IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 6 September 2023, accepted 29 September 2023, date of publication 18 October 2023,
date of current version 25 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3325616

==l mETHODS

Formal Verification of Fault-Tolerant Hardware
Designs

LUIS ENTRENA", (Member, IEEE), ANTONIO J. SANCHEZ-CLEMENTE “2,

LUIS A. GARCIA-ASTUDILLO !, MARTA PORTELA-GARCIA',

MARIO GARCIA-VALDERAS “1, (Member, IEEE),

ALMUDENA LINDOSO"!, (Senior Member, IEEE), AND ROBERTO SARMIENTO 2

! Universidad Carlos I1I de Madrid, Leganés, 28911 Madrid, Spain
2Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tarifa, 35017 Las Palmas de Gran Canaria, Spain

Corresponding author: Luis Entrena (entrena@ing.uc3m.es)
This work was supported in part by the European Space Agency (ESA) with ARQUIMEA Ingenieria S.L.U under Contract
4000123942/18/NL/GLC, in part by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with

UC3M in the line of Excellence of University Professors (EPUC3M26), and in part by the Context of the V Regional Programme of
Research and Technological Innovation (PRICIT).

ABSTRACT Digital circuits for space applications can suffer from operation failures due to radiation
effects. Error detection and mitigation techniques are widely accepted solutions to improve dependability
of digital circuits under Single Event Upsets (SEUs) and Single Event Transients (SETs). These solutions
imply design modifications that must be validated. This paper presents a formal verification method to
prove that the applied fault tolerance techniques do actually prevent fault propagation as well as that the
fault-tolerant circuit is functionally equivalent to the original version. The method has been implemented
in an in-house software tool, VeriHard. It has been successfully applied to verify a wide variety of fault
tolerance techniques, such as Triple Modular Redundancy (TMR), Duplication with Comparison (DwC),
Safe Finite State Machines and Hamming encoding. Experimental results with benchmarks and industrial

cases illustrates the capabilities of the method and its high performance.

INDEX TERMS Equivalence checking, fault tolerance, formal verification, error mitigation.

I. INTRODUCTION

As manufacturing technology progresses, enabling the inte-
gration of more complex circuits with higher densities
and smaller transistors, ensuring dependability becomes an
increasingly important and difficult task. Soft errors are
becoming a concern for safety critical applications. Tradi-
tionally, this was a problem for circuits working in harsh
environments, such as space. In these environments, the use
of hardened technologies and fault-tolerant designs is manda-
tory. Today, soft errors are a concern for an increasing variety
of applications even at ground level and the use of fault
tolerance is spreading. Security issues are also of increasing
importance and are generally closely related to fault tolerance
issues.

The associate editor coordinating the review of this manuscript and

approving it for publication was Francesco Mercaldo

Fault tolerance techniques involve the addition of redun-
dancy in some way to detect and/or correct errors. The
most common fault tolerance techniques are increasingly sup-
ported in design environments. Design tools currently allow
designers to implement some techniques by using specific
commands. Other techniques can be manually implemented
by designers. However, fault tolerance techniques are subtle
and the implementation is not trivial: designers may make
mistakes, synthesis tools may inadvertently remove redun-
dancy (because they are designed to remove redundancy and
optimize the logic, but not to correct errors), techniques may
not be properly applied, etc. As a consequence, the error
mitigation performance may be seriously compromised with
catastrophic consequences. Therefore, designers need solu-
tions to verify that the fault-tolerant structures work correctly.

Fault injection has traditionally been used to evaluate
and validate fault-tolerant designs. However, fault injection

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

116127

https://orcid.org/0000-0001-6021-165X
https://orcid.org/0000-0002-2142-7885
https://orcid.org/0000-0001-7287-4477
https://orcid.org/0000-0003-1615-1607
https://orcid.org/0000-0001-5870-6493
https://orcid.org/0000-0002-4843-0507
https://orcid.org/0000-0002-9425-1657

IEEE Access

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

has limited coverage, as it can only validate the design
for a subset of errors and test vectors. To ensure fault
tolerance is correctly implemented, formal verification tech-
niques are required. In fact, formal verification has become a
cornerstone of modern design flows [1]. Despite formal ver-
ification is a hard problem, today it can be solved in practice
for most real circuits. Nevertheless, the formal verification
of fault-tolerant designs has not received much attention
yet.

In this work, we propose formal verification techniques
that are specifically designed to verify fault-tolerant cir-
cuits. The verification of fault-tolerant circuits involves two
formal verification problems: verify that the fault-tolerant
circuit effectively masks or detects errors; and verify that the
fault-tolerant circuit is functionally equivalent to the original
circuit before fault-tolerance techniques were applied. To this
purpose, we propose a new approach that addresses these two
verification problems in sequence.

For the first problem, we note that it is not a conventional
formal verification problem, because the goal is not to prove
the equivalence of two circuits or a particular property of a
circuit under regular operation, but to prove that the circuit
is able to detect or correct an error when it occurs. The
problem is also complex, as the verification must be repeated
for a large set of possible errors. In this work, we solve
this problem by formulating it as a formal Equivalence
Checking (EC) problem. Then, we show how this problem
can be solved by using extended EC techniques that are
specifically adapted for this purpose. Furthermore, the com-
plexity of these techniques is similar to that of combinational
EC techniques, so they can be used in practice with good
performance.

The second problem can be formulated as a conventional
EC problem between two circuits. However, after verifying
the fault-tolerant structures, redundancies are identified and
can be conveniently removed to simplify equivalence check-
ing with the original circuit.

To the best of our knowledge, this is the first time that
a general formal verification approach, based on extended
EC techniques, is proposed for fault-tolerant circuits. This
approach can effectively verify a wide variety of fault
tolerance techniques, such as Triple Modular Redundancy
(TMR), Duplication with Comparison (DwC), Safe Finite
State Machines and Hamming encoding. On the contrary, the
few existing approaches are based on checking structural sim-
ilarity [2], [3], [4], which is limited, or are basic adaptations of
existing formal verification techniques, with relatively poor
performance.

The remaining of this paper is as follows. Section II
introduces the necessary formal verification background and
reviews previous work. Section III describes the proposed
formal verification approach. Section IV shows how this
approach can be used for a variety of representative fault
tolerance techniques. Section V describes the experimental
results intended to validate the proposed approach. Finally,
Section VI shows the conclusions of this work.

116128

Il. FORMAL VERIFICATION BACKGROUND AND RELATED
WORK

Formal verification of hardware designs is a key topic in
Electronic Design Automation (EDA) and has been a matter
of research for decades, covering several relevant prob-
lems. Among them, Equivalence Checking seeks to formally
prove that two circuit designs have exactly the same behav-
ior. As circuit complexity grows, it is necessary to verify
that functionality is preserved when a design undergoes
the various synthesis and implementation steps. Equivalence
Checking is intended to prove equivalence for all possible test
vectors, as opposed to simulation-based validation that only
tests for a selected set of test vectors.

Practical EC approaches typically assume a known or
guessed correspondence between the storage elements of the
circuit, so that the checking can be reduced to a Combi-
national Equivalence Checking (CEC) problem. CEC is a
mature technology, with known limitations but also with tools
and solutions for practical industrial cases [1].

CEC techniques are strongly associated to the particular
formalisms that are used to model the circuit and prove equiv-
alence. Canonical representations, such as Binary Decision
Diagrams (BDDs) [5], are very well suited for equivalence
checking, as the solution is found by building the diagram
of a miter circuit [6], [7]. However, they may be difficult or
impossible to build for large netlists and for some types of
circuits. For instance, BDD size can grow exponentially for
arithmetic circuits such as multipliers [8].

