restriction, inspired by the work of Geetha et al. [3].

II. ENERGY MINIMIZING VEHICLE ROUTING PROBLEM
Let us consider an arbitrary Capacitated Vehicle Routing
Problem (CVRP). This problem is defined by a graph G =
(V ,A), where V = v1, v2, . . . , vi is the set of nodes
representing the customers in the problem, with v0 is the
depot, and vi is the i-th node or vertex. These nodes have
positions with coordinates represented as ci = (xi, yi) in a

Cartesian plane. A = (i, j) : i, j ∈ V , i ̸= j is the set of arcs or
edges connecting each node in set V , where (i, j) represents
the arc connecting node vi to node vj.

Additionally, we have the following characteristics that
complete the EMVRP model:
• dij is the distance between node i and node j,
• qi is the positive integer load of node vi, i.e., its demand
or supply,

• m is the number of heterogeneous vehicles,
• Q0 is the tare weight (weight of the vehicle when empty)
of these vehicles,

• Q is the maximum capacity of a vehicle.
Kara et al. [1] defined the Energy Minimizing Vehicle

Routing Problem (EMVRP) as a vehicle routing problem,
such that:
• Each node vi is served by exactly one vehicle,
• Each route starts and ends at the depot v0,
• The load on the arcs accumulates as the sum of
quantities qi supplied by the preceding nodes (in the
case of pickup) and decreases as the sum of quantities
qi demanded by the preceding nodes (in the case of
delivery),

• The load of a vehicle must not exceed the capacity Q,
• The objective is to find a set of K vehicle routes with the
minimum total cost, that is, the minimum total energy.

Furthermore, the following decision variables are defined
for the formulation of this problem:

1) Xij = 1 if the arc (i, j) is part of a route, and 0 otherwise,
2) Yij is the weight of the vehicle when traveling from

node vi to node vj, and 0 otherwise.
As can be inferred, Yij is the component that gives meaning

to this new energy-oriented approach. The weight of the
vehicle on the first arc of any routemust have a predetermined
value; for example, tare weight Q0, and it should always
increase (or decrease) by units of qi immediately after visiting
node vi. In the case of pickup, the flow of the variable
exhibits an incremental step function, whereas in the delivery
case, it exhibits a decremental step function. Therefore,
a model constructed for one case may not be suitable for
its counterpart. However, Kara et al. demonstrated that when
distances are symmetric, the optimal route for the delivery
(or pickup) case is equal to the optimal route for the pickup
(or delivery) case, but traversed in the reverse order. Thus,
if the distances are symmetric, there is no need to differentiate
between delivery and pickup, because the solution for one
case is the solution for the other, but in the reverse order.
Therefore, the objective function to be minimized is as
follows:

min
n∑
i=0

n∑
j=0

dijYij. (1)

This objective function (1) is subject to the following
constraints:

n∑
i=1

X0i = m. (2)
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n∑
i=1

Xi0 = m. (3)

n∑
i=0

Xij = 1, j = 1, 2, 3, . . . , n. (4)

n∑
j=0

Xij = 1, i = 1, 2, 3, . . . , n. (5)

n∑
j=0
j̸=i

Yij −
n∑
j=0
j̸=i

Yji = qi, i = 1, 2, 3, . . . , n. (6)

Y0i = Q0X0i, i = 1, 2, 3, . . . , n. (7)

Yij ≤ (Q+ Q0 − qj)Xij, (i, j) ∈ A. (8)

Yij ≥ (Q0 + qi)Xij, ∀(i, j) ∈ A. (9)

Xij = 0 o 1, (i, j) ∈ A. (10)

The cost of traversing an arc (i, j) is the product of
the distance dij (the distance between nodes vi and vj)
and the weight Yij carried by the vehicle on this arc,
which is satisfied by the objective function given in (1).
Furthermore, Constraints (2) and (3) ensure that allm vehicles
are used. Constraints (4) and (5) represent the degrees
of restriction for each node. Constraint (6) represents the
classical conservation of the flow equation, which balances
the inflow and outflow of each node (in terms of demand
or supply) and prohibits any illegal sub-trips. Constraint (7)
initializes the flow in the first arc of each route. Constraint (8)
handles the capacity constraints and forces the value of Yij to
be zero when arc (i, j) is not a part of any route. Constraint (9)
sets the lower bounds for flow on any arc. The integrity
constraint is given in (10), and corresponds to the binary
variable for each arc.

III. BACKGROUND
The state-of-the-art analysis in this work focused on address-
ing contemporary challenges in logistics and distribution,
using the Energy Minimizing Vehicle Routing Problem
(EMVRP) as a case study. These logistical problems encom-
pass a wide array of challenges and complexities. We believe
that the application of heuristics, metaheuristics and hybrid
algorithms, such as ant colony optimization and clustering,
has the potential to provide optimal or near-optimal solutions
for logistics and distribution-related issues. The combination
of these techniques can be beneficial in approaching these
problems from various perspectives:

1) Optimization: Metaheuristics can find optimal or
near-optimal solutions for logistics and distribution
problems.

2) Adaptability: Metaheuristics can adapt to changing
situations and cater to different types of problems,
depending on current needs.

3) Complex Problems: Hybrid algorithms combine differ-
ent techniques, such as machine learning and optimiza-
tion, to effectively address challenging problems.

Before delving into the development of the algorithms
proposed in this study, it is essential to introduce the
terms that will be frequently used throughout the following
chapters. Therefore, this section presents some fundamental
concepts necessary to comprehend the processes involved in
the algorithms proposed in this study. By doing so, readers
will be able to gain a clear understanding of the terms
employed in the analysis of Free Ant and Restricted Ant.

A. ANT COLONY OPTIMIZATION
Ant Colony Optimization (ACO) acts as a tool for solving
complex combinatorial optimization problems and was
originally designed to find the optimal path within a graph,
specifically a Traveling Salesman Problem (TSP) graph.
ACO can be understood as a bio-inspired metaheuristic
with a general-purpose application, arising from the genuine
observation that a colony of ants is capable of finding an
optimal path between their nest and a food source. Initially,
real ants, explore the area around their nest in a random
manner when searching for food, leaving behind a trail of
pheromones. This pheromone trail affects subsequent ants,
gradually causing them to converge towards an optimal path.

The foundation of the Ant Colony Optimization theory was
introduced by Marco Dorigo in his doctoral thesis in 1992.
However, it was not until the mid-1990s that Dorigo, M.,
Maniezzo, V., and Colorni, A. [4] published it as a novel
metaheuristic called Ant System (AS). AS employs a fixed
number of artificial ants (w) where each ant a (considered
a computational agent) constructs a solution to the problem,
previously represented by a graph. In this graph, each arc (i, j)
corresponds to one of the possible choices available to the ant
to transition from its current state to a new state.

