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ABSTRACT The progression of deep clustering techniques in the recent years emphasizes the need for
unsupervised representation learning methods that build lower-dimensional embeddings within expressive
latent feature spaces. An important performance factor for such techniques constitutes the representational
capacity of the used neural network technology. Although Capsule Networks (CapsNet)s are predestinated
for the task of deep clustering through their rich entity representations and inter-layer dynamics related to
clustering, CapsNets are to date rarely explored in this context. Themain challenge for enabling unsupervised
representation learning with CapsNets results from the required differentiation of the output capsules to
encompass data-intrinsic classes. This paper proposes a novel end-to-end framework denominated as Class-
Variational Learning (CVL)which utilizes an asymmetric autoencoder consisting of a CapsNet encoder and a
non-capsular decoder network for facilitating entity-subspace clustering. To the best of our knowledge CVL
represents the first approach which accomplishes a class-to-capsule specialization of the output capsules
without external supervisory signals. As unique characteristic, CVL forms an equivariant latent space with
continuous transitions between data-intrinsic classes. This means a crucial gain in the explainability of the
constructed inference mechanism, since the class-discriminative equivariant space is linearly navigable and
fully accessible by a human actor. Despite our CVL model does currently not lead to competitive accuracies
compared to the state-of-the-art deep clustering techniques, CVL opens promising perspectives on the use
of CapsNets as the basis for deep clustering which hopefully motivates future research in this field.

INDEX TERMS Autoencoder, capsule networks, class-discriminative equivariance, deep clustering,
unsupervised representation learning.

I. INTRODUCTION
For unleashing the potency of neural networks to completely
learn from unlabled data, a promising trend called deep
clustering [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] is emerg-
ing in which state-of-the-art neural networks are equipped
with clustering techniques or objectives to establish unsuper-
vised representation learning. In fact, Kauffmann et al. [11]
recently explored the natural relationship between neural
networks and standard clustering algorithms by transforming
clustering algorithms fitted to the data into functionally
equivalent neural networks without the need for retraining,
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and denominated this proceeding as neuralization. In general,
deep clusteringmodels learn a parametric, nonlinear mapping
from the original data space to a lower-dimensional embed-
ding space which satisfies an implicit or explicit clustering
objective (cf. [6], [9], [12]).

A special type of neural networks, namely Capsule
Networks (CapsNet)s [13], [14], are predestinated to form
the basis of deep clustering methods since CapsNets usually
manage their inter-layer dynamics as clustering between
lower-layer entity embeddings to higher-layer ones [14],
which is referred to as routing-by-agreement [13], [14].
Moreover, CapsNets offer high representational capacity
through the segregation of entity instantiations in the
distributed representation of capsules and signifying entity
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FIGURE 1. 2D-Projection of the test set from MNIST using (a) t-SNE and
(b) & (c) t-SNE on the embeddings from a CVL model. Coloring equals (a) &
(b) the dataset labels and (c) the cluster assignments from the CVL model.

existence as capsule vector length [13]. Despite this benefi-
cial prerequisites, CapsNets are to date rarely explored for the
task of deep clustering in the sense of general-purpose unsu-
pervised representation learning. This situation apparently
has its origin in the obstacle to orchestrate an unsupervised
training algorithm that leads to a discriminative specialization
of capsules in the output layer within a CapsNet. In particular,
previous investigation pointed out that naive attempts such as
training a CapsNet autoencoder, without selecting a specific
output capsule in the encoder (known as masking [13]),
degrades the beneficial CapsNet properties by collapsing
into a non-capsular autoencoder [15]. To cope with this
circumstance we structure the task of deep clustering with
CapsNets into the following challenges:

1) Discriminative capsule specialization,
2) Preservation of capsular properties,
3) Explainability of cluster assignments.

In this work we address these challenges with a deep
clustering method dedicated to the use of a CapsNet encoder,
enclosed in the novel training paradigm Class-Variational
Learning (CVL) which defines an implicit clustering objec-
tive. As quick outlook, we design an asymmetric autoencoder
architecture with a CapsNet encoder and a non-capsular
decoder network to direct an end-to-end training procedure
for discriminative representation learning, where the output
capsules of the CapsNet encoder form separated entity
subspaces to take the role of clusters. Fig. 1 supplies a
first impression of the latent space produced by the output
capsules of a CVLmodel for the images from the handwritten
digits dataset MNIST [16], [17]. For the visualization in the
two-dimensional space, the dimensionality reduction method
t-distributed Stochastic Neighbor Embedding (t-SNE)1 [19],
[20] is applied on the original data points and the latent
representations of the CVL model. Although the CVL model
does not perfectly match the predefined labels for MNIST,
CVL accomplishes the creation of ten well-separated and
similarly sized clusters. Furthermore, we will show that
a CVL model satisfies the three identified challenges by
constructing a class-discriminative equivariant space, which
allows the continuous observation and evaluation of latent
representations on the entity appearance manifold.

Our contribution is threefold: Firstly, we introduce
CVL as novel unsupervised learning procedure to receive

1Implementation used from scikit-learn [18].

lower-dimensional embeddings from the output capsules of
a CapsNet encoder. Our framework presents step-by-step
strategies to deal with difficulties occurring with the use of
CapsNets in an unsupervised learning setting. Specifically,
we propose a new sparsity boosting mechanism for balancing
the average usage of output capsules which can be adapted
to other tasks than CVL. Secondly, we prove our concept
by means of descriptive experiments and investigate special
properties of our approach. A key result of our experiments
constitutes the fusion of equivariant features with the task
of class discrimination. Thirdly, CVL contributes to the
progress of deep clustering in the field of CapsNets with
a relatively simple framework for associating meaningful
clusters with the output capsules and preventing non-capsular
network degradation. Despite the exclusive use of the
MNIST dataset in our experiments, we declare CVL as
domain-independent algorithm with an adjustable sampling
procedure and reconstruction quality criterion for distinct
applications.

The rest of the paper is structured as follows: Section II
reviews the literature regarding non-capsular deep clustering
approaches and existing perspectives in the unsupervised
training of CapsNets, section III introduces the CVL
paradigm and builds stepwise its mathematical framework,
section IV evaluates CVL’s performance on various experi-
ments with MNIST, section V discusses the empirical results
of the experiments and provides important implications,
section VI summarizes the central findings of this work.

II. RELATED WORK
A. NON-CAPSULAR DEEP CLUSTERING
The most deep clustering approaches [2], [3], [4], [6], [9],
[10], [12], [21] utilize an autoencoder [22] architecture in
combination with a reconstruction loss [2], [3], [4], [6],
[9], [12], [21] to learn rich representations by realizing a
bidirectional mapping between the original data space and
the latent feature space. These approaches show a variety of
autoencoder implementations: Often fully-connected neural
networks constitute an autoencoder [4], [12], [21], in other
works convolutional variants [2], [3], [6] or self-evolving
autoencoders [10] are used. Sometimes net architectures with
multiple encoder or decoder components are exploited for
increasing training success [3], [6], [9]. In rare cases, decoder
components are removed or ignored after a first stage in the
training process [12], [21].

