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ABSTRACT In the realm of data-driven systems, understanding and controlling biases in datasets emerges
as a critical challenge. These biases, defined in this study as systematic discrepancies, have the potential to
skew algorithmic outcomes and even compromise data privacy. Mutual information serves as a key tool
in the analysis, discerning both direct and indirect relationships between variables. Utilizing structural
equation modeling, this paper introduces a synthetic dataset generation method founded on a two-step
optimization algorithm that aims to fine-tune variable relationships and achieve targeted mutual information
levels between attribute pairs. The algorithm’s first phase utilizes gradient-less optimization, focusing on
individual variables. The subsequent phase harnesses gradient-based methods to unravel deeper variable
interdependencies. The approach is dual-purpose: it refines existing datasets for bias mitigation and creates
synthetic datasets with defined bias levels, addressing a crucial research gap. Two case studies showcase
the methodology. One emphasizes the finesse of network parameter adjustments in a simulated setting. The
other applies the methodology to a realistic job hiring dataset, effectively reducing bias while safeguarding
key variable relationships. In summary, this paper offers a novel method for bias management, presents tools
for quantitative bias adjustments, and provides evidence of the method’s broad applicability through varied
use cases.

INDEX TERMS Bias mitigation, data fairness, data generation, explainable AI, machine learning,
optimization, statistics, structural equation modeling.

I. INTRODUCTION
The increasing availability of large datasets and the grow-
ing demand for data-driven decision-making systems have
sparked significant interest in understanding and controlling
the relationships between variables in datasets. Specifically,
controlling bias between categorical attributes has become
critical in various domains, such as privacy-preserving
data analysis, fairness in machine learning, and causal
inference. Left unchecked, bias in datasets can lead to skewed
outcomes and unfair advantages, which can be particularly
detrimental in domains such as machine learning, where
algorithms learn patterns from these datasets. These biased
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patterns could then be unwittingly replicated and amplified,
leading to potentially harmful consequences. In the field of
causal inference, bias could lead to erroneous conclusions,
hampering our understanding of cause-effect relationships.
Reducing prejudice in datasets is vital for the development
of unbiased and fair decision-making algorithms, which
are increasingly used to support or even replace human
judgment in various applications [1]. However, controlling
bias in datasets is a formidable challenge, as it requires an
in-depth understanding of the underlying causal structure and
an effective method for adjusting the relationships between
variables.

In response to the multifaceted implications of bias
outlined above, this work contributes a systematic approach
to comprehensively understand and control the bias within
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datasets, particularly focusing on categorical attributes.
By employing innovative techniques and utilizing mutual
information as a measure of dependency between variables,
this research paves the way for more unbiased, equitable, and
reliable data-driven decisionmaking and analysis. It seeks not
only to highlight the presence of bias in datasets but also to
provide practical and effective strategies formitigating it, thus
ensuring that the derived insights and patterns are reflective
of a balanced and fair representation.

At this juncture, understanding the concept of ‘bias’ is
pivotal. Here, ‘bias’ refers to any systematic discrepancy that
alters the representation or treatment of certain categories
within a dataset. This can manifest as a statistical over-
or under-representation, leading to potential disparities in
subsequent analyses or applications. Take, for example,
‘demographic parity,’ a key fairness metric in machine
learning. It insists on equal positive outcome rates across
all protected groups in binary classification tasks. For
instance, within a loan approval scenario, demographic
parity ensures equal approval rates for all groups, assuming
all other factors are constant. Besides demographic parity,
also mutual information emerges as another crucial metric,
extensively used to measure dependency between variables.
This metric is a significant asset for providing a compre-
hensive quantitative measure of bias, due to its capacity
to delineate both direct and indirect relationships between
variables.

In addition to a suitable quantitative measurement of
bias such as mutual information, a method for portraying
the intricate web of causal relationships within datasets is
paramount. Probabilistic graphical models and Structural
Equation Modeling (SEM) emerge as substantial candidates
for this task, offering a robust framework for illustrating
and understanding the complex interplay between different
dataset attributes. As highlighted by [2], [3], [4], [5], and [6],
these tools can effectively map out the causal relationships,
providing a clear insight into the dynamics at play.Within this
context, the work of [7] employs SEM-based probabilistic
networks for qualitatively analyzing the effect of altering
network parameters on the extent of bias (measured as mutual
information) among various dataset attributes.

The present paper introduces a novelmethod for generating
synthetic datasets that effectively control bias between
categorical attributes, building upon the work of [7]. Unlike
the approach in [7], which showed the possibility of using
SEM coefficients to influence bias evaluation post hoc, this
paper’s method actively adjusts the relationships between
variables. The goal is to ensure that a specific mutual
information between pairs of attributes in a dataset is attained.
Specifically, this study proposes a two-step optimization
algorithm to accurately manage bias within the dataset
attributes, grounded on the principles of structural equation
modeling. The algorithm operates in two sequential stages.
The first stage uses a gradient-less optimization method,
optimizing each variable independently to avoid issues

related to variable coupling. This method enhances efficiency
and ensures scalability, particularly for a moderate number
of attribute pairs. The second stage uses a gradient-based
optimization approach, utilizing an analytical model of a
probabilistic network that outlines the causal dependencies
between dataset attributes. Thanks to such analytical model,
this stage handles more complex interactions between
variables, considering the interplay of different attributes
for a comprehensive optimization solution. The combined
approach of gradient-less and gradient-based methods allows
the algorithm to tap into the strengths of both.

It is crucial to emphasize that the proposed methodology
can serve as a component of a pre-processing algorithm
designed to mitigate bias in a given dataset. Specifically, once
the parameters of an appropriate graphical model have been
learned from the biased data, the introduced technique can
be employed to adjust the configuration of these parameters,
aiming to diminish the bias while minimizing any adverse
effects on the remaining causal relationships. Subsequently,
an unbiased version of the dataset can be synthetically
generated by utilizing the graphical model with the modified
parameters. Furthermore, this method is significant for
producing synthetic datasets with varying degrees of bias,
addressing the scarcity of publicly available datasets for
research. This feature is especially helpful for researchers
focused on developing and testing bias-reducing classifiers,
as it enables the creation of synthetic datasets across a broad
range of bias scenarios.

The efficacy of the proposed methodology is demonstrated
through two distinct case studies, presented in the results
section. The first case study showcases the algorithm’s capac-
ity to finely adjust network parameters within a numerically
simulated environment, ensuring that the desired mutual
information among selected pairs of dataset attributes is
achieved. It underscores both the strengths and the limitations
of the approach, emphasizing the intrinsic relationship
between the desired mutual information and the degree
of freedom inherent to the topological structure of the
graphical model. The second case study applies the proposed
methodology to amore realistic context, specifically focusing
on a dataset related to job hiring decisions. It demonstrates
how the proposed method can be employed to mitigate
potential bias while maintaining the relationships among
other variables, thereby facilitating the synthetic generation
of a dataset that closely mimics the original one, but with
significantly reduced bias.

Summarizing, the key contributions of this paper
include:

• Introduction of a novel synthetic dataset generation
method using a two-step optimization algorithm for
effective bias control between categorical attributes
within datasets.

• Proposal of a quantitative approach to adjust relation-
ships between variables, ensuring a desired level of
mutual information between attribute pairs in a dataset.
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FIGURE 1. Visual representation of the key points proposed and discussed in this paper. The diagram succinctly illustrates the primary elements and
their interconnections, including the definition of bias, challenges, two-step optimization algorithm, and case studies, providing a coherent and concise
visual overview that complements the textual exposition.

• Development and validation of a tool for bias mitigation
in existing datasets and generation of synthetic datasets
with specified bias degrees.

