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ABSTRACT CNN-based absolute camera pose estimation methods lack scene generalizability as the
network is trained with scene-specific parameters. In this paper, we aim to solve the scene generalizability
problem in 6-DoF camera pose estimation using a novel deep photo-geometric loss. We train a CNN-
based relative pose estimation network end-to-end, by jointly optimizing the proposed deep photo-geometric
loss along with the pose regression loss. Most traditional pose estimation methods use local keypoints to
find 2D-2D correspondences, which fails under occlusion, textureless surfaces, motion blur, or repetitive
structures. Given camera intrinsics, poses and depth, our method generates uniform 2D-2D photometric
correspondence pairs via epipolar geometry during the training process with constraints to avoid textureless
surfaces and occlusion, without the need of manually annotated keypoints information. The network is
then trained with the correspondences information in such a way that not only the network learns from
auxiliary photometric consistency information but also efficiently leverages scene geometry, consequently,
we call it photo-geometric loss. The input to the photo-geometric loss layer is taken from the activation
maps of the deep network, which contains much more information than a simple 2D-2D correspondence,
and thus alleviating the need to choose a robust pose regression loss and its hyperparameters. With extensive
experiments on three public datasets, we show that the proposed method significantly outperforms state-
of-the-art relative pose estimation methods. The presented method also depicts state-of-the-art results on
these datasets under cross-database evaluation settings, which proves its significance in terms of scene
generalization.

INDEX TERMS Camera calibration, camera pose estimation (CPE), structure from motion (SfM),
multi-view stereo (MVS), perspective-n-point (PnP), 6-DoF camera, photometric information, geometric
consistency information.

I. INTRODUCTION
Camera pose estimation (CPE) is a vital task for many com-
puter vision problems, such as Structure from Motion (SfM)
[40], Simultaneous Localization And Mapping (SLAM) [3],
and depth inference from multi-view stereo [42]. Before
the advent of convolutional neural networks (CNN), the
task of CPE was mainly accomplished by extracting sparse
keypoints like SIFT, SURF, and then establishing 2D-2D

The associate editor coordinating the review of this manuscript and

approving it for publication was Zijian Zhang .

correspondences between the matching keypoints, followed
by the estimation of the camera pose by solving Perspective-
n-Point (PnP) problem [11]. This traditional method of CPE,
however, suffers from two main problems, i) noisy features
due to repetitive structures and non-Lambertian surfaces,
ii) an overall slow process of computing the features
from multiple images and then solving for correspondence.
On the other hand, after the success of CNNs on a variety
of computer vision tasks, such as image classification,
object detection, image retrieval, semantic segmentation, etc.,
researchers proposed CNN-based solutions to predict camera
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FIGURE 1. Visualization of 2D-2D correspondences (cyan) used to train
the proposed end-to-end RTNet. The 2D-2D correspondences are only
used at training time and not required at test time.

pose. In contrast with the hand-crafted feature-based CPE
methods, the main benefit CNN-based counterparts offer is
the single step pose estimation (PE) withmuch faster process-
ing. Some researchers have successfully demonstrated the use
of deep learning (DL) modules to replace only parts of the
traditional PE pipeline, such as keypoint extraction [10], [12],
[29], keypoint matching [35], [43], and RANSAC [4], [30].
The mitigation of classical PE schemes to DL techniques

is also inspired by the aim to eliminate manual engineering
for feature selection. The classical two-stage PE pipeline
does not take full benefit from the global photometric and
geometrical constraints. On the other hand, CNN architec-
tures that directly regress the 6-DoF camera pose [13], [19]
looks at the complete image at once, and simultaneously
regress the pose after utilizing the global context information
from the input image. However, they too fail to capture
the structural or geometric information of the given scene.
Therefore, the researchers focused on utilizing alternative
informations in the form of 2D-to-3D correspondence (repro-
jection loss) [18], temporal cues [9], global positioning [5],
reinforcement learning by using probabilistic selection of
deterministic hypothesis [4]. Nevertheless, accurate CPE
using an end-to-end trainable deep network is a challenging
problem due to difficulties in modeling the photometric and
geometric constraints simultaneously.