Apart from the concrete choice for an architectural
design, deep clustering methods meaningfully differ in their
optimization strategies, as well. Usually, pretext tasks are
conducted for learning an expressive embedding space, for
example, through recovering noisy data samples [3], [6],
[12], preserving instance-based local neighborhoods [23],
predicting image rotation angles [7] or by applying layer-wise
pretraining for autoencoders [4], [6], [12], [21]. Other
approaches [21], [23] divide the model training into two
separated phases of feature learning and clustering. A similar
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FIGURE 2. Overview of the unsupervised CVL scheme using image data from MNIST. A CapsNet encoder
with m class capsules gets jointly trained with a non-capsular decoder network for input reconstruction.
First, a CV image is generated by sampling pixels from two source images using a Bernoulli distribution with
probability α. Each class capsule of the encoder emits a representation for the CV input image. The decoder
network produces a reconstruction for each class capsule representation. The training objective comprises
the attribution of both source images to the capsules with the minimal-distant reconstructions. In this
example, the second (t ` 1) and the last (t ` (m ´ 1)) reconstruction constitute the most similar ones to
both source images. The target signal (in blue) for the class distribution is respectively stated with the given
Bernoulli probabilities, positioned at the capsule indices with both minimal-distant reconstructions. Thus,
CVL demands from a model to detect and describe intrinsic classes within a data collection.

proceeding represents the alternation between epochs for
feature learning and clustering during model training [7].
However, many deep clustering techniques [1], [2], [3],
[5], [8], [24] prefer a training strategy in an end-to-end
fashion where embeddings are simultaneously learned with
clustering objectives.

For sure, a key benefit of neural networks for the
use as clustering method results from their architectural
flexibility and inherent ability of multi-modal optimization
using individual loss functions per task-specific goal. This
circumstance allows the reformulation of standard clustering
algorithms in terms of neural network training objectives.
For instance, some deep clustering methods [1], [6], [21] are
derived from insights of spectral clustering, another work [24]
formulates a recurrent training framework with an agglom-
erative clustering objective for deep representation learning,
and a further method [8] consists of task-specific sparse-
coding components trained on one or multiple clustering
objectives. Interestingly, the natural relation between deep
clustering and traditional clustering techniques can also be
emphasized by regarding deep clustering as Expectation-
Maximization (EM) [25] algorithm in which the M-step
computes point-to-cluster assignments with fixed network
parameters and the E-step corresponds to the adjustment of
the network parameters based on the former assignments
(cf. [3]). Distinct realizations of both EM-steps can be
attributed to several deep clustering approaches [2], [3], [4],
[5], [7], [10], [12], [24].

B. UNSUPERVISED LEARNING WITH CAPSNETS
In the field of unsupervised learning with CapsNets
autoencoder architectures as well emerge [15], [26].
Rawlinson et al. [15] preserved the specialization of latent

capsules within an asymmetric autoencoder composed of
a CapsNet encoder and a non-capsular decoder network,
after the design from Sabour et al. [13], by implementing a
rank-based sparse masking depending on individual capsule
activity. Since Rawlinson et al.’s [15] training algorithm
applies a masking on the joined vector of all output capsules
in the encoder to activate a small fraction of capsules per
sample, each reconstruction is still controlled by multiple
output capsules. Although Rawlinson et al.’s [15] approach
was not intended for deep clustering, their empirical results
serve as theoretical foundation for successfully training
CapsNets in an unsupervised learning setting. Also not
intended for the task of clustering, Kosiorek et al. [26]
proposed an extensive framework using a set transformer
architecture for input encoding and unsupervised stacked
capsule autoencoders to model geometric relationships
between visual objects and their parts, resulting in impressive
accuracies when clustering the learned latent space. However,
replacing the set transformer with a standard multi-layer
perceptron drastically degrades clustering accuracies on
the tested image datasets [26]. With the aim of clustering
sound recordings, Lin et al. [27] designed an asymmetric
convolutional autoencoder, consisting of a CapsNet encoder
and a non-capsular decoder network, which is jointly trained
using a reconstruction loss and a clustering layer [12] for the
embedding space. In particular, Lin et al. [27] concatenate
the vector lengths of the output capsules from the CapsNet
encoder to constitute deep embeddings for the clustering.

In coherence to previous attempts, our CVL model
constitutes an asymmetric autoencoder architecture with a
CapsNet encoder and a non-capsular decoder network (cf.
Fig. 2), but CVL’s training algorithm exploits the full capacity
of capsules to represent entity subspaces as separated clusters
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FIGURE 3. Schematic communication between two fully-connected
capsule layers with nonlinear routing. The instantiation parameters of
each capsule ci from the (l ` 1)-layer are individually computed as
aggregation over all capsules from the previous layer.

through the reconstruction of input samples with single
capsules. This leads to a specialization of capsules in
detecting and representing discriminative intrinsic classes.

III. CLASS-VARIATIONAL LEARNING
The aim of CVL is the unsupervised identification of inherent
data characteristics that allow the effective discrimination
between different kinds of data instances. In unsupervised
learning data instances are associated with clusters, which
represent groups of elements with similar properties, whereas
in supervised learning data instances are assigned to classes
according to predefined criteria in the form of a labeled
dataset. Although CVL is by definition originated in the
unsupervised domain, using the term clusters instead of
classes would be misleading due to the fact that humans
expect classes, means diverging object types, in unknown
data collections that are commonly verbalizable. More
precisely, CVL makes the strong assumption that every data
point x within an arbitrary dataset X exclusively belongs to
an intrinsic class Ci:

@x P X , D!Ci P tC1, .., Cmu : x P Ci. (1)

This proceeding reformulates a clustering operation as
single-label classification problem for realizing unsupervised
representation learning. CVL was inspired by the learning
principle time-contrastive learning [28] which exploits
nonstationarities in the temporal structure of time series data
to extract latent variables per specified time segment, based
on the interpretation of segments as classes. Contrary to
this, CVL makes no further assumptions about data object
properties at all, instead, it targets the observable variances
in the data generation process to organize instances into
categories.

A. MODEL OVERVIEW
Fig. 2 introduces the generic CVL model with an exemplary
training step for image data from MNIST. First, a Class-
Variational (CV) input image is generated by sampling each
pixel value from a Bernoulli distribution with probability

α for the first source image and with probability (1 ´ α)
for the second one. The CapsNet encodes the CV sample
into vector repesentations encapsulated in m output capsules,
referred to as class capsules (cf. [14]). In the next step,
the non-capsular decoder network sequentially computes a
reconstruction for each class capsule. The CVL model is
jointly trained by: 1) Calculating the mean squared error for
each reconstructed image to both source images. 2) Determin-
ing and backpropagating the minimal reconstruction errors
for both source images with loss weights α and (1 ´ α),
respectively. 3) Entangling the vector lengths of the class
capsules with their reconstruction ability in relation to the
generation process for CV images with Bernoulli sampling.

In addition, CVL conducts certain regularizations to
promote clustering quality. The subsequent sections further
elucidate the CVL process by covering each training step
in detail and building up a comprehensive mathematical
framework for the abstract definition of CVL. Note that the
mathematical framework uses its own numbering for logical
separation between model components and diverse training
objectives.

B. MATHEMATICAL FRAMEWORK
1) Class-Variational Sampling (CVS)
In general, CVS can be defined as the operation of
randomly combining at least two samples from a training
corpus using a known discrete probability distribution. The
combine operation is here represented as the exclusive feature
value selection per feature dimension. Thus, CVS can be
interpreted as the cartesian product of the original dataset
X P Rnˆd mapped to a CV dataset X̃ P Rn˚ˆd with
probabilistically mixed feature values. The element-wise
process of generating a CV sample x̃ at time step t can be
described with

x̃(t) Ð @i P t1, .., du : x̃i „ M (x(1)i , x(2)i , .., x(k)i ; α),

x(j) „ PX (2)

where PX equals the prior class probability distribution for
drawing a sample x(j) from the original dataset X , x̃i means
the i-th vector element of the received CV sample and M
refers to aMultinoulli distribution (also known as categorical
distribution) parameterized with the probability vector α.
Using the Multinoulli distribution allows the generalized
definition of CVS (including the Bernoulli sampling in
Fig. 2). The probability density function

pM (i; α) “ αi,

k
ÿ

i“1

αi “ 1, (3)