Alternatively, satisfiability (SAT) solvers use Boolean
algebraic expressions, typically in Conjunctive Normal Form
(CNF), to represent the logic functionality as a set of Boolean
constraints. Boolean algebraic expressions are very conve-
nient for mathematical deduction, because they are simple,
systematic and efficient. SAT solvers are generally derived
from the well-known Davis—Putnam-Logemann-Loveland
(DPLL) algorithm, which is based on a search and backtrack
approach. The DPLL algorithm iteratively assigns variables
and uses Boolean Constraint Propagation (BCP) to obtain
new assignments until a satisfying assignment is found or
the search is exhausted. SAT solving has been a matter of
research for a long time, resulting in several efficient tools
such as zChaff [9], Berkmin [10], SATO [11], GRASP [12],
MiniSAT [13], and C-SAT [14]. These tools have introduced
significant improvements that enable handling large indus-
trial formal verification problems.

Finally, some techniques make use of structural representa-
tions, such as And-Inverter Graphs (AIGs). AIGs are used to
represent Boolean functions in many EDA problems because
they are simple, efficient, uniform and easy to build. They
are not canonical, but they can be efficiently matched using
hashing techniques [15]. AIG-based structural hashing can
save large amounts of computational effort and is widely
used in formal verification. For SAT solving, AIGs can be
translated into a CNF representation. Moreover, the so-called
structural or circuit-based SAT solvers implement Boolean
reasoning directly on AIGs [16].

VOLUME 11, 2023

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

IEEE Access

Existing CEC solutions usually combine different meth-
ods. Structural hashing is used for fast matching of isomor-
phic AIG nodes. Random simulation is used to reduce the
search effort by identifying potential matching candidates.
Then, more powerful but also more computationally expen-
sive SAT solvers and Boolean reasoning methods are used to
complete verification. Reference [16] presents a verification
framework that combines structural hashing, random simula-
tion, BDDs and structural SAT solvers. In [17], a SAT solver
is proposed that combines the strengths of circuit-based and
CNF-based SAT solvers. Effective approaches generally try
to identify and merge functionally equivalent AIG nodes
prior to SAT solving. In [18], the concept of Functionally
Reduced AIGs (FRAIGs) is introduced. FRAIGs are built
using a reduction-by-construction method based on random
simulation and SAT solving. Experimental results show that
this method is very efficient for CEC.

CEC can be applied to sequential circuits, provided that
the mapping of storage elements (flip-flops and memories)
between the circuits to be checked is known or it can be
guessed [19]. In such a case, the sequential equivalence
checking (SEC) problem can be transformed into a CEC
problem by treating the inputs and outputs of storage ele-
ments as primary outputs and primary inputs, respectively.
This approach is used by many academic and commercial
tools, as it avoids state explosion. The mapping of storage
elements can be derived from naming conventions or it can
be automated [1].

Nevertheless, a one-to-one mapping may not exist even
though the circuits may be equivalent. Synthesis tools may
perform optimizations that modify the logic surrounding stor-
age elements or result in a different number of flip-flops.
Formal verification techniques have been proposed that can
deal with changes in the polarity of the storage elements [20],
clock gating [21] or moving logic across flip-flops, as in the
case of retiming [22], [23].

In the general case, SEC is still a challenge because of
the state explosion problem [24]. Bounded Model Checking
(BMC) focuses on finding a counterexample of a length
bounded by some integer k. BMC is good for test cases
with short counterexamples, but it is incomplete. In [25],
several bounded and unbounded model checking approaches
are analyzed and compared using a large set of benchmarks.

The verification of fault-tolerant circuits is a particular
problem that has not received much attention yet. Mentor
[26] proposes a solution based on verifying the equivalence
of a miter circuit with two instances of the fault-tolerant
circuit when an error is inserted in one of the instances.
Fig. 1 shows the construction used to address this problem.
With this construction, existing formal verification tools can
be applied. This is a general approach, but the performance
may be poor, because the equivalence checking problem is
addressed from a global perspective and generally requires
heavy SEC techniques. In addition, the verification must be
repeated for each possible error in the circuit. Experimental
results show that a practical circuit may require hours or

VOLUME 11, 2023

/ .
8)
e : -\ ,
(S 4

FIGURE 1. Miter construction for verification.

= -

(a)

(b) (©)

FIGURE 2. Motivating example: (a) a simple flip-flop circuit; (b) a TMR
implementation of the flip-flop; (c) a TMR implementation with a
simplified voter.

even days of CPU [27]. This emphasizes the need for more
efficient approaches.

Several solutions have been proposed that rely on checking
the structure of the fault-tolerant circuit. In [2], a topological
approach is proposed for TMR (Triple Modular Redundancy)
designs. The goal is to verify whether the three copies
(TMR domains) of logic that feed each voter under analy-
sis are equivalent and the voters are inserted as expected.
A structure-based approach is also proposed in [3]. Then,
fault injection is applied but without performing gate level
simulations. In [4], a commercial formal verification tool is
used to check the equivalence of TMR domains with respect
to the original design. Then fault injection campaigns are
performed to validate fault-tolerance for single faults. Nev-
ertheless, the effectiveness of these approaches has not been
clearly demonstrated yet.

Ill. FORMAL VERIFICATION APPROACH

The problem of verifying that a fault-tolerant circuit effec-
tively masks or detects errors is not directly an equivalence
checking problem. A simple motivating example is shown
in Fig. 2. The original unprotected circuit is the flip-flop in
Fig. 2(a). Two fault-tolerant implementations of this flip-flop
using TMR are shown in Fig. 2(b) and Fig. 2(c). Implemen-
tation (b) is a correct implementation, while implementation
(c) uses a simplified voter that is not able to mask all errors.
A formal equivalence checking tool will verify that the three

116129

IEEE Access

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

circuits are functionally equivalent, yet the circuit (¢) cannot
mask all SEUs (Single-Event Upsets).

To verify that a circuit is fault-tolerant, we need to verify its
behavior in the presence of faults. In addition, it is necessary
to verify that the application of fault tolerance techniques has
not modified the functionality of the circuit. This is a twofold
problem that we address in two steps:

1) Prove that errors are detected or corrected in the
fault-tolerant circuit as intended by the applied fault-
tolerant techniques. If verification is successful, redun-
dant structures are identified.

2) Merge redundant structures and prove that the merged
circuit is equivalent to the original unprotected circuit.

Redundancies must be in the circuit for the first step,
as they are essential to tolerate faults. Once fault tolerance
has been verified, the removal of redundancies simplifies the
circuit model and makes further checking easier. Eventually
these two steps may be combined and iterated as needed for
several types of verification problems.

Fault tolerance techniques generally introduce redundancy
in a way that affects the sequential structure of the circuit.
For instance, to protect against SEUs, hardware redundancy
techniques typically introduce redundant flip-flops. Error
detection and correction codes modify state encoding and
introduce additional flip-flops or memory bits. From this
point of view, the formal verification of fault-tolerant designs
is a SEC problem. CEC techniques can be used to alle-
viate complexity if the mapping of flip-flops is known or
it can be inferred. However, the mapping of flip-flops is
not immediate, because fault-tolerant circuits generally have
many redundant flip-flops. Therefore, the capability to do
formal verification in a sequential context is an important
requirement.

Our approach to verify circuit behavior in the presence
of faults is based on Boolean Reasoning using circuit-based
structural SAT. Structural SAT methods perform a systematic
search for a consistent assignment on the circuit represen-
tation. They have been shown to be very efficient at BCP
[17]. Furthermore, they also facilitate the checking of error
propagation constraints. As we will see later on, the error
propagation constraints are hard to model using CNF clauses.

Instead of checking two copies of the circuit, good (fault-
free) and faulty, we use a single circuit in which each node has
two different binary values, namely v, (good value) and vy
(faulty value). Each binary value can be 0, 1 or X (unknown).
Thus, a node can have 9 possible values, which are usually
expressed as v = vg/vr. This is known as the nine-valued
model [28]. This model is commonly used in ATPG (Auto-
matic Test Pattern Generation) and other related problems.