These contributions together underline the key role of this
paper in the ongoing efforts towards effective bias control
within datasets. A visual representation of the key points
proposed and discussed in this paper is depicted in Figure 1.

This paper is organized as follows: Section II provides an
overview of related work in the field of bias and fairness
in datasets. In Section III, the methodology is described in
detail, including subsections on structural equation modeling
(III-A), synthetic dataset generation (III-B), mutual informa-
tion (III-C), and optimization (III-D). Section IV presents the
aforementioned case studies. Finally, Section V concludes
the paper with a summary of the main findings and potential
directions for future research.

II. RELATED WORK
This section provides an overview of the related work in the
field of bias and fairness in datasets, focusing on measures
of dependency, synthetic dataset generation, and fairness in
machine learning. A short comparative analysis is reported at
the end of each subsection.

A. BIAS DEFINITIONS AND MEASURES OF DEPENDENCY
Bias in data has been defined in different ways. According
to Amodei et al. [8] claim that ‘‘bias as ‘‘systematic errors
in a machine learning model that arise from the data it is

trained on.’’ The authors argue that bias can have a number of
side effects, including i) discrimination against certain groups
of people, unfairness in decision-making, and iii) reduced
trust in machine learning systems. Caliskan et al. [9] define
bias as ‘‘the tendency of a machine learning model to make
different predictions for different groups of people, even
when those groups are statistically equivalent.’’ Specifically,
the authors argue that bias can be caused by a number of
factors, varying from the data and algorithm used to the way
inwhich themodel is used. Finally, Rudin [10] denotes bias as
‘‘the difference between the predictions of amachine learning
model and the ground truth.’’

Several measures of dependency between variables have
been proposed in the literature, with mutual information
being one of the most widely used [11]. Mutual information
quantifies the amount of information shared between two
variables, making it suitable for assessing bias between
categorical attributes in datasets [12]. Other measures of
dependency, such as Pearson’s correlation coefficient and
distance correlation, have also been employed in various
contexts [13], [14], [15]. Besides mutual information and
Pearson’s correlation, there are several other dependency
measures commonly used to quantify the relationship
between variables. For example, Spearman’s correlation
coefficient [16] is a measure of the monotonic relationship
between two variables. It calculates the correlation between
the ranked values of the variables rather than their actual
values and it can be used for those variables that may not have

VOLUME 11, 2023 115495



E. Barbierato et al.: Controlling Bias Between Categorical Attributes in Datasets

a linear relationship. Moreover, when considering data that
can be mathematically represented with dynamical systems,
an alternate measure of dependency could be the sensitivity
of the outputs to the system’s parameters. This sensitivity
essentially quantifies the degree to which changes in a given
parameter can impact the system’s output, serving as a useful
indicator of dependency or influence within the system [17].

Kendall’s Tau [18] is another rank-based correlation
measure that assesses the strength of the ordinal association
between two variables. It is particularly useful when dealing
with ranked or ordinal data and is less sensitive to outliers
compared to Pearson’s correlation.

The Distance correlation [19] measures the dependency
between two variables based on the idea of comparing
distances between points. It captures both linear and non-
linear relationships and can be deployed when dealing with
high-dimensional data. Information gain [20] is a measure
typically used in the field of machine learning and especially
with decision trees. It quantifies the reduction in entropy
(uncertainty) of a target variable by knowing the values
of a predictor variable. Furthermore, Maximal Information
Coefficient (MIC) [21] is a measure that captures both
linear and nonlinear dependencies between two variables.
It quantifies the strength of the relationship by measuring
the maximum amount of information shared by the variables
across all possible partitions of the data.

Mutual information is more general as captures both linear
and nonlinear relationships between variables. Also, it does
not assume any specific form of relationship and it is able to
detect any type of dependence. It is sensitive to linear and
nonlinear relationships between variables and can capture
complex relationships. However, it does not offer a direct
interpretation in terms of the strength of the relationship
although it captures any type of dependence between
variables, including both linear and nonlinear dependencies,
and is widely used in various fields.

Pearson’s coefficient measures the linear relationship
between variables and quantifies the strength and direction
of the linear association. As a drawback, it may fail to
detect nonlinear relationships. It has a clear interpretation
as it ranges from −1 to 1, but is limited to capturing linear
dependencies and may not necessarily detect more complex
relationships. It is useful when analyzing linear relationships.

Spearman’s correlation coefficient aims at capturing
monotonic relationships, therefore including both linear and
nonlinear relationships. It is able to measure the strength
and especially the direction of the monotonic association
between variables, although may not detect non-monotonic
relationships. Very often, it is deployed to rank ordinal
variables or assess the relationship between ranked data.
Again, it has a clear interpretation as it ranges from -1 to 1 and
is more appropriate when considering ordinal variables.

Kendall’s Tau correlation measure captures monotonic
relationships, although it does not consider the shape of the
relationship beyond a monotonic trend. It has to be noticed

that mutual information can be applied to both discrete and
continuous variables, while Kendall’s Tau is commonly used
for ranking ordinal variables or assessing the relationship
between ranked data. It is preferred when assessing the
agreement or concordance between ranked data: in this sense,
it is rather limited when compared to the wide usability of
mutual information.

Information gain differs from mutual information in con-
text and especially in the calculation (the former employs the
joint and marginal probability distributions of the variables;
the latter measures the reduction in entropy when a specific
attribute is known). Furthermore, information gain is used
only for discrete variables.

In conclusion, by considering table 1, it results that mutual
information is particularly suitable for the problem addressed
in this paper.

B. SYNTHETIC DATASET GENERATION
Synthetic dataset generation has been an area of interest
due to its potential applications in privacy-preserving data
analysis, data augmentation, and model validation [22],
[23], [24], [25], [26]. Several methods have been proposed
for generating synthetic datasets, such as sampling-based
approaches, Generative Adversarial Networks (GAN) [27],
and variational autoencoders [28].

Furthermore, it is possible to generate synthetic data by
fitting a parametric model, such as Gaussian, to the original
data and generating synthetic samples from the learned
parameters, although it is assumed that the data follow
a specific distribution. Using non-parametric models, such
as Kernel Density Estimation (KDE) ([29], [30], [31]) or
Gaussian Mixture Models (GMM, [32], [33]), to estimate
the underlying probability distribution of the data. Synthetic
samples are then generated by sampling from the estimated
distribution. Notably, it is possible to model the sequential
dependencies in the data usingMarkov chains [34], [35]). The
transition probabilities between states are estimated from the
original data, and new synthetic sequences are generated by
sampling from the Markov chain.

Data augmentation techniques based on mutual informa-
tion generate new data samples by applying transformations
(or perturbations) to the original data while preserving
the relevant information. These techniques can involve
operations such as rotation, translation, scaling, or even
adding noise to the data. On the other hand, GAN can
generate new samples that are similar to the original data but
are not exact copies. IN this sense, they are primarily used for
data synthesis or generation tasks.

KDE can be used to generate new synthetic data samples by
sampling from the estimated density function. These samples
are drawn randomly following a distribution modeled by
KDE. The generated data points are not necessarily copies
of the original data although are representative of the same
distribution. KDE-based data generation is typically used in
scenarios where a large amount of training data is needed.
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TABLE 1. Measures of dependency evaluation.

With regard to GMM-based methods, the samples are
generated by first selecting a component from the mixture
according to its weight and then drawing a data point from
the selected Gaussian distribution. As a result, the generated
data points are representative of the modeled distribution.

Table 2 summarizes the methods discussed in this section.
In the context of bias and fairness, the authors in [7]

have focused on qualitative analysis of bias in datasets using
structural equation modeling and probabilistic networks,
highlighting the impact of network parameters on the amount
of bias between dataset attributes. The present paper builds
upon this previous work, proposing a novel method for
generating synthetic datasets with controlled bias and a two-
step optimization algorithm for quantitatively adjusting the
relationships between variables.