of the Multinoulli distribution assigns to each original
sample xi for the element-wise choice of feature values the
probability αi. Furthermore, the α-values establish relevance
scores for reconstructions produced by the CVL model. The
combination of source samples with the same entity type is
consciously not prohibited since we fully leave the discovery
of data-intrinsic classes to the CapsNet encoder.
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2) CAPSNET ENCODER & DECODER NETWORK
For the feature encoder in our deep CVL model, we use a
CapsNet with vector-based capsules ci (initially introduced
by Hinton et al. [29]) for each network layer l with distinct
number of vector elements per layer (i.e. c(l)i P Rv(l) ). The
existence probability for an entity observed by a capsule
is given as the length of the capsule vector [13], and
denominated as capsule activation (cf. [14], [30]). The
dynamic behavior between two consecutive capsule layers
can be mathematically expressed as [13], [14], [30], and [31]:

c(l`1)
i “ route(@c(l)j : Wijc

(l)
j ‘ bij), (4)

route : Rm(l)ˆv(l) ÞÝÑ Rv(l`1)
, (5)

where the instantiation parameters of a capsule c(l`1)
i from

the subsequent layer are computed as aggregation over
the transformed entity representations of all m(l) capsules
c(l)j from the previous layer, processed by a nonlinear
routing procedure. Routing procedures in the context of
CapsNets are usually implemented as iterative routing-by-
agreement process for entity harmonization between adjacent
layers [13], [14]. Similar to Sabour et al.’s [13] dynamic
routing – but more general, we restrict the route function
to output capsule vectors with an activation in the range
of [0, 1]. Each connection between a lower-layer capsule
c(l)j and a higher-layer capsule c(l`1)

i owns an individual
transformation matrix Wij and a bias bij. The bias gets
element-wise added to the intermediate vector Wijc

(l)
j . The

capsule dimensionality can arbitrarily vary per layer using
specific-shaped transformation matrices and if necessary
applying additional reshaping operations [30]. Fig. 3 visual-
izes the interaction between capsules from two neighbored
layers. It is important to note that each higher-layer capsule
has another data-characteristic perspective on the entity
representations from the previous layer through the projection
onto an exclusive feature subspace for each lower-layer entity
(cf. [14]). The CapsNet Encoder (CEnc) corresponds to a
mapping function of a data point x from the original dataset
X P Rnˆd to a matrix C with row-wise m class capsules
c P Rv:

CEnc : x P Rd ÞÝÑ C P Rmˆv. (6)

Note that layer indices are here omitted for simplicity. The
Decoder (Dec) conducts the reverse mapping to (6) as

Dec : c P Rv ÞÝÑ r P Rd (7)

which projects an incoming capsule vector, one at a time, onto
the original feature space of the dataset X . We denominate
the decoding scheme as reconstructing or recovering original
data samples in the view of class-specific capsules. CVL’s
asymmetric autoencoder can be seen as multiplicative more
efficient than a classical autoencoder [22] due to the reuse
of lower-level features for distinct entity aggregation dis-
tributed over class capsules. Such an asymmetric autoencoder
structure was primarily constructed by Sabour et al. [13] to
establish entity visualization for an image classification task.

3) CLASS-VARIATIONAL RECONSTRUCTION LOSS
The CV reconstruction loss corresponds to the composition
loss for recovering each source input of a CV sample
weighted by the probability density function of the sampling
distribution. A conventional measure for the dissimilarity
between multi-dimensional data points represents the Mean
Squared Error (MSE). Hence, the minimal-distant recon-
structions for each of the k source inputs are determined by

@j P t1, .., ku : r(j)i “ arg min
rPR(x̃i)

||r ´ x(j)i ||22 (8)

where the setR(x̃i) contains the reconstructions of allm class
capsules for the current CV sample x̃i, and the resulting vector
r(j)i represents theminimal-distant reconstruction with respect
to the j-th source sample x(j)i used for generating the i-th
CV sample. The expected reconstruction loss LRj for the j-
th source sample over a batch X̃B from the CV dataset (i.e.
X̃B Ď X̃ ) can be analogously formulated as

LRj “ EX̃B

”

||r(j)i ´ x(j)i ||22

ı

. (9)

Since (3) ensures a valid probability distribution for selecting
feature values from the k source components x(j)i , this
probability distribution reflects the assumable ratio of
class-specific properties within a CV sample. In the general
case, this leads to a total reconstruction loss of

LR “ λRE„M
“

LRj
‰

“ λR

k
ÿ

j“1

αjLRj (10)

where the hyperparameter λR is introduced for potential loss
balancing. The training goal of recovering each source input
from a CV sample should enforce the model to build expres-
sive representations as well as support the discrimination
between class-specific characteristics. Moreover, the risk of
finding just trivial solutions (cf. [4], [5], [7], [10], [23])
by learning one universal-class capsule or replicating entity
representations over class capsules mitigates with the CV
scheme, because reconstruction quality and model efficiency
should improve by spreading dissimilar entity representations
over the available class capsules. Subfigure (a) in Fig. 4 gives
a visual explanation for the expected effects of using the CV
reconstruction loss on the latent representation space. The
effects comprise the building of an expressive latent feature
space with similar samples gathered in clusters Ci represented
as class capsules.

4) CAPSULE ACTIVATION LOSS
For providing an entanglement between entity representa-
tions and capsule activations, a soft-classification criterion
is proposed. The soft-classification criterion comprises the
creation of pseudo labels with the aid of the used sampling
distribution for CV data generation and the indices of the
capsules which produce the minimal-distant reconstructions
for the k source inputs. Fig. 5 visualizes the creation of a
target distribution for a CV sample with k source components
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FIGURE 4. Visual explanation for the intentional effects on CVL’s clustering behavior in the latent feature space based on the composition loss and the
regularizations proposed in the mathematical framework. Beginning with (a) the reconstruction loss and successively adding (b) the activation loss,
(c) the clustering and similarity loss, and (d) the rank-based sparsity boosting.

and m class capsules. For each of the k source inputs the cap-
sule with the minimal-distant reconstruction is identified and
associated with the probability αi of the corresponding source
input. Finally, the k pseudo labels, represented as one-hot
vectorsmultipliedwith the correspondingα-values, get added
to constitute a target distribution for a CV sample. Similar
to other deep clustering approaches [12], [23], CVL steers
model optimization bymeans of high-confidence predictions,
but specifically defined over reconstruction quality. Note that
a single capsule can achieve the best recovery for an arbitrary
number of source components. This concession is obligatory
because in the general case we have no a priori knowledge
about the inherent class memberships within an unknown
data collection. In particular, we want to prevent human-
based biases [23], [32] in representation learning by omitting
external intervention. The logical process for the generation
of a target distribution can be mathematically described with
the loss function

LA “ ´λAEX̃B
E„pŶ

rlog softmax(a)s

“ ´λAEX̃B

m
ÿ

c“1

pŶ (c|x̃i) log softmax(a)c, (11)

pŶ (c|x̃i) “

k
ÿ

j“1

attr(c, r(j)i ), (12)

attr(c, r(j)i ) “

#

pM (j) if index(r(j)i ) “ c
0 otherwise

, (13)

where LA simply calculates the cross entropy between the
estimated target distribution pŶ and the current capsule
activations a, which are represented as the second norm of
the capsule vectors. Note that the entropy of pŶ behaves
nonstationary over different training iterations. In (11) the
application of the softmax function guarantees a valid
probability distribution over the capsule activations with
independent logits in the value range of [0, 1]. The help func-
tion attr(c, r(j)i ) attributes the c-th capsule a target probability
depending on the present minimal-distant reconstructions,
which equals the row-wise summation for a specific element
in Fig. 5. The entanglement of entity representations with