Circuit-based Boolean reasoning can be extended to
sequential circuits using the concept of timeframes. A time-
frame is an instance of the combinational logic of a sequential
circuit. To study sequential behavior, a sequential circuit is
unrolled in a set of timeframes connected by flip-flops. The
flip-flop inputs are referred to as pseudo primary outputs

116130

Implication
Before After rule

0 Forward
propagation

1 Backward
propagation

S| e
e | e

S |
S| e

X None

FIGURE 3. An illustrative subset of the implication rules.

(PPOs) of the previous timeframe and the flip-flop outputs
are referred to as pseudo primary inputs (PPIs) of the next
timeframe. The timeframe in which a fault is injected is called
timeframe 0. Other timeframes are numbered according to the
distance to timeframe O.

Boolean reasoning can be performed across timeframes.
Each node may have a different assignment in each time-
frame, but the assignments to connected PPOs and PPIs of
neighbour timeframes must be consistent. This approach has
been used in sequential testing [29] and sequential verifica-
tion [30]. As long as errors are detected or corrected with low
sequential depth, it is an efficient approach.

As in other formal verification approaches, we use an
AIG [15] representation of the circuit. This representa-
tion efficiently supports the required verification techniques,
including structural hashing and structural SAT. We have
extended the AIG format to support hierarchical netlists and
sequential netlists with multiple clock domains.

A. IMPLICATION RULES AND ERROR PROPAGATION
CONSTRAINTS

In structural SAT, Boolean Constraint Propagation is trans-
formed into an implication process. Fig. 3 shows a subset of
the implication rules (the complete set is omitted for brevity).
These rules are a consequence of the AND functional con-
straints of AIG nodes. They are typically encoded as a lookup
table [16] for efficient evaluation.

The application of the implication rules to a node may
produce new assignments by forward propagation or back-
ward propagation that trigger further implications. In one case
(Split), there are two possible solutions and the justification
algorithm must attempt both of them. To this purpose, a new
decision level is opened in the decision stack. In other cases,
the implication leads to a conflict, and the algorithm has
to backtrack. The implication may also result in no new
assignment (None). Eventually, the implication process ends
when a conflict is found or all implications have been propa-
gated. Then, a new decision is made and new implications are
computed. The verification algorithm iterates until all nodes

VOLUME 11, 2023

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

IEEE Access

Propagation
Before After case
PROP
PROP < PROP < PROP
BROE forward
UNPROP UNPROP
< UNPROP < UNPROP
UNPROP UNPROP biscloward
UNPROP UNPROP
REQPROP < REQPROP < REQPROP
REGHRGP forward
REQPROP < REQPROP < REQPROP
split
UNPROP UNPROP
REQPROP < REQPROP < REQPROP
UNPROP UNPROP conflict

FIGURE 4. Implication rules for P values.

can be consistently assigned, which proves the problem is
satisfiable, or until the decision stack is exhausted without
having found a solution.

The implication rules must be satisfied in the good circuit
and in the faulty circuit. In other words, each node must be
implied for both the good and the faulty values. However,
error propagation introduces additional constraints. We refer
to these constraints as Error Propagation Constraints (EPCs).

EPCs result from the requirements of error propagation.
To this purpose, the nodes in a circuit are attributed a P
(Propagation) value. We use symbolic names for P values to
clearly distinguish them from assigned values. The nodes in
the output cone of the error source may propagate an error
and receive a PROP value. The nodes outside the output cone
of the error source cannot propagate errors and receive a
NOPROP value. The PROP value merely results from the
structure of the circuit. Whether a PROP node effectively
propagates the error or not, it depends on the logical condi-
tions in the upstream and downstream nodes. A PROP node
that cannot propagate the error to the primary outputs is called
UNPROP. A PROP node that is required to propagate the
error is called REQPROP.

Based on these considerations, the following EPC rules
must be satisfied:

1) NOPROP nodes have v, = vy by definition. For
brevity, we denote the assignment with a single value
V= Vg = Vf .

2) PROP nodes may have v, # vf or v, = vr. If a PROP
node satisfies v = vy, then it becomes an UNPROP
node.

3) REQPROP nodes must have vy # vy.

4) Side NOPROP inputs of REQPROP nodes must be
assigned a sensitive value (v = 1). This is a conse-
quence of EPC rules 1 and 3.

Furthermore, P values are also implied. The implication
rules for P values are summarized in Fig. 4. The fanouts of a
PROP node are also PROP nodes. Conversely, if all fanouts of
a node are UNPROP, the node is UNPROP. For a REQPROP

VOLUME 11, 2023

node, implication of P values depends on the number of PROP
fanouts. If a REQPROP node has a single PROP fanout, then
error propagation requires the PROP fanout to be REQPROP.
If there are multiple PROP fanouts, they must be stored in the
decision stack in order to try all of them (split case). Finally,
if all fanouts of a REQPROP node are UNPROP, the fault
cannot be propagated and a conflict is found.

B. FAULT SATISFIABILITY

The goal of the fault-tolerance verification problem is to
prove that, if a fault is injected, no input vector can produce
vg # vy for any primary output, or to find a counterexample,
i.e., an input vector that propagates a 0/1 or a 1/0 value
to at least one primary output. It can be formulated as a
satisfiability problem: given a target faulty node 7', prove that
the conditions vg (T') # vy (T) and v, (O;) # vr (O;) are not
satisfiable for any O; € PO, where PO is the set of primary
outputs. In the sequel, we will call it fault satisfiability prob-
lem or fault SAT for short. The initial condition v, (T') #
vr (T) can be split in two cases, namely v(T) = 0/1 and
w(T) = 1/0. Each of these two cases is usually called a fault
injection.

The proposed approach to fault SAT follows the DPLL
SAT algorithm and uses structural SAT with the 9-valued
model and timeframe expansion. After injecting a fault, the
algorithm exhaustively justifies all assignments and tries all
possible propagation paths. Two types of decisions are con-
sidered: justification decisions and propagation decisions.

Justification decisions solve backward split cases. They
further include four types of cases: justification of good value
of a PROP node, justification of faulty value of a PROP node,
justification of a NOPROP node (common value for good and
faulty), and justification in previous timeframes (common
value). Any number of previous and next timeframes can
be considered. However, verification can be solved with just
one previous timeframe in most cases, because fault-tolerant
techniques are usually designed to detect or correct errors
within one clock cycle. Propagation decisions solve forward
REQPROP propagation split cases. Propagation decisions are
specific of fault SAT.

Fig. 5 illustrates the fault verification process for the TMR
flip-flop circuit shown in Fig. 2(b). Fig. 5(a) shows a simpli-
fied view of the unrolled AIG representation, including two
timeframes. Node numbers are shown at the top or right of
nodes. Flip-flops are represented by vertical bar nodes. The
nodes to the right of the flip-flops are in timeframe 0 while the
nodes to the left of the flip-flops are in timeframe -1. Note that
in the complete view of the unrolled AIG, all nodes will be
replicated in each timeframe. For simplicity, only the nodes
involved in the Boolean reasoning are shown in the figure.

Let us select node 1 as the target node. The fault verifi-
cation algorithm starts by assigning the REQPROP P value
to the error source node, i.e. P(1) = REQPROP. Then, the
application of EPC rule 3 results in two choices: v(1) = 0/1
or v(1) = 1/0. The algorithm must try both choices until a
solution is found or both choices are proven unsatisfiable.

116131

IEEE Access

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

FIGURE 5. Examples of implication in a TMR circuit: (a) simplified AIG
view of a basic TMR circuit; (b) implication of fault 0/1 in node 1 (v(1) =
0/1), justification first; (c) implication of fault 0/1 in node 1 (v(1) = 0/1),
propagation first.

For the first choice, we have v(1) = 0/1. The implication
process may continue by justifying v,(1) or by propagating
the error through nodes 4 and 6. The order in which implica-
tion and not affect the result. However, different implications
may be triggered depending on the selected implication order.
We will show the results of two different implication orders
to illustrate the application of the implication rules and con-
straints.