In this paper, we propose to extract the photometric and
geometric consistency information from the ground truth
(GT) depth and camera parameters, rather than using off-
the-shelf keypoint extractors. We uniformly sample the 2D
locations of textured regions of the reference image, use
camera parameters and GT depth to inverse-project the 2D
locations to 3D space, and then project the 3D points on
the source image. We apply geometric constraints to reject
occluded points and pixel neighborhood similarity to avoid
textureless regions. The remaining 2D locations, not only
represent 2D-2D correspondence (photometric consistency)
between the reference and source images, but also follow

geometric consistency (epipolar geometry) due to the use of
depth and camera information during the projection process.
The extracted 2D-2D correspondence information is then
used to train a Siamese network in such away that the network
is forced to generate photo-geometric consistent feature maps
at the final convolutional layer. The proposed network called
RTNet (rotation and translation estimation network) is jointly
trained with pose regression (PR) loss to finally infer pose.
We observed that, when trained in this manner, the proposed
RTNet outperforms state-of-the-art (SOTA) relative pose
estimation (RPE) methods on DTU and 7Scenes datasets.
Moreover, under the cross-database scenario, RTNet evenly
outperforms SOTA relative and absolute pose estimation
(APE) methods We uniformly sample the 2D locations
of textured regions of the reference image, use camera
parameters and GT depth to inverse-project the 2D locations
to 3D space, and then project the 3D points on the source
image. We apply geometric constraints to reject occluded
points and pixel neighborhood similarity to avoid textureless
regions. The remaining 2D locations, not only represent
2D-2D correspondence (photometric consistency) between
the reference and source images, but also follow geometric
consistency (epipolar geometry) due to the use of depth
and camera information during the projection process. The
extracted 2D-2D correspondence information is then used to
train a Siamese network in such a way that the network is
forced to generate photo geometric consistent feature maps
at the final convolutional layer. The proposed network called
RTNet (rotation and translation estimation network) is jointly
trained with pose regression (PR) loss to finally infer pose.
We observed that, when trained in this manner, the proposed
RTNet outperforms state-of-the-art (SOTA) relative pose
estimation (RPE) methods on DTU and 7Scenes datasets.
Moreover, under the crossdatabase scenario, RTNet evenly
outperforms SOTA relative and absolute pose estimation
(APE) methods.

Our work is inspired by [21] in the context of end-
to-end RPE, as well as CNN-based feature extraction
and correspondence finding methods such as SuperPoint,
SuperGlue [10], [35]. Our work is also influenced by the idea
of using loss map from the deep layers as [16]. Compared
to these prior works, our approach makes the following
contributions:

Most prior CNNs for PE are trained using independent
single images, labeled with their corresponding absolute
camera pose. Hence, their performance is closely bounded
within the parameters of the dataset used for training.
In RTNet, we leverage the geometric as well as photometric
constraints between pairs of images to predict relative pose,
independent of the global pose information. This not only
improves the performance among other RPE methods, but
also show better generalization ability under cross-database
evaluation.

Unlike SuperPoint, SuperGlue and HF-Net [34], RTNet
does not require pre-training the feature descriptor network
with a separate feature point correspondence dataset.
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Unlike SuperGlue and HF-Net, that are multi-stage
(hierarchical) PE methods, RTNet is an end-to-end trainable
RPE method. Furthermore, in contrast with SuperPoint,
SuperGlue, HF-Net, and LF-Net [29], where main focus
of these methods is to generate discriminative keypoint
descriptors for feature matching purpose, the sole purpose of
using correspondences information by RTNet is to leverage
photo-geometric consistency on PE.

Unlike LF-Net that updates the two branches of the
network in iterative manner, RTNet updates the entire
network at once durnig backpropagation.

Unlike other CNN-based RPE methods, RTNet utilizes
2D-to-2D correspondence loss along with the PR loss to
optimize the prediction network. These 2D-to-2D correspon-
dences are generated via epipolar geometry, and thus, are
not only photometrically consists, but also geometrically
consistent.

Unlike traditional approaches, at the test time, RTNet
directly predicts the relative camera pose from input images
without any need to generate 2D-to-2D correspondences.