FIGURE 5. Logical process of determining the target distribution for
capsule activations referring to a CV sample consisting of 3 source inputs
and a CapsNet encoder with 5 class capsules. Attribution of probability
values αi is based on class capsule reconstruction quality.

capsule activations especially supports biological plausibility
since a low activation of an entity detector implies incoherent
instantiation parameter constellation (cf. [13]). As illustrated
in subfigure (b) of Fig. 4, the activation loss pushes reliable
capsule instantiation vectors in the direction of the surface of
a unit hypersphere whereas inconsistent instantiation vectors
are pulled towards the origin of the latent feature space,
forming sections in the unit hypersphere belonging to specific
capsules. Despite not explicitly prohibited, it is unlikely that
a single capsule produces multiple sections with significant
margin because the reconstruction loss forces the creation of
an equivariant latent feature space in relation to the original
sample space. Organizing reliable latent representations on
the surface of a unit hypersphere is rather conventional
in the case of CapsNets, induced by the normalization
of capsule vector magnitudes to be in range of [0, 1]
and their interpretation as class probabilities. Interestingly,
Shiran et al.’s [7] non-capsular deep clustering approach as
well manages clusters on the surface of a unit hypersphere,
but with the distinction that each embedding constitutes a unit
vector.

5) INTER-SUBSPACE CLUSTERING REGULARIZER
An essential property of CVL constitutes the instantia-
tion of an incoming sample as member of each cluster,
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represented as class capsule vectors. The quality of cluster-
specific instantiation, which can be quantified using the
individual reconstruction losses, heavily depends on the
class relevance of sample features and the degree of class-
capsule specialization. For instance, in the case of MNIST
potentially shared features between digits comprise line
thickness, digit skewness and digit size, whereas the existence
and position of loops characterize distinct digits. We identify
the compactness of entity representations per cluster as
quality attribute for class-capsule differentiation. In terms
of clustering, the compactness objective corresponds to
the reduction of within-cluster variances. Regarding vector
geometry, compactness depicts the average angle margin
of instantiation vectors per capsule. To support the CVL
model in forming compact clusters, we modify an implicit
clustering objective originated from previous deep clustering
approaches [2], [12]:

LC “ λC

|X̃B|
ÿ

i“1

m
ÿ

c“1

pic log
pic
qic

, (14)

qij “
(1 ` d(cj(x̃i), µj))

´1

řm
c“1 (1 ` d(cc(x̃i), µc))´1 , (15)

pij “
fij

řm
c“1 fic

, fij “
q2ij

ř|X̃B|

i“1 qij
. (16)

The clustering loss in (14) minimizes the Kullback-Leibler
divergence DKL(P||Q) between the soft-assignment dis-
tribution Q and the pseudo-target distribution P. The
soft-assignment distribution is computed over the distance
between a capsule vector cj for the CV sample x̃i and
its cluster prototype µj normalized with the heavy-tailed
Student’s t-distribution for modeling long-range distances.
During our experiments we found that using the batch-wise
prototype for the i-th capsule

µi “ Eai(x̃)[ci(x̃)], x̃ P X̃B, (17)

promotes the learning of differentiated entity representations
distributed over the available class capsules. For establishing
the distance function in (15) we adopt the cosine similarity

s(ci, cj) “
xci, cjy

||ci||2 ¨ ||cj||2
“

xci, cjy
aiaj

P [´1, 1] (18)

where a value of zero denotes orthogonality between two
vectors and an absolute value of one signals collinearity with
same or reversed vector orientations. We define the distance
measure as negated cosine similarity shifted and scaled to
values between zero and one, i.e.

d(ci, cj) “
1 ´ s(ci, cj)

2
P [0, 1]. (19)

The pseudo-target distribution in (16) reinforces the model’s
own high-confidence predictions [12]. An important adjust-
ment of the implicit clustering objective compared to the
previous approaches [2], [12] constitutes the batch-wise
estimation of cluster prototypes instead of using trainable

weights. Furthermore, the modified clustering objective
interacts between the latent subspaces spanned by each class
capsule. As displayed in subfigure (c) in Fig. 4, the designed
clustering regularization loss aims to tighten the sections
within the unit hypersphere corresponding to capsules’ entity
subspaces.

6) CAPSULE SIMILARITY REGULARIZER
Besides the gain of cluster compactness, another essential
property for improving clustering quality corresponds to the
increasing of between-cluster variances. For this purpose,
we apply the cosine similarity in (18) on all possible class
capsule pairs as regularization loss

LS “ λS
ÿ

i‰j

s(µi, µj). (20)

For computational simplicity, we calculate in our implemen-
tation the similarity matrix between all capsule pairs and
determine the arithmetic mean over the matrix elements.
Potential loss scaling issues can be compensated with the
balancing factorλS . Regularizing capsule similaritymitigates
co-adaption and breaks network symmetry. Specifically, the
degenerative behavior of embracing different entity types in
a few class-universal capsules should become inefficient for
model optimization. The visual explanation in subfigure (c)
of Fig. 4 emphasizes the maximization of the margin
between clusters as the effect of the capsule similarity
loss.

7) RANK-BASED SPARSITY BOOSTING
An early work [15] about unsupervised learning with
CapsNets provided insights into the importance of sparsity
constraints to retain the beneficial properties of CapsNets.
More precisely, CapsNets without an appropriate restriction
on individual capsule usage, e.g. based on a supervised task,
harbor the risk to collapse into non-capsular networks [15].
In fact, the directed optimization using classification labels
constrains an activation distribution on the class capsules pre-
defined by the amount of samples per class within the training
set. A logical choice for clustering, without prior knowledge
about the considered data, represents a uniform activation
distribution constraint on the class capsules. Inspired by [15]
we propose a rank-based boosting mechanism to influence
the average class capsule usage during model training.
Specifically, we multiply the boost coefficient

gi “ 1 ´ softmax(b)i ` ϵ (21)

with the MSE in (8) for the i-th capsule, where b corresponds
to the boost logits for all class capsules and the summand
ϵ equals a small constant which prevents zero-coefficients.
Therefore, the selection of the winning capsule for producing
the best reconstruction for a certain source input is influenced
by all boost logits. Algorithm 1 summarizes the proceeding
for adjusting one boost logit bi per training batch. The passed
arguments consist of the previous boost logit value bi, the
average capsule usage represented as the mean rank r̄i, the
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Algorithm 1 Batch-Wise Update for the Rank-Based Boost
Logit bi of the i-Th Class Capsule

BOOST-LOGIT(bi; r̄i; m; β “ 0.05)

# target mean-rank
ti Ð 1{m

# distance-proportional logit adjustment
δi Ð ti ´ r̄i
bi Ð bi ` sign(δi) ¨ max(|δi| ´ βti, 0)

# restrict value range to [0, 1]
bi Ð max(bi, 0)
bi Ð min(bi, 1)
return bi

number of class capsules m and a fixed deviation tolerance
value β. The mean rank r̄i for the i-th class capsule over the
CV batch X̃B is calculated as

r̄i “ EX̃B

”

ÿk

j“1
αj ¨ wins(Rj, i)

ı

, R P Rkˆmˆd , (22)

where the function wins(Rj, i) counts the number of times
the i-th capsule produces the lowest (boosted) reconstruction
error for the j-th source sample, and the tensor R contains
the reconstructions of the m class capsules for all k sources.
In Algorithm 1 the target mean-rank ti reflects the assumed
uniform prior for the classes in an unknown data collection.
The boost logit bi gets proportionally adjusted to the distance
between the target rank ti and the current rank r̄i if the
absolute distance exceeds the tolerance value βti. Finally,
boost logits are bounded to be in range of [0, 1] which
prohibits negative values as well as exploding logits. We set
the deviation tolerance factor β to 5% of the target rank for
preventing leakage modifications. The rank-based boosting
causes a balancing effect on the samples assigned to the class
capsules which results in a sparsity constraint on average
capsule usage during the training of the CVL model. The
balancing effect on cluster sizes is depicted in subfigure (d)
from Fig. 4.