Fig. 5(b) shows the implications obtained when the process
starts by justifying v, (1) = 0. This requires v 19 =
0 in the previous timeframe. Further implication of this
assignment results in the implications shown in timeframe 0.
In particular, v(4) = 0/0 and v(6) = 0/0. According to EPC
rule 2, nodes 4 and 6 become UNPROP. A conflict is found
because all fanouts of node 1 are UNPROP. The algorithm
then backtracks and proceeds to try the remaining choice

116132

REQPROP

1

REQPROP

FIGURE 6. Implication of TMR circuit with bad voter.

v(1) = 1/0. The implication of this value is not shown, but it
also results in a conflict. As the two choices are unsatisfiable,
it is proved that no error injected in node 1 can be propagated
to any primary output.

Alternatively, consider the case where the forward propa-
gation of P(1) = REQPROP is implied first. Node 1 has two
PROP fanout nodes, namely nodes 4 and 6, so it is a split
propagation case. First, we try to propagate the v(1) = 0/1
error value through node 4, setting P(4) = REQPROP and
v(4) = 0/1. The implication results are shown in Fig. 5(c).
By the application of EPC rule 4, we have v(2) = 1. Further
application of implication rules v(7) = 1/0, v(5) = 0,
v(3) = 0, P(8) = REQPROP, v(8) =1/0, v(6) = 0/0 and
P(6) = UNPROP. In summary, to propagate the fault 0/1
at flip-flop 1, the other flip-flops, 2 and 3, are required to
have different values. When these values are justified in the
previous timeframe, we get a conflict, because v(1) # v(2).
The propagation of the v(1) = 0/1 error value through node
6 is very similar and results in a conflict as well.

Fig. 6 shows the AIG of the bad voter design in Fig. 2(c)
and the implication of v(1) = 0/1. In this case, the implica-
tion process is able to find a solution to propagate the fault
and the result is satisfiable. In fact, this is the only existing
solution, because v(1) = 1/0 is not propagatable. Faults in
the flip-flop nodes 2 and 3 are also not propagatable.

C. OVERALL FAULT-TOLERANCE VERIFICATION
ALGORITHM

Fig. 7 shows a flow chart of the overall fault-tolerance verifi-
cation algorithm. The main steps are as follows:

1) Build the AIGs for the fault-tolerant design and the
original reference design.

2) Functional reduction: check the logic to detect equiva-
lent functions. Merge combinational logic that is found
equivalent.

3) Add external constraints, if any.

4) For each fault site, run fault SAT. If the fault is satisfi-
able, report the satisfying test vector.

5) If the fault is not satisfiable, merge redundant logic.

6) Equivalence checking between the original and the
fault-tolerant merged circuit.

VOLUME 11, 2023

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

IEEE Access

Fault-tolerant
AIG

Functional
Reduction

!

Add extemal
constraints

For each fault
site

Fault SAT

Yes Report
SAT
: No

Merge
Original Equivalence
AIG Checking

FIGURE 7. Fault-tolerance verification algorithm.

The first step is to build the AIG model of the fault-tolerant
design and the reference design. As the fault-tolerant design
will be tested for many faults, it is important to simplify the
AIG as much as possible. To this purpose, the AIG is func-
tionally reduced [18], using a combination of the following
techniques:

« Structural hashing for fast matching.

« Random simulation to identify potentially equivalent

nodes.

« Structural SAT-based equivalence checking to confirm
or discard equivalence for pairs of potentially equivalent
nodes.

The functionally equivalent nodes are reduced to simplify
the representation. It is important to note that functional
reduction is not applied to the redundant logic that specifi-
cally implements fault-tolerance. For instance, in the TMR
example of Fig. 5, the functional reduction algorithm will
easily detect that the three flip-flops are functionally equiva-
lent. However, the three flip-flops are not merged at this step.
It is only after the fault verification has proved no error can
be propagated, that the three flip-flops are merged (step 5).
This is a key idea that can be generalized as follows. For
SEU fault-tolerant circuits, combinational logic is function-
ally reduced but storage elements are preserved until the

VOLUME 11, 2023

fault verification step is completed. Then, redundant stor-
age elements are merged for the final equivalence checking
step. For SET (Single Event Transient) fault-tolerant circuits,
i.e., circuits intended to tolerate errors in the combinational
logic, functional reduction is applied only within combina-
tional logic blocks that belong to the same logic instance or
domain, in order to preserve block redundancy. Redundant
logic blocks are only merged for the final equivalence check-
ing step.

Some types of verification tasks may require additional
constraints. These constraints are expressed as required val-
ues on particular nodes. If necessary to model constraints,
new nodes, called virtual nodes, may be added to the AIG.
Examples of constrained verification tasks will be shown in
the next section.

The fault SAT algorithm uses implication-based Boolean
reasoning (structural SAT), as explained in the previous
section. Other techniques may be used because the problem
is formulated as a formal verification problem. One of the
main contributions of this work is to formulate the formal
equivalence checking of fault-tolerant designs as a formal
verification problem that can be solved with CEC techniques.
However, the use of implication-based Boolean reasoning
in an AIG representation facilitates the modeling of error
propagation constraints.

After merging the redundant logic (step 5), the
fault-tolerant circuit should have a very similar structure to
that of the original circuit. In particular, the matching of
storage elements is easier after redundant elements have been
removed. If this matching is successful, then the equivalence
checking problem can be solved using CEC techniques.
In particular, we build a miter circuit and apply a functional
reduction approach until all outputs are proved equivalent.
Alternatively, this final equivalence checking step can be
implemented using commercial tools.

Variations for different fault-tolerant techniques are
described in the next section.

IV. APPLICATION TO FAULT TOLERANT TECHNIQUES

In this section, we show how the proposed approach can be
applied to verify several common hardware fault-tolerance
techniques.

A. TMR

TMR is a well-known fault-tolerant technique that can be
implemented in several ways (Fig. 8) [2]. The simplest
solution consists in triplicating and voting every flip-flop
in the circuit (Fig. 8(a)). This solution is known as Local
TMR (LTMR) and it is effective against SEUs. Distributed
TMR (DTMR) is a stronger solution in which the com-
binational logic (CL) and the voters are also triplicated
(Fig. 8(b)). DTMR is intended to protect against SETs. It is
also used for configurable logic, to protect against errors in
the configuration memory that may affect the configuration
of combinational logic. Global TMR (GTMR) is the most
general TMR implementation and it additionally includes the

116133

IEEE Access

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

()

clk1 —

clk2 —

clk3

(b)
FIGURE 8. TMR approaches: (a) LTMR; (b) DTMR; (c) GTMR.

triplication of the global signals, such as the clock and the
reset (Fig. 8(c)). The reliability of TMR can be compromised
by faults in more than one of the replicated devices, which
is an increasingly frequent problem as node-size decreases,
allowing for multiple bit upsets to appear from a single parti-
cle strike. However, TMR-based solutions are the most used
hardening techniques.

Equivalence Checking of LTMR designs can be accom-
plished with the proposed fault verification algorithm. This
algorithm is very efficient for local redundancy because
verification can be solved locally. As shown in previous
examples, the complexity of the verification is independent
of the complexity of the design under test. For instance, the
reasoning shown in Fig. 5 will solve fault SAT no matter
how deeply the TMR structure is embedded in the circuit.
Conversely, when a miter approach is used, such as the one
shown in Fig. 1, the verification tool shall traverse the entire
circuit to reach the target LTMR structure.

For DTMR, two verification runs of the algorithm’s steps
2 to 5 are performed, first for faults in the combinational
logic and then for faults in the flip-flops. In the first run,
the functional reduction step is limited to each TMR domain.
This way, the combinational logic domains are preserved
for fault verification of the combinational logic. After com-
binational logic fault verification, the combinational logic
domains are merged if they are found equivalent. This step
reduces the circuit to a LTMR equivalent. In the second run,
functional reduction reduces combinational logic but pre-
serves the redundant flip-flops. Then, SEU faults are checked
in an efficient manner. Finally, the equivalent flip-flops are
also merged before the final equivalence checking step.