Similar to [16], we compute the loss from the deep
layers as it contains much more information than a simple
2D-3D correspondence, and thus alleviating the need for
choosing a robust loss and its hyperparameters. However,
[16] simply add up the dense layers to compute loss, while
RTNet minimizes the Euclidean distance between the 2D-2D
correspondences on the feature map to leverage photometric
consistency.

We confine RTNet to use all the GT information which
is readily available for the multi-view stereo-based depth
estimation networks, such as RMVSNet [42]. Consequently,
RTNet can directly be plugged into RMVSNet pipeline for
the homographic warping process.

The proposed method shows SOTA results on Microsoft
7Scenes dataset [17] and DTU Robot Image dataset [1] in
comparison with the previous RPE methods.

II. RELATED WORK
Traditionally, CPE has been approached by computing the
pose from 2D-3D correspondences between 2D pixels in
the query image and 3D points in the scene model [6],
which are determined through handcrafted feature descriptor
matching [36], [37]. This assumes that the scene is repre-
sented by a 3D structure-from-motion (SfM) model. The full
6 degree-of-freedom (DoF) pose of a query image can be
estimated very precisely. However, these methods require a
large database of features and efficient retrieval methods.
Their performance is affected by the changing environmental
conditions. Furthermore, they are computationally expensive
and often do not scale well.

The evolution of CPE methods using DL techniques is
not very old. The first research that successfully imple-
mented an end-to-end trainable CNN-based 6DoF CPE
was PoseNet [19] in 2015. Published in 2015, PoseNet
utilized GoogLeNet [14] pretrained on ImageNet [33] as
base network for feature extraction, to leverage deep features

learnt on image classfication task to handle the complicated
out-of-plane regression problem using transfer learning.
However, PoseNet over-fitted its training data and failed to
generalize on new scenes. Therefore, to incoperate scene
geometry, Kendall et al. proposed a novel loss function based
on scene reprojection error [18] and showed its efficiency in
appearance-based localizations. Following PoseNet, several
researchers also proposed modifications to the PoseNet
architecture, with major focus being the feature extractor
and the regressor part. Melekhov et al. [24] replaced the
feature extractor with an hourglass style encoder decoder
architecture with a base network consisting of ResNet34
layers. SVS-Pose [27], suggested a VGG16 feature extractor.
BranchNet [41] reduced the number of convolutional layers
from the GoogLeNet backbone in PoseNet and proposed a
two separate FC layer branches for regressing translation and
rotation independently.

In contrast with end-to-end DL based methods, local
learning methods focus on local and related problems by
imposing a less tight coupling between the input images and
the output poses. This way, the local learningmodels are com-
bined with structure-based pipelines in a more generalized
way. However, these approaches b29,b42 assumes stricter
initialization settings and sometimes contain fine-tuning
steps [10], [35] with separate training datasets.

Nevertheless, the idea that DL methods can be used for
regressing the pose with an end-to-end learning, without the
need to manually engineer the features, gave rise to more
research in this field. Additionally, the DL methods offered
robustness against lighting conditions and viewpoint changes,
constant runtime at inference and low memory footprint.
MapNet [5] used relative pose loss along with the APE loss,
as well as an additional GPS-based localization data to con-
straint the loss. VLocNet [39], on the other hand, proposed to
jointly learn absolute and relative pose using three separate
network branches, one for APE and the other two for RPE.
To further extract scene information, VLocNet++ [31] added
semantic segmentation as another auxilary learning appoarch
to the exhisting VLocNet architecutre. However, this requires
additional segmentation labels of the scenes, as well as more
memory requirements to accomodate another 5 network for
semantic segmenation. Glocker et al. [16] presented Neural
Reprojection Error (NRE) as a subtitute to the reprojection
error used by previous APE methods [18], where the NRE is
computed from dense loss map. However, with a theoretical
model for APE algorithms, Valada et al. [38] concluded that
the APE techniques are not guaranteed to generalize from
the training data in practical scenarios. Sattler et al. also
commented that the APE is more closely related to image
retrieval approaches than to methods that accurately estimate
camera pose via 3D geometry.