IV. EXPERIMENTS
A. MNIST DATASET
The MNIST [16], [17] classification dataset comprises a
collection of grayscale images from handwritten digits in a
resolution of 28 ˆ 28 pixels. The MNIST image collection
is approximately balanced by having circa 7K samples per
class. MNIST consists of a training set with 60K samples and
a test set with 10K samples. The dataset version provided
in TensorFlow Datasets [33] is utilized. We normalize the
pixel intensities from the image data to be in range of
[0, 1]. The CV dataset X̃ is generated using the training
set XTrain of MNIST with preservation of the original set
size.

B. GLOBAL SETUP
In our experiments we use the original dynamic routing [13]
procedure as routing-by-agreement implementation between
capsule layers from the CapsNet encoder. Dynamic routing
applies a nonlinear squash [13] function which scales the
length of the resulting capsule vector to be in range of [0, 1]
while preserving vector orientation. This allows the direct
interpretation of each class capsule activation as probability
value for class recognition. Since the proposed mathematical
framework estimates cluster prototypes and mean ranks over
a training batch, the batch size must be chosen sufficiently
large to produce stable statistics. We found a training batch
size of |X̃B| “ 128 to be appropriate for the MNIST
dataset with its ten digit classes. In addition, we equally
weight all partial loss functions, i.e. λi “ 1.0. Note that
the introduced scaling factors λi can generally prioritize
clustering objectives, which can be helpful if clustering
task conditions vary such as the number of class capsules.
Each boost logit bi for the rank-based sparsity boosting is
initialized with a uniform distribution which samples values
between zero and one. The implementation of this paper
utilizes the numerical and machine learning programming
library TensorFlow [34]. In particular, we use the Adam [35]
optimizer with an exponentially decaying learning rate,
starting with η “ 0.001 and reducing with a decay rate
of 0.95 after two epochs without significant improvement
with respect to the total loss. In each analysis, CVL is
applied for five runs if not otherwise stated. Each run
conducts 50 epochs. Since the CVL procedure behaves
non-deterministic over different runs due to the probabilistic
nature of CVS and random model weight initialization,
we expect slight variation in the experimental results with the
same CVL and CVS configuration.

C. CVL-MODEL ARCHITECTURE
Fig. 6 displays the designed architecture for the CapsNet
encoder and the non-capsular decoder network in the CVL
model for MNIST. Both sub-networks are straightforwardly
created without extensive hyperparameter testing or tuning.
The CapsNet encoder and decoder network are composed of
two-dimensional convolutional layers (Conv2D)s and fully-
connected layers. The respective kernel sizes, number of
filters and stride sizes per convolutional layer can be deduced
from the network visualization. All convolutional layers
use same padding between layers and the Rectified Linear
Unit (ReLU) [36] activation function as nonlinearity. In the
CapsNet encoder an ordinary convolutional layer acts as
introducing capsule layer through the rearrangement of its
scalar-output neurons into distributed entity representations.
The initial capsule layer is usually denoted as Primary
Capsules (PrimaryCaps) [13] and serves as entry point
for further capsule layers. Building up PrimaryCaps with
the aid of a convolutional layer with scalar-output neurons
is a common strategy to organize a transition from a
regular neural network to a CapsNet [13], [14], [30].
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FIGURE 6. Network architectures of (a) the CapsNet encoder and (b) the decoder network for all experiments with the
MNIST dataset.

Convolutional PrimaryCaps layers are specified by the
number of capsule types [13], [14], which are equivalent
to filters in ordinary convolutional layers, and the defined
capsule dimensionality. Capsule dimensionalities are stated
as multiplicator supplement. The decoder network receives
as input one class capsule vector per processing step in
order to map an entity embedding to the original data space.
The decoder network solely consists of two fully-connected
layers, where the first layer applies ReLU and the second
one the sigmoid function as nonlinearity which guarantees
features in the same value range as the preprocessed input
data. Our decoder network is oriented to Sabour et al.’s [13]
reconstruction network for MNIST, but we omit one layer
and slightly reduce the dimensionality of the class capsule
vectors from 16 to 12. In our experiments we will show
that this reduced network architecture is sufficient for
the clustering task with MNIST. Previous deep clustering
approaches [2], [12] successfully clustered theMNIST data in
a latent feature spaces with 10 dimensions. Hence, the chosen
dimensionality of 12 should equip each class capsule with
enough representational capacity to potentially capture the
whole latent feature space. This eliminates the possibility of
introducing an hidden architectural regularization on the class
capsule usage.

D. CLUSTERING PERFORMANCE
In our first experiment, we holistically investigate the
performance properties resulting from a CVL model trained
on MNIST. For this purpose, we generate a CV dataset using
CVS based on a Multinoulli distribution parameterized with
α “ (0.7 0.3)T . Fig. 7 illustrates the gain of clustering
accuracy (ACC) [37], which calculates regular accuracy on
the optimal mapping between clustering predictions and
the classification labels, on the full test set from MNIST
after each training epoch. In the first plot predictions
are determined via hard-assignment cluster memberships

using the highest class capsule activation, whereas the
second plot fulfills cluster assignments with respect to the
minimal-distant reconstruction. The best model corresponds
to the model with the lowest total loss after completing
the 50 training epochs. Evidently, the lowest total loss is
consistent with the highest clustering accuracy. However,
we observed that the total losses of all models only minimally
differ, although the clustering accuracies show stronger
dispersion. Thus, in concrete applications the decision criteria
for the best model may vary. Both clustering accuracy
progressions are coherent after a few epochs, proving the
successful entanglement of capsule activation with recon-
struction ability. The resulting accuracy value of 63.83% for
activation-directed and 62.93% for reconstruction-directed
predictions with respect to the best model even demonstrate
a slight dominance for cluster assignments based on class
capsule activation. This observation is also supported by the
respective mean accuracy values of 58.97% and 57.03% over
all runs. Fig. 8 provides evidence about the effectiveness of
the rank-based sparsity boosting on balancing mean class
capsule usage over the training process. The boost logits in
subfigure (a) continuously regulate individual reconstruction
ability per class capsule in order to satisfy the expectation
of an equal capsule usage on average, as shown in subfigure
(b). More precisely, in the case of the ten classes from the
MNIST dataset the expectation means a 10% usage of each
class capsule over the entire training set. Similar to [15]
the rank-based sparsity boosting is only applied during CV
trainingwith reconstruction ability as the class-discriminative
criterion. In the subsequent sections we further investigate the
clustering performance properties using the identified best
model.