C. FAIRNESS IN MACHINE LEARNING
The importance of fairness in machine learning has been
widely recognized, leading to the development of various
techniques for ensuring fair decision-making algorithms [36].
These techniques typically fall into three categories:
pre-processing, in-processing, and post-processing. Pre-
processing methods focus on transforming the input data

to remove or mitigate biases before training the model, for
example by adjusting the dataset to ensure balanced represen-
tation across different groups or classes, generating synthetic
data points to increase representation of underrepresented
groups, or constructing new features that capture important
information about underrepresented groups.

Finally, techniques such as Principal Component Analysis
(PCA) or t-SNE to reduce bias caused by irrelevant or
redundant features (see [37], where the authors use volatility
as a metric to generate better, and fairer predictions; [38] for
a discussion on facial attribute recognition used to denote
the attribution of model bias from imbalanced training data
distribution, joined to balancing data distribution achieved by
adversarial examples; and finally, [39], where the author use
covariate shift to assess fair decisions).

In-processing techniques modify the learning algorithm
itself to ensure fair predictions. For example, re-weighting
is a technique that works by assigning different weights to
different instances or groups to adjust for imbalances in the
dataset and is contrapposed to rescaling, i.e. modifying the
predicted outcomes or scores to account for the imbalance
in the data. Other approaches work on modifying decision
thresholds to achieve fairness goals for different groups or
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TABLE 2. A comparison of data augmentation techniques.

even by deploying a form of adversarial learning, i.e. training
a model to simultaneously predict the target variable and
detect sensitive attributes to reduce bias. Finally, regulariza-
tion algorithms add fairness constraints or penalties to the
model’s objective function to minimize discrimination (see,
for example, [40] for a survey on in-processing techniques;
[41] for a study on a adversarial network limiting the bias
from the data perspective and the model at the same time,
and finally, [42] where the authors review how to re-deploy
fairness under distribution shifts. This approach represents
a sufficient condition being the basis for a theory-guided
self-training algorithm founded on an intra-group expansion
basis).

Post-processing methods adjust the model’s predictions
after training to ensure fairness. This goal is usually
achieved by adjusting model outputs to achieve fairness
goals by mapping them to a calibrated probability scale.
It is also possible to add an additional ‘‘reject’’ category
to the classification task, allowing uncertain predictions to
be flagged rather than assigned biased outcomes. Finally,
a form of equalized odds postprocessing is achieved by
modifying predicted labels to ensure equal false positive
and false negative rates across different groups (see [43]
for a discussion on MULTIACCURACY-BOOST, a rapidly
converging post-processing algorithm; [44] for a study about
the trade-off between the minimization of error dispar-
ity across different population groups and the calibration
between probability estimates, and finally [45], where the
authors consider counterfactual equalized odds and develop
a post-processed predictor that is estimated though doubly
robust estimators, following a previous line of research
based on postprocessing techniques). Table 3 summarizes the
approaches by effectiveness, suitability, and shortcomings.

The proposed approach in this paper contributes to the
pre-processing category, aiming to control the amount of
bias in datasets through the generation of synthetic data
and quantitative adjustment of the relationships between
variables. In particular, the proposed methodology in this
paper builds upon and extends previous work in the fields
of measures of dependency, synthetic dataset generation, and

fairness in machine learning. Utilizing structural equation
modeling and graphical models, the two-step optimization
algorithm is devised to efficiently manage the bias between
categorical attributes in datasets, guaranteeing that the desired
mutual information is attained. This, in turn, contributes
to the development of unbiased and fair decision-making
algorithms in various applications.

III. METHODOLOGY
This section introduces the proposed methodological frame-
work for generating synthetic datasets, which allows users
to directly specify the desired level of dependencies among
sample attributes. Each record in the dataset is represented as
a tuple of attributes, with each attribute being a discrete ran-
dom variable with ordinal values. Specifically, we consider a
dataset D = {ri; i = 1, ..,N } consisting of N records, where
the i-th record ri is represented as a tuple of K attributes,
i.e., ri = (ai,1, ai,2, . . . , ai,K ). These attributes are assumed
to be realizations of their corresponding discrete random
variables, namely A1,A2, . . . ,AK . Statistical dependencies
among different attributes are examined using structural
equation modeling [3], a graph-based approach that enables
researchers to investigate direct, indirect, and mediating
effects between variables within a single, comprehensive
model.

The primary goal of this methodology is to generate a
set of records with a desired level of causal dependency
(i.e., statistical bias) between selected pairs of attributes,
given the marginal probabilities of different attribute values
a priori.

Section III-A describes the Structural Equation Modeling
approach, while Section III-B presents an adaptation of
SEM for synthetic dataset generation. Lastly, Section III-C
introduces the concept of mutual information which is used
in this paper to quantify the amount of bias (i.e. mutual
dependence) between two variables.

A. STRUCTURAL EQUATION MODELING
Structural equation modeling is a robust statistical technique
commonly used to fit probabilistic models based on observed
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TABLE 3. A comparison of approaches to data fairness.

FIGURE 2. A representative example of a structural equation
model (SEM).

measurements. In this context, the measurements represent
the outcomes of observed variables that describe the phe-
nomenon under investigation, while their dependencies are
modeled using a graph of latent Gaussian random variables.
In the analysis of datasets, the observed variables are discrete
random variables corresponding to the sample attributes
A1,A2, . . . ,AK . Their dependencies are represented by
a probabilistic network comprising M latent continuous
random variables, namely, X1,X2, . . . ,XM .

Figure 2 illustrates an example of an SEM, where the
squared nodes labeled Ai; i = 1, . . . , 4 represent the manifest
variables, and the rounded nodes, Xi; i = 1, . . . , 5, denote
the hidden variables. The figure also displays the causal
dependencies between pairs of latent variables (solid arcs)
and the connections between latent and manifest variables
(dotted arcs). Nodes without incoming edges (such as
X1 and X2) represent independent latent variables, while
nodes with incoming edges (such as X3, X4, and X5) represent
dependent latent variables.

In general, a SEM withM latent variables is described as a
weighted Directed Acyclic Graph (DAG) [46] withM nodes,
where the i-th node corresponds to the latent variable Xi.
A DAG is a collection of nodes (or vertices) connected
by directed edges (or arcs), where each edge has an initial
node and a terminal node. The term acyclic indicates that
there is no sequence of edges that forms a closed loop or

cycle, i.e. a path starting and ending at the same node.
The edges between nodes are described as (i, j) ∈ E where
E ⊆ {(i, j); 1 ≤ i, j ≤ M} is the set of DAG edges. Within the
context of SEM, such edges signify the direct relationships
between the corresponding latent variables, which may arise
from factors such as causality or correlation. Moreover, each
(i, j) ∈ E is associated with a weight αi,j ∈ R representing
the regression coefficient (i.e., the the amount of direct
dependency) between the variables Xi and Xj.

The variable Xi related to a node without incoming edges
(such asX1 andX2 in Figure 2) is described by an independent
Gaussian variable with probability distribution N (0, σ 2

i ),
where σi accounts for the intrinsic variability of Xi. On the
other hand, a node Xi with incoming edges (e.g., nodes X3,
X4 and X5 in Figure 2) corresponds to a dependent latent
variable that can be described as linear combinations of
the parent nodes and a Normal probability distribution that
accounts for its uncertainty, that is:

Xi =

∑
(j,i)∈E

αj,iXj +N (0, σ 2
i ) (1)

where the regression coefficient αi,j is set to zero if the
j-th node does not influence the i-th one. In this way, the
structure of the graph and these coefficients accurately depict
the dependencies and relationships between latent variables.

