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ABSTRACT This paper introduces themodel of design (MoD), a framework that leverages category theory to
study the design and development of computer-driven systems, to the academic and engineering communities
dealing with computer systems. The model of design aims to offer a minimal framework for modelling the
design and development of embedded computation across domains and abstractions, focusing on functional
and extra-functional aspects as well as overarching concerns for automaticity, correctness and reuse. This
nuanced approach provides insights into the theory and practice of computer systems design.

INDEX TERMS Computing systems, computer-aided design (CAD), electronic design automation (EDA),
embedded system design, architectural design, model-driven engineering, domain-specific modelling
languages, model of computation, system-level design, hardware/software co-design.

I. INTRODUCTION AND BACKGROUND
Since the advent of the digital revolution in the twenti-
eth century, computing has become ubiquitous in nearly
every facet of human society, permeating our daily lives,
urban infrastructure, global connectivity, and extraterrestrial
endeavours. Driven by the market and benefiting from
economies of scale, the sheer quantity of computers –whether
in familiar forms or embedded within other products – has
surpassed the global human population by two to three times,
with a growth rate outpacing that of the human population,
as indicated by the Cisco internet report [1]. Stanley Mazor,
one of the co-inventors of the first microcomputer system [2],
eloquently expressed this sentiment in his memoir published
in the IEEE Solid-State Circuit Magazine in 2009: ‘‘In 1960
- ten years before Intel developed the first single-chip CPU
(microcomputer central processing unit) - the revolution
that would ensue was inconceivable: the cost of computing
dropped by a factor of a million, modes of personal com-
munication changed forever, and intelligent machines took
over processes in manufacturing, transportation, medicine -
virtually every aspect of our lives.’’ [3].

The rapid proliferation of computers and the growing
demand for computing resources did not only, as Mazor
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remarked, elude the pioneers, but have also presented
challenges to our capacity to engineer the necessary machin-
ery for their production. To overcome these challenges,
we employ computers to assist us in the development
and manufacturing of next-generation computers and com-
puter applications. Computer-assisted development tools and
electronic design automation help tackle the engineering
challenge by leveraging domain-specific computer programs.
By utilising high-level design and programming languages,
we are able to write precise design descriptions and
algorithms for computer programs that are intelligible to
engineers. These descriptions can then be iteratively refined,
optimised, analysed, and synthesised (by computer pro-
grams) intomachine-level representations that are understood
by computers. The computers, embedded within fabrication
foundries, assembly lines, vehicles, data centres and personal
devices, then process these machine codes to produce useful
apparatus and executable applications at large scales. This
engineering ecosystem is made possible by the continu-
ous and compound advancements in information theories,
computer languages, communication technologies, device
modelling and design automation strategies, simulation
and compilation technologies, verification and optimisation
methods, and computerised instrumentation & control sys-
tems, which evolve in tandem to support and enhance the
development process of computer systems and applications.
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To cope with the increasing complexity of computer
system design engineering ecosystem and the expanding
application domains, design processes have been succes-
sively adjusted by raising the level of abstraction for
engineers, segregating design concerns, and breaking down
the scope into more manageable subsets across teams.
Researchers and practitioners such as Lee and Sangiovanni-
Vincentelli [4], [5], [6], [7], [8], [9], have articulated how
computers and applications are engineered using modelling
languages at higher levels of abstraction incorporating
frameworks such as model-driven development, component-
based integration, and platform-based design. In each
engineering domain, domain-specific modelling languages
are utilised to refine and integrate technical specifications,
addressing particular design considerations to achieve the
desired design outcome at a particular level of abstraction.
In navigating through the array of differing modelling
languages, the application of metamodelling techniques
and metaprogrammable tools becomes inevitable, and the
introduction of more domain-specific modelling languages is
necessitated. However, this diversification leads to a complex
spectrum of design paradigms, which can sometimes present
conflicting methodologies. They conclude that the key to
managing design complexity lies in employing structured
and formal design methodologies that can harmoniously
integrate the various facets of the multi-scale design space,
be it behavioural, spatial, or temporal. These methodologies
must provide suitable abstractions to tackle the inherent
complexity and ensure that the resultant implementations are
correct-by-construction from the outset.

Recognising the need for further development and,
in particular, for unifying methods in designing computer-
driven systems, computer scientist Joseph Sifakis, known
for his works in model checking, has advocated for
theories of design in his work on system design automa-
tion [10] for embedded and cyber-physical systems. Like
other researchers, he envisions that designing embedded
and cyber-physical systems should be a process that is
correct-by-construction. However, he acknowledges that
such formalisation poses significant theoretical challenges,
including the conceptualisation of needs, formal requirement
expression, and the development of functionally correct and
optimised implementations on specific platforms. Despite the
immense potential, this venture has received, according to
Joseph Sifakis, limited attention from scientific communities,
partly due to the academic world’s preference for simple and
elegant theories and the multidisciplinary nature of the field.
Sifakis concludes that achieving such formalisation requires
consistent integration of heterogeneous system models that
support different levels of abstraction, which encompass
logic, algorithms, programs, and physical system models.

In agreement with the aforementioned views, we recognise
that as the evolution of engineering paradigms continues and
the intersection of disciplines increases, the task of devel-
oping a comprehensive design framework for computing

systems, applicable across various domains and stages of
development, becomes ever more arduous. A meticulously
crafted framework that strikes a balance between abstraction
and precision can equip system designers, architects, business
owners, and engineers with the means to aptly comprehend
the intricacies of diverse computer products and applications.
Such a framework allows them to focus selectively on
particular areas of interest while preserving a generalised
understanding within the broader context. This becomes
especially crucial in the emergent landscape where computer
programs are integrated with large language models equipped
with natural language processing capabilities. Engineers can
then prioritise comprehending overarching aspects of design
problems and the development of computer applications or
systems from the perspective of specifications, rather than
needing to primary theminutiae of machine implementations,
which can be automatically generated by computers.

In this article, we introduce the model of design,
a framework established upon the foundations of category
theory [11]. The model of design attempts to scalably
assist in the comprehension and navigation of the intri-
cacies inherent in computer engineering problems. As an
abstractmathematical branch, category theory presents robust
toolsets for rationalising about abstract objects via their
interrelationships. By applying category theory’s lens to
the complex landscape of computer system design models
and methodologies, we can distill properties useful for
system design, thereby enabling reasoning around high-level
notions such as compositionality, equivalence, and coher-
ence. Leveraging the model-of-design concepts, we posit
that vital components for correct-by-construction design
flows and automation of computer systems and applications
can be discerned. Although the model-of-design framework
is not intended as an exhaustive, end-to-end correct-by-
construction solution for all computing-related engineering
disciplines, it seeks to provide a language encapsulating
existing design paradigms and coalescing diverse domain
perspectives within a rigorously delineated framework.
Owing to its abstract nature, we believe the model of design
can illuminate fresh perspectives and provide opportunities
for future exploration and innovation beyond traditional
computing systems.

The remainder of this manuscript is structured as fol-
lows: Section II introduces the necessary preliminaries to
prepare the reader for the formal definitions outlined in the
subsequent sections. In Section III, we lay the foundation
for our proposed framework. Subsection III-A delves into
the essential elements of this framework, encompassing
specifications, architecture, implementation, evaluation, and
design decisions, and concludes by providing a comprehen-
sive definition of our model of design. Subsections III-B
and III-C detail the emergent properties of our model and
the corollaries derived from these properties, respectively.
Afterwards, Section IV situates our work within the context
of existing literature, offering a detailed discussion. The
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paper concludes with Section V, where we synthesise the
key insights from our model of design, discuss its potential
applications, and identify promising avenues for future
research.

II. PRELIMINARIES
To establish our conceptual framework, we begin by revis-
iting three foundational constructs: modelling languages,
abstraction spaces, and categorical axioms as follows:

Foundational Construct 1. Language (Modelling
Language)
Amodelling language, or simply a language L is a tuple,
L = ⟨6,G, S⟩ where:
• 6 is a finite set of strings formed over an alphabet
and adheres to the rules defined by G. Each string
in 6 represents a well-formed sentence of the
language.

• G is a grammar defined as G = ⟨α,V ,P, S⟩,
where:
– α is a finite set of terminals or symbols.
– V is a finite set of variables distinct from α.
– P is a set of production rules, with each rule
mapping a variable to a string of symbols and
variables.

– S ∈ V is the start variable.
• S is a mapping from6 to the semantics or meaning
associated with each string in 6.

The alphabetα is represented asα = {α1, α2, . . . , αk}
with cardinality |α| = k . A string in 6 is a sequence,
potentially repetitive, of symbols from α that has
semantic meaning as defined by S.

A file is any binary or alternative representation, like
ASCII or UTF-8, that adheres to the grammar G of the
language. Files may extend the original language for
storage metadata, such as EOF markers. A library is an
organised collection of one or more such files.

Remark 1 (Regarding Languages).
• Noam Chomsky categorised languages into several
types: 1) regular expressions handled by finite state
machines, 2) context-free and context-sensitive gram-
mars that can be addressed by stack-based computing
machines (push-down automata) or by linear bounded
automata, and 3) enumerable languages, which can
be managed by Turing machines and random access
memory (RAM) based computers [12], [13]. The
reasoning behind employing languages as a fundamental
concept in computer design lies in their ability to capture
varying complexity levels, which necessitate different
complexity levels of computers for their analysis,
compilation, and synthesis into implementations across
a range of abstraction and development stages.

