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ABSTRACT The patterns of interaction between terrestrial vegetation and the atmosphere are complex, and
some are poorly understood. Linear or general linear methods have been widely used to explore the dynamics
of vegetation and climate changes. However, linear thinking may hinder our understanding of complex
nonlinear systems, and it is difficult to extract the underlying causality of linear correlations directly from
observational data. In this study, we aimed to quantify the interactions between vegetation and climate, using
nonlinear dynamical methods based on state-space reconstruction and datasets from Chinese meteorological
stations and remote sensing data during 1982-2015 in Northeast China (NEC). Specifically, we identified the
causal links betweenmeteorological factors (temperature and precipitation) and the vegetation index (NDVI)
by reconstructing the state space from historical records. During the study period, vegetation exhibited a
strong bidirectional causal relationship with both temperature and precipitation across Northeast China. The
NDVI can be accurately reconstructed from the state information of meteorological factors (temperature
and precipitation). The results of the multivariate EDM scenarios reveal varying sensitivities of different
vegetation types to meteorological factors. Overall, slight temperature changes have a stronger impact on
vegetation compared to precipitation. Mixed forest and broad-leaved forest demonstrate lower sensitivity
to precipitation changes compared to other vegetation types. This study on the causal relationship between
vegetation and meteorological factors in Northeast China contributes to a deeper understanding of climate
change and vegetation feedback in middle and high latitudes. Our work demonstrates that the EDM-based
convergent cross-mapping nonlinear causal analysis method is valuable for comprehending the interactions
within complex systems in earth science.

INDEX TERMS Vegetation dynamic, climate change, causal links, convergent cross mapping, empirical
dynamic model.

I. INTRODUCTION
Vegetation is an essential component of terrestrial ecosys-
tems, providing important ecological services and impacting
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climate feedback [1]. Numerous interconnected biogeochem-
ical processes and land use factors, including biochemical
elements that cause regional climate change, are accountable
for long-term vegetation alterations, such as temperature, pre-
cipitation, and radiation [2]. Vegetation growth responds to
alterations in the amount of heat and water that plants receive
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as a result of climate change. Conversely, vegetation changes
impact climate by modifying the source of surface energy
exchanges, increasing friction with near-surface winds, and
altering evapotranspiration [3]. Regional vegetation histor-
ical records are often considered as evidence of climate
change, and the impact of climate change on vegetation
can be analyzed from both spatial and temporal perspec-
tives [4]. As rapid global climate change continues, there
is increasing interest among researchers in investigating the
complex interplay between vegetation and these changes [5],
[6], [7], [8]. Nevertheless, the vegetation-atmosphere system
is characterized by a range of intricate and dynamic pro-
cesses, including time-lags between growth and climate [9],
interactions between abiotic (environmental) and biotic fac-
tors affecting vegetation growth [10], and variations in links
between vegetation growth and climate change according
to geographical location [11], among others. As such, there
remains significant uncertainty when it comes to quantifying
cause-effect interactions underlying this complex relation-
ship.

Recent advancements in satellite remote sensing have
made it possible to illustrate vegetation dynamics over exten-
sive time periods at regional and global scales [12], [13], [14].
Tomonitor changes in terrestrial ecosystems, the widely-used
Normalized Difference Vegetation Index (NDVI) has been
applied as a conventional remote-sensing product [15], [16],
[17], [18]. GIMMS NDVI, which has the highest temporal
consistency among long-term AVHRR datasets, has been
identified as the most practical choice for NDVI trend analy-
sis [19]. It is an effective indicator of vegetation growth status,
and is highly correlated with ground biomass at different
spatial and temporal scales [20].
Studies on vegetation-atmosphere interactions often

depend on either simulation experiments or correlational
methods [21]. Simulation experiments require knowledge
of the underlying physical equations and can be computa-
tionally expensive. Furthermore, they may not completely
represent reality, which can limit the conclusions drawn
from such studies [22]. Additionally, traditional methods
for assessing association focus on prediction and estima-
tion, disregarding the causal mechanisms that can result in
ambiguous interpretations and spurious connections between
variables. A newfield of statistics focused on causal inference
offers a suitablemathematical framework for establishing and
identifying the connection between causes and effects [23].
Granger causality [24] was initially proposed in economics
and has since been broadly applied in studying Earth system
science. These applications include measuring the effects
of El Niño climate temperature changes on global pre-
cipitation [25], analyzing the relationship between North
Pacific sea ice and Western Pacific (WP) patterns [26], and
assessing how vegetation and snow cover impact surface
temperature [27], among others. Nevertheless, the Granger
technique can encounter challenges when attempting to apply
it to systems with non-stationary or nonlinear processes and
deterministic linkages, particularly in dynamic systems with

slight to moderate coupling. This is because the technique
requires that the information contained in the causal vari-
able be independently isolated from the larger system [28].
Convergent cross-mapping (CCM) is a nonlinear state space
reconstruction-based approach for inferring causality that
addresses the limitations of the Granger technique [29].
CCM can manage complex causal relationships among mul-
tiple variables in non-linear ecosystems. Because of its high
precision in detecting causal correlations between variables
and its ability to detect even weak causal relationships in non-
linear systems, CCM is extensively used in fields such as
ecology, chemistry, medicine, and climate change [30], [31],
[32], [33].