Ant a is only aware of the information associatedwith these
arcs (i, j), which consists of the following:

1) Heuristic information η, which determines the heuristic
preference of an ant to move from one state to
another. This information typically refers to the cost of
transitioning from node vi to node vj, and in practice,
it remains unchanged throughout the execution of the
algorithm.

2) Pheromone trail information τ , which measures the
learned preference for state transitions among the
w ants. This information aims to mimic the real
pheromone deposited by natural ants and is a data value
that will be modified during the course of the execution
of the algorithm, with the purpose of aiding future ants
in selecting better routes.

The development of a generic ACO algorithm requires
artificial ant a to have memory Ma, where it stores each
visited node vi. This list is commonly known as the taboo
list because it contains all nodes that cannot be revisited (as
they are part of a route). The list of the remaining nodes that
the ant can visit is denoted as Ja. To determine the next node
vj that the ant will visit, the transition rule (11), also known
as the standard probability distribution pa of AS, is used to
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determine the next node vj that the ant will visit.

pa(r, s) =


[τ (r, s)]α[η(r, s)β ]∑

u∈Ja(r)[τ (r, u)]
α[η(r, u)]β

, ifs ∈ Ja(r),

0, otherwise,
.

(11)

where r corresponds to node vi and s corresponds to node
vj. τ represents the pheromone trail on arc (i, j), and η

denotes the heuristic information on the same arc, typically
the inverse of the distance d(r, s) ( 1

d(r,s) ). Ja(r) represents
the set of nodes that are yet to be visited by ant a starting
from node r . Furthermore, α and β are adjustable parameters
that determine the relative importance of the pheromone trail
versus the relative importance of the heuristic information,
respectively.

In ACO, it is necessary to modify the pheromone trails
associated with arcs in each iteration. For example, in AS,
at the end of each iteration, there is an evaporation of the
pheromone trails, followed by the deposition of a determined
number of pheromones by the w ants. The update of the
pheromone τrs, associated with the arc (i, j) connecting nodes
vi and vj, occurs as follows:

τrs← (1− ρ) · τrs +
w∑
a=1

1τ ars. (12)

where ρ is the evaporation coefficient (a predefined value
within the range [0, 1]), and1τ ars is the amount of pheromone
deposited on arc (i, j) by ant a. The amount of pheromone
1τ ars that ant a can deposit can be calculated as follows:

1τ ars =


1
La

if ant a uses arc (i, j) in its solution,

0, otherwise,
(13)

where La is the length of the solution constructed by ant a.
Since the introduction of AS, various variants of ACO

algorithms have been proposed to solve combinatorial
optimization problems. Some are more closely inspired by
AS, whereas others diverge further. However, their main ideas
are similar:

1) The use of a colony of ‘‘ants’’ that cooperate with each
other,

2) Artificial ‘‘pheromone’’ trails for local communication,
3) A sequence of local movements, and
4) A stochastic decision policy that utilizes local

information.
Somewell-knownACO algorithms include the Ant Colony

System (ACS) [5], ASrank [6], and MAX-MIN Ant System
(MMAS) [7], among others. For more details on Ant Colony
Optimization, please refer to [8].

B. MAX-MIN ANT SYSTEM
As presented by Stützle, T. & Hoos, H. [7], the MAX-MIN
Ant System (MMAS) differs from standard Ant Colony
Optimization (ACO) algorithms in that it limits the amount
of pheromone that can be deposited on an arc (i, j). This is

achieved by setting a minimum value τmin and a maximum
value τmax of pheromone for each arc and updating the
pheromone value only if it falls within this range. This
restriction ensures that the algorithm does not converge
rapidly to suboptimal solutions. The determination of τmin
and τmax in MMAS are given by:

τmax =
1

1− ρ

1
f (Sgb)

. (14)

τmin =
τmax(1− n

√
Pbest )

(avg− 1) n
√
Pbest

. (15)

Here, f (Sgb) represents the value of the best global
solution of the problem, Pbest is the probability of conver-
gence to the best-found solution, which is typically assumed
to be 0.05. Finally, avg denotes the average choice among the
different components of the solution, i.e., avg = n/2.
In general, the MAX-MIN Ant System is an effective and

widely used optimization algorithm that has been success-
fully applied to a broad range of problems, including the
Traveling Salesman Problem (TSP), Quadratic Assignment
Problem (QAP), and Vehicle Routing Problem (VRP).

C. BEST-WORST ANT SYSTEM
The Best-Worst Ant System (BWAS) algorithm is an ACO
type algorithm developed by Cordón et al. [2], which
incorporates concepts from evolutionary computation. This
algorithm utilizes the AS transition rule (11) and does
not require online pheromone updates (12), thus making
it an optional step. Furthermore, this algorithm relies on
three essential actions performed by an external program
separate from the ant colony. This program is a special
type of non-interactive computational process known as a
‘‘daemon.’’ We briefly outline these actions as follows:

1) Only the best global solution, referred to as ‘‘best-
global,’’ and the current worst solution, referred to
as ‘‘worst-current,’’ are considered for performing
positive and negative pheromone updates, respectively
(offline update). This update is applied once the w ants
have constructed their solutions and before the iteration
end.
a) The offline update is applied as follows:

τrs← (1− ρ) · τrs +
i

τrs. (16)
i

τrs = f (C(Sbest−global)),

if (r, s) ∈ Sbest−global,
0, otherwise.

(17)

where f (C(·)) corresponds to a function that
evaluates the quality of any given solution.

b) On the other hand, the penalty of arcs in
the current worst solution, ‘‘worst-current,’’ is
performed as follows:

∀(r, s) ∈ Sworst−current and (r, s) /∈ Sbest−global,

τrs← (1− ρ) · τrs. (18)
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2) The daemon process also incorporates a pheromone
matrix reset procedure. This occurs whenever a defined
stagnation condition is satisfied.

3) The pheromone matrix underwent a series of stochastic
mutations that were loosely inspired by evolutionary
computations. The purpose of these mutations was to
introduce greater diversity into the search process:
a) Each row of the pheromone matrix is mutated

(with a probability of Pm) as follows:

τ ′rs =

{
τrs + mut(it, τthreshold ), if e = 1
τrs − mut(it, τthreshold ), if e = 0

.