In contrast with the APE, where the underlying models
establish a one-to-one relationship between images and their
absolute pose with respect to a global reference, RPE tries
to find relative pose between two images by modeling
the relationship between the visual features on the two
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images. In particular, RPE provides means for relation and
representation learning for previously unseen scenes and
objects [25]. However, the RPE methods differ from each
other based on the underlying task, broadly classified into
three categories, i) image retreval (IR), ii) visual odometry
(VO), and iii) pose regression (PR). IR-based PE methods
decouple feature learning and PE. Given a query image,
RelPoseNet [21] estimates its pose to be the pose of its
nearest neighbour (NN) in a reference dataset utilizing
the visual similarity between the query and the reference
images. RelPoseNet trains a relative pose regressor with
pair of images, and at test time, uses the deep features
of the network to calculate the NN in the feature space.
Similarly, RelocNet [2] retrieves a relevant image from
a database, which presents high camera frustum overlap
with an unseen query. Subsequently, RelocNet uses the
pose of the images stored in the database, to compute the
pose of the query by applying a transformation produced
by CNN that is trained with a camera frustum overlap
loss.

VO-based RPE methods assume that the given pair of
images are sequential images. Consequently, VO-based RPE
methods estimate the incremental motion between the pair of
images. Zheng et al. [44] proposed a CNN-Recurrent Neural
Network (RNN) architecture called DeepVO, in which the
features from CNN are fed to an RNN for learning the
dynamics and relations among the sequence of images.
The final pose between the pair of images is regressed
with a Mean Square Error (MSE) loss layer. VidLoc [9]
exploited the temporal smoothness constraint between short
sequences of consecutive frames by training a RNN for video-
clip localization. Laskar et al. [20] proposed an end-to-end
architecture for learning ego-motion from a sequence of
RGB-D images using a prior set of discretized velocities and
directions. However, these methods are applicable to image
sequences.

In comparison to the VO-based and IR-based RPE
methods, the relative PRbased methods assume that the
scene graph information is given, and thus the rela-
tive pose can be regressed directly from the GT pose.
Moulon et al. [25] presented a Siamese architecture with
spatial pyramid pooling layer to regress relative pose, where
the pairwise scene overlap information is estimated from an
open source tool [26], demonstrated improved performance
compared to the local feature-based approaches that utilizes
SIFT and ORB features. Szegedy et al. [13] replaced
the base network with a GoogLeNet, and experimented
with different 6 combinations at the FC layer and loss
layers. Rather than directly regressing pose, a recent RPE
method DirectionNet [7] estimates a discrete distribution
over keypoint locations by factorizing poses as a set of 3D
direction vectors. DirectionNet shows a near 50% reduction
in error over direct regression methods on synthetically
generate dataset. However, some researchers [18], [23]
argued that the 3D pose is continous and must be solved in
a regression framework instead.

FIGURE 2. Overall architecture of the proposed RTNet using deep
photo-geometric and pose regression loss.

The proposed method partly adopts features from many
of these previously discussed techniques. However, contrary
to the previous end-to-end trainable APE and RPE methods
that trains individual models with PR loss, reprojection loss,
or location-aware loss, our method is the first to jointly
train an end-to-end CNN architecture that simultaneously
regresses the 6-DoF relative pose by imposing photometric
and geometric consistency using 2D-2D correspondences
that follows epipolar geometry. By jointly learning both
tasks, our approach is robust to unseen environments,
thereby combining the advantages of both local feature and
DL-based localization methods. The presented method does
not require separate handcrafted feature extractor to generate
2D-2D correspondences. Rather, it uniformly samples 2D-2D
correspondences from the GT depth and camera parameters,
which is discussed in the following sections.

III. PROPOSED APPROACH
The overall architecture of the proposed RPE method
is shown in Fig. 2. The inputs to RTNet are a pair
of images (a reference and a source), GT relative pose,
and the 2D-2D correspondences. The pair of images are
passed to the Siamese network and their deep features
are extracted. We used stacked hourglass [28] structure
for feature extraction with ResNet as the base network.
As shown in Fig. 2, the deep descriptors of the 2D-2D
correspondence pairs are taken from the final convolutional
layer, thus we name them as 2D-2D deep correspondences.
Given correspondences, the deep photo-geometric loss layer
minimizes the L2-distance between these corresponding deep
features. Each feature descriptor have a size of 32 × w × h,
where w × h represent the spatial window around the
corresponding points. We experimented with different sizes
of w × h and reported the results in the results section.
The deep features from the two branches are then flattened,
and concatenated. Inspired by the research on object detec-
tion [32], where feature sharing between proposal generation
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FIGURE 3. Process of finding 2D-2D correspondences between a
reference and a source image. (a) Shows the pixels that can be
successfully projected on src. image from ref., and thus their 2D locations
are used as correspondences, (b) and (c) represent the regions where ref.
image pixels are occluded, and (d) shows the pixels of ref. image that are
mapped outside the boundaries of src. image. (Please note that (a)-(d)
are only for concept visualization. We do not map pixels. Rather, we only
make use of their location).