The region of Northeast China (NEC), situated in east-
ern Eurasia, is a representative area for studying terrestrial
ecosystems and climate change within the International Geo-
sphere Biosphere Program (IGBP) [34]. It spans a significant
east-west bioclimatic gradient, characterized by a predomi-
nantly temperate continental climate [35]. Based on pollen
records, it can be seen that the vegetation pattern in NEC
has undergone multiple changes since the Last Glacial Max-
imum, owing to global climate change [36]. The distribution
and variation of forest net primary productivity in North-
east China are related to different forest types [37], while
the growth of Larix gmelinii forest is mainly regulated by
temperature and precipitation [38]. Consequently, NEC is a
crucial region for investigating the effects of climate change
on vegetation [39], [40].

This study specifically concentrated on the NEC region,
using GIMMS NDVI3g time series data from 1982 to 2015.
Our investigation focused on identifying vegetation growth
trends and examining dynamic evidence of vegetation-climate
coupling feedback. Moreover, we employed a multivariate
scenario exploration approach to further examine the sensi-
tivity of vegetation growth to climate change.

II. MATERIALS AND METHODS
A. STUDY AREA
Northeast China (NEC), which includes Heilongjiang, Jilin,
Liaoning provinces, and the eastern part of Inner Mongolia,
extends from 38◦N to 56◦N in latitude and 115◦E to 135◦E in
longitude.With a surface area of 1.47million km2, this region
exhibits significant natural diversity, including variations in
soil composition, vegetation types, climate, and geology.
The elevation of the region ranges from 0 to 2667 meters
above sea level (Figure 1a). The region’s topography consists
mainly of plains and mountains, including the Songnen Plain,
Liaohe Plain, and Sanjiang Plain in the middle, which are
surrounded by the Greater Khingan Mountains, Lesser Khin-
gan Mountains, and Changbai Mountains. The local climate
of Northeast China is mainly characterized as a temperate,
humid, semi-humid continental monsoon climate, with hot
and rainy summers and cold and dry winters [41]. Deciduous
broad-leaved forests (25.8%) and grasslands (24.6%) are the
dominant vegetation types in Northeast China, while culti-
vated vegetation (croplands) account for 26.4% (Figure 1b).
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FIGURE 1. (a) Geographic location of study area; (b) vegetation map of
the Northeast China.

B. DATA SOURCES
The third generation Global Inventory Monitoring and Mod-
elling System (GIMMS NDVI3g V1.0, http://ecocast.arc.
nasa.gov) provided the NDVI dataset used in this study.
It had a spatial resolution of 1/12◦ (roughly 8 km) and
a 15-day interval for the years 1982 to 2015. GIMMS
NDVI 3g data was produced from multiple Advanced Very
High-Resolution Radiometer (AVHRR) satellites, which suc-
cessfully improved accuracy by removing the impacts of
atmospheric water vapor, volcanic eruptions, solar altitude
angle and sensor sensitivity. GIMMS data set has the best
accuracy in temporal changes and is suitable for long-term
studies of land surface vegetation changes and coupled
climate-vegetation trends [42]. Temperature and precipita-
tion data were acquired from the daily value dataset of
Chinese terrestrial climate information provided by the
National Meteorological Information Center of the China
Meteorological Administration. These climatic data were
interpolated and rasterized using ANUSPLINE software with
a spatial resolution of 8 km [43]. Monthly average data of
NDVI, air temperature, and precipitation were calculated
in this study, which have the same spatial and temporal
resolution and projection system. The vegetation types in the
Northeast Chinawere obtained from the digitized 1:1,000,000
vegetation map of the People’s Republic of China acquired

from the Data Center for Resources and Environmental Sci-
ences, Chinese Academy of Sciences (RESDC) (http://www.
resdc.cn). In this study, the categories of ‘‘wetlands’’,
‘‘Alpine’’, and ‘‘no veg’’ were excluded because they con-
tained too few grids. A total of eight vegetation types
remained, including needleleaf forest (NDF), broadleaf
forest (BDF), mixed forest (MIX), shrublands (SHL),
grasslands (GRS), tussock (TUS), meadows (MEA), and
croplands (CRP).