• This formal definition of language serves several
purposes: 1) to distinguish our usage from the informal
ones, such as those seen in natural languages used
in requirement engineering for computing system
designs, 2) to enable the manipulation or transla-
tion of the language through well-established theo-
ries in formal languages and semantics, and 3) to
adopt a broad approach, treating formats, computer
scripts, programs, mathematical formulas, templates,
algorithmic representations, data types, graphs, logi-
cal/arithmetic operations, and abstract models as lan-
guages in a manner that is more formal than non-formal
languages.

• The grammar and semantics of a language are typically
understood within the context of its application. How-
ever, as indicated by Harel and Rumpe [14], the function
of semantics in a (modelling) language goes beyond the
metamodel of the language, its context conditions, or its
execution environment.

• It is important to note that the execution and operational
semantics of a language need not be incorporated in the
semantics unless the language is a computer program-
ming language. In such cases, execution semantics are
crucial for its purpose. This remark aims to separate
the definition of the (executable) language from its
implementation for correct execution on a computer.

• Fundamentally, languages can be composite, wherein
an extended version of a language or a combination of
two or more languages still form a language. This is
represented as a set of strings of alphabets that follow
a grammar-generating meaning.

• Operations on (possibly) composite languages such as
product, union, intersections, difference, and cardinality
may not embody the usual understanding of the opera-
tion in set theory but rather a specialised understanding
in the category theory sense [11]. In other words,
an operation on a language L is an operation over a
subset of the Kleene closure (*) over the alphabet that
adheres to composition rules.

Example 1 (Languages). Typically, languages are expressed
in documents capturing both the alphabets (lexical, terminals,
symbols or vocabulary), grammar (syntax, valid expressions
or statements) and semantics together. Examples include
the λ calculus (formal system), ISO/IEC8859 8-bit char-
acter encodings and ANSI INCITS 4-1986[R2017] 7-Bit
ASCII (formats), IEEE 1666 SystemC specifications and
ISO/IEC 14882:2020 programming language C++, OMG
unified modelling language (UML) (modelling language),
the defacto standard graphic design system stream format
(GDSII) –database for manufacturing electronic chips), the
language reference for simulation programs with integrated
circuits emphasis (SPICE) –analysis and design of circuits,
IEEE 1076-2019 – very high-speed integrated circuit hard-
ware description language (VHSIC HDL or VHDL – a
hardware description language).
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Applying principles from category theory, languages can
be conceived as categories articulated through ontology logs.
Here, the ‘objects’ are the sentences or expressions within the
language, while ‘morphisms’ are the valid transformations
from one sentence to another, adhering to the rules of the
language’s grammar. This perspective fosters a nuanced
understanding of the structural correlations between various
sentences in the language and how they may be transformed,
providing a solid foundation for formal language analysis.

Ontology logs function as a conduit to express these
categories. In the realms of computer and information
sciences, ontology encapsulates a conceptualisation specifi-
cation, deployed to reason about the properties of a domain.
It essentially characterises the domain in terms of its objects
and their interrelations. Ontology logs furnish a formal
and explicit specification of a collective conceptualisation,
thereby structuring knowledge about specific domains.

For instance, we could view each sentence in a language as
an ‘object’ in the category, and the potential transformations
between these sentences, in accordance with the language’s
rules, as ‘morphisms’. The ontology log methodically cap-
tures these relationships, facilitating computational reasoning
within the language. Note, further details on category theory,
which provide a theoretical backbone for this discussion, will
be presented in Foundational Construct 3.

Foundational Construct 2. Abstraction Spaces
Let abstraction spaces A.SA be described as a mod-
elling language L = ⟨6,G, S⟩, where:
• 6 encompasses constructs that are consistent
across both the main abstraction space and its sub-
spaces.

• G is the grammar detailing how these constructs
can be combined, applicable to both spaces and
their sub-varieties.

• S provides the semantics, detailing the interpreta-
tion ormeaning for each construct in6, suitable for
overarching spaces and their finer subdivisions.

This language captures the abstraction spaces, per-
mitting further granularity through sub-spaces, denoted
as SA. Each sub-space inherits the overarching char-
acteristics of its parent space but introduces additional
or modified constructs, grammar rules, and semantics,
reflecting the depth and breadth of design details
specific to its domain.

Importantly, both abstraction spaces and their encap-
sulated sub-spaces are designed to address arbitrary
engineering or practical choices of levels or hierarchies,
contingent on the design context, industry domain, and
the specific application or system under consideration.

Drawing from [15], [16], we classify the following
abstraction spaces and potential subspaces therein:

1) S/T Space: symbolises the system/transaction
space. It covers constructs ranging from
transaction-level models (TLM) to systems-
of-systems. Within this, potential sub-spaces might
delve deeper into specific transaction types or
system hierarchies. The criteria distinguishing this
space are that information can be represented in
transactions or tokens, or spacetime is portrayed
using quanta. This space exceeds the register-
transfer level, considering abstract pseudocode
algorithms on abstract computing machines with
perfect synchrony hypothesis or expressing time
using abstract time quanta. This space includes
what the international semiconductor technology
roadmap (ITRS) terms as the electronic system
level, which could also house industry-dependent
sub-spaces in areas like avionics, communications,
and automotive industries.

2) RT Space: denotes the register-transfer space.
It spans between logic layers of abstractions to
register transfer levels. Distinguishing features of
this space include the representation of infor-
mation in bits or discrete time units such as
cycles, with no explicit spatial component. This
space encapsulates instruction set architectures and
micro-architectural implementation models, defin-
ing data types, operations, and execution models
explicitly. Possible sub-spaces in this space within
the electronic design automation (EDA) commu-
nity may include intellectual property (IP) design
blocks, gate-level, standard-cells level, and logic
level.

3) CSpace: represents the circuit space, detailing con-
structs from digital switches to analogue circuits,
mixed-signal circuits, and beyond to encapsulate
other physical computing systems such as chem-
ical, biological, photonic, or mechanical systems.
This space is characterised by the capacity to
represent information as energy potential (voltage)
and electric current, chemical changes, photonic
signals, mechanical displacement, or other physical
phenomena. In this space, we can denote time
continuously, without explicit spatial representa-
tion. This abstraction space embraces circuits of
discrete components, monolithic circuits, as well
as chemical, photonic, or mechanical systems,
without distinguishing among them, taking into
account the terminal characteristics of circuit
element equivalents within the system. Possible
sub-spaces include switches, stick diagrams, and
other equivalent representations for non-electronic
systems.
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4) P Space: is distinguished by the representation of
information as energy or the explicit representation
of spacetime. It includes the physical properties of
materials, semiconductor physics, and the interac-
tion of energy with spacetime. Different scales of
space and time can be represented in this space to
capture various details and complexities. Potential
sub-spaces could include networked racks in a data
centre, interconnected discrete components as in
printed circuit boards, and integrated circuits at
various scales.

Remark 2 (On the choice of abstraction spaces).
• When a model is said to exist within an abstraction
space (or a sub-space), it signifies how computation
or computing can be related to the granularity of
information representation in relation to spacetime.

• The purpose of this definition is to confine the use
of abstraction spaces to the most fundamental cate-
gories that uniquely characterise information processing
(computing) in relation to spacetime (and possibly
energy/matter).

• The most prevalent concept of abstraction spaces
over the past four decades, as outlined by [15],
[17], includes, generally speaking, system level (or
system of systems), processor level, register-transfer
level, logical level, transistor/circuit level, and physical
implementation. These levels span three domains:
behavioural/functional, structural/architectural, and
physical/layout/geometric. Although these definitions
have been beneficial for the design of very large-scale
integrated (VLSI) systems and integrated circuits (IC),
and have influenced the development of computer-aided
design (CAD) tools and electronic design automation
(EDA) engineering, they might not be fundamental
nor minimal. Industrial and application domains
such as automotive (e.g., AutoSAR) and computer
networking (open systems interconnects, OSI) have
evolved to establish their own standards for defin-
ing domain-specific abstraction spaces. Therefore,
since embedded computer systems design hinges on
application/industrial domain specificity and electronic
design technologies, it seems reasonable to define
a fundamental and minimal language for abstraction
spaces that aligns with existing definitions.

• The granularity of expressing information with respect
to spacetime is the primary criterion considered for the
differentiation of abstraction spaces. For instance, in the
system/transaction space, information is expressed by
transactions and spacetime is expressed using quanta.
In the register-transfer space, information is represented
as binary digits (bits), while spacetime is denoted as
discrete time units, such as clock cycles. In the circuit
space, information is represented as voltage/current

waveforms and time is continuous. Lastly, in the
physical space, information is represented as energy
waveforms, and both space and time are explicitly
considered. To manage system complexity, we allow
abstraction spaces to have sub-spaces that can be used
to express hierarchies.

• Although the resulting definition, a fusion of various
abstraction concepts, may be overly abstract for immedi-
ate application in specific industrial domains, it could be
valuable for capturing the generality of the concepts of
abstraction and hierarchies for the fundamental analysis
of their limitations and trade-offs.