part and object detection part has shown both speed and
performance gains, we also share the deep features between
deep correspondence and the PR part of the RTNet. In the
following subsections, we describe the deep photo-geometric
loss, the correspondences generation method and the PR part
in more detail.

A. CORRESPONDENCE GENERATION AND DEEP
PHOTO-GEOMETRIC LOSS
Given GT pose, scene graph, 3D model, and intrinsics,
we generate the 2D-2D correspondence pairs. Figure 3 shows
this process, where the points are projected from reference
image to source image using the 3D model. We assume
that for RPE purpose, as far as the two pixels on the pair
of images follow a 2D-2D correspondence, they need not
to be local keypoints. Therefore, we sample uniform 2D-
2D correspondence pairs from the pair of images. First, the
reference image is scanned row-wise (dark green arrows on
reference image in Fig. 3), and uniform points are sampled.
Second, we apply the textureness constraint on the pixels
indexed by the sampled 2D points, and reject the 2D points
that falls on textureless regions (such as the point represented
by red triangle in Fig. 3). Third, remaining 2D points are
inverse projected to the 3D model using 2D-3D projection,
and then projected to the source image using 3D-2Dmapping
(represented by large dashed arrows in Fig. 3). It is worth
mentioning that due to these 2D-3D and 3D-2D projections,
the candidate 2D points strictly follow the scene geometry,
consequently contributing to the learning process with
geometric information. Fourth, 2D points that are occluded
in source view (such as the point represented by red diamond
in Fig. 3) or mapped outside the source image boundaries
(point represented by the red circle in Fig. 3) are also rejected.
Remaining 2D points that are successfully mapped from
reference image to source image are saved as the 2D-2D

corre- sponding pairs for that particular image pair. Example
of 2D-2D corresponding pairs are illustrated with the yellow
star and the yellow square in Fig. 3. Although, the 2D-2D
correspondences correspond to photometric consistency of
the input RGB images, we scale the correspondences on the
respective deep feature maps. Consequently, we call these
correspondences as 2D-2D deep correspondences. Moreover,
it can be observed that these 2D-2D corresponding pairs not
only follow the geometric constraints, but also follow the
photometric constraints as they represent the same regions on
the two views. Thus, we name the loss between these deep
correspondences as deep photo-geometric loss. As shown
in Fig. 2, we minimize the L2-distance between the deep
features from the corresponding 2D-2D locations of the final
convolution layers of the Siamese network. Let (xrefi , yrefi ) ∈

{(xref1 , yref1 ), (xref2 , yref2 ), . . . , (xrefn , yrefn )} denote the n uni-
formly sampled candidate 2D points on reference image Iref ,
then the deep photo-geometric consistency loss is given by:

LPG =

n∑
i=1

∥∥∥F(xrefi , yrefi ) − F(p(xrefi , yrefi ))
∥∥∥ (1)

where F is a 32×w×h deep feature map from the last
convolutional layer of the Siamese network and p represents
the projection function that projects 2D points from reference
to the source.