C. TREND ANALYSIS
The Theil-Sen Median method [44], [45] and Mann-Kendall
(MK) test [46] were employed to investigate the trends
in NDVI and climate in Northeast China. This is a non-
parametric test. The requirement of a normal distribution,
often employed in trend analysis of long time series data,
is not necessary for this method [47], [48], [49]. The formula
for calculating the Sen slope for each pixel is described as
follows:

Slope = median
(
xj − xi
j− i

)
, ∀j > i, (1)

where j and i indicates the ordinal number of the month,
xj, xi are data at different times, Slope is used to describe
the change trend of time series data. The positive or neg-
ative Slope value indicates whether the NDVI increased or
decreased during the study period.

The formula to calculate the Mann-Kend (MK) test statis-
tic S is as follows:

S =

∑n−1

i=1

∑n

j=i+1
sgn

(
xj − xi

)
, (2)

sgn
(
xj − xi

)
=


+1, xj − xi > 0,
0, xj − xi = 0,
−1, xj − xi < 0,

(3)

where xj, xi are the i, j data value of the time series, respec-
tively; n is the number of data samples; sgn is a step function
calculated by formula (3). The trend test is performed by the
test statistic Z, which is calculated as follows:

Z =


S − 1

√
Var (S)

, S > 0,

0, S = 0,
S − 1

√
Var (S)

, S < 0,

(4)

where, Var(S) represents the variance of statistic S, which can
be calculated as:

Var (S) = (n (n− 1) (2n+ 5)

−

∑m

i=1
ti (ti − 1) (2ti + 5))/18 (5)

where n is the number of data in the sequence; m is the
number of duplicate data sets in the sequence, and t is the
number of duplicate data in the i th duplicate data group.
Under the condition of 95% confidence level test, the absolute
value of Z takes 1.96 as the threshold, and the combination
with Sen slope is shown in Table 1.

VOLUME 11, 2023 115369



J. Wu et al.: Assessing the Causal Effects of Climate Change on Vegetation Dynamics

TABLE 1. The classification of vegetation change trend.

D. CAUSAL ANALYSIS FOR VEGETATION AND
METEOROLOGICAL FACTORS
We employed causal inference techniques based on empirical
dynamic models (EDM) to examine the causal relationships
between vegetation and meteorological factors.

Our methodology involved the following steps: (1) Non-
linearity test using the s-map technique to confirm the
nonlinearity of the vegetation-meteorological system; (2) Uti-
lization of the Convergent cross-mapping (CCM) method
to establish the causal relationship between vegetation and
meteorological factors; (3) The Seasonal Surrogate Test
(SST) was performed to assess the presence of a seasonal
synchronization effect among variables; (4) Application of
Multivariate EDM for enhancing forecasts and exploring sce-
narios in order to comprehensively examine the impact of
meteorological factors on vegetation.

In the subsequent section, we will present a comprehensive
description of each step.

1) NONLINEAR TEST
We employed a straightforward non-linear dynamics test
called S-maps to confirm that the relationship between vege-
tation and meteorological factors constitutes a non-linear sys-
tem rather than a purely stochastic one. S-maps, alternatively
referred to as Sequential Locally Weighted Global Linear
Maps, characterize the non-linearity of a time series based on
the disparity in predictive performance between a non-linear
and a linear model [50]. In the S-maps model, the parameter θ
represents a non-linear tuning factor, and the model exhibits
non-linearity when θ > 0. However, the model reduces to a
global linear mapping when θ = 0. Non-linear dynamics are
confirmed by quantifying the enhancement in predictive per-
formance (1ρ) achieved with various non-linear parameters
(θ > 0), as compared to the linear model (θ = 0).

2) CONVERGENT CROSS MAPPING (CCM)
Convergent cross-mapping (CCM) is a novel technique based
on the theory of embedding that allows for the detection of
nonlinear causality between time series data [29]. CCM is a
nearest-neighbor forecasting approach that aims to determine
whether the dynamic trajectories two variables exhibit consis-
tent behavior, indicating some level of cross-predictive skill.
This consistency is observed when the system revisits similar
states or patterns over time, known as dynamic recurrence.
In CCM, the system states are typically unknown, but they

can be approximated using trajectory segments found in a
trajectory matrix MY . This trajectory matrix is constructed
based on Takens’ embedding theorem [29], which allows for
the reconstruction of the underlying dynamics of a system
from a single time series.:

MY = {Yt ,Yt−1, . . . ,Yt−(m−1)}, (6)

where m is the embedding dimension. In this scenario, when
there are unit lags between the time series, the value of m
corresponds to the length of the segments. It can be optimized
by evaluating the self-forecasting performance when predict-
ing points in Yt based on their nearest neighbors in MY .
CCM conducts causal analysis and investigates whether Xt
is a cause of Yt by forecasting the points in Xt using other
values from Xt . The time indices of these values are deter-
mined based on Yt which serves as a reference for identifying
similar states in MY . Predictive skills are typically assessed
by calculating the average Pearson correlation coefficient (ρ)
between time series and their corresponding forecasts.