(19)

τthreshold =

∑
(r,s)∈Sbest−global τrs

|Sbest−global |
. (20)

where e is a random value in {0, 1}, it represents
the current iteration, and τthreshold is the average
pheromone value of the best global solution.

b) Furthermore, the function mut() is described as
follows:

mut(it, τthreshold ) =
it − itr
Nit − itr

· σ · τthreshold .

(21)

where Nit is the maximum number of iterations,
itr is the last iteration where a pheromone matrix
reset is performed, and σ is a constant that
specifies the intensity of the mutation relative to
the number of iterations conducted so far.

D. K-MEANS
One of the most commonly used algorithms for clustering
datasets is K-Means, which is known for its simplicity
and effectiveness. This algorithm (also known as Lloyd’s
Algorithm) was originally designed by Lloyd, S. P. [9],
although the term ‘‘K-Means’’ was coined in 1967 by
MacQueen, J. B. [10]. K-Means belongs to the field of
unsupervised machine learning and takes a set of elements
and assigns each of them to one of theK groups. This is based
on the inherent features of each element, that is, their values
xi. The goal of the algorithm is to find the optimalK centroids
that minimize the sum of the squared distances between all
the objects in a group and their centroid.

In the classical sense of this algorithm, the centroids
are initially placed randomly in space, and the algorithm
iteratively assigns each element vi to one of the K groups
based on its similarity or proximity to the centroids. Each
element is assigned to group G with the smallest distance
to its respective centroid, where G = G1,G2,G3, . . . ,GK
represents the set of groups. The equation for minimizing the
sum of squared distances across all groups Gi, is given by:

argmin
K∑
i=1

n∑
cj∈Gi

||cj − µi||
2
. (22)

where n corresponds to the number of elements in group Gi,
cj represents the Cartesian coordinates of the j-th element
(i.e., the values xi), and i is the average of the Cartesian
coordinates among the nodes in group Gi, representing the
coordinates of the i-th centroid belonging to that group. TheK
centroids (1, 2, 3, . . . ,K ) are then recalculated as the average
of the coordinates of all nodes within each respective group
in G. Because it is an iterative algorithm, the groups are
redefined as the K centroids are recalculated, and the nodes
are reassigned to the groups organically after each iteration
until convergence is reached.

E. K-MEDOIDS
Another algorithm in the field of unsupervised machine
learning is the Partition Around Medoids (PAM), originally
proposed by Kaufman, L., & Rousseeuw, P. J. [11], and is
commonly referred to as ‘‘K-Medoids.’’ Similar to K-Means,
this algorithm works by dividing the dataset into K groups.
The idea behind K-Medoids arises, in part, from the fact
that K-Means is often sensitive to outliers. This sensitivity
occurs because the centroids, denoted as i, can be strongly
influenced by extreme values (elements whose coordinates
are significantly distant from the rest), because the centroids
are calculated as the average coordinates of the elements.
Thus, K-Medoids is a classification technique that segments
the elements of a dataset; however, unlike K-Means, where
the centroids are not necessarily part of the groups, in K-
Medoids, an object from the dataset is selected as the centroid
of its group. This central object is referred to as a medoid.

Theworkingmechanism of K-Medoids follows an iterative
process similar to that of K-Means. In the initial step, the
medoids of each group are initialized randomly. Each element
is then associated with one of the groups in G based on
the closest proximity to its respective medoid Mi. In each
subsequent iteration, the K medoids (M1,M2,M3, . . . ,MK )
are recalculated in terms of the similarity among the elements
within the group. In other words, the new medoid Mi of the
i-th group is determined as the object that, on average, has
the lowest distance to the rest of the objects within the same
group. The cost of group Gi in K-Medoids is given by:

costGi =
∑
cj∈Gi

|cj −Mi|. (23)

where G represents the set of groups, n is the total number of
non-medoid elements in a group, Mi denotes the coordinates
of the medoid belonging to group Gi, and cj represents the
coordinates of the j-th non-medoid element within group Gi.

F. VARIABLE NEIGHBORHOOD SEARCH
Variable Neighborhood Search (VNS) is commonly
described as a framework rather than a specific local search
algorithm, as it provides guidelines for implementing more
effective local searches. The VNS was originally introduced
by Hansen, P. &Mladenovic, N. [12] in 1997 as a method for
constructing local search heuristics. It is based on systematic
changes of neighborhoods, involving a descent phase to reach
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a local minimum and a shaking phase to escape the current
valley, that is, to search for a better local minimum.

The VNS is considered a metaheuristic that exploits the
idea of changing neighborhoods to find improved solutions.
To achieve this, the algorithm relies on the following three
observations:

1) A local minimum with respect to one neighborhood
structure may not be the same for another.

2) A global minimum is a local minimum with respect to
all possible neighborhood structures.

3) For many problems, the local minimum with respect to
one or more neighborhoods is relatively close to each
other.

This empirical observation implies that a local optimum
often provides some information about the global optimum.

G. CLARKE AND WRIGHT’S ALGORITHM
The Clarke & Wright algorithm (also known as Saving’s
Algorithm) was introduced by Clarke, G. &Wright, J.W. [13]
in 1964. It is one of the most popular heuristic techniques for
solving the Vehicle Routing Problem (VRP). The central idea
of this algorithm is to combine two routes into a single new
route, ensuring that ‘‘savings’’ are achieved. The potential
savings from combining two routes is given by:

gij = di0 + d0j − dij. (24)

Here, gij represents the savings value when two nodes are
integrated into the same route (greater values indicate higher
savings); di0 is the distance between node vi and the depot v0,
d0j is the distance between depot v0 and node vj, and dij is the
distance between node vi and node vj.
The algorithm operates as follows: first, each customer

is assigned to a vehicle. Then, it attempts to combine
two routes, provided that the vehicle’s capacity allows it.
The order in which the routes are combined is determined
using (24). These savings values are sorted in descending
order, and the route that generates the highest savings is
selected and added to the merged route. The Clarke &Wright
algorithm has two approaches: Parallel and Sequential. The
Parallel approach creates routes simultaneously, whereas the
Sequential approach creates one route at a time.

IV. METHODOLOGY
This section presents the working methodology and the
processes involved in each of the proposed algorithms: Free
Ant and Restricted Ant. Furthermore, the notation k is used
interchangeably to refer to both centroids and medoids M
from this point onward.

The overall behavior of the proposed algorithms in this
work can be observed in Fig. 1, which presents, in a flowchart,
the clustering stage and then the ant colony optimization
stage.