1) AVOIDING TEXTURELESS SURFACE
The proposed method finds corresponding pairs from the two
images based on epipolar geometry, and thus, does not force
the corresponding pairs to be keypoints. This relieves the need
to engineer feature descriptors or use a separate fine-tuning
stage with an annotated dataset for feature extractor as
in [10] and [35]. However, the proposed method can end
up minimizing the distance between the corresponding pairs
that are sampled from textureless regions (non-Lambertian
surfaces). Thus, it is vital to reject correspondences from
textureless regions. We adopt a fast and simple, yet effective
approach to filter out textureless regions. We compare the
intensity of the pixel indexed by the candidate 2D point with
its immediate 8 neighbors, and if the intensities of the 5 out
of 8 neighbors differs above a specified threshold with that of
the candidate 2D point, then the candidate 2D point is added
to the pool of corresponding pairs. Mathematically denoted
as:

T (Iref (x
ref
i , yrefi )) =

∑
m,n

s(Iref (m, n) − Iref (x
ref
i , yrefi )) ≧ 5,

s(x) =

{
1 x ≧ thresholdintensity
0 otherwise

(2)

wherem, n represent the indexes of the neighboring pixels, T
represent the textureness of the pixel indexed by (xrefi , yrefi )
on reference image Iref . The red triangle in Fig. 3 represents
the textureless surface, and thus, it is rejected during the
sampling of corresponding pairs.
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2) OCCLUSION AND OUT-OF-IMAGE-BOUNDARY
HANDLING
Handcrafted features simply fail to find corresponding
keypoints in occluded regions. The proposed method rejects
candidate 2D correspondence point on reference image if it is
occluded in source image. We define an occluded region as a
region on the source image, such that more than one points
from reference image map to that region. Two 2D points
(xrefi , yrefi ) and (xrefj , yrefj ) on reference image are treated as
occluded in source image if:

p(xrefi , yrefi ) = p(xrefj , yrefj ) (3)

here p defines the projection from reference to the source
image. In the case of occlusion, both points are rejected for
simplicity. Similarly, candidate 2D points that are projected
outside the boundaries of the source image, are also rejected.
The red circle in Fig. 3 represents the 2D point that is
mapped outside the source image boundary, while the red
diamond represents the 2D point that is occluded in the
source image, and thus, they are both rejected during
the 2D-2D correspondence sampling process. Although, the
correspondences can be generated on the fly during training,
for speed gains we generated the 2D-2D correspondences
offline and loaded them during the training time.

B. RELATIVE POSE REGRESSOR
The pose regressor networkwhich consists of a series of fully-
connected layers, is fed with the deep photo-geometric con-
sistent features from the Siamese network. Following [18],
we use the 1× 4 unit quaternion vector representation for the
rotation1R and 1×3 vector representation for the translation
1t . The PR loss is given by:

LPR =
∥∥1t̂ − 1t

∥∥ + β

∥∥∥1R̂− 1R
∥∥∥ (4)

where β represents the balancing parameter between rotation
and translation estimations. The behavior of the β on training
loss led us to a few interesting observations, as described
below.

1) PR LOSS ONLY
When training the network with only PR loss, the prediction
accuracies show high dependency on the value of β.
In general, a proportionally higher value of β as the scale
of translation values shows better results. This requires
recomputing the value of β every time for an unseen dataset.
To remove the β dependency, we found that convergence can
be achieved by training the network with a slightly high value
of β (100-200) first, and then fine-tune the network with
mean absolute percentage error (MAPE). Equation 4 can be
converted to MAPE (L%) as:

L% =
1
N

N∑
i=1

(

∥∥∥R̂i3−Ri3∥∥∥
ˆRi3+c

+

∥∥∥R̂i2−Ri2∥∥∥
ˆRi2+c

+

∥∥∥R̂i1−Ri1∥∥∥
ˆRi1+c

+

∥∥∥R̂i0−Ri0∥∥∥
ˆRi0+c

+

∥∥t̂ i2−t i2∥∥
ˆt i2+c

+

∥∥t̂ i1−t i1∥∥
ˆt i1+c

+

∥∥∥ ˆt i0−t
i
0

∥∥∥
ˆt i0+c

) (5)

where N is the batch size and c = 0.0001 is a non-zero
constant for numerical stability. Note that the asymmetric
nature of the MAPE positively affects the learning process
in the presence of +ve and −ve GT values.

2) JOINT OPTIMIZATION OF DEEP PHOTO-GEOMETRIC AND
PR LOSS
However, when training RTNet by jointly optimizing the
deep photo-geometric error and PR error as given in Eq. 6,
we found that the value of β = 1 in Eq.4 works well for all
the three datasets, and thus can be removed.