This study initially employed CCM to analyze the interac-
tion between NDVI and climate factors on a regional scale,
aiming to investigate the relationship between vegetation and
climate factors in Northeast China as a whole. Subsequently,
CCM analysis was performed based on varying vegeta-
tion coverage to examine how different types of vegetation
respond to climate change. Lastly, for each pixel, CCM skills
were computed in various directionalities between NDVI
and temperature, NDVI and precipitation, and temperature
and precipitation. CCM can detect both bidirectional causal-
ity between variables and unidirectional causality, where X
affects Y but Y does not affect X. CCM can detect both
bidirectional causality between variables and unidirectional
causality, where X affects Y but Y does not affect X. Thus,
we compared the differences in CCM skill (ρxy and ρyx)
for different directionalities of each variable pair (X and Y)
to examine the variables that have a dominant influence on
the interaction. CCM calculations were performed using the
‘‘rEDM’’ package in the R environment (version 1.13.1).

3) SEASONAL SURROGATE TEST (SST)
Even in the absence of an actual causal link [32], a strong
correlation in the seasonal cycles of NDVI and meteoro-
logical factors can result in high CCM skill values. This
phenomenon is referred to as the seasonal synchronization
effect [51]. To eliminate any spurious causality resulting from
the seasonal synchronization effects, we employed a null
test using surrogate time series. The fundamental concept
behind the surrogate seasonal test is to generate time series
that exhibit the same level of shared seasonality as the mete-
orological factors. By performing cross mapping between
the NDVI time series and these surrogates of meteorological
factors, we obtain a null distribution for the CCM skill (ρ).
If the CCM skill (ρ) value between NDVI and the actual
meteorological factor series is significantly greater than that
between NDVI and the surrogate series, it suggests a genuine
causal relationship between NDVI and the meteorological
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FIGURE 2. Concept diagram of the causal relationship between
meteorological and vegetation dynamics (The direction and solidity of the
arrows are for illustration only and may not indicate the real relationship).

factor. Finally, a nonparametric one-sample Wilcoxon test
was conducted to determine if the relationship between the
actual meteorological factor series and NDVI was stronger
and statistically significant (p < 0.05) compared to the surro-
gate series.

4) MULTIVIEW EDM
To investigate the causal effect of climate change on vege-
tation, we employed the multivariate EDM to compare the
improvements in multivariate forecasting. This allowed us to
assess whether temperature and precipitation had a signifi-
cant driving effect on NDVI. In essence, Y is considered to
have a causal effect on X if incorporating the driving variable
Y as a coordinate in the state space results in significantly
improved nearest-neighbor predictions for X. In a coupled
vegetation-atmosphere system, the variables are not entirely
stochastic, implying that some information about the drivers
is inherently present in the univariate embedding. Following
previous studies [51], we employed a suboptimal embedding
dimension E for the multivariate EDM, resulting in a model
that does not capture the complete information regarding the
system’s state and dynamics. The causal interaction between
vegetation and meteorological factors is assessed by calculat-
ing the difference in predictions, denoted as

1ρ = ρ(with driver) − ρ(without driver) (7)

Here, ρ represents the Pearson’s correlation between
observations and EDM predictions. Besides investigating
causality, scenario exploration using multivariate EDMoffers
an empirical approach to assess the impact of small changes
(1Z) in meteorological drivers on NDVI. During the scenario
exploration step, a multivariate EDM model is constructed
to predict NDVI at time t. A meteorological factor with a
hypothetical small increase (+1Z/2) and decrease (−1Z/2)
is utilized for this purpose. The difference in predicted NDVI
(1NDVI), is calculated as:

1NDVI=NDVI+ (Z (t)+1Z/2)−NDVI−(Z (t)−1Z/2

(8)

The ratio1NDVI/1Z quantifies the sensitivity of vegetation
to meteorological factors at time t. In this study, we assigned
1Z values of 0.73◦C and 18.94 mm to represent temperature
and precipitation, respectively. These values approximately
account for 5% of the standard deviation of these variables.
During scenario exploration, the embedding dimension Ewas
set to 6.