A. CLUSTERING ALGORITHMS
The purpose of these algorithms is to obtain information
that can assist the ants in making better decisions during

state transitions. These clustering algorithms are used to
generate groups of nodes that can potentially form a single
route. Therefore, the clustering algorithms are executed at the
beginning of the main program execution, once the data for
an instance has been loaded, various parameters that control
the algorithms have been set, and the distances between all
nodes, as well as the energy cost Cij between each node, have
been calculated.

1) IMPROVED K-MEANS ALGORITHM FOR CAPACITATED
CLUSTERING PROBLEM
The K-Means algorithm typically does not consider any
constraints when generating clusters because it focuses solely
on identifying similar elements. To maintain the vehicle
capacity constraint within each route, an improved version
of K-Means called the Improved K-Means Algorithm for
Capacitated Clustering Problem, has been utilized. This
algorithm was proposed by Geetha et al. [3] and its main
advantage lies in considering the maximum capacity Q of
the m vehicles in a Capacitated Vehicle Routing Problem
(CVRP). To avoid breaking this capacity constraint, nodes are
grouped using a prioritization system.

The Improved K-Means Algorithm incorporates several
modifications to better handle situations where there is an
intra-cluster maximum capacity constraint. The customer
nodes are assigned to the nearest groups in a similar
manner to any K-Means algorithm, but the assignment occurs
in an ordered manner based on a characteristic of each
customer: their demand. Customers with higher demands qi
and minimum distances dikj with respect to the centroids
are given higher priority when being assigned to a group.
Therefore, it is necessary to sort the customers (based on
their respective demands) at the beginning of the algorithm
in descending order.

Once the nodes are sorted, they are assigned to the
groups whose centroid are closest to them. To determine
the initial centroid locations, the coordinates of the nodes
with higher demand that are farthest from the depot and the
already selected centroids are considered. This approach is
based on the work of Arthur, D. and Vassilvitskii, S. [14],
who demonstrated that the initial position of the centroids
directly affects the final result of the clustering process. They
refer to this improved version of the K-Means algorithm as
K-Means++.

To determine the optimal number of routes, that is, the
optimal K , the following equation is used:

K =
n∑
i=1

qi
Q

. (25)

On the other hand, to calculate the priority of each node vi,
the next equation is used:

Priority Pi = dikj/qi. (26)

Here, dikj corresponds to the distance between node vi and
the k-th centroid of each j-th group. Once all nodes have been
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FIGURE 1. Generalized flowchart of the proposed hybrid algorithms.

assigned to a group, the coordinates of each centroid kj is
recalculated. If convergence is not achieved, the priority Pi
needs to be recalculated for a new iteration.

In the context of VRP problems, the optimal number
of clusters that clustering algorithms should generate will
always be equal to the number of routes, that is, the optimal
K . Therefore, the number of clusters is determined by (25).

2) IMPROVED K-MEDOIDS ALGORITHM FOR CAPACITATED
CLUSTERING PROBLEM
The K-Medoids algorithm for Capacitated Clustering follows
the same principles as the algorithm proposed by Geetha et al.
[3], but it is governed by the criteria of K-Medoids. Once
again, we employ the idea of K-Means++ to select the most
distant nodes as the initial medoids.

Each node is assigned to its nearest group, that is, the group
whose medoid is closest in terms of distance. Similar to the
Capacitated K-Means approach, a priority system based on
distance and demand was used for node assignment. Once all
nodes have been assigned to a group, the K medoids must be
recalculated. To choose the new medoid for each group inGj,
it is necessary to determine which node in the group has the
lowest average cost compared with the other members of the
same group, according to (23).

B. ACO ALGORITHMS
The ACO Algorithms developed in this work are Free Ant
and Restricted Ant, and both are based on the BWAS system.
The execution of these algorithms begins after the clustering
process.
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Algorithm 1 Clustering Algorithms
1: Initialization of variables
2: K
3: totalCost
4: function GetFirstCentroids(K )
5: for idxk in K do
6: if centroidsList is empty then
7: Find the farthest node from the depot
8: centroidsList ←node
9: else

10: Find the farthest node from the rest of
centroids

11: centroidsList ←node
12: end if
13: end for
14: return centroidsList
15: end function
16: while actualIteration < maxIterations do
17: unassignedNodes
18: Calculate distances from every node to every

centroid
19: for node in nodesList do
20: if noder exists in unassignedNodes then
21: Gets closest clusters to noder
22: for cluster in closestClusters do
23: Calculate distances from every node to

cluster
24: Calculate priority for every node to

cluster
25: Assign to this cluster the node with

highest priority
26: Remove this node from unassignedNodes
27: if noder not exists in unassignedNodes

then
28: Exit this FOR loop
29: end if
30: end for
31: end if
32: end for
33: function CalculateTotalCost
34: Sum all distances from every node to its centroid
35: return newCost
36: end function
37: if newCost < totalCost then
38: bestClusters←actualClusters
39: bestCentroids←actualCentroids
40: totalCost ←newCost
41: end if
42: Recalculate centroids
43: if actualCentroids = bestCentroids then
44: Exit this WHILE loop
45: end if
46: end while

The pseudo-code for the ACO Algorithms is outlined in
Algorithm 2.

Algorithm 2 ACO Algorithms
1: Initialization of variables
2: unvisitedNodes
3: routes
4: while length of unvisitedNodes > 0 do
5: newRoute
6: actualNode←depot
7: maxCapacity
8: vehicleWeight ←tare
9: Calculate all the validNodes from unvisitedNodes
10: while length of validNodes > 0 do
11: Calculate the heuristics from actualNode to

validNodes
12: Calculate the pheromones from actualNode to

validNodes
13: pseudoRandomChoice
14: if pseudoRandomChoice ≤ l0 then
15: Calculate bestNode
16: nextNode←bestNode
17: else
18: Calculate all the probabilities with heuristics

and pheromones
19: Choose a randomNode based on these

probabilities
20: nextNode←randomNode
21: end if
22: Append nextNode to newRoute
23: maxCapacity subtract demand of nextNode
24: vehicleWeight sum demand of nextNode
25: unvisitedNodes remove nextNode
26: actualNode←nextNode
27: Recalculate all the validNodes from

unvisitedNodes
28: end while
29: Append newRoute to routes
30: end while
31: return routes

The algorithm begins by initializing the variables and
setting up the necessary data structures. The main loop
iterates until all the nodes have been visited. In each
iteration, a new route is constructed. The algorithm selects
the next node to visit based on the heuristics and pheromone
information. The selection is influenced by a pseudo-random
choice using parameter l0. If the pseudo-random choice is less
than or equal to l0, then the best node is chosen. Otherwise,
the selection is based on the probabilities calculated from the
heuristics and pheromones. The selected node is added to the
new route and the algorithm updates the remaining capacity
and weight of the vehicle. The selected node is removed from
the list of unvisited nodes, and the process continues until all
the nodes have been visited. The resulting routes are returned
as the outputs of the algorithm.