Ljoint = LPG + LPR (6)

Please note that RTNet is trained with Ljoint . L% was
only used to study the affects of β when training the
network without LPG. Unlike the reprojection error [18], the
photo-geometric error did not exhibit divergence in training
when used as an additional loss along with PR loss.

IV. EXPERIMENTS
A. DATASETS
We evaluated the proposed RTNet on three datasets and
compared it with SOTA methods on prediction accuracy and
generalization capability against unknown scenes.

1) DTU DATASET [1]
The DTU dataset is captured using a calibrated camera,
mounted on a robotic arm. The camera positions and light
positions are controlled via a computer program, to collect
large amounts of high-quality image data with different
lighting conditions. A structured light scanner is also used to
capture the 3D surface geometry of the viewed object. DTU
dataset is helpful when evaluating imagematching algorithms
as the image correspondences can be determined from the
known camera and scene geometry. The dataset includes
124 scenes containing different number of camera positions.

2) 7SCENES DATASET [17]
Captured in an indoor office environment, this dataset is
comprised of RGB-D images collected from seven different
scenes (rooms), where each scene consists of multiple
sequences. The images are captured with a handheld Kinect
RGB-D camera (640 × 480 resolution), and the GT poses
are extracted using KinectFusion. The dataset is difficult for
relocalization and tracking tasks, due to the different camera
motions in the presence of motion blur, perceptual aliasing,
and textureless features in the room.

3) UNIVERSITY DATASET [21]
Similar to the 7Scenes dataset, University dataset contains
5 similar indoor scenes. However, in contrast to 7Scenes,
all the scenes in the University dataset are registered to a
common global coordinate frame, eliminating the need to
train and test the models scene-wise. The dataset contains
9,694 training and 5,068 test images. However, we used all
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TABLE 1. Performance comparison of RPE methods on DTU dataset.
(translation (m), rotation (o)).

the images for training and evaluated the models on DTU and
7Scenes datasets.

B. EVALUATIONS
In this section, we quantitatively demonstrate the perfor-
mance of the proposed method on the DTU and 7Scenes
datasets, as well as compare the cross-database performance
on these datasets using the University Dataset.

1) EVALUATION ON DTU DATASET
To the best of our knowledge, [25] used the DTU dataset for
the first time for comparing the performance of CNN-based
PE method and handcrafted feature-based method. We chose
DTU dataset as the main dataset for evaluating the proposed
RTNet, as the DTU dataset provides accurate and reliable
orientation and translation information in comparison with
7Scenes or University dataset, where the GT poses are
dependent upon the success of underlying PE methods.
We compare our results with the current SOTA RPE methods
in Table 1. For performance comparison, we used the metrics
in [18]: Positional error (m) and angular error (degrees).
The proposed method is evaluated with three different base
networks, i.e., SqueezeNet, Res50 and Res32. Additionally,
we found that preprocessing the images with deep photo
enhancer (DPE) [8] results in slightly smaller PE errors
as compared with using RGB images. Moreover, we found
that increasing the spatial window (w × h) around the 2D
correspondences increases the PE errors. This may be caused
by the fact that the neighboring deep features around the
2D correspondence pairs, which represent the compressed
representation of the input image, are not guaranteed to
follow the three constraints defined in section III-A.
In Fig.4 we present the effect of varying different

parameters of the RTNet structures on its performance.
Results show that using sum instead of concatenate (Fig.4(a))
and Res50 instead of Res32 or SqueezeNet (Fig.4(d)) resulted
in reduced PE errors. Res32∗ in Fig.4(d) denotes a modified
version of RTNet, where we increased the depth of PR part
of the RTNet by adding 3 conv. layers for successive feature
dimension reduction, however, that negatively affected the

FIGURE 4. Effect of different parameters on the PE.

performance. Sampling policy shows a very slight effect
on the performance (Fig.4(b)), however, using too fewer
correspondences leads to bigger PE errors (Fig.4(e)). Finally,
Fig.4(c) shows the comparison between using RGB images
vs using RGB+Histogram of Gradients (HoG) features.
We found a small reduction in rotation error but increased
translation error when fusing HoG features with the RGB
images.