1) CLASS-ACTIVATION HISTOGRAMS
After training the CVL model from Fig. 6 on the CV
dataset fromMNIST, we obtain distributions of class-capsule
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FIGURE 7. Gain of clustering accuracy on the test set from MNIST during
model training. Predictions are obtained by (a) the highest capsule
activation and (b) the minimal-distant reconstruction. The best model
refers to the model with the lowest total loss after 50 epochs.

activations that reveal data-intrinsic similarities and differ-
ences between instances from the human-defined categories.
Fig. 9 illustrates histrograms about the average activation for
each class capsule per predefined digit class. The capsule
activations are received from the application of the CapsNet
encoder on the test set of MNIST. Note that the capsule
activations per sample are not constrained to constitute a
valid probability distribution to obviate deformation effects
on distribution shapes. One can recognize the two subsets
t3, 5, 8u and t4, 7, 9u with similar appearance in their
distribution characteristics originated from the activation
of the same class capsules. This circumstance implies
an inherent proximity between the digits per subset and
their constructive features from a data-oriented perspective.
Furthermore, this observation is congruent with human
expectation because digits in the same subset share many
visual features (e.g. circle-like structures, proportions or
distinct vertical lines). In fact, the crucial distinctive feature
between the digits 3 and 5 emerges as the position of one
vertical line in the upper part. The digits 3 and 8 have a
special visual relation, too, roughly speaking closing both
open half-circles of a 3 results in an 8. Analogously, the
digits 4, 7 and 9 are grounded on significantly related
features, of course, depending on the concrete writing style
of a person. An important observation is that for almost
each digit a specific class capsule dominates with highest
activation on average. Evidently, the data-intrinsic classes,
or clusters speaking in terms of unsupervised learning,
identified by CVL are mainly consistent with the human-
defined categories. This behavior is natural since humans
must be able to efficiently discriminate between digits,
as well. Despite the interpretation of hard cluster assignments
based on highest capsule activations, soft assignments can
be obtained by normalizing the activation distribution. Thus,
each average capsule activation quantifies the fraction a
digit belongs to a class capsule from a global view on the
data. In opposite to this, a local view can be examined by
propagating a single data sample through the trained CapsNet
encoder.

2) CLASS-CAPSULE PROTOTYPES
Class-activation histograms concentrate on the reasoning
about data-intrinsic relationships between predefined classes

FIGURE 8. (a) Progression of the boost logits of all class capsules during
model training. (b) Corresponding mean rank per class capsule tracked as
moving statistics to remove temporary fluctuations. The plot starts with
the second epoch to focus on the mean ranks development after the first
deviations caused by the random intialization of the boost logits.

from labeled datasets. However, clustering tasks rarely offer
any predefined class labels. For this reason wewant to inspect
in this section the entity clusters represented by the class
capsules via their prototypes. We state that from the output
of the CapsNet encoder for a given sample x the entity
representation ci and the activation ai for the i-th capsule can
be extracted, i.e.

ci(x), ai(x) Ð CEnc(x)i. (23)

Based on this simplified notation the formula for the
hard-assignment prototype µ

(H )
i of the i-th capsule reduces

to

µ
(H )
i “ ECi rci(x)s , (24)

Ci “ tx | x P XB Ď X , i “ arg max
jPt0,..,m´1u

aj(x)u, (25)

whereXB equals a representative subset of the original dataset
and the cluster Ci comprises all data points x for which the
i-th capsule induces highest activation. On the other hand,
soft-assignment prototypes µ

(S)
i are the same way defined as

in (17) but computed over a subset XB from the original data:

µ
(S)
i “ Eai(x) rci(x)s , x P XB Ď X . (26)

To be consistent with the class-activation histograms from
our previous considerations, all prototypes are determined
using the test set of MNIST (i.e. XB “ XTest ). Therefore, the
prototypes can be immediately evaluated in the context to the
class-activation histograms from Fig. 9. Since (24) and (26)
produce prototypes as weighted latent entity representations,
the prototypes must be subsequently processed by the
associated decoder to ensure visual interpretability. The hard
and soft-assignment prototypes for MNIST are respectively
visualized in the subfigures (a) and (b) from Fig. 10.
The hard-assignment prototypes confirm our conjecture
that clusters, represented as class capsules, are particularly
specialized on single digits. This situation especially holds
for the digits 0 to 3 and 6 to 8 which are clearly recognizable
in the reconstructed prototypes. Interestingly, the digits
4 and 9 seem to be merged into the first two prototypes
which are rather distinguished by instance skewness than
class-discriminative properties from a human perspective.
This observation agrees with the highly-activated first two
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FIGURE 9. Mean capsule activation for each predefined class in the test set from MNIST. The highest-reached average activation is highlighted in red
color per subplot. The class capsules tend to specialize on distinct digits. Between-class correlations can be detected for the digit subsets t3, 5, 8u

and t4, 7, 9u.

FIGURE 10. Decoded prototypes of the class capsules with (a) hard and
(b) soft assignments, computed over the encodings of all images from the
test set of MNIST. (c) Hard-assignment prototypes over the test set of
MNIST based on the clustering result from k-means.

capsules in the corresponding class-activation histograms.
Moreover, the third hard-assignment prototype in the bottom
row encapsulates a mixture of instances from multiple
digits presumably caused by dominant common features
like digit squeeze. Finally, the soft-assignment prototypes
display solely marginal uncertainties in the class-specific
entity representations.

3) CLASS-DISCRIMINATIVE EQUIVARIANCE
One main objective in the training of CapsNets represents
the creation of a latent feature space which satisfies the
equivariance property. Equivariance describes the continuous
modeling of data-centered variations in distributed entity
representations (cf. [15]). A capsule forming an equivariant
instantiation parameter vector, which locally captures the
variations associated with its observed entity type, permits
invariant entity recognition to these variations [29]. Obvi-
ously, the kind of equivariant features strongly depends
on the domain of the considered dataset. In the image
domain, for instance, equivariant features appear among

others as viewpoints, lightning conditions, localization,
scaling and deformation [13], [14], [29], in contrast textual
entities may vary in sentiment occurrences and intensities
or specific grammar structures (despite a lack of intuitive
explainability) [30]. In each case equivariant modeling
requires generative capabilities which generally emerge as
interpolative and extrapolative function approximation of
intrinsic concepts to encompass punctual variations in the
regarded data. As an example, imagine a generative model
that learns a continuous translation of a visual object from
the left to the right image border based on several discrete
observations with occurring differences in object location.
Thus, equivariance can be understood as superior quality
of a model to explain natural variations as latent concepts
originated from the data generation process.

The appearance of equivariance is also determined by
task-specific conditions such as the design of the learning
procedure. In particular, the learning procedure steers the
model’s attention on shaping equivariant features with high
relevance for accomplishing the defined task. The choice of
equivariant features can be restricted with supervisory signals
or completely leaved to model optimization as frequently
observed with traditional autoencoders. A special character-
istic of CVL constitutes the creation of a class-discriminative
equivariant space in an unsupervised learning setting. Fig. 11
visualizes the model’s generated continuous transitions from
each class capsule prototype to all other prototypes. The
prototypes correspond to the soft-assignment prototypes
in (26) which are illustrated in subfigure (b) of Fig. 10.
Each row in Fig. 11 displays a smooth transformation from
the first prototype into the second one by means of ten
discrete intermediate representations. In more detail, the
transformation is directed by the difference vector between
both latent prototypes which is divided into ten equally-
sized steps. At each step the decoder component computes
the reconstruction of the intermediate latent representation.
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FIGURE 11. The CVL paradigm with its reconstruction-centered scheme enforces the learning of an equivariant latent space with generative continuous
transitions between data-intrinsic classes. (a) & (b) display in each row a transition between two cluster prototypes from the CVL model trained on
MNIST.

We observe that the regarded model produces equivariant
features with the aim to improve class discrimination as
implicitly demanded by the CVL paradigm. In that sense the

CVL model interprets natural variances in the data in terms
of class discrimination as well as derives continuous class
transitions without direct evidence given by the data. This
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TABLE 1. Quantitative comparison between the clusterings obtained
from CVL, k-means and the classification labels.

circumstance reflects the both characteristics of interpolative
and extrapolative function approximation, respectively. For
instance, one can characterize stroke thickness (e.g. in (a) the
7-th row from the top), digit skewness (e.g. in (a) the 6-th
row from the bottom), digit size (e.g. in (b) the 8-th row from
the bottom) etc. as interpolation between observed samples
in the dataset. In opposite to this, extrapolation appears in
the form of purposive deformation between the recognized
classes (e.g. in (a) the 5-th row from the bottom or in (b) the
2-nd row from the top).