1) FREE ANT
The Free Ant algorithm utilizes information obtained from
the best K clusters to determine the nodes belonging to each
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group. In addition, this information is used to construct the
initial pheromone matrix. For this purpose, an amount of
pheromone τmax is assigned to each arc (i, j) connecting
nodes within the same group, whereas arcs (i, j) connecting
nodes from different groups are assigned an initial amount of
pheromone τ0. The calculation of τ0 is based on the equation
developed by M. Dorigo and L.M. Gambardella in their work
on the Ant Colony System [5]:

τ0 =
1
Lc

. (27)

Here, Lc corresponds to the best total energy obtained by a
greedy algorithm.

To prevent possible stagnation, the amount of pheromone
associated with each arc (i, j) is limited to the ranges
{τmin, τmax}. The specific values for the minimum pheromone
amount τmin and maximum pheromone amount τmax are
determined according to (15) and (14), proposed in the
Max-Min Ant System (MMAS).

Once the pheromone matrix is created and initialized,
iterative execution of the Free Ant algorithm begins. In each
iteration, a limited number of ants are deployed, and to
maximize exploration, each ant is placed in a different node
to start its construction. However, to minimize computation
time, a candidate node list is used. For the design of the ACO
algorithms in this work, it was decided that the composition
of this list would be a homogeneous mixture of the closest
nodes to depot v0 in each group, the first selected nodes in
each route from the solutions with the best results obtained
in the previous iteration, and a small number of randomly
selected nodes.

Once ant a is placed in its initial node, it starts constructing
one of the K routes. The ant continues to select nodes to visit
as long as the accumulated total demand in route r is less
than the maximum capacity Q of the vehicle. When it is no
longer possible to add nodes without violating this constraint,
or when all nodes have been visited, the ant returns to the
depot. This means that although there are nodes that can be
added to the list representing the current route, the size of
this list continues to increase by adding more nodes. When
no more nodes are available to visit, a new route is created
for the remaining available nodes. Once all nodes have been
visited, the quality of the generated solution is calculated.

The quality of the solution is determined by the sum of
all energies required for each route. This objective function
is given by (1). Thus, we can observe that each ant a in
the iterative process of the Free Ant algorithm has the total
freedom (probabilistically) to choose which node in the graph
to visit. Hence its name.

To improve the performance and decision-making capa-
bility of each ant a, this work decided to complement the
heuristic information η by considering not only the distance
dij but also the energy cost Cij and the savings value gij, such
that:

η = [dij]β · [Cij]γ · [gij]δ. (28)

where γ and δ are constants that determine the relative
importance of Cij and gij, respectively. Thus, the standard
probability distribution used by Free Ant and Restricted Ant
is given by:

pa(r, s) =



[τ (r, s)]α · ([dij]β [Cij]γ [gij]δ)∑
u∈Ja(r)[τ (r, u)]

α · ([dij]β [Cij]γ [gij]δ)
,

if s ∈ Ja(r),
0,

otherwise,

.

(29)

The details of this strategy, along with others (such as
the use of a candidate node list), can be found in the
application recommendations of ACO for VRP problems by
Bullnheimer, B., Hartl, R., and Strauss, C. [15] and Rizzoli,
A.E., Montemanni, R., Lucibello, E. et al. [16].

2) RESTRICTED ANT
In Restricted Ant, the global problem is decomposed into
smaller sub-problems: groups. Each group corresponds to one
of theK routes. In thismanner, we transform the original VRP
problem into K TSP problems of lower complexity.
In this version of the BWAS algorithm, all elements τij are

initialized with a value of τmax .
The iterative process of this algorithm operates differently

from the Free Ant algorithm, as the iterations are performed
for each group. For each group Gi, a determined number of
ant deployments are repeated, and each ant a creates only a
partial solution to the problem, specifically the solution for
that group Gi.
Once again, we work with a candidate node list, one list

for each group, but this time it will consist of a homogeneous
distribution of nodes that are closest to the depot, the initial
nodes of the best solutions obtained from the previous
iteration, and a small number of randomly selected nodes.
Each ant a starts its tour at one of these candidate nodes and
probabilistically creates a solution based on (29). Naturally,
ant a can only visit the nodes belonging to the same group.

Once all iterations in each group are completed, the best
solution found in each group is combined into a single
final solution, which represents the solution to the original
problem.

C. VNS ALGORITHMS
In this study, the VNS was used as a tool to guide the design
and development of local search algorithms. In our case, these
types of algorithms require an initial solution, provided by
the ACO algorithms. Based on these solutions, the algorithm
starts exploring the neighborhood space to find (or not) a
better local optimum.

Two VNS-inspired algorithms were used in the program:
one focused on improving the individual solution of a
group, that is, the solution obtained by the Restricted Ant,
and another to improve the solution of the entire problem
provided by Free Ant.
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1) 2-OPT VNS
This first algorithm is a simple variant of VNS and was
implemented to improve the solutions delivered by the ants
of the Restricted Ant. As the solutions provided by each
of these ants are solutions to specific groups, the design of
this algorithm is based solely on two intra-cluster operators:
‘‘single-route-relocate’’ and ‘‘single-route-swap’’.

The single-route-relocate operator relocates a node to a
new position within the same route, whereas the single-route-
swap operator exchanges the positions of two nodes, within
the same route.

2) GENERAL VNS
This algorithm corresponds to a more comprehensive design
of the VNS, and its implementation is aimed at improving the
solutions obtained in the Free Ant.

In this version of the algorithm, the operators are
divided into two groups: intra-cluster and inter-cluster. The
intra-cluster operators are the same as in the 2-OPT VNS,
while the inter-cluster operators are as follows: ‘‘two-routes-
relocate,’’ which relocates a node from one route to a new
position in another route; ‘‘two-routes-swap,’’ that exchanges
two nodes between different routes; and finally, ‘‘two-routes-
exchange,’’ which exchanges two consecutive nodes from one
route with two consecutive nodes from another route.

The inter-cluster operators are only viable and applicable
when the newly generated solution does not violate the
capacity constraint Q for any of the K routes.