III. RESULT
A. LONG-TERM CHANGES IN NDVI
Between 1982 and 2015, the vegetation in Northeast China
experienced more improvement than degradation at the pixel
level (Figure 3a). The Normalized Difference Vegetation
Index (NDVI) exhibited an upward trend in 89.6% of the
study area, with nearly all pixels (99.6%) showing a sig-
nificant increase. Only a small number of pixels (3.6%)
displayed significant degradation, primarily located sporadi-
cally in the northwestern Greater KhinganMountains, eastern

FIGURE 3. (a) Spatial distribution of NDVI changing trend types, (b) the
percentage (%) of different types among vegetation types.
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Lesser Khingan Mountains, and eastern Changbai Moun-
tains. Forests and meadows were the main vegetation types
affected by degradation. At the ecosystem scale (Figure 3b),
the majority of forests remained unchanged or degraded in
terms of NDVI from 1982 to 2015, with a higher proportion
of degraded pixels observed in NDF andMIX (12% and 11%,
respectively). Apart from forests, MEA also experienced 4%
pixel degradation. The remaining vegetation types exhibited
a significant increasing trend.

B. CASUAL LINKS BETWEEN VEGETATION AND
METEOROLOGICAL FACTORS
1) NONLINEAR TEST
We examined the non-linearity of vegetation indices and
meteorological factors in the Northeast using the S-maps
method. The non-linear coordination parameters θ were set
to 0.1, 0.3, 0.5, 0.75, and 1.0, while 1ρ represented the dif-
ference in correlation between the actual and predicted values
obtained from the linear and equivalent non-linear models.
The results of the non-linearity test (Figure 4) indicate that
NDVI, air temperature, and precipitation exhibit non-linear
dynamics. Inmost parts of the northeast, the non-linear model
outperformed the linear model (1ρ > 0) in terms of predic-
tive performance. Moreover, for both meteorological factors
(Tavg and Prec), 1ρ increased with higher θ values, suggest-
ing a pronounced non-linearity in these variables. Hence, the
coupled system of vegetation and meteorological factors can
be regarded as a non-linear dynamical system. Convergent
cross-mapping methods can be employed to further inves-
tigate evidence of non-linear dynamical causality between
them.

FIGURE 4. Nonlinear test results of NDVI, temperature and
precipitation (1ρ).

2) REGIONAL CAUSAL RELATIONSHIP BETWEEN
VEGETATION AND METEOROLOGICAL FACTORS
We conducted convergent cross-mapping analysis between
NDVI and meteorological factors in Northeast China, and
compared the results with simple correlation coefficients. The
findings provide evidence of convergence between NDVI
and temperature as well as precipitation variables. The

FIGURE 5. The overall cross-map prediction skill between NDVI and
meteorological factors. (a)NDVI and Temperature; (b)NDVI and
Precipitation.

cross-mapping skills (CCM) exhibited rapid improvement
with longer time series lengths, surpassing the performance
of correlation coefficients (Figure 5). The cross-mapping
skills between NDVI and temperature converge at values
of 0.993 and 0.995, respectively. This convergence indi-
cates a strong interaction between NDVI and temperature,
as their time series exhibit high similarity. In terms of the
cross-mapping skill between NDVI and precipitation, the
value of precipitation-mapped NDVI converges to 0.989,
which is higher than the value of NDVI-mapped precipitation
at 0.951. This suggests that the influence of vegetation on
precipitation may be more significant than the driving effect
of precipitation on vegetation in Northeast China. Notably,
the cross-mapping skills between NDVI and climate fac-
tors surpass the correlation coefficients. Consistent with the
results of previous studies [52], temperature is the main lim-
iting factor for vegetation growth in Northeast China. This
could be attributed to the abundant underlying surface of
forests in Northeast China, which exhibits a certain water
storage capacity, reducing the impact of forests on precip-
itation changes. Additionally, the CCM method provides a
more comprehensive assessment of causal relationships by
estimating the strength of causality in both directions. Thus,
it can determine the direction of causal effects.

Seasonal synoptic effects can lead to spurious causal-
ity between NDVI and meteorological factors. To address
this issue, we generated 1000 seasonal surrogate series for
each meteorological factor and performed a significance
test between NDVI and the meteorological factors. The
test results are shown in Figure 6, where the dashed line
represents the CCM skill between NDVI and the actual mete-
orological factors, and the box plot illustrates the CCM skill
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FIGURE 6. Seasonal surrogate test between NDVI and meteorological
factors.

between NDVI and the 1000 surrogate series of seasonal
meteorological factors. The temperature results demonstrate
that the CCM skill of the actual time series is significantly
higher than that of the surrogate time series, indicating the
absence of a pseudo-causal relationship between NDVI and
Tavg. However, it is important to note that the cross-mapping
results of NDVI and precipitation may be influenced by
shared seasonality, as evidenced by the nonsignificant differ-
ence between the CCM skills of the actual time series and the
surrogate time series.