The previous equation establishes that each dependent
latent variable, Xi, is normally distributed. This is a con-
sequence of the fact that a sum of normally distributed
random variables itself follows a normal distribution. For
each dependent variable Xi, the mean of this distribution
is zero. The variance of the distribution, however, includes
both the intrinsic variability of the latent variable σ 2

i and
the accumulated influences from all the parent variables.
Each parent influence is calculated as the square of the
respective regression coefficient αj,i, multiplied by the parent
variable’s variance σ 2

j . The summation of all these influences
constitutes the overall effect of the parent variables on the
variance of Xi. In particular, it holds that:

Xi ∼ N (0, σ 2
i +

∑
(j,i)∈E

α2j,iσ
2
j ) (2)
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where the obtained variance accurately captures both the
internal variability of the variable and the contribution from
its dependencies.

Given the definitions and relationships previously outlined,
the entire vector X = [X1,X2, · · · , XM ] of latent variables
is described as a multivariate Normal distribution. The
mean of this multivariate distribution is a vector of zeros,
and the variance-covariance structure is given by a matrix
6 ∈ RM×M , as denoted by:

X ∼ N (0,6) (3)

The matrix 6, known as the variance-covariance matrix,
characterizes the variance of each latent variable (along the
diagonal of the matrix) and the covariance between each pair
of latent variables (off-diagonal elements of the matrix). The
computation of this matrix is achieved by the expression:

6 = Q⊤6nQ (4)

where 6n is the diagonal matrix with the elements of
the vector [σ1, σ2, . . . , σM ] on the principal diagonal, and
Q = (I − A)−1, with A being the adjacency matrix of
the considered DAG. Note that it is possible to obtain the
Pearson correlation coefficient ρi,j ∈ [−1, 1] between the
latent variablesXi andXj from the variance-covariancematrix
as follows:

ρi,j =
6i,j√

6i,i
√
6j,j

(5)

where 6i,j is the j-th elements of the i-th row of the
variance-covariance matrix 6. Note that ρi,j = ρj,i since the
variance-covariance matrix is symmetric. In order to simplify
the following discussion, it is also useful to express the
covariance matrix 6[i,j] ∈ R2×2 between the two variables
Xi and Xj as a function of their variances and their correlation
coefficient:

6[i,j] =

 6i,i ρi,j
√
6i,i

√
6j,j

ρi,j
√
6i,i

√
6j,j 6j,j

 (6)

considering that ρi,j = 1 corresponds to a singular value
matrix.

Building upon the previous discussion, it is important
to highlight the integral role that the selection of latent
variables plays in the effective application of the proposed
model. These latent variables capture complex and often
non-linear interactions between the categorical attributes of
the dataset, interactions that might be challenging to model
directly. Therefore, the judicious selection of these variables
is critical for accurately representing the attribute depen-
dencies and, consequently, for controlling bias effectively.
In this context, domain knowledge assumes a paramount
role. A comprehensive understanding of the dataset and
the potential interactions between its attributes can guide
the selection of latent variables. Knowing which attributes
might have significant dependencies can help identify the
dimensions that capture the inherent biases in the data.

Further, statistical techniques such as exploratory factor
analysis can complement domain knowledge and provide
valuable guidance in the selection process. These methods
can help uncover the underlying structure of the data
and suggest potential latent variables that might not be
immediately apparent.

In summary, while the proposed model’s sensitivity to
the choice of latent variables underlines their importance,
a thorough understanding of the domain and the use
of suitable statistical techniques can ensure their optimal
selection, thereby enhancing the model’s effectiveness in bias
control.

B. DATASET GENERATION
The multivariate distribution expressed in (3) can be
employed to generate a synthetic dataset where the causal
relationships between the sample attributes are depicted
by the graphical model introduced in III-A. Specifically,
the latent representation of each sample in the dataset is
an M -dimensional vector, which is derived by sampling
the aforementioned multivariate normal distribution. The
observed variables (i.e. the attributes), assumed to be cate-
gorical in this context, are subsequently obtained from their
latent representation through the application of appropriately
selected thresholds, referred to as cutoffs. These cutoffs are
determined uniquely, provided that the marginal distributions
of the various attributes are assumed to be given. This implies
that the probability P(Ai = Ãki ) is known for each attribute
Ai, with Ãki representing its admissible categorical values for
k = 1, . . . , ni.
The cutoffs ci,1, . . . , ci,ni+1 are used to partition the

cumulative probability function F : R → [0, 1] of the i-
th latent variable Xi into ni regions each of them associated
with a single categorical class, in order to satisfy the following
equation:

P(Ai = Ãki ) = P(ci,k ≤ Xi < ci,k+1)

= F(ci,k+1) − F(ci,k ) (7)

for i = 1, . . . , M and k = 1, . . . , ni. Note that it
is assumed that the lower bound ci,1 represents negative
infinity while the upper bound ci,ni+1 represents positive
infinity. An example of cutoffs setting is depicted in Figure 3,
where the probability density function f (Xi) of a generic
latent variable Xi is partitioned into four different regions,
whose area corresponds to the probabilities P(Ai = Ãki ) for
i = 1, . . . , 4.
A sample in the dataset is generated by transforming

a randomly drawn vector from the multivariate Gaussian
distribution into a vector of categorical features based on
the region each entry of the continuous vector belongs to.
Consequently, a dataset composed of categorical variables
is obtained. It is important to note that the proposed
formulation is limited to the case of binary variables or
ordinal categorical variables Ai with ni > 2, as the latent
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FIGURE 3. An illustration of a cutoffs setting for a generic latent
variable Xi , with the area under its probability density function f (Xi )
partitioned into four distinct regions.

continuous representation inherently provides an ordering for
the variables under consideration.

C. MEASUREMENT OF BIAS
In the preceding sections, we have outlined the primary
objective of this research article, which is to effectively
choose the network parameters (αi,j and σi) introduced
in III-A to facilitate the generation of synthetic datasets
containing a predefined amount of dependencies between
sample attributes. To achieve this, it is essential to employ
a quantitative measure to assess these dependencies. Of the
various available options, mutual information has been
chosen as an appropriate candidate for this purpose due to
its ability to capture both linear and non-linear relationships
between variables, making it a versatile and powerful
measure.

However, before delving into the details of mutual
information, it is important to articulate a more formal
definition of ‘bias’. In the context of this study, ‘bias’ is
characterized as any systematic inaccuracy that misrepresents
or manipulates certain categories of attributes in our dataset.
This could materialize as statistical overrepresentation or
underrepresentation of these categories, consequently leading
to unfair results in subsequent data analysis or application.
A practical example of this concept can be seen in
‘demographic parity’, a widely accepted fairness metric
in machine learning. This principle states that the rate
of positive outcomes should remain consistent across all
protected groups (such as different races, genders, and ages)
in binary classification tasks. Mathematically, demographic
parity can be expressed as follows. Let Y be the decision
(0 for negative outcome, 1 for positive outcome) and A be
the protected attribute (e.g., gender or race). We say that
a decision-making process satisfies demographic parity if
P(Y = 1|A = a) = P(Y = 1) for all values ‘a’ of the attribute
A. Yet, while this metric is simple and interpretable, it does
not accommodate potential legitimate dependencies between

the protected attribute and the decision, which could lead to
unrealistic fairness expectations in some cases.

In the subsequent sections, an exploration of the critical
properties of mutual information will be undertaken, high-
lighting its role in mitigating bias and advancing fairness in
AI applications. Specifically, mutual information is utilized
to offer a quantifiable measure of bias, accomplished by
calculating the statistical dependencies between pairs of cat-
egorical attributes both before and after the implementation
of the proposed method. This provides a tangible measure
of bias mitigation. However, it is essential to underline that
mutual information inherently measures dependency, not
bias per se. Consequently, to interpret mutual information
accurately as a measure of bias, it is vital to verify that
the dependencies measured are indeed indicative of bias,
a determination that is typically context-dependent and
necessitates expert domain knowledge.