D. HYBRID ALGORITHMS
Due to the NP-Hard nature of many problems in the field
of engineering, especially those of a combinatorial nature,
various authors have proposed algorithms that successfully
combine different techniques, such as heuristics, metaheuris-
tics, machine learning, etc., in an attempt to solve these
problems. A hybrid algorithm is one that combines two
or more algorithms that solve the same problem, either by
choosing one (based on the data) or switching between them
during the course of the algorithm. This is generally done
to combine desired features of each algorithm so that the
final algorithm is better than its individual components. Some
examples of hybrid algorithms include Machine Learning
(ML) with Tabu Search (TS), iterative algorithms with integer
programming, Genetic Algorithm (GA) with Local Search
(LS), Ant Colony Optimization (ACO) with Local Search
(LS), and so on.

Since the algorithms proposed in this work are hybrid algo-
rithms, as they use a combination of clustering techniques
with the ACO metaheuristic, a review of the state of the
art related to these areas was conducted. We highlight the
recent proposals of two studies focused on using K-Means
to subdivide the search space for ACO.

One of these studies is by S.A. El-Khatib, Y.A. Skobtsov
& S.I. Rodzin [17], who present an efficient algorithm for
image segmentation using a method that leverages all the

TABLE 1. Specifications of the testing machine.

advantages of K-Means and ACO algorithms. The work of
Kusumahardhini, N., Hertono, G. F. & Handari, B. D. [18]
was also reviewed, in which they combined K-Means with
ACO to solve the Multiple Traveling Salesman Problem
(MTSP).

V. EXPERIMENTAL RESULTS
In this section, we will present the results of experiments
obtained with the Free Ant and Restricted Ant algorithms,
which were conducted on a series of instances from the
CVRPLIB library. The libraries used for experimentation
correspond to ‘‘Set A (Augerat, 1995),’’ ‘‘Christofides,
Mingozzi and Toth (1979),’’ and ‘‘Golden et al. (1998).’’

The choice of these libraries was made because during the
literature review stage of the EMVRP, two articles related to
EMVRP were identified. The first corresponds to the authors
Rathnakumara and Rupasinghe [19], who developed a Tabu
Search (TS) algorithm guided by a Machine Learning (ML)
model. This algorithm is called ML-TS and was tested by
the authors on the ‘‘Set A (Augerat, 1995)’’ instance as an
EMVRP problem.

The second article is by the authors Kramer et al. [20],
who developed a metaheuristic that combines Local Search
(LS) with an integer programming approach and a speed
optimization algorithm. This metaheuristic is called ILS-
SP-SOA and was tested by the authors on the instances
‘‘Christofides,Mingozzi and Toth (1979)’’ and ‘‘Golden et al.
(1998)’’ as an EMVRP problem.

The specifications of the testing machine used for the
benchmarks are listed in Table 1. The parameter settings
are presented in Table 2. The choice of the values for these
parameters is the result of an experimentation phase where
empirically, values were sought that would generally yield
the best results for both algorithms. The configuration used
by Stützle, T., Hoos, H. [7] and that of Cordón et al. [2] served
as a starting point, and the search for an optimal configuration
began from there.

For this study, each instance of a CVRPLIB library
was executed 10 times for each variant of the proposed
algorithms. For each instance of each CVRPLIB library,
‘‘Set A (Augerat, 1995),’’ ‘‘Christofides, Mingozzi and Toth
(1979),’’ and ‘‘Golden et al. (1998),’’ two tables are presented.
The first table corresponds to the best result of each program
execution, that is, the best total energy cost of all routes
(objective function (1)) and the total computation time in
seconds to obtain this solution. The calculation of time
considers the time required by the clustering algorithm, added
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TABLE 2. Parameter configuration.

to the time of the ACO algorithm, and the time of the
VNS local searches. Additionally, a second table presents the
averaged results of the 10 executions and their average Gap.
The average Gap is calculated by:

Gap = 100 ·
Savg − Sbest

Sbest
. (30)

where Savg corresponds to the average value of the 10 solu-
tions found for an instance, and Sbest is the value of the best
solution found among the 10 solutions.

The parameter configurations presented in Table 2
were used during the execution of the experiments. For
instances from the libraries ‘‘Set A (Augerat, 1995)’’ and
‘‘Christofides, Mingozzi and Toth (1979),’’ 200 iterations
were performed for each execution of the Free Ant algorithm,
and 100 iterations were performed per group in the Restricted
Ant algorithm. For instances from the ‘‘Golden et al.
(1998)’’ library, the number of iterations were 300 and 200,
respectively. The number of ants per iteration for the proposed
algorithms was as follows: for Free Ant, it was determined by
considering half of the total number of nodes in the problem,
meaning that the number of ants was equal to 50% of the total
number of nodes. In the case of Restricted Ant, the number
of nodes varies depending on the group being solved. The
number of ants was calculated by taking half of the node count
of the current group, resulting in the number of ants being
50% of the number of nodes per group.

In Tables 3-5, we have six columns: Instance, Algorithm,
Best Energy (Kj), Avg. Energy (Kj), Gap (%) and Time
(Sec). The ‘‘Instance’’ column indicates the name of the
instance being solved. The ‘‘Best Energy (Kj)’’ column
provides the best energy value found for that instance in terms
of kilojoules across the 10 executions. The ‘‘Avg. Energy
(Kj)’’ column provides the average energy value across
all executions for each algorithm. The ‘‘Gap (%)’’ column
represents the averaged gap of all executions, as presented
in (30). The ‘‘Time (Sec)’’ column indicates the time taken by
the algorithm to find the best energy value in seconds. Finally,
the ‘‘Algorithm’’ column indicates the algorithm applied to
solve the instance and to which others columns values corre-
spond. Four different algorithms are compared in the table:
Free Ant + K-Means, Free Ant + K-Medoids, Restricted

Ant + K-Means, and Restricted Ant + K-Medoids. The best
energy value found is the lowest value in terms of kilojoules
among all the applied algorithms for a particular instance.
The ant-based algorithms are divided into two types: ‘‘free’’
and ‘‘restricted.’’ The ‘‘free’’ algorithms use groups generated
by the clustering-based algorithms to initially populate the
pheromone matrix. In contrast, clustering-based algorithms
are used to establish the search space in the ‘‘restricted’’
algorithms.

During the development of the experiments, we noticed
that in some instances of CVRPLIB, the maximum capacity
constraint per route was very tight compared to the total node
demand. This caused the clustering algorithm (K-Means or
K-Medoids) to be unable to find optimal solutions with each
node assigned to a group. At the end of an iteration of this
algorithm, some nodes remained unassigned. For this reason,
the results tables do not show data for Restricted Ant in
certain instances. However, in the case of Free Ant, this issue
did not hinder the generation of the necessary pheromone
matrix. The arcs related to the unassigned nodes still had an
initial pheromone trail.