3) CAUSAL LINKS BETWEEN VEGETATION AND
METEOROLOGICAL FACTORS IN DIFFERENT
VEGETATION COVER
Additionally, we investigated the causal relationships
between vegetation and meteorological factors in various
vegetation cover areas using convergent cross-mapping. The
CCM skill value was recorded at convergence for each veg-
etation type (Figure 7). Similar to the overall CCM results,
the CCM skills between different types of vegetation and air
temperature were found to be very high. The mapping skills
in different directions revealed that NDF, BDF, and SCR
types exhibited negative differences, indicating that they are
less influenced by temperature compared to their response
to temperature. Conversely, MEA, CRL, and STE types
showed positive differences, suggesting a stronger response
to temperature. Moreover, among all vegetation types, the
CCM skill of NDVI cross-mapping with precipitation was
smaller than that of precipitation cross-mapping with NDVI.
This implies that the impact of vegetation on precipitation
is greater than the response of vegetation to precipitation
changes. The results of previous studies have confirmed
that temperate forests in Northeast China have the ability
to regulate the regional water cycle [53]. This is achieved
through high evapotranspiration, where forests transfer a
significant amount of water to the atmosphere. As a result,

FIGURE 7. Seasonal surrogate test between NDVI and meteorological
factors.

this process contributes to an increase in rainfall within the
ecosystem.

In addition, Figure 8 shows the time delay corresponding
to the maximum cross-mapping skill under different time
delays, which partially reflects the time lag effect of the
interaction between vegetation and climate factors. Negative
time lags were predominant in NDVI cross-mapping with
air temperature, indicating a temporal lag in the effect of
air temperature on NDVI. In contrast, the best lag values in
NDVI to precipitation were both positive and negative, with
positive values observed in CRP, BDF, and GRS. However,
this does not imply a positive time delay in the causal effect of
precipitation on these three vegetation types; instead, it may
indicate stronger interactions between precipitation and veg-
etation leading to this outcome.

4) DISTRIBUTION OF CAUSAL LINKS BETWEEN VEGETATION
AND METEOROLOGICAL FACTORS
The cross-mapping skill was utilized as an indicator of causal-
ity between NDVI andmeteorological factors at the grid scale
(Figure 9). A significance test was conducted to determine
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FIGURE 8. The best time lags in different vegetation covers. (a) NDVI and
average temperature (Tavg); (b)NDVI and Precipitation (Prec).

the convergence of each grid’s CCM skill, with areas lack-
ing vegetation cover excluded. The results demonstrate that
meteorological factors (precipitation and average tempera-
ture) had a significant driving influence on vegetation across
most of Northeast China. Generally, the strength of the tem-
perature’s driving effect on vegetation gradually increased
from north to south, except for the coniferous forest area in
the northern section of the Greater Khingan Mountains
and the northern section of the Lesser Khingan Mountains,
where the effect was comparatively lower. Conversely, the
impact of vegetation on temperature was weaker in the south-
western part of the Songnen Plain and the Liaohe Plain, but
higher in the rest of the region. Notably, the convergence of
NDVI mapping to temperature was statistically significant
in 91.1% of the grids, while the convergence of temperature
mapping to NDVI passed the significance test in 75.6% of
the grids. The discrepancy in NDVI and temperature CCM
skills indicates that 81.9% of the regional differences are
positive, suggesting that the driving effect of temperature
on vegetation surpasses the counter effect of vegetation on
temperature in most areas. The cross-mapping skills between
NDVI and precipitation exhibited spatial similarity, with low

FIGURE 9. Convergence cross-mapping skills of NDVI and meteorological
factors on grid scale. (a) NDVI xmap Tavg; (b) Tavg xmap NDVI; (c) differ-
ence between CCM skills of NDVI and Tavg cross mapping; (d) NDVI xmap
Prec; (e) Prec xmap NDVI; (f) difference between CCM skills of NDVI and
Prec cross mapping.

skills observed in the western part of the Sanjiang Plain,
the northern part of the Changbai Mountains, and the north-
ernmost part of the Greater Khingan Mountains. For most
of these grids, the NDVI xmap Prec and Prec xmap NDVI
skills significantly converged (95.9% and 77.2%, respec-
tively). The disparity in mapping skills indicates that nearly
all of them are negative (98.5% of total grids), implying that
the vegetation’s response to precipitation is smaller than its
driving effect.