• In theory, the fundamental distinction among the various
abstraction spaces might be helpful. However, in prac-
tice, system design often spans multiple abstraction
spaces, and many design techniques might require
information from lower-level spaces or hierarchies to
make informed decisions at higher levels. An exam-
ple of this is the system-circuit cross-space design
technique, dynamic voltage scaling (DVS), used at
the system level for low-power dynamic computer
system design. Embedded and cyber-physical systems
are another example where multiple abstractions are
exposed.

• Transaction abstraction is considered equivalent to
system level and systems of systems level. This is
mainly because with the standardisation of SystemC that
encapsulates timing aspects in a spectrum of timed to
untimed and information in transactions, the distinc-
tion of abstraction spaces above the transaction level
becomes less fundamental with respect to information
and spacetime.

• The consideration of the physical space as an abstraction
space, as opposed to a view or a domain as in the
Gajski-Kuhn Y-chart, is motivated by the observation
that computer systems and networks typically regard the
physical details of the computer/network as the most
detailed level with respect to the electrical and mechan-
ical characteristics of computing systems constituents.
Furthermore, in analogue/radio frequency (RF)/mixed-
signal circuits and digital systems, the physical aspects
are the closest to the manufactured/implementation.

• It is natural for computer system design to comprise
cross-space aspects. The distinction and vocabulary
for the abstraction spaces make it possible to outline
design activities with respect to the abstraction axis.
Obviously, when design complexity extends beyond
abstraction space boundaries and becomes ‘across-
layers’ or ‘cross-level’, the ensuing complexities and
concerns are combined.

Remark 3 (Candidate abstraction spaces).
• Y-Chart: 1) Within the behavioural and structural
domains, systems, processor components, algorithms
and transaction level modelling map to the S/T Space.
2) Within the behavioural and structural domains,
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logic functions, boolean logic, arithmetic and logic
units (ALU), RT, gates netlists, and flip flops map to
the RT Space. 3) Within the behavioural and struc-
tural domains, system transfer functions, stick/switch
diagrams, standard-cells complementary metal oxide
semiconductor (CMOS) based transistor circuits map to
the C Space. 4) The physical domainmaps to the P Space
where the different levels of complexities map to the
different sub-spaces within the P Space.

• V-Chart: The V-Chart describes development stages
rather than fundamental abstraction spaces: requirement
and architectural analysis, system design, unit level
coding and implementation, unit integration, validation
and testing. We view the level of abstraction within the
V-chart as applicable to all of the four spaces described
herewith: 1) S/T Space 2) RT Space 3) C Space and 4)
P Space.

• Double-roof Model (including a computer architecture
taxonomy): 1) Systems, tasks and components map
to the S/T Space. 2) Instructions, instruction set
architecture (ISA), micro-architecture, gates, logic, RTL
map to the RT Space. The double-roof model does not
provide explicit details about the C Space or P Space.

• OSI (Networks domain): 1) Applications, presentation
and session spaces map to the S/T Space. 2) The
transport space, network and data link spaces map to the
RT Space. 4) The physical space maps to the C Space
and the P Space.

• AUTOSAR Spaces (Automotive domain): 1) Applica-
tions and run-time environment (RTE), operating system
services map to the S/T Space. 2) Tasks/processes,
communication, device drivers, networks drivers, hard-
ware/firmware abstraction spaces, assuming they are
at the binary level, map to the RT Space. 3) Vehicle,
electronic controller units (ECU) and micro-controllers
(MC) map to the C Space and P Space.

Example 2 (Abstraction spaces). An abstraction language
over four abstraction spaces (S/T, RT, C, P) could describe
the following vocabulary:
• S/T Space: This space contains entities such as SystemC
approach to modelling, traditional dataflow model-of-
computation theories, UML based models, Simulink
based models, and architectural languages such as
AADL. A sub-space for Transaction abstraction for
a SystemC-based approach could be the different
‘untimed’, ‘loosely-timed’ and ‘timed’ sub-spaces.

• RT Space: This space corresponds to the defacto notion
of RTL (Register-Transfer Level). It contains com-
ponents, entities, objects, models and languages such
as VHDL, Verilog models. Corresponding sub-spaces
could be gate-level and switch-level, which are oth-
erwise considered as their own distinctive abstraction
spaces in some contexts.

• C Space: This space contains components, entities,
objects, models and languages that capture different

accuracy/complexity trade-offs, e.g. Verilog-A, differ-
ential equations for circuit elements can be used to
capture nanometric short-channel effects or simple
linear V/I equations typically found in SPICE problems.

• P Space: This space contains components, entities,
objects, models and languages such as SPICE systems
for printed circuit boards and integrated systems,
Maxwell electromagnetic solvers for physical design
of radio frequency transceiver systems used in cellular
networks and handheld devices, and thermodynamic
systems solvers for the packaging of integrated high
performance microcomputers.

The design of a typical programmable system-on-chip
(SoC) based computer on a printed circuit board (PCB) in
which the SoC is a monolithic hard processor IP and a
field-programmable gate array (FPGA) fabric can comprise
models and languages that cross different abstraction spaces.
The PCB design extends over the C and P Spaces; hard
and soft IPs extend over the RT to P Spaces; SystemC
models for dataflow computation to be compiled to assem-
bly and hardware accelerator using high-level synthesis
extend over S/T and RT Spaces. Examples of specialised
abstraction spaces for specific components are for computing
component architectures instruction-set, micro-, and macro-
architecture; whereas for networking components, OSI as in
ISO/IEC 7498.

Foundational Construct 3. Categories, Functors,
and Natural Transformations (Mathematics)
Category theory is a branch of mathematics that
deals with abstract structures and relationships. The
fundamental ideas in category theory are categories,
functors, and natural transformations. By employing
these concepts, category theory enables the formal
description and analysis of relationships, hierarchies,
and abstractions in different fields.

A category C is a mathematical structure consisting
of:
• Objects (Ob(C))
• Morphisms between objects (HomC(A,B))
• Composition of morphisms, which is associative
• Identity morphisms for each object, which serve as
identity elements under composition.

A functor F from a category C to a category D is a
map that:
• Associates to each object A in C an object F(A) in
D

• Associates to each morphism f : A → B in C a
morphism F(f ) : F(A) → F(B) in D such that
composition and identity morphisms are preserved.

A natural transformation η from a functor F to
a functor G (both from C to D) is a collection of
morphisms in D such that:
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• For every object A in C, there is a morphism ηA :

F(A)→ G(A) in D.
• For every morphism f : A→ B in C, the following
diagram commutes:

F(A)
ηA
−→ G(A)

F(f ) ↓↓ G(f )

F(B)
ηB
−→ G(B)

A morphism f : A → B in a category is an
isomorphism if there exists a morphism g : B → A
such that f ◦ g = idB and g ◦ f = idA.
The Yoneda embedding is a functor that embeds

a category C into the category of functors from C to
the category of sets, Set. Specifically, it associates to
each object A in C the functor Hom(−,A), and to each
morphism f : A → B in C the natural transformation
Hom(−, f ).

Employing the formalism of category theory allows us
to delineate hierarchies and relationships within diverse
computer language models, networks, and their associated
abstractions with enhanced precision. This theoretical under-
pinning facilitates a deeper exploration into the connections
between computer programs and algorithms articulated in
formal languages, and between the structural elements
of computer hardware architectures or software systems.
Specifically:

• Computer programs and algorithms in formal lan-
guages:
Through the lens of category theory, we can articulate
the interplay between computer programs and algo-
rithms expressed in various formal languages. Objects
within this categorical framework might symbolise
different programming or specification languages, with
morphisms capturing translations or transformations
amongst them. Composing morphisms elucidates the
process of melding or modifying programs using
diverse language constructs. This perspective furnishes a
holistic yet rigorous means to investigate program trans-
formations, language compatibility, and compositional
attributes.

• Structural components of computer hardware and soft-
ware systems:
Similarly, category theory elucidates the intricate
anatomy of computer hardware architectures and soft-
ware systems. Here, objects could typify components or
modules such as processors, memory units, or software
modules. Morphisms might illustrate relationships like
data flows, control signals, or function calls. This
categorical insight refines our understanding of the
structural dynamics within computer hardware or soft-
ware, proving invaluable for their design, scrutiny, and
enhancement.

Category theory’s inherent aptitude for abstractly and
systematically delineating hierarchical structures and rela-
tionships validates its utility for our objectives. Thus, we are
prompted to harness the power of categorical reasoning in our
exploration of programming languages, computer networks,
algorithms, hardware architectures, and software systems, all
pivotal in the design and cultivation of models for computing
systems.

III. THE MODEL-OF-DESIGN FRAMEWORK
Having established the theoretical foundations for modelling
languages, abstraction spaces, and category-theoretic struc-
tures, we now turn to detail the central elements of the
model-of-design framework in Subsection III-A. Following
this, in Subsections III-B and III-C, we will explore the
pivotal properties and resulting corollaries derived from the
framework.