A. SET A (AUGERAT, 1995)
This was the first set of instances considered in this study.
This set consists of 22 groups of instances ranging from 30 to
78 nodes (excluding the depot). A vehicle capacity of zero
has been considered for this set. The results obtained for this
set are presented in Table 3.

B. CHRISTOFIDES, MINGOZZI AND TOTH (1979)
This set consists of six groups of instances ranging from 50 to
199 nodes (excluding the depot). A vehicle tare equivalent
to 15% of the maximum capacity was used for this set. For
example, if the vehicle capacityQ is 200 units, the tare would
be 30 units. 200 iterations were run per execution for the Free
Ant algorithm, and 100 iterations were run for the Restricted
Ant algorithm. The results obtained for this set are presented
in Table 4.

C. GOLDEN ET AL. (1998)
This set consists of 15 groups of instances ranging
from 200 to 483 nodes (excluding the depot). The same tare
used for the Christofides, Mingozzi, and Toth set, i.e., 15% of
the maximum capacity Q, was used for this set as well. The
results obtained for this set are presented in Table 5.

VI. RESULTS ANALYSIS
In this section, we analyze the obtained results. To compare
the results of the proposed algorithms, we referred to
two different works. In the first one, Rathnakumara and
Rupasinghe [19] presented the ML-TS algorithm, which is
based on clustering and tabu search, to solve the EMVRP.
In the second work, Kramer et al. [20] proposed the ILS-SP-
SOA algorithm, which combines exact techniques and local
searches to solve the Pollution-Routing Problem and other
Green-VRP problems.
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TABLE 3. Results of Set A (Augerat, 1995).
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TABLE 3. (Continued.) Results of Set A (Augerat, 1995).

Both authors achieved favorable results in their respective
benchmarks using the CVRPLIB library.

A. SET A (AUGERAT, 1995)
Table 6 present the best results obtained and compare them
with the best results of the ML-TS algorithm. Additionally,
the difference (Gap) between the best energy obtained by Free
Ant+K-Means, FreeAnt+K-Medoids, RestrictedAnt+K-
Means, and Restricted Ant+ K-Medoids is shown compared
to the results provided by Rathnakumara and Rupasinghe.
The calculation of this Gap is done using the next equation:

Gap Best Energy = 100 ·
SML−TS − Sbest

Sbest
. (31)

Here, SML−TS corresponds to the best energy obtained by
ML-TS for the instances in Set A (Augerat, 1995).

The data presented in Table 3 indicate that, in general,
in terms of energy minimization, the Free Ant algorithms
achieve better results than the Restricted Ant algorithms.

Furthermore, Table 3 reveals that Free Ant + K-Medoids
achieves a higher solution quality, where lower values
indicate better solutions. On the other hand, the Restricted
Ant algorithms tend to generate lower-quality solutions
compared to Free Ant algorithm. However, Restricted Ant
algorithms are muchmore efficient, with Restricted Ant+K-
Means being the fastest algorithm in completing its iterations

in most problems. This is evident in the lower values in the
Time (Sec) column.

Compared to ML-TS, the Free Ant algorithms achieved
better results for 20 out of 28 instances in Set A (Augerat,
1995), with an average Gap of -7.08% below the results
reported by G. W. H. H. P. Rathnakumara and T. D.
Rupasinghe. Restricted Ant yielded an average Gap of
12.21% above the results.

B. CHRISTOFIDES, MINGOZZI AND TOTH (1979)
Table 7 presents data corresponding to the ‘‘Christofides,
Mingozzi and Toth (1979)’’ dataset. In this case, the results
obtained in the experimentation phase are compared to
those presented by Kramer et al., and unlike Table 6, two
additional columns are added: ‘‘Avg. Energy (Kj)’’ and ‘‘Gap
Avg. Energy (%)’’. The first column shows the average
energy obtained in all runs for each instance, whereas the
second column shows a new Gap (33), which evaluates the
average differences between each ACO algorithm and that of
Kramer et al.

Gap Best Energy = 100 ·
SILS−SP−SOAbest − Sbest

Sbest
. (32)

Gap Avg. Energy = 100 ·
SILS−SP−SOAavg − Sbest

Sbest
. (33)
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TABLE 4. Results of Christofides, Mingozzi and Toth (1979).

Here, SILS−SP−SOAbest corresponds to the best solution pre-
sented by Kramer et al. for each instance, and SILS−SP−SOAavg
is the average of Kramer et al.’s solutions for each instance.

During the experimentation phase, we decided to test
the effectiveness of using clusters with the ant colony
optimization metaheuristic. As a result, we conducted tests
with Free Ant, both with and without the use of K-Means
or K-Medoids. We observed that when the algorithm was

assisted by clusters, it tended to converge towards a set of
very similar local optima. This behavior did not manifest
in the same way when using Free Ant without clustering;
in this case, the convergence occurred in a much more
staggered manner throughout the iterations. This discrepancy
is attributed to the bias introduced by the information of
cluster arcs in the pheromone matrix. The convergence graph
without the use of clustering can be seen in Fig. 2, while
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TABLE 5. Results of Golden et al. (1998).
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TABLE 5. (Continued.) Results of Golden et al. (1998).

FIGURE 2. Convergence chart of the free ant algorithm without the use of
a clustering algorithm in the CMT2 instance.

the convergence graph with the use of K-Means is depicted
in Fig. 3.

Now, according to Table 4, we can see that once again,
the Free Ant algorithms achieve better solutions in terms
of energy consumption than the Restricted Ant algorithms.
However, it is also evident that the Restricted Ant has
significantly shorter execution times than the Free Ant. This
suggests that allowing ants to explore the search space more
freely and using clustering techniques such as K-Means and
K-Medoids to guide pheromone formation produces superior
results. However, the idea that restricting ant exploration
helps reduce the time required to find solutions is also
confirmed. It is important to note that this restriction limits
the ability of the algorithm to find optimal solutions.

Table 7 indicate that the Free Ant algorithms achieved
better results in 1 out of the 14 instances of Christofides,
Mingozzi and Toth (1979), specifically CMT13 using Free
Ant + K-Means. However, an average Gap of 10.33% above
the results reported byKramer et al. was observed in the ‘‘Gap
Best Energy (%)’’ column for the Free Ant algorithms, and a

FIGURE 3. Convergence chart of the free ant algorithm with the use of
K-Means in the CMT2 instance.