Although Sabour et al. [13] previously reported similar
equivariant features (e.g. stroke thickness and digit skewness)
in the context of a supervised learning task with CapsNets,
they primarily used the reconstruction loss to support entity
representation learning as addition to the classification loss.
This means a crucial difference to our CVL approach which
enforces the learning of equivariant features for the purpose
of effective class discrimination quantified via reconstruction
ability. Note that in CVL each class capsule constructs its
own locally equivariant subspace associated with its observed
entity type and all these subspaces are joined in the superior
latent feature space of the decoder network. In consequence
of this, we can linearly navigate through this continuous
superior space to manually inspect the model’s inference
mechanism, as emphasized in Fig. 11.

E. REFERENCE CLUSTERING WITH SIMPLE K-MEANS
After investigating the special characteristics of CVL, we fur-
ther examine in this section its clustering performance with
diverse clustering validity measures. For better interpretabil-
ity we also provide a reference clustering with the prominent
and non-neural clustering algorithm k-means1 [38], [39]
which can be formulated as:

µ
(K )
i “ EC(K )

i
rxs , (27)

C(K )
i “ tx | x P XB Ď X , i “ arg min

jPt0,..,m´1u

||µ
(K )
j ´ x||22u,

(28)

where the prototype µ
(K )
i for the i-th cluster is defined as the

arithmetic mean over the associated data points, a cluster C(K )
i

consists of all data points nearest to its prototype µ
(K )
i and m

corresponds to the predefined number of clusters. Evidently,
using the squared Euclidean distance as measure for point-
to-cluster similarity leads to spherical clusters. The selected
hyperparameters for k-means comprise: 1) The number of
clusters m equals the number of classes from MNIST.
2) The initial prototypes correspond to random points from

the regarded data. 3) k-means is conducted for 100 runs
to receive the most frequently occurring clustering result.
4) Maximal 100 iterations are performed per run.

1) QUALITATIVE EVALUATION
For ensuring comparability, the k-means algorithm processes
the training set from MNIST (i.e. XB “ XTrain) to estimate
cluster prototypes. After the determination of the cluster
prototypes, each data point in the test set gets assigned
to its nearest cluster prototype, according to (28). Finally,
we calculate the arithmetic mean of the data points within
each cluster in order to receive cluster representatives. The
cluster representatives for the test set from MNIST are
displayed in subfigure (c) of Fig. 10. In comparison to the
decoded hard and soft-assignment prototypes of CVL in the
subfigures (a) and (b) we can recognize several prototypes
with nearly identical appearance. However, in contrast to
CVL k-means distinguishes instances from the digits 0 and
1 by their skewness. This behavior can be seen as an indicator
for k-means’ missing ability to grasp constructive features of
the same instrinsic class.

2) QUANTITATIVE EVALUATION
The quantification of clustering validity is established with
the measures Adjusted Rand Index (ARI) [40], Homogenity
(H) [41], Completeness (C) [41], V-Measure (V-M) [41],
Variance Ratio Criterion (VRC) [42] and Davies-Bouldin
Index (DBI) [43].1 The first four evaluate clustering quality
in reference to the labels of MNIST as ground truth whereas
the latter two quantify clustering quality based on criteria
for cluster structure. Additionally, we state the clustering
accuracy using the classification labels from MNIST. The
ARI extends the Rand Index (RI) [44] by correcting its
clustering validity measure against random choices for point-
to-cluster assignments, which results in values in the range of
[´1, 1] with higher positive values for stronger concordance
between two partitions [40]. The RI and, consistently, the
ARI define the similarity between two clusterings as their
agreement on pairwise point-to-cluster memberships [44].
Homogenity describes the degree of certainty of class
members within clusters whereas completeness captures
the compactness of class members over clusters [41]. The
V-M summarizes homogenity and completeness as (equally)
weighted harmonicmean [41]. TheVRCdescribes the quality
of a partition as the ratio over the average of between-cluster
and within-cluster dispersion [42]. The DBI measures the
mean similarity over each cluster to its minimal-distant
cluster [43].
Table 1 summarizes the results of the quantitative analysis.

The best reached values for each validity measure are
highlighted in bold and underlined. The results with respect
to the classification labels show the expected superiority
of CVL for identifying and modeling data-intrinsic classes.
In particular, the poor values for VRC and DBI resulting
from CVL and the classification labels reveal the necessity
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TABLE 2. Effects of diverse Multinoulli distributions in CVL on the
resulting clustering accuracy.

of applying the clustering operation within or by forming an
advantageous latent space. The stated results for clustering
performance can be used for comparative considerations in
future work.

F. SAMPLING FROM DIFFERENT DISTRIBUTIONS
In our last experiment we investigate the implications on
CVL’s performance using various Multinoulli distributions.
The number k of source inputs as well as their contribution to
a CV sample determine the severity for the task of class dis-
crimination. We vary both of these factors for the CVLmodel
in Fig. 6. As stated in the global setup each configuration is
conducted for five runs. Table 2 summarizes the achieved best
and average clustering accuracies (with standard deviations)
for the tested Multinoulli distributions. Furthermore, the
clustering accuracies are divided into predictions received
by the highest capsule activation and the minimal-distant
reconstruction. The best accuracy per column is emphasized
in bold and underlined. The configuration marked with
the asterisk reuses the models obtained from our former
experiments. Again, the best model per configuration is
chosen by the smallest total loss during training.

The resulting clustering accuracies allow several obser-
vations. Firstly, the results for both activation-based and
reconstruction-based predictions are mostly on par with
a slight advance of activation-based predictions for the
Multinoulli distributions with two components. This situation
demonstrates the effectiveness of the proposed capsule
activation loss on replacing the reconstruction ability as
class-discrimination criterion during training with capsule
activation during inference. In addition, the models using
Multinoulli distributions with two components appear supe-
rior to the configurationswith three components. Specifically,
the uniform distribution in the last row leads to models
with performance near chance. It is likely that three source
components produce CV samples with a destructive degree
of interferences. This problem is even intensified if each
source input equally contributes to the CV samples. In fact,
the preference of a single source input expressed with a
high probability value for feature selection seems to be
beneficial for model optimization. This circumstance can
be validated with the configurations αT “ (0.9 0.1)
and αT “ (0.7 0.3) where the dominance of the first
source component leads to higher clustering accuracies
compared to the Multinoulli distribution parameterized with

αT “ (0.5 0.5). We further examined the reasons for
this performance discrepancy by manually inspecting the
class-activation histograms of the best model per config-
uration. We found that the models below the second row
successively fail to distribute entity representations over
the available class capsules. These observations imply that
keeping CV sample distortion adequate, by using only two
source components as well as preferring one source, improves
the specialization of class capsules.

Although the first configuration delivers the best model
over all runs according to its clustering accuracy, the second
configuration reaches the best mean results with a smaller
standard deviation. By exploring the best model of the first
configuration, we found that its CVL model leaves the
cluster of one class capsule almost empty but the encoder
learned as default mapping a representative of digit 5,
resulting in the highest overall clustering accuracy. Since
clustering tasks in general do not provide any classification
labels, we would typically reject clusterings with empty
clusters at first. For that reason we denominate the use
of the Multinoulli distribution with αT “ (0.7 0.3) as
preferable default configuration in terms of average model
robustness. Note that this insight differentiates a CVL
model from a regular denoising autoencoder because the
class-discriminative features of two data instances constitute
a CV sample, instead of just adding some noise as in the first
configuration.

V. DISCUSSION
1) HIGH-CONFIDENCE PREDICTIONS
A special characteristic of CVL, which it shares with
some other deep clustering techniques [5], [12], [23],
depicts the strategy to steer parameter optimization by
the models’ own high-confidence predictions. Specifically,
Xie et al. [12] stated that learning objectives guided by a
model’s high-confidence predictions can be categorized as
self-training [45], where approving model confidence should
lower model uncertainty. This adaptable target definition
could possibly be helpful for overcoming local optima during
model training, by iteratively changing the perspective on the
considered data [45].