A. CORE CONSTITUENTS
The model-of-design framework draws upon a range of
components: specifications, architecture, implementation,
evaluation, and design and development processes. In this
section, we shed light on these concepts through individual
definitions from Definition III-A1 to III-A4, culminating in
the comprehensive model of design concept presented in
Definition 13, as follows:

1) SPECIFICATIONS

Definition 1. Model of Specifications (MoS)
Let C be a category and L = ⟨6,G, S⟩ be a modelling
language associated with an abstraction space A.SA.
A model of specifications (MoS) within A.SA serves
as a category of two categories - the functional and
extra-functional specifications - and can be perceived as
a modelling language.
1) Categorical structure of MoS:
• Objects: Within the abstraction space A.SA,
objects in MoS are constructed as pairs
that combine a model of functionality (MoF)
defined through the grammar G of L and a
model of extra-functional specifications (MoX).
Formally:

ObA.SA (MoS) : ⟨MoF,MoX⟩

• Morphisms: Preserving the semantics S of L,
morphisms in MoS express the transforma-
tions or relationships between the encapsulated
objects. These transformations are contingent on
the specific system’s specifications, invariably
aligned with the abstraction space A.SA.

2) Linguistic structure of MoS: A language of
model of specifications, LMoS , encapsulates:
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• 6MoS : A finite set of strings representing func-
tional and extra-functional specifications. These
can include functional requirements (Fr ), non-
functional requirements (Nr ), constraints (Ks), and
conditions (Cs).

• GMoS : A grammar:
– αMoS : Terminals symbolising specification prim-

itives like computation and conditions.
– VMoS : Variables indicating intricate functional
specification structures.

– PMoS : Production rules that transmute specifi-
cation constructs into coherent design require-
ments.

– SMoS : The start variable.
• SMoS : A semantic mapping from 6MoS ensuring
clarity and interpretation.

The union of the MoF and MoX within MoS, in the
categorical sense of the models, can be the merger of the
models resulting in a superset of alphabets, grammar and
semantics. The specifics of such operations can be model
dependent.

Definition 2. Model of Functionality (MoF)
Given an abstraction space A.SA described by the mod-
elling language L = ⟨6,G, S⟩, a model of functionality
(MoF) serves as a category of two categories (MoB
and MoC) and can also be understood as a modelling
language, detailing the interactions of all potential
functional specifications of a system via the constructs,
grammar, and semantics of L.
1) Categorical structure of MoF:
• Objects: Within the abstraction space A.SA,
objects in MoF are mappings that, via L, convert
a set of input values and variable states (i, v) to
outputs o. In terms of the abstraction space, this
is articulated as:

ObA.SA (MoF) : ⟨i, v, o⟩ : i, v 7→ owith G ∈ L

Moreover, the objects amalgamate the model of
computation (MoC) - elucidating computational
structures and synchronisations - and the model
of behaviour (MoB) - detailing internal dynam-
ics of individual processes. Hence:

ObA.SA (MoF) =
⋃
⟨MoC,MoB⟩

• Morphisms: Representing transformations or
associations among these objects, morphisms in
MoF align with the semantics S of L, contingent
on the dynamics within the abstraction space
A.SA.

2) Linguistic structure of MoF: The modelling
language for MoF, denoted as LMoF , is formally
defined similar to the foundational structure of a
modelling language. It is given by the tuple LMoF =
⟨6MoF ,GMoF , SMoF ⟩, where:
• 6MoF is a finite set of strings formulated over
an alphabet specific to MoF. These strings depict
the functional specifications and are constructed
in accordance with the grammar GMoF . Each
string in 6MoF symbolises a coherent functional
sentence or construct of the system.

• GMoF is a grammar which specifies how func-
tional constructs are organised. It can be denoted
as GMoF = ⟨αMoF ,VMoF ,PMoF , SMoF ⟩, where:
– αMoF comprises terminals or symbols that

indicate primary functional elements.
– VMoF contains variables, apart from αMoF ,

that perhaps signify more intricate functional
constructs or dynamics.

– PMoF embraces production rules, enabling
one to form functional descriptions from the
variables and terminals.

– SMoF ∈ VMoF is the initial variable designat-
ing the beginning of functional descriptions.

• SMoF provides the semantic mapping for 6MoF ,
associating each functional specification with its
pertinent meaning or context.

Such a linguistic structure aids in the comprehensive
representation and understanding of system functionalities,
covering everything from basic functional elements to more
complex dynamics.

By representing the model of functionality as a cate-
gory, we can leverage the formal framework of category
theory to reason about the hierarchy, composition, and
relationships between the channel interfaces, processes,
and process networks. The category structure provides
a coherent and rigorous way to analyse and understand
the syntactic and semantic aspects of the computation
model.

Remark 4 (Similarities between functionality and specifica-
tion models). The functional model (MoF) can sometimes be
equivalent to several notions of the term specification models
e.g. [16] and [18], where they describe the specification
model as the set of behaviours, channels and connectivity
relations.

Definition 3. Model of Computation (MoC)
Within a category C, a model of computation (MoC)
bridges categorical and linguistic structures to elucidate
computational abstractions:
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1) Categorical structure of MoC:
• Objects: Comprising Ip, Pp, and Gh, which
denote channel interfaces, parameterisable pro-
cesses, and hierarchical labelled directed graphs,
respectively. These form the foundational con-
stituents of computational paradigms.

• Morphisms: Establish relationships between Ip,
Pp, and Gh, according to the compositional rules
intrinsic to the MoC, portraying the dynamic
interconnections of computational systems.

2) Linguistic structure of MoC:
• Syntax: Governed by the tuple ⟨6,G, S⟩, it char-
acterises the grammatical structures and interre-
lations typifying computational constructs.

• Operational semantics: Articulates the
behavioural evolution of actors and
processes, shaped by processes and signal
transference. This encompasses rules that
steer computational entities over temporal
progressions. Incorporating the denotational
insights of Lee and Sangiovanni-Vincentelli [4],
processes in concurrent systems are represented
as sets of potential behaviours. Composite
processes yield behaviours intersecting those of
individual components. Interactions arise via
signals, collections of events described by value-
tag pairs. When tags are totally ordered, they
delineate timed models. Processes possessing
identical tags exhibit synchronous signals.

Categorically, we can interpret the components of the tuple
⟨Ip,Pp,Gh⟩ within the framework of category theory:
1) Ip (language describing channel interfaces): In the

category, Ip can be seen as the collection of objects
representing the channel interfaces. Each interface
corresponds to a specific input or output configuration
of the computation model.

2) Pp (language describing parameterisable processes):
The morphisms in the category can be associated
with the processes described by Pp. The morphisms
relate the inputs to the outputs, capturing the transfor-
mations performed by the processes.

3) Gh (set of labelled hierarchical directed graphs): The
composition of morphisms within the category can
be identified with the graphs in Gh. The composition
rules and denotations define the process networks that
interconnect the interfaces and processes, forming the
structure of the computation model.

4) Parameters (Xp): The parameters in the model of
computation can be linked to the additional variables
and conditions within the category. These parameters
define the initial conditions, status, and other operational
variables, such as scenarios and modes.

The model of functionality (MoF) specifies what a system
does. It outlines the functionality of the system without
considering timing or other forms of behaviour. It is
concerned primarily with the logical operations performed
by the system and the data transformations these operations
create. The model of computation (MoC), on the other hand,
specifies how a system does what it does. The MoC dictates
the execution semantics of a system, such as the rules for how
operations can be ordered and how data can be exchanged.
In other words, it sets the ‘rules of the game’ for computation
and communication.

Example 3 (MoCs). Examples of MoC include: static
data-flow (SDF), homogeneous (synchronous) data flow
(HSDF), cyclo-static data flow (CSDF), boolean data flow
(BDF), Dennis/dynamic data flow (DDF), variable rate
dataflow (VRDF), multimode dataflow (MMDF), parametric
synchronous data flow (PSDF), schedulable parametric
dataflow (SPDF), scenario-aware dataflows (SADF), Kahn
process networks (KPNs), non-determinate data flow (NDF),
discrete events/time (DE/DT), synchronous computation
(SY), continuous time computation (CT).

Remark 5 (On the graph components of MoCs). While
models of computations do not include by definition graphs,
our reasoning for including graphs stems from two points:

• as demonstrated by the tagged-signal framework
for comparing models of computations by Lee and
Sangiovanni-Vincentelli [4], models of computation
can be largely captured by signals, processes and their
relations to the tag system. Since processes can be used
as vertices and signals can be used as edges. This makes
graphs implied from most MoCs.

• as a matter of convenience, since many models of
computations such as Matlab/Simulink and SCCharts*
[19] are graphically oriented at least from a design-entry
point of view, it is deemed appropriate to include graphs
as part of the MoC definition.

Remark 6 (Relation to MoCs). Models of computation
[20] typically defines 1) a network of interconnected set
of computing elements referred to as processes (actors,
kernels or tasks), including the rules of composition, 2) the
operational semantics or conditions and rules for firing or
execution of processes or the conditions 3) initial and status
for the conditions for the channels, process configurations
and mode/scenarios. MoCs are often represented as set of
input/outputs; ports and channels (interfaces, I); set of process
(processes, P); process network (graph, G). Consequently,
the MoCs are defined as the language describing the
processes, interfaces and the graph in addition to the
rules of composition, operational semantics, and other
emerging properties. The initial and status conditions of
the processes and interfaces map to the parameters. In the
categorical view, we can represent a MoC as a category
representing amodel of computation consists of the following
components:
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• Objects: The objects in the category represent different
configurations or states of the computation model. Each
object corresponds to a specific arrangement or setup
of the computing elements, such as processes, actors,
kernels, or tasks.