This approach also works for GTMR, except for the clock
signal, which is not verified by injecting a fault. In case
multiple clock domains are used, the verification is performed

116134

CL

FIGURE 9. Duplication with comparison.

FIGURE 10. Block TMR.

indirectly during the merge step. Namely, we check that
flip-flops are not matched (they have different clock inputs)
but they are matched if the clocks are matched (they are
equivalent when the clock is equivalent). This check is made
at step 5.

B. DUPLICATION WITH COMPARISON (DW/C)

Duplication with Comparison focuses on error detection
instead of error correction. To this purpose, the circuit is
duplicated and the outputs are compared (Comp), as shown
in Fig. 9. The comparator may be duplicated to protect from
errors in the comparator.

The DwC verification problem is specified as follows:
prove that the fault SAT problem is not satisfiable when the
constraint vy (E) = vy (E) = 0 is included, being E the
active-high error signal. In other words, prove that there is
no test vector for which the error propagates, and the error
signal does not detect it. For an active-low error signal, the
constraint is vy (E) = vy (E) = 1.

The DwC verification problem can be solved using the
proposed algorithm. The error constraint is added in step 3 of
the algorithm.

C. BLOCK REDUNDANCY AND HIERARCHICAL
VERIFICATION

Fault-tolerant techniques may be applied to large blocks
of hardware. Fig. 10 shows the structure of a Block TMR
(BTMR) solution, in which entire blocks are triplicated and
voters are placed only at the outputs of the blocks. This
solution can produce significant hardware savings. It could
also be an interesting solution for IPs whose internal archi-
tecture is not known or it cannot be modified. However,
note that internal block errors may be masked but they are
not corrected unless the blocks themselves are fault-tolerant.
As errors may propagate inside the block, formal verification
of fault-tolerance only makes sense at the upper level.

VOLUME 11, 2023

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

IEEE Access

o,

0
ozm

FIGURE 11. AIG model of block output constraint.

The proposed algorithm can be used to verify Block TMR
or Block DWC as follows. Blocks are treated as special black
box nodes in the AIG. During the functional reduction step,
equivalent blocks are identified by a generalization of the
structural hashing technique. Two blocks are equivalent if
they are instances of the same component and have equivalent
inputs. If these conditions are satisfied, then the outputs of the
two blocks are equivalent. However, following the proposed
methodology, equivalent blocks are not reduced during the
functional reduction step. Instead, the equivalence of the out-
puts of matched blocks is introduced as constraints. Namely,
if 01 and O are equivalent outputs of Block 1 and Block 2,
respectively, the constraint v(O{) = v(O,) must be satisfied.
Fig. 11 shows the AIG used to model this constraint.

For the verification of BTMR, block inputs and outputs are
considered as PPOs and PPIs, respectively. Then, the goal
of the verification problem is to prove that for each fault
at a block output, there is no test vector that can propagate
the error, subject to the constraint that outputs of equivalent
blocks must have equal values. Finally, the equivalent blocks
are merged into a single block before the final equivalence
checking step.

This approach can be extended to hierarchical verifica-
tion. In the case of a complex circuit, with a hierarchy of
components, the circuit can be flattened before verification.
However, flattening removes information about the structure
of the circuit that can be very useful to facilitate verification
tasks. In particular, fault-tolerant techniques usually require
creating redundant copies of portions of the circuit. A usual
implementation approach consists in grouping the target logic
into a new component and adding a new hierarchy level with
redundant instances of the component. If this new hierarchy
level is preserved for the verification, an efficient block-based
verification approach can be used.

Generalizing this approach, verification can be accom-
plished in a recursive fashion. The verification of high level
components invokes the verification of lower level compo-
nents. When lower level components are verified, they are
merged, so the verification at higher levels is simplified.
If block-based verification is not possible at a particular
hierarchy level, because equivalent blocks are not found, the
circuit can be partially flattened down to the current verified
level. Eventually, the recursive procedure ends at the top
hierarchy level with a fully verified and merged circuit, that
is ready to be checked with the original circuit.

D. SAFE FSM
Another group of commonly used fault-tolerant techniques
aims for the hardening of Finite State Machines (FSM). These

VOLUME 11, 2023

techniques are based on detecting illegal states or transi-
tions (safe FSM), which can be combined with modifications
of the FSM state encoding in order to ease error correc-
tion (Hamming-3 encoding) or detection (one-hot encoding).
In this work, we have focused on developing verification
methodologies for the safe FSM and Hamming-3 encoding
approaches. Other approaches can be supported in a similar
manner.

The proposed formal verification algorithm proposed can
be tailored to verify the correctness of these FSM hardening
techniques. However, some additional information must be
known beforehand. In the general case, this information is
comprised by the set of state flip-flops, the set of valid
state encodings (denoted as S,4iq), and any signal constraints
which may alter the normal FSM behavior, such as reset or
enable signals. The set of state flip-flops and encodings can
be provided either by the designer or by the synthesis tool
(e.g. Synopsys Synplify provides reports of the FSMs in the
design). Alternatively, the set Syqji¢ could be determined by
reachability analysis, although this approach is not applied
here other hand, signal constraints can either be provided by
the designer or guessed using name matching against typical
signal names (e.g. “reset”, “rst_n”’, etc.). These constraints
are taken into account during the FSM verification. In addi-
tion, other information may be required depending on the
targeted FSM hardening technique, as explained in the sequel.

The verification of fault-tolerant FSMs follows the same
steps of the verification algorithm shown in Fig. 7. In step 4,
specific checks are run to verify the correctness of the tar-
get FSM fault-tolerant technique, using the proposed SAT
approach. If the FSM is successfully verified, redundancies
are removed by merging whenever possible and the merged
circuit is checked for equivalence against the original version
of the FSM. However, it must be noted that redundancy
removal in this kind of techniques is not always straightfor-
ward. In addition, there may be subtle differences between
the synthesis of hardened and unhardened versions of an
FSM due to sequential don’t-cares, which can affect the state
encoding or the transition logic. Therefore, the CEC approach
proposed in this paper is expected to work for fault-tolerant
FSMs only if certain conditions are met. Without loss of
generality, at least the encoding of every valid state in the
original and hardened circuits must coincide.

The first FSM hardening technique considered is the Safe
FSM. With this technique, an invalid state detector is incorpo-
rated to the FSM logic. When it detects any state belonging to
the set of invalid states, Sinatid» Sinvalid, it triggers a recovery
mechanism which puts the FSM into a known safe state,
several ways of implementing this approach. On the one
hand, it can be implemented in a pure combinational way,
with detection and recovery occurring in a single clock cycle.
On the other hand, detection and recovery phases can be sep-
arated by using a reset flip-flop (or flip-flop chain), delaying
the return to Syup for one or more clock cycles. The latter
is the solution typically adopted for synthesis tools such as
Synopsys Synplify when they have to automatically apply

116135

IEEE Access

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

this kind of hardening. The proposed formal verification tool
is capable of handling both approaches.

To prove the correctness of the safe FSM implementation,
our algorithm must know which is the Ssuf state, Ssqfe state,
which must belong to Sy4i4. This information must be pro-
vided by is verified by proving that Vs; € Sinaiia, sfl = sgafe,
where s/ denotes the state of the FSM in timeframe j. If the
Safe FSM is implemented with reset flip-flops, then the check
is split in two parts: 1) prove that sl._1 =0 (’"dﬁ') = 1Vs; €
Sinvalia» and 2) prove that v=! (rgg) = 1 = sgaﬂ,, where rgr
denotes the active-high reset flip-flop node.