In the realms of probability and information theory, mutual
information serves as a metric to measure the degree of
mutual dependence between a pair of random variables. This
concept is closely related to the entropy of a random variable,
a fundamental idea in information theory that quantifies the
expected amount of information contained within a random
variable.

The mutual information between two categorical random
variables, Ai and Aj, is defined as:

I (Ai,Aj) =

∑
Ai,Aj

P(Ai,Aj) log
(
P(Ai,Aj)
P(Ai)P(Aj)

)
(8)

where P(Ai) denotes the marginal probability of variable
Ai, and P(Ai,Aj) represents the joint probability of the two
variables. Additionally, the following relationship holds true:

I (Ai,Aj) = H (Ai) + H (Aj) − H (Ai,Aj) (9)

where

H (Ak ) = −

∑
Ak

P(Ak ) log (P(Ak )) , k = i, j (10)

H (Ai,Aj) = −

∑
Ai,Aj

P(Ai,Aj) log
(
P(Ai,Aj)

)
(11)

and H (Ai) and H (Aj) represent the marginal entropies for the
variables Ai and Aj, respectively, whileH (Ai,Aj) corresponds
to their joint entropy.

In the following, a discussion is conducted in order to
highlight the relationship between the network parameters
(αi,j and σi) and the mutual information between two
observed variables Ai and Aj, exploiting the aforementioned
definition. While the marginal probability of a feature Ai
is assumed to be given since it corresponds to P(Ai =

Ãki ), the joint probability mass function P(Ai,Aj) can be
represented by a table with ninj entrances, each of which
is computed by integrating over specific rectangles (defined
according to the cutoffs) the following probability density
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FIGURE 4. Graphical representation of a bivariate Gaussian probability
density function f (Xi , Xj ), where variables Xi and Xj have 2 and 3 levels
respectively. Cutoffs are shown with green and blue dashed lines.
A specific rectangle R2,2

i,j is highlighted in gray on the plane f (Xi , Xj ) = 0.
Note that the volume under the red surface within this rectangle
represents the probability P((Xi , Xj ) ∈ R2,2

i,j ).

function f (Xi, Xj):

f (Xi, Xj) =
1

2π
√
det(6[i,j])

exp
(

−
1
2
[Xi Xj]6[i,j] [Xi Xj]⊤

)
(12)

which corresponds to the zero mean bi-variate Gaussian
associated with the latent variables Xi and Xj. Specifically,
the probability that Ai and Aj assume two specific values
Ãhi and Ãkj , with h ∈ {1, . . . , ni} and k ∈ {1, . . . , nj},

corresponds to the probability P((Xi, Xj) ∈ Rh,k
i,j ) that a

pair (Xi, Xj), extracted from the latent bi-variate Gaussian
with probability density function in (12), lies in the rectangle
Rh,k
i,j (see Figure 4, where an example of such a rectangle is

depicted in gray) defined as:

Rh,k
i,j = {(Xi, Xj) : ci, h−1 ≤ Xi < ci, h, cj, k−1 ≤ Xj < cj, k}

(13)

However, a closed form expression for the probability
P((Xi, Xj) ∈ Rh,k

i,j ) does not exist, except for the trivial case
in which ni = nj = 2, and therefore it should be properly
approximated as described in the following.

Specifically, an approximation can be obtained by com-
puting an estimation p̂ of the success probability p of the
following Bernoulli variable B ∼ B(1, p) over N samples:

P
(
(X ,Y ) ∈ Rh,k

i,j

)
=p (14)

P
(
(X ,Y ) /∈ Rh,k

i,j

)
=1 − p (15)

whereN can be chosen in order to obtain a confidence interval
for the estimation with a desired guaranteed probability. For
instance, 106 samples guarantee a level of precision ψ =

1.5 · 10−3 with confidence level of 99.7%, i.e. P(p̂ − ψ <

p < p̂ + ψ ) = 0.997.

Finally, it is interesting to show that, when the marginal
distributions P(Ai) and P(Aj) are given, the mutual infor-
mation I (Ai,Aj) between two categorical variables Ai and Aj
depends only on the correlation coefficient ρi,j between the
two corresponding latent variables Xi and Xj, according to
the function φi,j(ρi,j), where φi,j : [0, 1] → R+. In fact,
as can be seen from (8), the mutual information depends only
on the marginal probabilities P(Ai) and P(Aj) and the joint
probability P(Ai,Aj). While the former are assumed to be
given, the latter depends on the matrix 6[i,j] in (6), which
in turn depends on the following variables: 6i,i, 6j,j and ρi,j.
Note that the cut-off values for a variable Ai are uniquely set
according to themarginal distributions and depend linearly on
the standard deviation

√
6i,i of its latent representation, i.e.

ci,q =
√
6i,ic̄i,q where c̄i,q, q = 1, . . . , ni+1 are the cutoffs

for a Gaussian variable with unitary standard deviation and
same marginal probability. Considering the following latent
variables Xi ∼ N (0, 6i,i) and Xj ∼ N (0, 6j,j), with

[Xi Xj]⊤ ∼ N
(
[0, 0]⊤,

[
6i,i ρi,j

√
6i,i6j,j

ρi,j
√
6i,i6j,j 6j,j

])
(16)

the idea is to show that the joint probability P(Ai = Ãhi ,Aj =

Ãkj ) = P((Xi,Xj) ∈ Rh,k
i,j ) does not depend on 6i,i and 6j,j.

Let consider Zi, Zj ∼ N (0, 1) such that Xi =
√
6i,iZi and

Xj =
√
6j,jZj, it holds that

P((Xi,Xj) ∈ Rh,k
i,j )

= P(ch−1,i < Xi < ch,i, ck−1,j < Xj < ch,j)

= P(c̄h−1,i < Zi < c̄h,i, c̄k−1,j < Zj < c̄h,j)

(17)

with

[Zi Zj]⊤ ∼ N
(
[0, 0]⊤,

[
1 ρi,j
ρi,j 1

])
(18)

thus showing that P(Ai = Ãhi ,Aj = Ãkj ) depends only on the
correlation coefficient ρi,j, when the marginal distributions
(and hence the cutoffs) are set a priori.

D. TWO-STEP OPTIMIZATION
This section outlines a method for calculating the regres-
sion coefficients (αi,j) and conditional variances (σi) in a
network such as the one depicted in Figure 2, targeting a
specific mutual information for designated variable pairs. In
particular, we propose a two-step optimization process that
exploits in sequence a gradient-less optimization algorithm
and a gradient-based one. In detail, the first method targets
the variance-covariancematrix to determine conditions, using
Pearson’s correlation coefficients, which align with the target
mutual information. The latter is instead used to compute
the regression coefficients and conditional variances in the
network that lead to a variance-covariance matrix such that
the aforementioned properties are satisfied.
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The goal for the network parameters is to align them with
a reference set of mutual information values, I ri,j, between
particular variable pairs Ai and Aj, with (i, j) ∈ B ⊆

M × M, with M = {1, . . . , K }, where B is the set of
pairs for which there is an interest in controlling the bias.
Such a task can be formulated as an optimization problem
whose solution corresponds to the optimal configuration of
regression coefficients α⋆i,j and conditional variances σ 2,⋆

i
that provides the values of mutual information closest to the
references, i.e.