2) RELATION TO MIXUP
The data augmentation method mixup [46] follows the
optimization principleVicinal RiskMinimization (VRM) [47],
instead of the commonly used Empirical Risk Minimiza-
tion [48], by using convex combinations of random pairs
of samples and their respective labels in the form of
one-hot vectors for establishing linear interpolations between
samples on the latent decision surface. Recent works [49],
[50] provide theoretical foundations about mixup’s data
dependency as well as its effects on model robustness and
generalization ability. Besides, there exist several variants
of mixup such as CutMix [51] which randomly inserts a
sample patch to another sample, or Puzzle Mix [52] and
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Co-Mixup [53] which additionally exploit saliency informa-
tion for enhancing their sample mixture procedures.

Interestingly, the experimental investigation of CVL
implies a linear-interpolative behavior between original
samples in the learned representation space (cf. Fig. 11)
as intended in the classic mixup method, though, CVL is
originated from an entirely nonlinear process. In fact, CVL
can also be characterized as VRM algorithm by structuring
its nonlinear process into three phases: 1) CVS conducts
a nonlinear mapping of the cartesian product of at least
two original samples xi to constitute a CV sample x̃ (i.e.
Rd ˆ ¨ ¨ ¨ ˆ Rd ÞÝÑ Rd ) as probabilistic value selection per
feature dimension. Hence, CVS estimates the underlying true
distribution P(x) with the vicinal distribution

Pv(x̃) “
1
n

n
ÿ

i“1

k
ÿ

j“1

Dv(x̃|x(j)i ) (29)

where Dv describes the probability distribution of assigning
the CV sample x̃ to the source input x(j)i . 2) Class capsules
learn to reverse the CVS procedure by segregating CV
samples into their source inputs and predicting the missing
parts. Since each class capsule takes the responsibility for a
special object class, the prediction distribution Pp(x, y) con-
taining reconstructions and cluster memberships is implicitly
derived from the vicinal distribution Pv(x̃). 3) Finally, the
prediction distribution Pp(x, y) gets punctually evaluated
on the empirical distribution Pe(x, ŷ) with self-supervised
pseudo labels ŷi entangled with reconstruction quality.
This whole process is supported by the auxiliary reg-
ularizations proposed in the mathematical framework of
CVL which further restrict the function solution space for
optimization.

In opposite to mixup, CVS ignores structural depen-
dence between feature dimensions by rather forming a
component-wise contrast than interpolating between original
samples. This means that while mixup directly provides
examples of linear interpolations, CVS forces a model to
predict the representational vicinity based on fragmented
variations between samples from arbitrary classes, by finding
a suitable function set to extrapolate and interpolate around
discrete observations of the empirical data distribution.
Therefore, we speculate that CVS integrated in CVL possibly
represents an even more general data augmentation method
which may enclose the function set of linear interpolations
from mixup. Note that the mixup variants CutMix, Puzzle
Mix and Co-Mixup also rather create a contrast than
interpolating between training samples, but these variants
particularly retain contiguous structural information. Since
CVL does not require predefined labels compared to mixup
and its prominent variants, it also resolves potential depen-
dencies on classification datasets. Nevertheless, a systematic
comparison between CVS, CVL, mixup and its variants is
desirable in future work to provide theoretical and empirical
analyses for improving the understanding of their latent
relationships.

TABLE 3. Chronological evolution of clustering accuracies for
non-capsular deep clustering methods on the test set from MNIST.

3) MODEL ROBUSTNESS
CVL demonstrated stable performance with relatively small
variance over five runs using the Multinoulli distribution
with αT “ (0.7 0.3). In addition, the loss balancing
hyperparameters λi were explicitly not tuned on satisfying
the requirements on theMNIST dataset to obtain CVL’s plain
clustering performance. But the possibility for prioritizing
the individual loss functions means a gain in flexibility for
clustering with CVL, in general. The rank-based sparsity
boosting increases model robustness in terms of orchestrating
a fair class capsule usage during training without introducing
a hard constraint. In particular, the sparsity boosting breaks
network symmetry with its random initialization and causes
a stabilizing effect on class capsule specialization. The key
argument for the robustness of CVL models results from the
class-discriminative equivariance property which ensures the
creation of an expressive latent feature space with a focus
on the transformation between data-intrinsic classes. This
generative behavior allows a continuous evaluation of inter-
nal representations and accounts for an enhanced inference
mechanism for determining cluster assignments. Despite
CVL needs a predefined number of clusters, sufficient prior
domain knowledge is often available to choose an appropriate
amount of clusters [23]. Contrary to previous deep clustering
approaches [3], [6], [7], [12], [23] that explicitly augment
data samples to strengthen the robustness of representation
learning, CVL owns built-in data augmentation within
CVS by randomly drawing features from a selection of
samples. Finally, the concrete implementation of CVS and
the reconstruction criterion for class discrimination are easily
adaptable to other application domains.

4) EXPLAINABILITY
As known from other clustering techniques, CVL’s clustering
results can be investigated by means of hard and soft-
assignment prototypes. Since CVL constitutes a neuralized
clustering method, prototypes are calculated as weighted
mean over the latent representations of their cluster members.
The generative nature of CVL models ensures a continuous
mapping from latent representations into the original data
space using the decoder network. From a human perspective
the explainability of decoded cluster prototypes is only
restricted to the interpretability of the original data space.
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In cases of labeled datasets, inspecting cluster prototypes is a
complementary approach to the informative class-activation
histograms resulting from the use of CVL. The essential
gain in explainability using CVL as clustering algorithm
represents the class-discriminative equivariance property
which explains interpolative and extrapolative relationships
in the unsupervised model with human-observable, continu-
ous transitions between data-intrinsic classes. The generative
equivariant space is fully accessible by linearly navigating
over the latent appearance manifold. Moreover, an arbitrary
latent representation can be mapped into the original space
by the decoder and propagated through the CapsNet encoder
to receive cluster membership predictions as class capsule
activations.

5) CLUSTERING ACCURACY
Despite the convincing qualitative results of CVL’s clustering
with its class-discriminative equivariant latent space, the
reached clustering accuracy is currently not competitive to
state-of-the-art methods for non-capsular deep clustering,
as illustrated in Table 3. Additionally, Table 3 conveys an
impression about the chronological gain in clustering accu-
racies until the deep clustering task on the MNIST dataset is
approximately solved. In fact, the various loss functions in the
mathematical framework of CVL emphasize the needed effort
to accomplish a class-discriminative specialization of output
capsules in an unsupervised learning setting. In that sense
our work represents a first attempt to open the promising
CapsNet architecture with its full capacity for the task of deep
clustering. We hope that our CVL approach motivates future
research to further improve clustering accuracies on diverse
datasets with distinct application domains.

VI. CONCLUSION
This paper introduced the novel learning paradigm CVL for
unsupervised representation learning in the form of deep
clustering using CapsNets. A CVL model corresponds to
an asymmetric autoencoder, comprising a CapsNet encoder
and a non-capsular decoder network, to detect and represent
data-intrinsic classes through the output capsules of the
encoder. The conducted experiments demonstrate CVL’s per-
formance on the MNIST dataset from various perspectives.
As special property, a CVL model accesses its generative
ability to construct an equivariant latent feature space with
continuous transitions between data-intrinsic classes. This
behavior reveals the potential of CapsNets for deep clustering
to create a robust and explainable inference mechanism.
Future research efforts are desirable to strengthen the theory
about the requirements for securing CapsNet stability as well
as approaches to increase the resulting clustering accuracy.
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