We utilized improvements in multivariate EDM predic-
tion skills to investigate the causal effects of climate change
on vegetation dynamics (Figure 10). The results provide
evidence that both monthly average temperature and pre-
cipitation act as drivers of NDVI, as the inclusion of either
variable enhances forecast skill in most study areas. However,
in specific regions such as theHulunbeier plateau, thewestern
part of the Liaohe Plain, the center of the Songnen Plain,
and parts of the Greater Khingan Mountains and Changbai
Mountains (approximately 33.27% of the total grids), incor-
porating precipitation as an embedded coordinate does not
lead to a significant improvement in the forecast. The latitu-
dinal distribution reveals the strength of each meteorological
factor’s impact on NDVI and its variation with latitude. The
influence of temperature on NDVI varies depending on lat-
itude, with a region of lower predicted skill improvement
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FIGURE 10. Multiview EDM forecast improvement, the two marginal
graphics show the column (x) and row (y) averages of the predicted skill
improvement, respectively. (a) Temperature leads to improved forecasting
skills and (b) precipitation leads to improved forecasting skills.

occurring between 45◦N and 50◦N, resulting in an overall
skill improvement range of 0.05 to 0.15. The effect of precip-
itation on NDVI is generally weak, with mean values ranging
from 0.03 to 0.04.

5) SENSITIVITY OF VEGETATION TO METEOROLOGICAL
FACTORS
To investigate the interaction mechanism between vegetation
and meteorological factors, we predict the changes in NDVI
(1NDVI) resulting from slight variations in temperature and
precipitation at historical locations. Based on the scenario

FIGURE 11. Effect of temperature on vegetation (1NDVI/1Tavg) as a
function of air temperature. Each point represents the estimated effect of
a scenario exploration of a historical point of a vegetation type.

exploration results of various vegetation types influenced
by meteorological factors (multivariate EDM), the follow-
ing findings have been obtained: Firstly, small changes in
temperature and precipitation have a positive average influ-
ence on vegetation across different vegetation types. The
blue and red lines represent the regression results of the
0.9 and 0.1 quantiles, respectively, indicating that tempera-
ture and precipitation changes mostly have positive effects on
vegetation. Secondly, vegetation exhibited varying responses
to temperature and precipitation changes under different
hydrothermal conditions. In higher temperature conditions,
small temperature changes have a stronger influence on the
vegetation dynamics of all vegetation types. In the presence of
heavy precipitation, broadleaf forest andmixed forest demon-
strated higher sensitivity to precipitation changes, whereas
other vegetation types exhibited greater sensitivity to precip-
itation changes under weak precipitation conditions. Finally,
across all vegetation types, vegetation is more strongly

VOLUME 11, 2023 115375



J. Wu et al.: Assessing the Causal Effects of Climate Change on Vegetation Dynamics

FIGURE 12. Effect of temperature on vegetation (1NDVI/1Prec) as a
function of air temperature. Each point represents the estimated effect of
a scenario exploration of a historical point of a vegetation type.

influenced by small changes in temperature than by small
changes in precipitation, which aligns with the findings of
Convergent Cross Mapping (CCM) discussed in the previous
conclusion.

IV. DISCUSSION
A. CASUAL LINKS BETWEEN VEGETATION AND
METEOROLOGICAL FACTORS
This study observed a trend of vegetation greening (increas-
ing NDVI over time) in Northeast China from 1982 to 2015,
consistent with previous studies [2], [54], [55]. Our results
indicate a bidirectional causal relationship between temper-
ature, precipitation, and vegetation growth. One possible
explanation is that green vegetation can modify the local
climate by influencing variables such as surface energy
budget, distribution of sensible heat/latent heat flux, and
surface roughness [56]. Increased precipitation can enhance
vegetation growth, while vibrant vegetation, in turn, can
lead to enhanced evapotranspiration, potentially influencing

the occurrence of precipitation [57]. Vegetation’s greenness
enhances the evapotranspiration potential, thereby altering
temperature throughmodifications in surface energy. The key
factors influencing vegetation growth are ‘‘heat and water’’
conditions, with temperature exerting a more significant
impact on vegetation dynamics in NEC than precipitation.
The results of CCM and scenario exploration indicate that
temperature has a stronger impact on vegetation dynamics
than precipitation in NEC. This finding aligns with the results
obtained byMao et al. [58] through site data analysis andmay
be influenced by the high latitude and climate characteristics
of Northeast China. Vegetation growth is limited at high
latitudes due to generally cold temperatures. Additionally,
elevated temperatures during the growing season stimulate
photosynthesis activities and enhance photosynthetic effi-
ciency, thereby promoting vegetation growth [59].
Furthermore, scenario exploration usingmultivariate EDM