Merging of the safe FSM detection and recovery logic
is performed depending on the approach followed for its
implementation. If a reset flip-flop was used, the merging is as
simple as removing such flip-flop and all its associated logic.
On the contrary, if a pure combinational approach is used,
the hardening logic would be mixed with the original state
transition logic, which makes much more difficult to correctly
identify and remove the target nodes. Currently, the proposed
formal verification approach only performs merging of safe
FSMs when a reset flip-flop is implemented. In order to prove
equivalence between the merged and the original FSM, it is
necessary that the state transition logic of invalid states is
implemented in the same way in both circuits, which depends
on the optimizations made by the synthesis tool.

E. HAMMING-3 FSM ENCODING

Hamming-3 FSM encoding is a well-known hardening
approach for FSMs. With this approach, the FSM is extended
with a certain amount of parity flip-flops. These are assigned
in such a way that, for every valid state, its extended encoding
has a Hamming distance of at least 3 with respect to the
extended encoding of any other valid state. Therefore, this
approach can correct any single error affecting the FSM state.
This is achieved through an error correction logic.

In addition to the state flip-flops and the original encoding
of every valid state, the verification algorithm must know
which are the parity flip-flops of the FSM. This information
can be provided by the user (in case of manual design) or
guessed by name matching (in case of automated implemen-
tation by synthesis tools). In principle, the error correction
logic of the Hamming encoding should ensure that any single
error in the FSM flip-flops will be masked. Therefore, the
proposed fault verification algorithm is used over the FSM
flip-flops in a first attempt to prove the correctness of the
Hamming-3 encoding, like in a LTMR design. However,
synthesis optimizations may simplify the error correction
logic for some invalid states, which possibly makes the fault
verification to fail. In that case, a reduced fault verification
is then performed, testing only the bit flips over the extended
valid state encodings. In order to do so, first the parity bits
corresponding to every valid state must be either provided by
the designer or inferred, where the latter approach is done by
SAT.

116136

If the Hamming-3 FSM is proven to be correctly hard-
ened, merging is performed by removing the parity flip-flops
and simplifying the subsequent error correction logic. Again,
to prove CEC between the original and merged netlists, it is
required that the encoding of every valid state matches and
the state transition logic of every invalid state is synthesized
in the same way in both circuits.

V. EXPERIMENTAL RESULTS
The proposed method has been implemented in an in-house
tool, named VeriHard. The tool is a console application,
coded in C4+ and prepared to run under Windows and Linux
through a command-line interface.

The developed tool uses structural VHDL netlists as inputs.
It contains three software modules corresponding with the
three main steps:

1) The parser module translates the VHDL netlists into
AIG format. This first step generates the intermediate
files that will be analyzed and processed in the next
steps.

2) The verihard module formally verifies the correct-
ness of fault tolerance techniques. This step generates
another intermediate file, also in AIG format, where the
existing redundancies have been removed (a merged
netlist). In case a defective mitigation technique is
detected, the input vector that shows the defective
behavior is reported.

3) The eqhard module formally verifies that the processed
hardened netlist and the original netlist are functionally
equivalent.

Libraries of technology files are required in order to allow
the parser to translate the structural VHDL netlists into
AIG format files. For these experiments, technology libraries
for 3rd and 4th generation of Microsemi FPGAs (ProA-
SIC3L/ProASIC3E, IGLOO2, RTG4) have been developed.

Several experiments have been performed in order to test
the whole algorithm, including test circuits for every miti-
gation technique described in section IV as well as cases of
defective implementations.

The experiments were applied over a set of test circuits
with different characteristics. On the one hand, simple bench-
marks have been used to verify the functionality of each
software module. These benchmarks include ITC’99 bench-
marks (denoted as Bxx) [31] and in-house simple circuits
(denoted as Hxx). On the other hand, industrial cases have
been used to prove the applicability of the proposed approach
to real examples (denoted Ixx).

Every simple circuit has been hardened using several
correctly implemented techniques: LTMR, DTMR, BTMR,
GTMR, DWC and LTMR selectively applied to a defined
set of flip-flops (selective LTMR). Additionally, those cir-
cuits that contain FSMs have been hardened by applying
different safe encoding mechanisms: using as safe state the
reset state, using as safe state the ‘others/default’ state, and
using 3-Hamming encoding. Furthermore, defective versions

VOLUME 11, 2023

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

IEEE Access

TABLE 1. Characteristics of the test circuits.

Circuit #P1 |#PO |#FFs |#Nodes #Comp.

BO5 3 36 111 1109 -
BO7 3 8 126 888 -
B10 13 6 75 476 -
HO1 3 1 3 14 -
H02 4 4 12 40 -
HO3 3 1 9 38 -
HO04 3 4 24 175 -
HO5 4 8 54 359 1
HO6 4 8 69 346 -
HO7 3 6 18 107 1
101 142 7 248 5
102 121 126 0 309 7
103 61 63 4 203 13
104 114 90 21 922 10

of each mitigation techniques have also been generated to
test the capability of the method to find errors in hardening
techniques. Overall, there are from 8 to 14 different hardened
versions of every simple circuit, half of which are correct
implementations and the other half are defective implementa-
tions. With respect to the industrial cases, versions with single
mitigation techniques have been generated.

Table 1 summarizes the main characteristics of the test
circuits: primary inputs (PI), primary outputs (PO), flip-flops
(#FF) and nodes (#Nodes) in the AIG files, and the number of
different components (#Comp.) for those circuits that present
a hierarchical architecture. For the simple circuits, data cor-
respond to the TMR version, while for the industrial cases,
data correspond to the top-level entity of the original version.
For example, in the industrial case 101, the design consists
of a total amount of 117 component instances what gives an
idea of its complexity. Those circuits have not been flattened
to simplify the formal verification process by applying it to
each component.

The experiments were run on an AMD®) Fx""-4300 quad-
core processor at 3.8 GHz under Debian GNU/Linux 10. The
synthesis of the source code to generate the structural VHDL
netlist was performed by using Synplify Premier.

A. EXPERIMENT 1: VALIDATING VERIHARD MODULE
Every version of simple benchmarks and industrial cases
with single mitigation or detection techniques was analyzed
with the verihard software module. It formally verifies if
the applied fault tolerance technique does actually prevent or
detect the fault propagation through the circuit. Tests were
also used to check the approach does return neither false
positive results (the circuit is classified as fault tolerant when
it is not) nor false negative results (the circuit is classified as
not hardened but it is actually fault tolerant).

Results show that the VeriHard tool is able to formally
verify the mitigation/detection capabilities of the applied

VOLUME 11, 2023

m LTMR +« =« =Linear (LTMR) & Selective LTMR ++m == Linear (Selective LTMR)
v DTMR -------- Linear (DTMR) BTMR Linear (BTMR)
% BDWC Linear (BDWC) Global TMR Linear (Global TMR)

M Safe FSM

Linear (Safe FSM)

2000

1500

1000

Number of nodes

500

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Execution time (s)

FIGURE 12. Execution time with respect to the number of nodes of some
of the studied hardening techniques.

techniques in every case. Furthermore, it always successes
in identifying all the defective cases analyzed. In these cases,
the tool reports an input vector as counterexample what helps
designers to find the mistake in the design. No false positive
or false negatives results have been generated.

For the 3-Hamming encoding techniques, the performed
implementation infers the parity codes for every valid state
by using SAT. In one case, this was not enough for guessing
a unique combination of parity bits for every valid state. This
would be solved if the designer provides those codes as part of
the valid state or by using reachability analysis. Anyway, it is
a matter related to the implementation but not to the approach
itself.

Fig. 12 shows the run time data with respect to the number
of nodes in the AIG of each verified case, excluding file
input/output time. All the test cases were fully verified in less
than 7.5 seconds, being the median of all the execution times
0.5 ms for circuits with a correct implementation of the fault
tolerance technique. This result is two orders of magnitude
better than the result provided in [27] for similar circuits with
TMR (more than 22 minutes).

The regression lines printed in the graph can be used to
classify the hardening verification processes according to
their verification speed.