2) EVALUATION ON 7SCENES DATASET
The 7Scenes dataset does not provide calibrated camera
parameters and thus it is impossible to find 2D-2D corre-
spondences using epipolar geometry. In order to evaluate
RTNet on the 7Scenes dataset, we confined to use keypoint
correspondence information from the VisualSfM pipeline.
Please note that the use of off-the-shelf keypoint information
when experimenting with the 7Scenes dataset is due to
the unavailability of the calibrated camera parameters. The
experimental results are compared with the SOTA 6-DoF
CPE methods in Table 2. The proposed RTNet (bold values)
not only outperforms SOTA RPE methods (RelPoseNet and
RelocNet), but also outperform APE methods, except the
VLocNet++ (underline values). The VLocNet++ requires
extra segmentation labels to train the network. It is also worth
mentioning that the RPE methods in Table 2 are evaluated on
a 5× bigger test set as compared with the test set used by APE
schemes. Following the convention in [21], we pair every
reference image in the test set with top-5 nearest neighboring
source images and predict 5 poses. In contrast, APE methods
estimate only one pose for each test image.

There is an interesting observation from Table 3. When
trained on DTU dataset, the proposed RTNet shows a very
small error on the 7Scenes dataset (2nd col., last row),
but when the roles of these two datasets are switched,
the performance drops very much (3rd col., last row).
We believe, that this is due to the reason that when
training RTNet with the DTU dataset, we use accurate GT
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TABLE 2. Performance comparison on 7Scenes dataset with representative end-to-end camera pose estimation methods.

TABLE 3. Performance comparison under cross-database settings.

FIGURE 5. Comparison of 3D reconstruction results using GT (left) and
predicted pose (right).

information to leverage photo-geometric consistency, which
consequently shows good performance on 7Scenes. However,
the correspondence information for 7Scenes is computed
from the SFM pipeline (using SIFT), which is less accurate
than the GT correspondences, resulting in relatively poor
RPE performance. The same behavior is observed when we
used University dataset as the training set and the DTU
dataset as the test set. In fact, the errors in the 3rd and 4th

column seem very similar due to the fact that the nature of
the two datasets, i.e., capturing method, camera movement,

and capturing environment, is very similar. This is further
clarified by the small errors in the 5th column. Comparing the
cross-database performance in Table 3 and the performance
given in Table 2, it can be observed that the proposed
method outperforms the SOTA RPE, and even outperforms
most of the APE methods. This proves the claim that using
geometric consistent 2D-2D correspondence information can
help learning more generalized features that can be applied to
unseen scenarios.

3) 3D RECONSTRUCTION WITH GROUND TRUTH DEPTH
In Fig. 5 we present 3D reconstruction results on some
of the test scans of the DTU dataset, using the predicted
pose from the RTNet. We used Fusibile [14] for the 3D
reconstruction and GT depths. Even though, RTNet exhibits
less completeness as compared with the GT results, it still
shows promising results towards 3D reconstruction using
deep learning based CPE.

V. CONCLUSION AND FUTURE WORK
In this paper, we introduced a deep photo-geometric loss to
overcome the lack of scene generalization problem posed to
the absolute camera pose estimation methods. The basis of
photo-geometric consistency is laid upon 2D-2D photometric
correspondences computed using epipolar geometry between
pairs of images. We presented a CNN-based end-to-end
relative camera pose estimation architecture RTNet, that
jointly optimizes the proposed photo-geometric loss and the
pose regression loss. In this way, the proposed method not
only leverages the photometric consistency but also forces
the geometric consistency on the network. With experiments
on three different public datasets, we showed that the
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photo-geometric loss helps the deep network to learn more
generalized features, consequently outperforming the state-
of-the-art pose estimation methods on previously unseen
scenes. Currently, the proposed method is tightly coupled
with finding the accurate 2D-2D correspondences from
camera parameters and depth at training time. We plan to
invest future efforts towards relaxing the need to find accurate
correspondences by utilizing the generalization power of the
network. Currently, the proposed method is tightly coupled
with finding the accurate 2D-2D correspondences from
camera parameters and depth at training time. However,
the camera pose estimation method using deep learning
shows limited performance in terms of accuracy compared
to traditional methods [11]. Therefore, we plan to invest
future efforts towards relaxing the need to find accurate
correspondences and pose information, by utilizing the
generalization power of the network.
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