Gap of 30.20% for the Restricted Ant in the same column.
In the ‘‘Gap Avg. Energy (%)’’ column, Free Ant had an
average gap of 12.90% above ILS-SP-SOA, and 29.88% for
Restricted Ant.

This time, there is an increase in the average Gap value for
both Free Ant and Restricted Ant. This increase in the average
Gap is approximately double that of the Set A (Augerat, 1995)
dataset.

C. GOLDEN ET AL. (1998)
Table 5 presents the results obtained in Golden et al. (1998).
In general, the Free Ant algorithms achieved the best results
in terms of the energy consumption. The K-Means and
K-Medoids algorithms showed similar results in terms of the
number of optimal solutions found. On this occasion, the
Restricted Ant algorithms proved to be much more efficient
and faster in completing the executions, suggesting that
for medium to large-sized problems, this type of restricted
algorithm is a better choice than Free Ant when the runtime
is crucial.
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TABLE 6. Comparison results of Set A (Augerat, 1995).

125816 VOLUME 11, 2023



N. Frías et al.: Hybrid Algorithms for EMVRP: Integrating Clusterization and ACO

TABLE 6. (Continued.) Comparison results of Set A (Augerat, 1995).

Furthermore, the results presented in Table 5 were
compared once again with those obtained by Kramer et al.
A comparison with the results of Kramer et al. is presented
in Table 8. The Free Ant algorithms achieved better
results in one out of the 20 instances of Golden et al.
(1998), specifically in Golden_17 using the Free Ant + K-
Means algorithm. On the other hand, an average Gap of

24.28% above the results reported by Kramer et al. was
observed for the Free Ant algorithms in the ‘‘Gap Best
Energy (%)’’ column, and a 32.87% Gap for the Restricted
Ant algorithms in the same column. Regarding the ‘‘Gap
Avg. Energy (%)’’ column, Free Ant had an average of
27.45% above ILS-SP-SOA, and a 35.00% difference for the
Restricted Ant.
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TABLE 7. Comparison results of Christofides, Mingozzi and Toth (1979).
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TABLE 8. Comparison results of Golden et al. (1998).
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TABLE 8. (Continued.) Comparison results of Golden et al. (1998).

Again, we observed an increase in the average Gap value
for both algorithms. However, it is important to note that the
increase in Restricted Ant is considerably smaller than the
increase experienced by Free Ant in relation to the previous
set of instances. This difference suggests that the Restricted
Ant can operate more efficiently with a smaller number
of iterations, while Free Ant requires a higher number of
iterations as the problem size increases.

Finally, we encountered a limitation regarding the scalabil-
ity of Free Ant in comparison to Restricted Ant. In the case
of the former, both the Gap and the total algorithm execution
time, begin to increase as we attempt to solve problems with
a greater number of inputs (i.e., a higher number of nodes).
These issues are not reflected in the same manner in the
Restricted Ant algorithms, which prove to be more efficient
with larger-scale instances.

Another limitation of the proposed algorithms (Free Ant
and Restricted Ant) is that, in order to operate efficiently,
a proper parameter configuration must be established. This
entails a preliminary experimentation process to determine
the configuration that yields the best results for a specific
instance.

VII. CONCLUSION
Combinatorial optimization is a complex and challenging
field in which significant advances have been achieved
through operations research, applied mathematics, and
computer science research. In this work, two hybrid ant
colony-based algorithms with clustering techniques, namely
Free Ant and Restricted Ant, were presented for solving the
Energy Minimizing Vehicle Routing Problem (EMVRP), a
‘‘green’’-oriented variant of the Vehicle Routing Problem
(VRP). These algorithms has applications in green logistics
and distribution operations.

The results obtained in an extensive experimentation
phase indicate that the algorithms proposed in this work
are capable of consistently generating high-quality solutions.
In particular, the results show that the Free Ant algorithm
outperformed its counterpart, Restricted Ant, in all scenarios,
while the latter demonstrated greater robustness and balance
in medium and large-scale instances, primarily due to its
superior runtime efficiency. This may be attributed to the
advantages of the clustering algorithms used, which allowed
Restricted Ant to find higher-quality routes in a much more
confined search space. It is important to note that the
performance of the algorithms should be tested on a larger
number of instances and iterations to draw more conclusive
conclusions.

While the results are promising, it is important to highlight
that there is still room for improvement and further research
is needed to achieve more efficient solutions. Green VRP
problems are still relatively unexplored, leaving an ample
scope for further investigations.

Nonetheless, both algorithms are innovative and utilize
techniques that have not been extensively explored together
in the resolution of combinatorial optimization problems. The
proposed algorithms are novel in how they use clustering
techniques to guide the search of the ACO metaheuris-
tic. One of the novelties is the combined use of two
clustering algorithms (K-Means with capacity-constrained
and K-Medoids with capacity-constrained) with the ant
colony system. Additionally, the Free Ant algorithm is
a completely new proposal to the best of the authors’
knowledge. Future work includes considering the reuse of
clustering algorithms in later stages after initialization, using
active re-clustering techniques to modify the ants’ search
space. It is believed that this new approach will help the
Restricted Ant algorithm improve its results, as it tends to

125820 VOLUME 11, 2023



N. Frías et al.: Hybrid Algorithms for EMVRP: Integrating Clusterization and ACO

converge to worse solutions than Free Ant due to the cluster
shapes.

Furthermore, it would be interesting to investigate the
combined use of these algorithms with other machine
learning techniques to improve the self-regulation of the
ACO system’s hyperparameters, which are highly variable-
dependent. Additionally, the implementation of a paralleliza-
tion system for deploying ants in the iterations of Free Ant
and Restricted Ant should be considered.

One of the main challenges researchers in this field
face is the lack of documented instances for benchmarking.
Currently, there are only a limited number of standardized
and widely used instance sets, such as those available in
CVRPLIB. However, these solutions do not always expose
the optimal solution for the EMVRP model, where the goal
is to minimize the total energy consumed. Therefore, more
research and collaboration are needed to develop additional
instances and optimal solutions for such problems.

In summary, the proposed algorithms were able to solve
EMVRP problems and achieved good results in the instances
from CVRPLIB where they were tested. However, although
the algorithms did not reach the best results in all instances,
this work lays the foundation for future research and improve-
ments in the use of these metaheuristic techniques. The
proposed algorithms are innovative in the efficient integration
of clustering techniques and the ACO metaheuristic.
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