α⋆i,j, σ
2,⋆
i = argmin

αi,j, i̸=j
σ 2i , i∈M

∑
(i,j)∈B

(
I (Ai, Aj) − I ri,j

)2
(19a)

subject to: αi,j ∈ R, σ 2
i ∈ R+ (19b)

αi,j = ᾱi,j, (i, j) ∈ Kα ⊆ M×M (19c)

σ 2
i = σ̄ 2

i , i ∈ Kσ 2 ⊆ M (19d)

where the sets Kα and Kσ 2 indicate the edges and the
conditional variances that are assumed to be fixed and hence
not controllable. For instance, the constraint αh,k = 0 is used
to model the fact that no edge exists between the h-th variable
and the k-th one. Specifically, the design procedure of the sets
Kα and Kσ 2 is carried out by domain experts to incorporate
prior knowledge on the structure of the network.

Given the fact that an exact analytical expression for
φi,j(ρi,j) is not readily obtainable, gradient-based methods
cannot tackle the optimization problem in (19). Therefore,
gradient-less methodologies need to be employed, see for
instance the Nelder-Mead algorithm [47], which relies on
Montecarlo simulations, or any sort of genetic algorithms.
However, such an approach is not efficient in the sense
that it does not exploit the knowledge of the analytical
model which relates the optimization variables with the
Person’s coefficients. Moreover, the effectiveness of a
gradient-less algorithm in finding an optimal solution drops
significantly when the number of optimization variables
increases, due to the fact that it can become trapped in local
minima or it may struggle to efficiently explore the vast,
multi-dimensional search space. Furthermore, in (19), the
optimization variables appear coupled in the cost function
and can not be optimized separately. For all these reasons,
as a more efficient alternative, an optimization framework is
here proposed which is composed of two consecutive steps.
In particular, step 1 consists in the following optimization
problem:

ρ⋆i,j = argmin
ρi,j

(
I (Ai, Aj) − I ri,j

)2
, (i, j) ∈ B (20a)

subject to: ρi,j ∈ [−1, 1] (20b)

while step 2 is defined as:

α⋆i,j, σ
2,⋆
i = argmin

αi,j, i̸=j
σ 2i , i∈M

∑
(i,j)∈B

(
ρi,j − ρ⋆i,j

)2
(21a)

subject to: αi,j ∈ R, σ 2
i ∈ R+ (21b)

αi,j = ᾱi,j, (i, j) ∈ Kα ⊆ M×M (21c)

σ 2
i = σ̄ 2

i , i ∈ Kσ 2 ⊆ M (21d)

where the optimization problem in (20) can be solved through
a gradient-less algorithm for each variable ρi,j, (i, j) ∈ B
independently, while the problem in (21) can be solved
through any gradient-based methods (see for instance the
interior-point method), since an analytical expression for
ρi,j as a function of αi,j and σ 2

i exists (see equations (4)
and(5)). The pseudocode to implement the proposed two-step
optimization method is provided in 1, which can be further
explained by the following main steps:

• Step 1: For each pair of attributes (i, j) within the set of
attributes of interest B:
– Compute the Pearson’s coefficient ρ⋆i,j that mini-

mizes the squared difference between the mutual
information I (Ai,Aj) and the desired mutual infor-
mation I ri,j.

– This is subject to the constraint that ρi,j must lie
within the interval [−1, 1].

• Step 2: For each pair of attributes (i, j) within the set of
attributes of interest B:
– Compute the weights α⋆i,j and variances σ

2,⋆
i

that minimize the squared difference between the
actual Pearson’s coefficient ρi,j and the required
coefficient ρ⋆i,j obtained in Step 1.

– This computation is subject to the following
constraints:
∗ The weights αi,j are real numbers and the

variances σ 2
i are non-negative real numbers.

∗ For a specific subsetKα ofM×M, the weights
αi,j should be equal to predefined weights ᾱi,j.

∗ For a specific subset Kσ 2 of M, the variances
σ 2
i should be equal to predefined variances σ̄ 2

i .
Additionally, the main elements of the two-step optimization
algorithm proposed in this paper are visually depicted in
Figure 5.

Algorithm 1 Two-Step Optimization for Bias Control
1: for each attribute pair (i, j) ∈ B do
2: Compute ρ⋆i,j = argminρi,j (I (Ai,Aj) − I ri,j)

2

3: subject to ρi,j ∈ [−1, 1]
4: end for
5: for each attribute pair (i, j) ∈ B do
6: Compute α⋆i,j, σ

2,⋆
i = argmin αi,j,i̸=j

σ 2i ,i∈M

∑
(i,j)∈B(ρi,j −

ρ⋆i,j)
2

7: subject to
8: αi,j ∈ R, σ 2

i ∈ R+

9: αi,j = ᾱi,j, (i, j) ∈ Kα ⊆ M×M
10: σ 2

i = σ̄ 2
i , i ∈ Kσ 2 ⊆ M

11: end for
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FIGURE 5. Diagram showing the two-step optimization for calculating regression coefficients and conditional variances, ensuring desired mutual
information between specific variable pairs. The process utilizes both gradient-less and gradient-based methods.

It should be noted that both the approaches can retrieve the
set of weights and variances that match the desired mutual
information values only if the two following conditions hold:

• the target mutual information values are positive and
lower than the maximum mutual information that can
be achieved between the considered discrete variables;

• the target mutual information values can be achieved by
acting only on the conditional variances σ 2, ⋆

i ∈ M and
the weights αi,j, i ̸= j under the network constraints
in (19c) and (19d). In fact, according to the network’s
degree of freedom, it may happen that the Pearson’s
coefficients between two or more pairs of variables are
dependent on each other.

For the two-step algorithm, step 1 solution from (20) yields
ρ⋆i,j ∈ [−1, 1] values aligning closely with the target mutual
information. In contrast, step 2 from (21) identifies the ideal
weights and variances, aiming for the smallest error between
the real and desired Pearson’s coefficients.

While the proposed optimization approach has its merits,
it is prudent to consider also its limitations. The process
employs a combination of gradient-less and gradient-based
methods, each presenting its own set of advantages and
potential pitfalls. The first step of the process harnesses a
gradient-less method, which allows for the independent opti-
mization of each variable. This aspect effectively addresses
the challenge of coupled variables. However, even with
such independence, these methods are still susceptible to
local optima, which could lead to sub-optimal results. The
process evolves in its second step to utilize a gradient-based
method. Despite its usual efficiency, the convergence success
of this method is largely contingent on the choice of initial
parameters. Furthermore, the global optimality of the solution
is not always guaranteed even in this case.

Beyond these considerations inherent to the optimiza-
tion methods, an additional complexity emerges from the
potential ripple effects of adjustments. While the objective
is to control mutual information between specific attribute
pairs, such adjustments may inadvertently impact mutual
information between other attribute pairs. To counteract

this, one might consider integrating additional constraints to
preserve mutual information for unaffected pairs. However,
this inclusion could reduce the degrees of freedom available
for bias control, potentially leading to a situation where no
feasible solution can be found. This inherent balancing act
when controlling bias in intricate datasets is not exclusive
to the proposed two-step optimization method but a general
challenge in the field.

1) SCALABILITY AND COMPUTATIONAL COMPLEXITY
A critical aspect of the proposed methodology relates to
its scalability and computational complexity. Specifically,
the number of records in the dataset primarily influences
the fitting of the SEM network rather than the proposed
optimization process. Although this stage does not constitute
an explicit part of the two-step optimization algorithm,
it may serve as a prerequisite for identifying the interrelations
amongst different dataset attributes. As the volume of data
to be processed intensifies with increasing record numbers,
the SEMfitting process’s computational complexity naturally
escalates.

The computational complexity of the two-step optimiza-
tion algorithm itself, however, varies between the gradient-
less and gradient-based stages. Each of these stages exhibits
a unique sensitivity to the structure of attribute interrelations
and the size of the corresponding graph.