• Morphisms: The morphisms in the category represent
the transformations or mappings between different
configurations or states of the model. Each morphism
captures the transition or change from one configuration
to another, reflecting the behaviour and interactions of
the computing elements.

• Composition: The composition of morphisms defines
how transformations can be combined or sequenced.
Given two morphisms, f : A → B and g : B → C ,
their composition denoted as g ◦ f : A → C
represents the transformation obtained by applying
f followed by g. The composition allows for the
interconnection and sequential execution of processes
within the computation model.

• Associativity Law: The composition of morphisms is
associative, meaning that for any three morphisms f :
A→ B, g : B→ C , and h : C → D, the composition is
associative as (h ◦ g) ◦ f = h ◦ (g ◦ f ). This law ensures
that the order of composition is irrelevant and allows for
the chaining of transformations.

• Identity Morphisms: For every object A, there exists
an identity morphism idA : A → A that serves as
the neutral element with respect to composition. The
identity morphism preserves the configuration or state
of the object, leaving it unchanged when composed with
other morphisms. The identity morphism ensures that
every object has an identity element and provides a
consistent starting point for composition.

The category structure, with its objects, morphisms, com-
position, associativity law, and identity morphisms, allows us
to formally reason about the behaviour and transformations
within the model of computation. It provides a framework
for studying the properties, relationships, and compositional
aspects of the MoCs, their interactions, and the overall
computation process.

Remark 7 (MoCs hierarchies). Basic models of computa-
tions, thanks to their formalism, can be typically defined
and mapped [21] in the order of expressiveness and
analysability including: homogeneous synchronous dataflow
and marked graphs (HSDF/MG), synchronous dataflow and
weighted marked graphs (SDF/WMG), computation graphs
(CG), cyclo-static dataflows (CSDF), parameterised syn-
chronous dataflow (PSDF), variable rate dataflow (VRDF),
finite state machine scenario aware dataflow or hete-
rochronous dataflow (FSM-SADF)/HDF, variable phase
dataflow (VPDF), boolean dataflow (BDF), SADF, Kahn
process networks (KPN), dynamic/Denis dataflow (DDF) and
reactive process networks (RPN). On the basis of the rela-
tion between these basic MoCs, different transformational

relationships can be drawn to reason on the equivalency
and gaps between the level of details each MoC has. Since
our general definition of MoCs includes general constructs
such as processes, interfaces and graphs; in addition to the
syntax and semantics of these constructs, we can reason about
different classes of MoCs and provide execution frameworks
to them.

Remark 8 (The association with the tagged-signal model).
The model of computation defined here can map to the
tagged-signal model [4], when the parameters and the
operational semantics of the processes and interfaces of MoC
are related to the tagged-signal model for the signals and
processes. The processes in our MoC maps to the processes
and the interfaces in our MoCmap to the signals in the tagged
signal models. When defining values and tags as parameters
of the processes and interfaces, wemap theMoC to the tagged
signal model. Henceforth, by defining the relation of the tags,
different variations of the MoC can be defined.

Remark 9 (The suitability of MoCs to abstraction spaces).
While MoCs are quite general, some MoCs fit abstraction
spaces better than others due to their level of details,
especially concerning time, e.g. KPNs and SDFs family fits
transaction levels better; synchronous model fits RT space
abstraction space better; continuous time model fits circuit
and physical abstraction spaces better. In computer science,
MoCs concepts may be included here, but we think they
map better within architectures of computers as shown in
Example 6.

Remark 10 (The role of behaviour in MoCs). Traditionally,
models of computation such as in MMDF, KPN or SADF,
have been abstract about what are the limited set of possible
(functional/ logical/ arithmetic/ relational) behaviours within
the processes. This lack of explicitness renders some MoCs,
on their own, insufficient to reason about functional correct-
ness of refinement, synthesis, transformation, or compilation;
therefore we add the concept of the model of behaviour to
complement such a lack.

Definition 4. Model of Behaviour (MoB)
Let C be a category where:
1) Objects are computational behaviours. Within the

categoryB, an object symbolises the assignment of
an input i to a behaviour, formalised as:

Ob(MoB) : λx.(B) where x ∈ i, B ∈ B

In a manner analogous to programming functions,
this object denotes the binding of an input i
to a variable x, subsequently replacing x in the
behaviour B with i.

2) Morphisms describe transformations between
behaviours. These transformations are analogous
to the functionmappings in standard programming,
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described as:

HomMoB(A,B) : f (i, x, o) : i 7→ o, x = B ∈ B

Here, both A and B belong to B. The symbols i and
o denote input and output, respectively.

Thus, a model of behaviour (MoB) within C
offers a categorical representation of behavioural con-
structs, grounding itself in principles reminiscent of the
λ-calculus. This representation is both rigorous in
theory and directly relatable to traditional programming
constructs.

Remark 11 (On the choice of λ-calculus for MoB). As
it is noted that λ-calculus is a well-known fundamental
notion for defining (mathematical) functions within the
theory of computation, it is deemed appropriate to represent
(behaviours of) computation in a fundamental way. This def-
inition additionally allows capturing analogue, mechanical
and physical behaviours that can be interesting for capturing
information processing associated with radio engineering,
optical systems and electro-mechanical systems.
Remark 12 (MoC and MoB).
• The explicit definition for the set of behaviours makes
it possible to allow unambiguous execution of func-
tional specifications in the sense of hardware/software
codesign and enables the expressiveness of MoCs to
model concepts such as instruction set architecture
(ISA), and the arithmetic and logical operations within
a programming language. For example, the modelling
framework within ForSyDe [18] uses MoCs in addition
to the languages Haskell and SystemC to enable clear
and explicit notion of behaviours and computation.

• MoB can be considered as a complementary concept to
the MoC or as a superior concept that subsumes MoC
or as a subset of MoC depending on how the MoC and
MoB are defined.

MoF captures the functionality of the system including
(possibly) model of computation (MoC) as defined exten-
sively in literature [4] and (possibly) model of behaviour
(MoB). MoF and MoB map to the behavioural domain of
Gajski-Kuhn Y-chart and computation independent model
(CIM) in OMG’s model-driven-architecture (MDA) termi-
nology. The model of behaviour refers to the syntactic
and semantics used to capture the computation within
each process/actor. It is however necessary to distinguish
our notion of MoF from non-computational but some-
times considered within the functional requirements as for
example is the case of avionics ARP4754 which falls
within what we call, eXtra-functional, i.e. MoX. In fact,
most of the industrial standards such as ISO262626 and
IEC61058, on specifications and compliance can be mapped
to MoX (Definition 5) and the associated design rules
(Definition 9).

Example 4 (MoF, MoC and MoB). Examples to illustrate
possible definitions for MoF, MoC and MoB may include:
• Examples of MoC are synchronous model of computa-
tion and scenario-aware dataflowmodel of computation.
An example of MoB is functional language Haskell
that defines language for behaviours. A resulting MoF
for the mentioned MoC ∪ MoB is ForSyDe modelling
framework.

• VHDL (simulation subset) can be described as MoF
with MoC being the discrete time model of compu-
tation, while the MoB being the valid statements and
expressions within the processes/ procedures/ functions/
modules. In HDL where behavioural style is used, the
MoC becomes the synchronous MoC. Synopsis and
Cadence design frameworks are prime examples for use
of such MoFs.

• Simulink and AMD/Xilinx model composer can be con-
sidered as computer-aided design tools that utilise Mat-
lab language (Mfiles) and the associated executionmod-
els. In this case, theMoF is the (synthesisable subset of)
Matlab language with MoC being a discrete event/time
model of computation, while the MoB being the valid
expressions/computations that can be done within the
individual Simulink blocks or callback functions.

Remark 13 (The Overlap Within MoF). Several standard
design specifications, such as IEEE 754 for floating point
within the simulation subset of design specification lan-
guages like IEEE 1076/1364/1666/1800 (VHDL/Verilog/
SystemC/System Verilog), can sufficiently describe models
for the grammar (syntax) and semantics of the func-
tional/behavioural specifications. These languages implicitly
contain or model various models of computation such as
discrete time/ events for digital systems, and continuous
time for analogue and mixed-signal systems. In practice, the
(implied) functional, behavioural and computational models
coexist and merge within the same language. Furthermore,
system designers can include in the functional specification
other notions that we consider, for theoretical purposes, to be
included in what we call extra-functional specification, e.g.
constraints on timing.

Remark 14 (Use of Categories for MoF, MoC and MoB).
Category theory provides a framework to describe and
analyse different abstract objects. This can also be extended
models of computation, behaviours and functionalities, and
their relationships. By representing models as categories and
defining appropriate morphisms between them, we can study
their properties, transformations, and connections. Here is
how category theory can be used to describe different models
and their relationships:
1) Category for a Model of Computation (in general):

To describe a category as a model of computation,
we define the category as follows:
• Objects: Objects in the category represent different
processes and channels.
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• Morphisms: Morphisms in the category represent
transformations or mappings between the processes,
interfaces and graphs. These morphisms capture the
relationships, translations, or compositions between
different objects.