From the data in the figure, we can clearly see that local
TMR (LTMR) is the fastest verification algorithm, whereas
the slowest is the selectively applied LTMR. This contrast
can be easily explained. The process of verifying a circuit in
which only some FFs have been hardened involves reading
and processing constraints (the triplicated flip-flops) stored
in an external file, which is a time consuming task.

Fig. 13 shows the run time data with respect to the number
of nodes in the AIG of circuits that were classified as incor-
rect by VeriHard. As in the case of Fig. 12, the regression

116137

IEEE Access

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

m Complete TMR

Linear (Complete TMR) + DTMR «+==="=Linear (DTMR)

% Safe FSM

Linear (Safe FSM) ® Hamming = ===~

Linear (Hamming)

3000

2500 |

2000 ¢

1500

Number of nodes

o 0.05 0.1 0.15 0.2 0.25 03 0.35

Execution time (s)

FIGURE 13. Execution time with respect to the number of nodes needed
in some hardening techniques to detect incorrect hardening
implementations.

lines of this graph reflect the speed of a certain verification
algorithm, in this case, they measure the efficiency in detect-
ing incorrect implementations. The maximum execution time
was 5.01 seconds, and the median value is 1.5 ms for defective
implementations.

B. EXPERIMENT 2: VALIDATING EQHARD MODULE

After verifying the hardening capabilities of the fault toler-
ance techniques, the verification of functional equivalence
between the original and the hardened version was per-
formed.

The equivalence checkings are successful for those TMR,
DTMR, BTMR and DWC circuits without FSMs. For circuits
with FSMs, the result of the equivalence checking depends
on the synthesis over the unreachable states. The synthe-
sizer could optimize in a different way the combinational
unreachable states logic for the different versions (original,
hardened). Therefore, two circuits will be considered as not
equivalent if there is a difference in the logic of the invalid
states. This warns designers that the original and hardened
circuits could evolve to different invalid states in case of
errors.

The equivalence checking process fails when there are
logic changes across flip-flops (retiming). These cases are
not supported by VeriHard tool yet since the implemented
solution is based on Combinational Equivalence Checking.

Fig. 14 shows the run time data with respect to the number
of nodes in the hardened AIG for the tested circuits. A log-
arithmic relationship between the number of nodes and the
execution time is expected, and this is supported by the graph.
This graph provides information about how the execution
time will scale for larger circuits.

116138

1200

1000

600 -

Number of nodes

e
|
!
:
’

Execution time (s)

FIGURE 14. Execution time with respect to the number of nodes needed
to verify the functional equivalence of correctly hardened designs.

It is noticeable that the execution time for verifying fault
tolerance techniques is of the same order of magnitude than
the run time for EC, even despite the process being repeated
for every fault to evaluate. This is due to the verification
strategy used, that is applied locally, as it was explained in
section IV-A.

Nevertheless, as explained before, the equivalence check-
ing step is expected to be performed in a hierarchical way,
checking the individual hardened components against their
original versions and without flattening the whole circuits.
With this approach, the size of components is expected to be
small, which would reduce the computation efforts. There-
fore, this solution would scale well.

VI. CONCLUSION

This work formulates the formal equivalence checking of
fault-tolerant designs as a formal verification problem that
can be solved with CEC techniques. Furthermore, it applies
Boolean reasoning, structural satisfiability, and specific
implication rules and error propagation constraints to for-
mally verify fault tolerance in a circuit.

The proposed approach covers two different goals:

« Proof of the mitigation capabilities.
o Proof of the functional equivalence between the hard-
ened version and the original one.

The proposed approach has been implemented in a soft-
ware tool (VeriHard). It is a command-line tool developed
in C4++, without any external dependencies. It has been
successfully proven for a wide variety of fault tolerance
techniques (TMR, DTMR, DWC, Safe FSM, 3-Hamming
encoding, ...). The execution times are lower than state-
of- the-art tools because verification techniques are applied
locally and can take advantage of hierarchy. Therefore, this
solution is expected to scale well with circuit complexity.

With respect to the equivalence checking of both versions,
the current implementation is focused on the use of com-
binational EC techniques. Future work will be oriented to
take advantage of Sequential Equivalence Checking (SEC)
for FSMs with different encodings and retiming effects.

VOLUME 11, 2023

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

IEEE Access

REFERENCES

[1]1 A.Kuehlmann, F. Somenzi, C.-J. Hsu, and D. Bustan, “Equivalence check-
ing,” in Electronic Design Automation for IC Implementation, Circuit
Design, and Process Technology, L. Lavagno, 1. L. Markov, G. Martin,
and L. K. Scheffer, Eds. Boca Raton, FL, USA: CRC Press, 2016.

[2] M. Berg and K. A. LaBel, “Verification of triple modular redundancy
(TMR) insertion for reliable and trusted systems,” in Proc. MRQW Micro-
electron. Rel. Qualification Working Meeting, 2016, pp. 1-26.

[3] G. Beltrame, “Triple modular redundancy verification via heuristic netlist
analysis,” PeerJ Comput. Sci., vol. 1, p. e21, Aug. 2015.

[4] L. A. C. Benites and F. L. Kastensmidt, “Automated design flow for
applying triple modular redundancy (TMR) in complex digital circuits,”
in Proc. IEEE 19th Latin-Amer. Test Symp. (LATS), Sao Paulo, Brazil,
Mar. 2018, pp. 1-4.

[5] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677-691, Aug. 1986.

[6] A.J. Hu, “Formal hardware verification with BDDs: An introduction,”
in Proc. IEEE Pacific Rim Conf. Commun. Comput. Signal Process
(PACRIM) 10 Years Netw. Pacific Rim, vol. 2, Victoria, BC, Canada,
Aug. 1997, pp. 677-682.

[7]1 S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Logic verification using binary decision diagrams in a logic synthesis
environment,” in Proc. IEEE Int. Conf. Comput.-Aided Design (ICCAD),
Nov. 1988, pp. 6-9.

[8] A. Q. Dao, M. P. Lin, and A. Mishchenko, “SAT-based fault equivalence
checking in functional safety verification,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 12, pp. 3198-3205, Dec. 2018.

[9] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, ‘““Chaff:
Engineering an efficient SAT solver,” in Proc. ACM/IEEE Design Autom.
Conf., Jun. 2001, pp. 530-535.

[10] E. Goldberg and Y. Novikov, “BerkMin: A fast and robust SAT-solver,” in
Proc. Eur. Design Test Conf., Mar. 2002, pp. 142-149.

[11] H. Zhang, “SATO: An efficient propositional prover,” in Proc. Int. Conf.
Autom. Deduction, in Lecture Notes in Artificial Intelligence, vol. 1249,
1997, pp. 272-275.

[12] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A search algorithm
for propositional satisfiability,” IEEE Trans. Comput., vol. 48, no. 5,
pp. 506-521, May 1999.

[13] N. Eén and N. Sorensson, “An extensible SAT-solver,” in Proc. SAT, in
Lecture Notes in Computer Science, vol. 2919. Berlin, Germany: Springer,
2003, pp. 502-518.

[14] FE Lu, L.-C. Wang, and K.-T. Cheng, “A circuit SAT solver with sig-
nal correlation guided learning,” in Proc. Eur. Design Test Conf., 2003,
pp. 892-897.

[15] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Proc. ACM/IEEE Des. Autom. Conf., Jun. 1997, pp. 263-268.

[16] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, ‘“Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 12,
pp. 1377-1394, Dec. 2002.

[17] M. K. Ganai, L. Zhang, P. Ashar, A. Gupta, and S. Malik, “Com-
bining strengths of circuit-based and CNF-based algorithms for a
high-performance SAT solver,” in Proc. Design Autom. Conf., 2002,
pp. 747-750.