In the gradient-less optimization stage, computational
complexity is essentially driven by the number of attribute
pairs for which control of mutual information is intended.
Given the decoupled nature of these attribute pairs in this
stage, the computational complexity exhibits linear scaling
with the number of such pairs. This characteristic renders the
gradient-less stage relatively efficient, particularly when the
count of pairs of interest remains moderate.

Contrastingly, the computational complexity of the
gradient-based optimization stage heavily relies on the
quantity and intricacy of the elements (nodes and edges)
within the graph representing attribute relationships. This
dependency resonates with the computational complexity
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FIGURE 6. Diagram of the two networks considered as a case study. The
networks differ as the left one lacks the red edge between the variables
X1 and X3, while the right one includes it.

inherent to the interior-point method when employed in a
nonlinear optimization problem. Specifically, the complexity
scales roughly cubically with respect to the number of
optimization variables, which correlates with the graph’s
nodes and edges count. Thus, larger andmore intricate graphs
may entail considerably high computational complexity for
the gradient-based optimization stage.

Given these considerations, the proposed approach exhibits
scalability for datasets with a moderate attribute count.
For larger, more complex datasets, additional steps such as
attribute selection or dimensionality reduction may need to
be integrated to enhance efficiency.

IV. CASE STUDY
This section validates the proposed optimization algorithm in
two distinct contexts. In Subsection IV-A, the performance
of the methodology is examined through a numerical case
study. Here, the algorithm’s efficacy in identifying network
parameters that yield desired mutual information among
a selected subset of dataset attributes is demonstrated.
Conversely, Subsection IV-B turns to a more realistic dataset,
for which the corresponding graphical model is assumed
to be known, where an inherent bias exists between a
sensitive attribute and the target variable. In this context, the
proposed methodology is employed to adjust the parameters
of the Bayesian network to mitigate the undesirable bias
while maintaining the relationships among all other variables.
Consequently, this allows for the synthetic generation of a
dataset with reduced bias, closely mimicking the original one
in all other aspects.

A. VALIDATION OF THE OPTIMIZATION ALGORITHM
THROUGH A NUMERICAL CASE STUDY
This subsection embarks on a detailed investigation of
the proposed two-step optimization algorithm within a
representative numerical context. The principal focus of this
analysis is to illuminate the capability of the algorithm to
fine-tune network parameters that result in desired mutual
information values between defined pairs of attributes in the
dataset. Through this numerical exploration, not only are the
algorithm’s strengths emphasized, but its limitations are also
candidly addressed. As an example, it is underlined that the

ability to set the desired mutual information is intrinsically
related to the degree of freedom inherent to the topological
structure of the given graphical model.

Specifically, the networks shown in Figure 6 are examined,
each consisting of 4 nodes, that is,M = {1, . . . , 4}. The two
networks differ in that the edge between variable X1 and X3 is
assumed to be absent in Figure 6a, i.e. α1,3 = 0 (which means
that (1, 3) ∈ Kα), while in Figure 6b the weight α1,3 can take
any real value. The four categorical features are characterized
by the following number of admissible values: n1 = 3,
n2 = 2, n3 = 3, and n4 = 2. Additionally, for simplicity and
without loss of generality, the different admissible values for
the categorical features are assumed to have equal probability,
meaning the marginal distribution is as follows:

P(Ai = Ãki ) =
1
ni
, k = 1, . . . , ni, i ∈ M. (22)

Furthermore, in this example, the set of pairs for which
the reference mutual information needs to be tracked is
considered as:

B = {(1, 4), (2, 4)}. (23)

which corresponds to requiring the satisfaction of a specific
value of mutual information I r1,4 between the attributesA1 and
A4 as well as I r2,4 between A2 and A4.

In the subsequent analysis, a variety of mutual information
reference combinations I ri,j, with (i, j) ∈ B, are considered.
For each combination, the two-step optimization problem
given by (20)-(21) is solved. The objective is to evaluate
the proposed approach’s ability to effectively design network
parameters under varying requirement conditions.

Specifically, a mesh is considered, defined by I r1,4(h) = sh
and I r2,4(k) = sk , with s = 0.03 and h, k ∈ {0, 1, . . . , 30}.
This results in a total of 961 configurations. The two-step
optimization problem is solved for each configuration and for
both networks depicted in Figure 6. The root mean square
error between the achieved mutual information (I ⋆1,4(h) and
I ⋆2,4(k)) and the reference one is computed using the following
formula:

e(h, k) =
1

√
2

√(
I r1,4(h) − I ⋆1,4(h)

)2
+

(
I r2,4(k) − I ⋆2,4(k)

)2
(24)

Figure 7 presents heatmaps illustrating the achieved error val-
ues for different target configurations for both the considered
networks. Specifically, the left portion of Figure 7 showcases
the results pertaining to the network depicted in Figure 6a,
whereas the right section of Figure 5 corresponds to the
results derived from the network illustrated in Figure 6b.

First of all, it is important to highlight that the mutual
information between two categorical variables Ai and Aj has
an upper bound Imax

i,j , which depends, among other things,
on the number of admissible values ni and nj for the two
considered variables. This upper bound can be obtained by
evaluating (8) with the Pearson’s coefficient approaching
its maximum absolute value (i.e., |ρi,j| = 1). Specifically,
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FIGURE 7. Root mean square error representing the discrepancy between the achieved mutual information and the reference one for the networks in
Figure 6a (left) and Figure 6b (right), across a 2D mesh of target mutual information values. Light blue and red areas signify unachievable mutual
information configurations, while dark blue indicates successful tracking of reference mutual information.

it holds that Imax
1,4 ≃ 0.46, while Imax

2,4 ≃ 0.64, for the case
of a dataset with equally probable categorical features (as
assumed in (22)). For this reason, the points in the 2D chart
characterized by I r1,4 ≥ 0.46 and I r2,4 ≥ 0.64 exhibit a
non-negligible root mean square error between the obtained
mutual information and the target one for both the networks.

Interestingly, for the network in Figure 6a, the points such
that I r1,4 ≥ I r2,4 cannot be tracked, as observed in the left
part of Figure 7. This is because the considered network
configuration, in which only the weights of certain edges
are assumed to be different from zero, does not have enough
degrees of freedom to independently set the values of mutual
information between the considered variables. In fact, if the
network in Figure 6b is considered, in which the weight
α1,3 can take on any real value, the 2-dimensional region
of feasible mutual information I r1,4 and I r2,4 expands to the
rectangle depicted in dark blue in the right part of Figure 7.
In this case, the proposed controller fails to track only the
combination of mutual information references I r1,4 and I r2,4
that cannot be achieved by definition (due to the fact that the
mutual information between to random variable has an upper
bound, as discussed above).

As illustrated in Figure 7, the discrepancy between the
target and achieved mutual information is presented as a
heatmap. To provide a clearer understanding of the regions
where the algorithm performs exceptionally well, Figure 8
offers an enhanced visualization. This figure highlights
the points where the discrepancy is near-zero, indicating
precise tracking, in dark blue. Conversely, points where
the error exceeds a specific threshold (0.01) are masked,
accentuating areas of successful mutual information tracking.

Collectively, these figures underscore the proficiency of the
proposed method in accurately tracking the reference mutual
information across diverse network configurations, such as
the ones considered in Figure 6a and Figure 6b.

B. MITIGATING BIAS IN A REALISTIC DATASET
In this subsection, the aim is to apply the proposed
methodology to mitigate potential socioeconomic bias in a
given dataset pertaining to job hiring decisions. To simplify
the demonstration while preserving its applicability, it is
assumed that the graphical model generating the considered
dataset is fully known. In a real-life scenario, such model
can be obtained by fitting the SEM’s parameters on the
considered dataset.