2) Category of Models of Computations (in general):
To describe the category of models of computations,
we define the category as follows:
• Objects: Objects in the category represent different
models of computation.

• Morphisms: Morphisms in the category represent
relationships or connections between differentmodels
of computation. These morphisms capture the map-
pings or transformations between models.

3) Category for a Model of Computation (specific): Let us
consider the specific model of computation called the
‘synchronous data flow (SDF)’ model. We can define a
category where:
• Object: The object represents the SDF models.
• Morphisms: Morphisms in the category represent
transformations or mappings between different SDF
models.
The category structure allows us to reason about the
properties, transformations, and relationships specific
to the SDF model. We can study the composability
of SDF models, the existence of isomorphisms or
equivalences, and other categorical constructions that
capture the essence of the SDF model.

4) Category for Models of Computation (specific): Let us
consider a specific collection of models of computation,
including SDF, HSDF, and CSDF. We can define a
category where:
• Objects: Objects in the category represent different
models of computation such as SDF, HSDF, and
CSDF.

• Morphisms: Morphisms in the category represent
relationships or connections between these models,
capturing the mappings or transformations between
them.

• Composition: Composition of morphisms represents
the composition of transformations or mappings
between different models of computation.
In this category, we can study the relationships,
similarities, and differences between SDF, HSDF,
and CSDF models. We can analyse the morphisms
between these models, investigate the composi-
tionality and composability properties, and explore
categorical constructions that capture the interac-
tions and transformations within this collection of
models.

Note: In all the provided examples, it is assumed that
each object possesses an identity morphism, signifying
the identity transformation or mapping of an object onto
itself. Additionally, we take for granted that both the

associativity and identity laws are upheld. This means
the composition of morphisms adheres to the associative
law, and the identitymorphisms complywith the identity
laws.

To summarise, using category theory to describe models
of functionality (MoF), models of computation (MoC), and
models of behaviour (MoB) presents several valuable insights
and advantages:

1) Universality: One of the core benefits of using category
theory in these contexts is its ability to provide a uni-
versal language for mathematics and computer science.
This allows for the encoding of different computational
and behavioural models within a unified framework,
facilitating comparison and interaction between differ-
ent systems and models.

2) Structural Insights: Categories can highlight the struc-
tural properties ofMoF,MoC, andMoB. Themorphisms
(arrows) in a category represent transformations or
relationships, revealing structural insights about the
entities being modelled. These structural properties can
provide a deeper understanding of the system, and can
often be used to identify common patterns or structures
across different systems.

3) Abstraction and Generality: Category theory provides a
high level of abstraction. This means that the specifics
of individual objects within a category can be abstracted
away to focus on the relationships between them (the
morphisms). In the context of MoF, MoC, andMoB, this
could help to identify commonalities and differences at a
high level, without getting bogged down in the specifics
of each individual model.

4) Functors and Natural Transformations: Category theory
introduces the concepts of functors and natural transfor-
mations. Functors are mappings between categories that
preserve their structure, while natural transformations
are mappings between functors that preserve their struc-
ture. In the context of MoF, MoC, and MoB, functors
could be used to translate between different models
or representations, while natural transformations could
represent higher-level transformations or modifications.

5) Compositionality: The compositional nature of category
theory, where morphisms can be composed to form
new morphisms, is highly relevant in the context of
MoF, MoC, and MoB. This can model the composition
of functions or behaviours in a system, and reflects
the compositional nature of software and systems
design.

6) Yoneda Embedding: The Yoneda embedding, a concept
in category theory, says that a category can be fully
embedded (i.e., faithfully represented) within a category
of functors defined on it. This gives a powerful way
to represent and work with the category, and in the
context of MoF, MoC, and MoB, could provide a new
perspective or approach to these models.
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Definition 5. Model of Extra-Functional Specifica-
tions (MoX)
LetM be a category that encapsulates the extra-functional
characteristics of a computational system within a
given abstraction space. A model of extra-functional
specifications is hereby defined by the categoryM:
• Objects: Constituting the set χ , these objects
represent individual extra-functional variables,
each demarcating distinct facets of non-functional
attributes inherent to the computational system.

• Morphisms: Represented by functions, these cap-
ture the dynamic interplay and transformative rela-
tionships between the extra-functional variables.
Specifically, for any pair of variables χ1, χ2 ∈
χ , the collection of morphisms is denoted as
HomM(χ1, χ2).

Within this categorical framework, the extra-functional
variables coalesce to define two distinct, yet interrelated,
aspects:
• The environmental preconditions under which the
design operates, denoted as ϑ .

• The constraints and regulations imposed upon the
design, either holistically or partially, represented
by ϱ.

As a synthesis, the categoryM is inherently associated
with this ensemble of conditions and constraints,
articulated as: MoX(χ) : ϑ ∪ ϱ.

With this categorical representation, the ‘model of
extra-functional specifications’ can be understood as the
category M, where the objects are the extra-functional
variables χ and the morphisms represent the expressions
operating on these variables. The expressions collectively
describe the extra-functional specifications that the design
implementation needs to consider, encompassing both the
ambient/environmental conditions ϑ and the design con-
straints/rules ϱ applicable to the entire or part of the design.
To explain this further, consider a system where we have
functional specifications depicted by a model of functionality
(MoF) and extra-functional specifications defined by a model
of extra-functional specifications (MoX). These are captured
as objects in the model of specifications (MoS), formalised
as the pair ⟨MoF,MoX⟩.
To express the application of extra-functional specifica-

tions on specific parts of functionality, one could conceive the
model of extra-functional specifications (MoX) functor that
maps from the category of the model of functionality (MoF)
to the category of models of specifications (MoS). This func-
tor can be defined to selectively apply the extra-functional
specifications to the functional model.

Let Spec : MoF → MoS denote this functor, which
maps an object f in MoF to an object Spec(f ) = ⟨f ,MoX⟩
in MoS. This functor can also map a morphism g : f1 →
f2 in MoF to a morphism Spec(g) : Spec(f1) → Spec(f2)

in MoS, thereby capturing the relationships or transforma-
tions between different models of specifications.
The definition of this functor allows extra-functional

specifications to be applied selectively to specific parts of the
functionality in a rigorous, category-theoretic manner, thus
maintaining soundness and integrity of the whole system’s
specification.
In a less formal language, we are taking our functional

specifications (the bits that tell us what the system does) and
our extra-functional specifications (the bits that tell us under
what conditions the system operates and what constraints
it needs to satisfy). We then combine these specifications
to form a complete model of the system’s specifications.
This process of combining can be selective – we can choose
to apply certain extra-functional specifications to particular
parts of the functionality. Themathematics of category theory
gives us a robust and formal way to do this, ensuring that our
model remains consistent and coherent.

Remark 15 (Considerations for the scope of MoX).
• Extra-functional specifications can comprise environ-
mental constraints such as the input stimuli and output
loading/connections in addition to external factors
that affect the system/design operation. This includes
operating conditions that affect the evaluation of the
system performance such as ambient conditions within
the design and its settings that affect the design
performance/cost.

• Extra-functional specifications can describe additional
constraints that restrict the functional or architectural
or implementation constraints. This is useful to further
restrict the functional model or architectural or imple-
mentation models.

• Extra-functional specifications can describe physi-
cal/business/mechanical characteristics and intents that
are needed or desired for the design. Some industrial
application domains include these aspects in system
specifications or requirements.

Remark 16 (On Time-Aware Programming Languages).
Some programming languages, such as SystemC, the simu-
lation subset of VHDL, synchronous languages like Esterel,
and the programming languages ISO/IEC 8652/9899 ADA/C
with real-time extensions (accompanied by the Ravenscar
profile or real-time operating systems), incorporate explicit
time constructs like wait time seconds. Such lan-
guages extend beyond purely functional models because they
incorporate awareness of temporal dimensions of the ‘real
world’ independent of the computing machines.
In addition to temporal aspects, there are properties from

the real world, such as energy dissipation, temperature,
and other physical events in cyber-physical systems, which
are not inherent aspects of computation per se, but arise
when implementing computation on tangible hardware.
These extra-functional aspects are encapsulated within
extra-functional models as they deal with elements external
to the (pure) function of the computation.
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Consequently, programming languages with spatio-
temporal awareness offer more than ‘just’ functionality; they
serve as specification models incorporating both functional
and extra-functional properties. This makes them particularly
adept at modelling real-world systems where both the
computations (functional aspects) and the conditions of their
implementation (extra-functional aspects) matter.

Example 5 (MoX).
• System abstraction space: An MoX can comprise
requirements for χi for low-power design minimising
average power consumption for component x and χj
specification regarding throughput per application, θa
such that it is not below a specific threshold 2 as
follows:

χi : min(P(x)) argmin
x∈(xi,xj]

P(x) = {x | P(x) = min
x ′

P(x ′)}

χj : argmax
∀x∈

⋃
a
θ (x), θ (x) > 2x

And an extra-functional specification, χk , describing the
junction temperature is the temperature allowed at the
processor die µC to be designed for −55 to 125◦ C.