reveals varying sensitivities of different vegetation types to
temperature and precipitation across diverse hydrothermal
conditions. Due to its high latitude and cold climate, tem-
perature serves as the primary limiting factor for vegetation
growth in Northeast China. Temperature change predomi-
nantly have positive affect on vegetation, with the magnitude
of this influence increasing as temperatures transition from
negative to positive. However, elevated temperatures can
potentially harm plant tissues, decrease photosynthetic rates,
and impede plant growth [60]. Plants can undergo physi-
ological adaptations, including alterations in leaf anatomy,
stomatal conductance, and photosynthetic rates, in response
to high temperatures. Nonetheless, these adjustments may
not fully offset the adverse impacts of elevated tempera-
tures [61]. Consequently, under high temperature conditions,
the impact of temperature change on vegetation dimin-
ishes. The influence of precipitation on vegetation varies
across different vegetation types. Broadleaf forests andmixed
forests generally exhibit lower sensitivity to precipitation
changes compared to other vegetation types. This may be
attributed to their deep roots and ample reserves of carbo-
hydrates and nutrients, which reduce their vulnerability to
water limitations during severe or prolonged droughts in
forest ecosystems [62]. Conversely, due to their shallow root
systems, grasslands heavily rely on water resources from
the upper soil layers. Improved water availability alleviates
water stress and promotes vegetation growth in grassland
ecosystems [63].

B. ADVANTAGES OF EDM FOR CAUSAL ANALYSIS IN
COMPLEX ECOSYSTEMS
Previous studies investigating the relationship between vege-
tation dynamics and meteorological factors primarily relied
on correlation analysis methods. However, natural systems
are often complex and dynamic, exhibiting non-linear behav-
ior that cannot be effectively captured by linear statistical
methods. Linear approaches, which are correlation-based,
may not be suitable for understanding the intricate dynamics
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of systems where causation can exist without correlation and
vice versa. To address this limitation, this study employed
empirical dynamic modeling (EDM) to explore the causal
relationship between vegetation and meteorological factors.
The results of the CCManalysis demonstrate that temperature
and precipitation have a significant influence on vegetation
changes, which is consistent with previous studies [65], [66].
Likewise, vegetation dynamics also affect meteorological
factors such as precipitation and temperature, suggesting
a bidirectional causal relationship between vegetation and
meteorological factors. This result is consistent with previous
studies on the sensitivity of vegetation greening observed in
China [67], providing further evidence for the effectiveness
of EDM in exploring causal relationships within atmospheric
ecological systems.

C. LIMITATION
The extended duration of this study (1982-2015), during
which human activities have influenced vegetation changes,
may pose a potential confounding factor when inferring
causality. Nevertheless, in the majority of areas, the exis-
tence of nature reserves and native forests eliminated these
confounding factors, thereby reflecting the natural vegeta-
tion processes that have occurred during the past 34 years.
Concurrently, approaches based on the empirical dynamic
model (EDM) investigate causal relationships within systems
using time series data. However, when applied to raster scales,
the interactions among target variables in different domains
introduce uncertainty in causal inference. Future studies may
consider examining interactions between adjacent domains to
enhance the accuracy of causal inference and further inves-
tigate the causal effects of human activities on vegetation
dynamics.

V. CONCLUSION
Using the Sen-slope and Mann-Kendall methods, we ana-
lyzed the trends in NDVI in Northeast China. Throughout the
study period, there was a significant increase in NDVI across
most areas of Northeast China, except for minor degradation
observed in coniferous, broadleaf, and mixed forest cover.
Subsequently, we employed a convergent cross-mapping
method to infer causal relationships between NDVI and
monthly meteorological data from 1982 to 2015. Generally,
vegetation dynamics exhibit bidirectional causality with tem-
perature and precipitation; however, the causality between
precipitation and vegetation is influenced by the same sea-
sonal cycle to a lesser extent. Our findings indicate that
the strength of the causal relationships between vegetation
growth and meteorological factors varies among different
vegetation covers. Coniferous forest, broadleaf forest, and
shrubland exhibited negative differences in cross-mapping
with temperature, suggesting that their response to tempera-
ture changes was weaker than the driving effect. Additionally,
the causal effect of temperature on vegetation typically
exhibits time lags. Moreover, we examined the spatial
distribution of the causal effects between vegetation and

meteorological variables. The results indicate a bidirec-
tional causal relationship between meteorological factors
(temperature and precipitation) and vegetation in the major-
ity of Northeast China. Furthermore, the causal effect of
temperature on NDVI showed a stronger impact than precipi-
tation. Findings from scenario exploration unveiled a intricate
interaction among meteorological factors (temperature and
precipitation) and vegetation. The impact of an individual
meteorological factor on vegetation was affected by another
factor. This innovative and effective method of nonlinear
dynamics offers a novel perspective on the intricate causality
that exists between ecological and climatic systems. The
approach based on the dynamic empirical model (EDM) can
accurately identify and distinguish the causal relationships
between vegetation and meteorological factors.
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