[18] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “FRAIGs:
A unifying representation for logic synthesis and verification,”
Dept. EECS, UC Berkeley, Berkeley, CA, USA, ERL Tech. Rep.,
Mar. 2005. [Online]. Available: Available: http://www.eecs.berkeley.
edu/~alanmi/publications/2005/tech05_fraigs.pdf

[19] H. Savoj, D. Berthelot, A. Mishchenko, and R. Brayton, “Combinational
techniques for sequential equivalence checking,” in Proc. Formal Methods
Comput. Aided Design, 2010, pp. 145-149.

[20] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction for for-
mal verification,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design,
Nov. 2005, pp. 1076-1082.

[21] H. Savoj, A. Mishchenko, and R. Brayton, ““Sequential equivalence check-
ing for clock-gated circuits,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 33, no. 2, pp. 305-317, Feb. 2014.

[22] S.-Y. Huang, K.-T. Cheng, K.-C. Chen, C.-Y. Huang, and F. Brewer,
“AQUILA: An equivalence checking system for large sequential designs,”
IEEE Trans. Comput., vol. 49, no. 5, pp. 443-464, May 2000.

VOLUME 11, 2023

[23] G. Cabodi, S. Quer, and F. Somenzi, “Optimizing sequential verification
by retiming transformations,” in Proc. 37th Conf. Design Autom., 2000,
pp. 601-606.

[24] J.-H.-R. Jiang and R. K. Brayton, “On the verification of sequential
equivalence,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 22, no. 6, pp. 686—697, Jun. 2003.

[25] N. Amla, X. Q. Du, A. Kuehlmann, R. P. Kurshan, and K. L. McMillan,
“An analysis of SAT-based model checking techniques in an industrial
environment,” in Proc. CHARME, in Lecture Notes in Computer Science,
vol. 3725, 2005, pp. 254-268.

[26] M. Handover, “Exhaustively verify SEU mitigation techniques using
formal verification,” in Proc. Space FPGA Users Workshop (SEFUW),
Apr. 2018. [Online]. Available: https://indico.esa.int/event/232/
contributions/2141/attachments/1784/2082/Mentor_2018-April_09-
Exhaustively_Verify_SEU_Mitigation_Techniques_Using....pdf

[27] A. Traskov, T. Ehrenberg, S. Loitz, A. Ayari, A. Efody, and J. Hupcey,
111, ““Fault proof: Using formal techniques for safety verification and fault
analysis,” in Proc. Design Verification Conf. (DVCon Europe), Oct. 2016,
pp. 27-32, Paper 10.2.

[28] P. Muth, “A nine-valued circuit model for test generation,” IEEE Trans.
Comput., vol. C-25, no. 6, pp. 630-636, Jun. 1976.

[29] W.-T. Cheng, “The BACK algorithm for sequential test generation,” in
Proc. IEEE Int. Conf. Comput. Design, Oct. 1988, pp. 66—69.

[30] F. Lu and K. Cheng, “SEChecker: A sequential equivalence checking
framework based on K'th invariants,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 17, no. 6, pp. 733746, Jun. 2009.

[31] ITC’99 Benchmarks. Accessed: Apr. 3, 2019. [Online]. Available:
http://www.cad.polito.it/tools/itc99.html

LUIS ENTRENA (Member, IEEE) received the Industrial Engineering degree
from Universidad de Valladolid, Spain, in 1988, and the Ph.D. degree in elec-
tronic engineering from Universidad Politécnica de Madrid, Spain, in 1995.

From 1990 to 1993, he was with AT&T Microelectronics, Bell Laborato-
ries, USA. From 1993 to 1996, he was a Technical Project Leader with TGI,
Spain. In 1996, he joined Universidad Carlos III de Madrid, Spain, where
he is currently a Full Professor, and previously, he was the Head of the Elec-
tronic Technology Department and the Director of the Postgraduate Program
in Electrical Engineering. He has coauthored over 160 papers in journals and
conferences and two patents. His current research interests include online
testing, formal verification, fault tolerance, soft error sensitivity evaluation
and mitigation, hardware security, and hardware acceleration.

ANTONIO J. SANCHEZ-CLEMENTE received the B.S. degree in industrial
engineering and the Ph.D. degree in electric, electronic and automation
engineering from Universidad Carlos III de Madrid, Spain, in 2011 and
2017, respectively. Since 2017, he has been a Research Member of the
Institute of Applied Microelectronics, Universidad de Las Palmas de Gran
Canaria, Spain. His work is mainly focused on the development of onboard
data processing hardware for space missions. He has been involved in the
design of several data compression IP cores belonging to the European Space
Agency portfolio and he has coauthored over 30 publications in journals
and conferences. In addition, his research interests include fault tolerance,
the verification of electronic circuits and systems, and electronic design
automation.

LUIS A. GARCIA-ASTUDILLO received the B.S. and M.S. degrees in indus-
trial engineering and the Ph.D. degree in electric, electronic and automation
engineering from Universidad Carlos III de Madrid, in 2017, 2019, and 2023,
respectively. He has coauthored over five articles in journals and conferences.
His research interests include digital electronics for space applications,
radiation hardening by design, error mitigation techniques, and functional
verification.

116139

IEEE Access

L. Entrena et al.: Formal Verification of Fault-Tolerant Hardware Designs

MARTA PORTELA-GARCIA received the degree in electronic engineering
from the Complutense University of Madrid, in 2002, and the Ph.D. degree
in electrical, electronic and automatic engineering from Universidad Carlos
III de Madrid, in 2007, with European mention. In 2003, she joined the
Department of Electronic Technology, Universidad Carlos III de Madrid,
where she developed research and teaching activities as part of the Micro-
electronics Design and Applications Research Group, until August 2020.
In September 2020, she joined the Arquimea Research Centre (ARC), the
private research center of the Arquimea Group. At ARC, she has started
a research line focusing on post-quantum cryptography and secure imple-
mentations for embedded systems. Her research interests include hardware
security, hardware acceleration, and the fault tolerance of digital circuits in
space applications.

MARIO GARCIA-VALDERAS (Member, IEEE) received the M.S. degree
in industrial engineering and the Ph.D. degree in digital electronics from
Universidad Politécnica de Madrid, Spain, in 1997 and 2004, respectively.
He has been with Universidad Carlos III de Madrid, since 2001, where he
is currently an Associate Professor with the Electronic Technology Depart-
ment. His research interests include the design of fault tolerant systems for
space, hardware acceleration using FPGAs, and digital design techniques and
tools.

116140

ALMUDENA LINDOSO (Senior Member, IEEE) received the M.S. degree
in telecommunication engineering from Universidad Politécnica de Madrid,
in 2001, and the Ph.D. degree from the University Carlos III of Madrid,
in 2009. Since 2003, she has been a Professor and a Researcher with
the Electronic Technology Department, Universidad Carlos III de Madrid,
where she is currently an Associate Professor. Her research interests include
hardware acceleration, image processing, and fault tolerance. She has coau-
thored over 75 publications in journals and conferences. Her current research
interest includes the adaptation in terms of reliability of high-performance
commercial circuits for aerospace applications.

ROBERTO SARMIENTO is currently a Full Professor in the area of
electronic engineering with the Electronics and Telecommunication Engi-
neering School, University of Las Palmas de Gran Canaria (ULPGC), Spain.
He contributed to set this school up, he was the Dean of the Faculty,
from 1994 to 1998, and the Vice-Chancellor for Academic Affairs and a
Staff with ULPGC, from 1998 to 2003. He is the Co-Founder of the Research
Institute for Applied Microelectronics IUMA), where he is also the Director
of the Integrated Systems Design Division. He has published more than
100 journal articles and more than 180 conference papers. He has participated
in more than 70 projects and research programmes funded by public and
private organizations. He has led several projects for the European Space
Agency (some of them related to development of IPs for ESA’s portfolio of
CCSDS 123 and CCSDS 121 standards) and he has collaborations with main
companies in the sector, such as Thales Alenia Space, SENER, and GMV.
His current research interests include the development of electronics system
for on-board satellites and space missions.

VOLUME 11, 2023