χk : −55◦ < T (µCx) < 125◦

An example of system, S that shall be satisfying
or complying to a set of safety rules described in
industrial standards OSI26262/ ARP4754A/ ARINC653
/IEC61508 donated by 3, can be described as: S ⊢ 3

• RT abstraction space: Synopsis design constraints
(SDC) and unified power format (UPF,IEEE1801)
can be considered examples of models used to
caputure extra-functional specification exemplified by
timing/performance, power/energy, and area (PPA) for
RTL. Such constraints restrict the implementation of
the functional/behavioural models and can impose
extra requirements on the behaviour, architecture,
implementation of the system, and the design rules used.
This includes for example clock/area/power (timing/
synchronisation) constraints, input/output delay/load
constraints, environmental constraints, design rules
constraints, technology constraints. The MoX can fur-
ther be per-component constraints for the architecture/
implementation or at the design/system level constraints
concerning turn-around time or accuracy or operating
conditions. Examples include: environmental (MoX):
set_operating_conditions, set_load/drive/driving_cell/
fanout_load input_transition/ port_fanout_number,
design rules (3), set_max_capacitance/ fanout/ tran-
sition, timing: wireload models set_wire_load_mode/
model/ selection_group, create_clock /generated_clock,
set_clock _latency/ transition, clock_uncertainty input/
output_delay, power: set_max_leakage /dynamic_power

More examples for how to specify extra-functional proper-
ties formally are in [22] and [23].

2) ARCHITECTURE

Definition 6. Model of Architecture (MoA)
A model of architecture A is a category formalised
to represent the architectural aspects of computational
systems within a designated abstraction space. The
constituents of A are delineated as:
• Objects: Each object within A is denoted by the
tuple ⟨Ip,Cp⟩. Here, Ip characterises interfaces,
which depending on the abstraction level, may be
understood as ports (in SL abstraction), pins (in
RT abstraction), nodes (in C abstraction), or points
(in P abstraction). Conversely, Cp encapsulates
parameterisable components, either hardware or
software in nature, interlinked by interfaces Ci,Co
such that Ci,Co ∈ Ip.

• Morphisms: These capture the interactive dynam-
ics between architectural elements. Specifically,
they are represented by Gc, a collection of labelled
directed graphs. The edges within each graph,
Cp × Ip ∪ Ip × Cp, are governed by established
compositional rules and denotations, ensuring the
fidelity of both the syntax and semantics of the
architecture’s representation.

Expressed succinctly, the model of architectureA can
be described by the tuple:

A : ⟨Ip,Cp,Gc⟩

A language of model of architecture, denoted as
LMoA, is a modelling language given by the tuple
LMoA = ⟨6MoA,GMoA, SMoA⟩, where:
• 6MoA is a finite set of strings formed over
an alphabet which encapsulates the architectural
constructs. Each string in 6MoA represents a
well-formed architectural description, which may
include constructs such as interfaces (represented
as Ip), parameterisable components (Cp), and
relationships (given by the labelled directed graphs
Gc).

• GMoA is a grammar defined as GMoA =

⟨αMoA,VMoA,PMoA, SMoA⟩, where:
– αMoA is a finite set of terminals or symbols that

represents architectural primitives such as ports,
pins, nodes, or points.

– VMoA is a finite set of variables distinct from
αMoA that might denote more complex architec-
tural structures.

– PMoA is a set of production rules, translating
architectural constructs into meaningful design
descriptions.

– SMoA ∈ VMoA is the start variable that initiates
the architectural descriptions.

• SMoA provides a mapping from6MoA to the seman-
tics associated with each architectural description,
thereby attributing meaning and context to the
representations in 6MoA.
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In this category, the subscript p indicates possible param-
eters. Gc denotes that components can be hierarchical,
nesting other components and/or MoAs. The model of
architecture aligns with the structural domain within the
Gajski-Kuhn Y-Chart and resides within the abstraction
spaces A, as outlined in Foundational Construct 2. This
corresponds to the platform-independent models (PIMs) in
the OMG’s model-driven architecture (MDA) terminology
at the system or transaction-level abstraction space and to
the technology-independent generic logic libraries in logic
synthesis at the RT. MoA acts as a bridge, easing transitions
from the S/T Space to the RT Space, or from the RT
Space to the C Space. The architectural model brings forth
concepts such as meet-in-the-middle and platform-based
design, model-driven architecture, and more. Architectural
elements and design are pervasive in embedded hardware
and software industrial sectors, as evidenced in standards like
DO-178C for avionics and AutoSAR for automotive.

Remark 17 (MoAs and MoFs).
• Architectures, in the broadest sense, are employed to
describe abstract relations between hardware elements,
as seen in computer organisation and architecture (more
suited for MoAs). Alternatively, they depict software
modules, classes, or entities and their interfaces in
software engineering, akin to software architecture
(more apt for MoFs).

• The distinction between MoA and MoF blurs when
considering the instruction set architecture (ISA) where
hardware and software intermingle. From a hardware
standpoint, instructions are decoded in the instruction
decoding logic within computer architecture; hence, the
instruction set can be part of the computer’s architectural
MoA. From a functionality perspective, ISA indicates
the range of functional behaviours that encapsulate the
system’s functionality, placing it within MoB (∈MoF).

Remark 18 (The Role of Parameters in MoA). The param-
eterised nature of the model of architecture facilitates the
configuration of architectural components across abstrac-
tion spaces. By deliberately incorporating parameters into
the architectural model, various configuration and mode
parameters for both software and hardware components and
interfaces can be defined across different abstraction levels.
This is advantageous in situations where parameters enable
diverse design trade-offs both vertically (across varying
complexity levels) and horizontally (based on component and
interface choices). For instance, processor architectures can
encompass different instruction sets and micro-architectures.
Operating systems can manifest in varied configurations,
customisations, builds, and architectures. Parameters eluci-
date why identical architectures with differing settings yield
diverse platforms. These parameters also resonate with the
notion of platform/system configuration.

Remark 19 (Topologies and Interfaces in MoA). By incorpo-
rating interfaces and graphs directly, we aim to highlight the
architecture’s topologies and interconnections. Topologies

might be depicted through hierarchical graphs such as daisy-
chains, stars, trees, meshes, and toruses, whilst interfaces can
capture hardware/software component interactions. Exam-
ples include the OMG’s interface definition/description lan-
guage (IDL) [24], [25], application program/binary interfaces
(API/ABI), and various interconnection protocols. Across
different abstraction spaces, topologies can transform their
meanings; for instance, in the system space, topologies
might represent logical connections or data flow between
subsystems, whereas at the physical space, they might focus
on interfaces and isolation, considering factors such as signal
integrity or 3D and 2.5D IC packaging.

Remark 20 (Time-triggered architectures (TTA)). Time trig-
gered (and spatiotemporal in general) architectures combine
the connectivity of components with the explicit notion of
time (and space). Time (and spatiotemporal) architectures
are special cases of our notion of MoA at the physical
space. Generally, TTAs do not match MoA in other spaces
directly, as MoA attempts to remain general enough to
encompass implementation models across various levels of
abstraction that could be virtual, emulated, or software-
intensive; which does not necessarily require explicit notions
of space/time/energy; or at least not in a consistent manner.
See also Remark 21 for further insights.

Remark 21 (MoA and evaluation models). The inclu-
sion of extra-functional related properties in architectures
can be useful, but in our work, we attempt to separate
the architectural concerns/aspects (MoA) from the eval-
uation concerns/aspects (see Definition III-A4 on model
of evaluation, MoE). In principle, we view architectures
as technology-independent and platform-independent while
useful evaluation metrics should be technology-dependent
and platform-specific, hence We argue that evaluation should
be applied to the implementation and not to the architecture.

Remark 22 (On the behaviour, interaction and priority
(BIP) framework). The BIP framework [26], is used to
reason about compositionality using a component-based
design/construction approach. As the framework primarily
defines atomic components and glue operators that can be
used to compose other complex components comprising the
system; the framework can be perceived to be compliant
with our notion of MoA, as atomic/composite components
can map to our notion of component, glue operators can be
subsumed within our notion of categorical functor or graph
in addition to the overall grammar (syntax) and semantics of
the model.
Example 6 (Architectural components and interfaces).
• At system space: hardware and software typically
possess distinct architectures. When integrated, they
form a comprehensive system architecture:
– A common hardware architecture encompasses pro-

cessor cores, which may include cache systems from
vendors like Intel, AMD, and ARM; memory storage
such as NAND flash, scratchpads, DDRDRAMs, and
SRAMs; I/O device adaptors suitable for displays,
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audio, GPS, motion actuators, and instrumentation
sensors; and both on-chip and off-chip interconnects,
examples being PCIe, NoCs, various AMBA fabrics,
Intel Avalon fabric, SerDes, USB variants, SDIO/I2C,
SPI, UART, eMMC, and a range of networking
protocols.

– A typical software architecture comprises board
support packages (BSP) and firmware/BIOS; device
drivers for USB, Display, and other I/O; kernels for
OS, RTOS or hypervisor, incorporating scheduler,
process managers, memory managers, and other
essential functionalities; and application program-
ming/binary interfaces (API/ABI). For automotive
applications, EAST-ADL and AutoSAR may repre-
sent the MoA architecture at the system space for
software.