Hiring decisions are crucial determinants of individuals’
career trajectories and overall economic stability. However,
it is well-known that these decisions can sometimes be
influenced by biases, whether conscious or unconscious.
One potential source of bias is an applicant’s socioeconomic
status, which could unfairly influence their perceived suit-
ability for a job. Therefore, the model consists of a set of
variables that often carry weight during the hiring process.
These include categorical variables such as the candidate’s
socio-economic status, their level of education and field
of study, relevant work experience and skills, quality of
references, networking skills, and the hiring decision (refer
to 9 for a visual representation of the considered model).
The dependencies between these variables are assumed to
be known a priori and are encoded as edges in a Bayesian
network. For instance, an applicant’s socio-economic status
can influence their level of education, relevant experience,
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FIGURE 8. Highlighted points of successful reference mutual information tracking for the networks depicted in 6a (left) and 6b (right),
respectively. This figure visualizes the heatmap in Figure 7, emphasizing near-zero discrepancy points (dark blue areas). Points exceeding a
0.01 error threshold are covered, highlighting successful algorithm tracking.

FIGURE 9. Graphical representation of the Bayesian network used in the case study in IV-B for bias mitigation. The network encompasses latent
variables pertinent to the candidates’ hiring process in the job market, including socio-economic status, relevant skills, and more. Only the latent
variables are displayed for simplicity, omitting measured variables. Edges represent dependencies between variables, optimized using the
proposed methodology to mitigate bias. Nodes corresponding to socio-economic status and hiring decision are distinctly marked in light red and
light blue within the network, highlighting the presence of dataset bias between these variables in the original network parameters.

relevant skills, quality of references, and networking skills.
The socio-economic status also has a direct link to the hiring
decision, representing potential bias in the hiring process.
The education background, job experience and skills, and
references and networking skills also directly affect the hiring
decision.

The original dataset is assumed to be generated by
the model in Figure 9 with all the regression coefficients
and variances set to 1. Interestingly, in this configuration,

a mutual information of 0.356 exists between socio-economic
status and hiring decision, suggesting a potential bias. This
bias can be detrimental, possibly resulting in unfair hiring
practices where socio-economic status unduly influences
the hiring decision. The proposed two-step optimization
algorithm is applied to this model to find the optimal
regression coefficients and variances that can minimize
such bias while preserving the other dependencies within
the network. Specifically, the optimizations in 20 and 21
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TABLE 4. Mutual information summary at bias mitigation levels: The table displays mutual information between key variable pairs during bias mitigation.
Information between socioeconomic status and hiring decision lessens as bias mitigation rises, stabilizing for other pairs until 70% remaining bias.
Beyond this, model accuracy is compromised.

FIGURE 10. Illustration of the proposed two-step optimization
algorithm’s effectiveness in bias mitigation, applied to the graphical
model in Subsection IV-B and Figure 9. The X-axis indicates the remaining
bias as a percentage of the initial mutual information between
socio-economic status and hiring decision, with 0% signifying total bias
elimination and 100% no mitigation. The Y-axis denotes the root mean
square error, highlighting the difference between post-optimization and
reference mutual information values. These values aim to maintain
consistent mutual information among other variables while achieving
bias reduction. The graph demonstrates the potential to lower initial bias
by up to 30%, leaving 70% residual bias, with minimal disturbance to
other network dependencies. Efforts for further bias reduction beyond
this limit yield significant approximation errors, unsettling the original
inter-variable relationships in the network.

are repeatedly conducted with the intent to progressively
diminish the mutual information between the socio-economic
status variable and the hiring decision variable. Concurrently,
these optimizations aim to maintain the mutual information
variations among the remaining variables within acceptable
boundaries. As depicted in Figure 10, the algorithm suc-
cessfully mitigates up to 30%, leaving 70% of the initial
bias, while minimally impacting the other dependencies
within the network. This indicates that the graphical model
with optimized parameters has the ability to generate a
synthetic dataset that closely resembles the original dataset,
while effectively reducing the amount of bias. However,
attempting to further reduce the bias beyond the 30%,

may result in the network losing its ability to accurately
represent correlations in the dataset, as observed from
an increase in approximation errors. Overall, these results
highlight both the capabilities and limitations of the proposed
methodologywhen addressing bias in realistic settings.While
the methodology effectively diminishes bias up to a certain
threshold, it also illuminates the inherent constraints tied to
the degrees of freedom in the topological structure of the
considered graphical model. Thus, while it holds substantial
potential in fostering fairness in various domains reliant on
data-driven decision-making, it also stresses the necessity for
careful consideration of the model structure and its ability to
adjust desired mutual information values.

Further details of the findings can be seen in Table 4,
where mutual information for select pairs of variables is
presented to maintain clarity. It becomes apparent that the
mutual information between socioeconomic status and hiring
decision decreases as efforts to mitigate bias are intensified.
Notably, the mutual information between socioeconomic sta-
tus and relevant skills remains largely unchanged throughout
the entiremitigation process, as requiredmy the optimization.
Similarly, the mutual information between relevant skills
level and hiring decision stays relatively stable up until a 30%
reduction in the initial bias is reached, corresponding to a
remaining bias of 70%. Beyond this point, changes in mutual
information between these variables risk compromising the
model’s ability to accurately depict the dataset. Specifically,
the algorithm’s attempts to further minimize undesired bias
inadvertently impact the essential causal relationship between
relevant skills and hiring decision, a relationship that ideally
should remain stable due to its significance in the hiring
process.

V. CONCLUSION
In this paper, a novel two-step optimization algorithm has
been presented for controlling the amount of bias between
two categorical attributes in a given dataset, represented by
the mutual information. Structural equation modeling and
graphical models through directed acyclic graphs have been
employed to represent the causal relationships between dif-
ferent dataset attributes, relying on latent Gaussian variables.
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The proposed algorithm has been rigorously tested in
two distinct contexts to demonstrate its performance under
varied requirement conditions. A numerical case study
provides a detailed investigation of the algorithm’s capacity
to adjust network parameters, resulting in desired mutual
information values between specific pairs of attributes. This
study underscores both the strengths of the algorithm and
its limitations, revealing a fundamental relationship between
the ability to achieve desired mutual information and the
inherent degrees of freedom in the topological structure of the
graphical model. Furthermore, the methodology is applied to
a more complex scenario, involving a dataset related to job
hiring decisions. This case study exemplifies how potential
biases can be mitigated while preserving the relationships
among other variables. It demonstrates the potential of the
methodology to contribute to the generation of synthetic
datasets that closely mirror the original ones, but with
significantly reduced bias.

Furthermore, the impact of network configurations on the
feasibility of tracking the desired mutual information has
been explored. It has been observed that certain network
configurations lack sufficient degrees of freedom to set
the mutual information values independently, while other
configurations can expand the feasible region for achieving
the desired mutual information.

In conclusion, the proposed two-step optimization
algorithm showcases promising potential in bias control
within datasets, while adeptly maintaining other inherent
relationships. The work contributes a novel and practical
approach to bias mitigation in datasets and emphasizes the
importance of understanding the structure of the underlying
graphical model.

Looking ahead, the exploration of further applications
of this methodology could be a fruitful avenue for future
research. Specifically, applying the entire pipeline to real
datasets - from fitting the Structural Equation Model to
identifying and reducing bias - could prove highly beneficial.
This work can be perceived as a pre-processing technique
for bias mitigation, and the insights it yields could be
invaluable when engaged with domain experts. Furthermore,
the algorithm’s performance could be enhanced and its
applicability across various fields such as privacy-preserving
data analysis, fairness in machine learning, and causal
inference could be further explored.
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