• At the RT abstraction space: Generic gate-level libraries,
described in a structural style of Verilog, cater to nets,
cells, pins, ports, and clocks for logic synthesis. These
standard-cell libraries can be considered as models
of architecture for many logic computer-aided design
(CAD) synthesis tools. On the other hand, IP XACT
(IEEE 1685/ IEC 62014) is viewed as anMoA language.
With such architectural languages, architectures can be
refined for various features, including testability, power
management, and reconfigurability.

• At the circuit space: Custom integrated circuit (IC)
models use circuit components like transistors, metal
vias, and interconnects. These models, described in
‘library exchange format (LEF)’, are predominant
examples of architectural component models employed
in custom IC flows such as Cadence Virtuoso.

Utilising these fundamental constructs of components,
interfaces, and graphs facilitates the creation of diverse
hardware/software architectures, ranging from transistor
scale to supercomputing neural networks. For instance,
a typical bus-based MPSoC architecture designed for custom
heterogeneous shared-memory could involve components
such as Caches, RAMs, and multi-threaded CPU decoders,
among others. By integrating 2-D NoC graphs of these
training nodes and low-latency switches, expansive archi-
tectures like the ‘Dojo’ can be formulated. Furthermore,
the open systems interconnection (OSI) for networks and
Flynn’s taxonomy for computer architecture [27] can be
viewed as subsets of the classification ofMoA for computers
and networks. A reduced instruction set computer (RISC)
stands as an example of a MoA across multiple levels of
abstraction. Moreover, in computer science, certain concepts,
from circuits in terms of logic gates to Turing machines, are
classified under architectures as they describe the grammar
and semantics of computational machines.

Example 7 (Relation of computing machines to models of
architecture and functionality). Computing machines, such
as finite state machines, push-down automata, and abstract
computing machines, typically comprise a state (register),

a head (encompassing a memory input/output controller,
program pointer, and logic unit), and a tape (memory)
containing possible instructions and data (program and data).
In this context, if we consider the computing machine
without the actual content of the tape, it becomes a model
of architecture, representing only components and their
operational semantics. However, when given specific tape
content, the machine embodies a model of functionality or
behaviour upon a model of architecture, where the tape’s
content (program) signifies a subset of potential behaviours
or functionalities.

To illustrate this relation, consider a Turing computing
machine, TM , defined as the tuple ⟨Q, q0,L, b, 6, δ,F⟩,
comprising:
• A set L of symbols that TM ’s tapes can hold. We assume
that L includes a specific ‘‘blank’’ symbol, denoted by
b, a ‘‘start’’ symbol, represented as S, and various other
symbols. We refer to L as TM ’s alphabet.

• 6 ⊆ L − {b} represents the input symbols permitted on
the initial tape content.

• A setQ of potential states for TM ’s register. It is assumed
that Q contains a specific start state, q0 ∈ Q, and a
halting state, qhalt ∈ Q. F ⊆ Q, represents the final
states (or accepting states) with F = {qhalt}.

• A function δ : (Q−F)×L 7→ Q×L×{l, S, r} delineates
the rule by which TM operates at each step. Known as
TM ’s transition function, the head can move Left (l),
Right (r), or Stay in place (S). The machine halts if the
transition function is undefined for the current state and
symbol on the tape. If the machine attempts to move left
from the tape’s leftmost position, it remains stationary.

From this example, the TM model can be interpreted as:
1) An architecture comprising components: a tape (mem-

ory) linked to a head (a memory controller connected
to a program counter) at a specific position, with the
transition function acting as the control unit with an
instruction decoding unit.

2) By suitably encoding the symbols in the tape (L) to
represent computation, the model, when viewed through
the contents populated on the tape, can primarily be
perceived as a model of functionality. The potential
content sequences encoded by the tape can correspond
to behavioural computations. The associated operational
semantics is the model of functionality (MoF) com-
prising one process. The machine, minus the tape,
simply provides the operational semantics describing the
process output generation.

3) A third perspective suggests that the machine, with
designated contents on the tape, symbolises a func-
tional behaviour mapped onto architectural components
(MoF x MoA).

3) IMPLEMENTATION
A representation of an implementation (implementation
model) is the result of partial or complete design process.
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The implementation model is not the same thing as the
(physical) implementation, as it is often that some additional
manufacturing or (virtual) prototyping or deployment effort
can be needed to realise the implementation model. This
is common for integrated circuits and systems-on-chips
manufacturing; discrete circuit assembly on printed circuit
boards or racks on modules for electronic controllers units;
or burning-in device images/binaries on field-programmable
gate arrays or processor-based emulation systems and virtual
prototypes. Before we can move further in the definitions,
we explain the concepts: refinement and abstraction as
general operators on models; in addition to design rules.

Definition 7. Refinement and Abstraction
Refinement: Let MA.s

τ.e be a model within a model of
design (MoD). Refinement is a functor that takesMA.s

τ.e
and transforms it into a new model M′τ.e

A+i.s+j, for
any i, j ∈ N0 such that i + j > 0. This process of
refinement adds further detail to the model, progressing
from higher to lower levels of abstraction. Abstraction:
LetMA.s

τ.e be a model within a model of design (MoD).
Abstraction is a functor that transforms MA.s

τ.e into a
new model M′τ.e

A−i.s−j, for any i, j ∈ N0 such that
i+ j > 0. Through abstraction, details are removed from
the model, leading to a higher level of abstraction.

Example 8 (Refinement and Abstraction). Refinement and
abstraction comprise various transformations, inferences,
or design steps that alter the level of abstraction in models.
Examples may include elaborating design specifications to
unfold hierarchies, spatially mapping an abstract behavioural
specification to more detailed architectural processing ele-
ments, or transforming specification formats from a more
abstract language to a more detailed one (compilation and
synthesis).

Definition 8. Design Decisions (1)
Let M = ⟨MoS,MoA⟩ be a source category
where objects represent either models of specification
or models of architecture, and morphisms denote
transformations between these models. Let I be the
target category with objects representing models of
implementation. Design decisions, denoted as 1, serve
as a functor:

1 :M→ I

This functor maps:
1) Objects inM to objects in I, translating or refining

specifications and architectures into implementa-
tions.

2) Morphisms in M to morphisms in I, transmut-
ing the transformations in source models into
corresponding transformations in target implemen-
tations.

Design decisions encapsulate an assembly of
decision-making algorithms, frameworks, and
actions. These decisions articulate diverse actions
like architectural selection, hierarchy elaboration,
topology configuration, component inference, routing,
resource allocation, partitioning, mapping, scheduling,
configuration, planning, and variable dimensioning.
Central to this definition, design decisions can be
perceived as a linguistic structure, offering syntax and
semantics for capturing, conveying, and executing
decisions. This linguistic view underpins the process of
refining abstract models into tangible implementations.

The categorical interpretation of design decisions
establishes a category functor C between categorical
objects corresponding to different models or refined
models of specifications, architectures, or implementa-
tions. The morphisms in C embody the decision-problem
algorithms transforming an input model into an out-
put model, reflecting the transformation or refinement
process.

Example 9 (Design Decisions). • Examples of design
decisions at the system space may include: processes
to processing core mapping, infinite channels synthesis
to finite point-to-point buffers or multi-secondary
multi-primary interconnect fabrics and packet-switching
networks, instruction-set selection for behavioural
synthesis, processor architecture selection, cache and
memory sizing, memory hierarchy selection, applica-
tion to virtual partition mapping (e.g. in aerospace
ARINC standards), partition scheduling, runnable to
tasks mapping (e.g. in automotive standards such as
AutoSAR), scheduling algorithm selection (e.g. in real-
time systems such as preemptive scheduling, earliest-
deadline first, etc.), networks topology selection,
time-division multiplexing sizing (e.g. in TDMA-based
cross-bars and network-on-chips or in AFDX avionics
network), switching mechanism selection.

• Examples of design decisions at the RT space of
abstraction: for architectural designing, i.e. moving from
specification to a generic technology-independent archi-
tecture, design decisions include: architecture selection
for arithmetic operators, logic pruning, carry-save arith-
metic, constant propagation, logic speculation, resource
sharing, (non-functional) redundancy removal (espe-
cially when specific reliability is not an extra-functional
requirement), finite state machine control logic encod-
ing, multiplexer/arithmetic optimisation, retiming, clock
gating. Design decision for implementing generic
architecture into technology-specific implementation
may include: clock-tree synthesis, floor-planning and
wire routing, multi-bit merging, multi-voltage multi
threshold-voltage scaling for delay and leaking-power
minimisation, multi-mode multi-corner optimisation,
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power shut-off, power test access mechanism insertion
for testability.

• Examples of design decisions at the circuit abstraction:
transistor sizing, metal-routing, body biasing optimisa-
tion, buffer insertion for wire delay minimisation and
sizing for gate delay minimisation.

• Examples of metamodels for design decisions include
Bash/Tcl/SKILL/Yaml grammar (syntax) and semantics
used for design flowmanagement, e.g. sequence of eval-
uation/transformations/design steps that apply, piping of
intermediate results, design objects management, and
visualisation and reporting.

Remark 23 (Refinements, transformations and design deci-
sions). In some literature [18], transformations represent
the primary concept to encapsulate refinements of models
through two means: semantic preserving and semantic non-
preserving transformations, wherein design decisions are
perceived in this context as semantic non-preserving transfor-
mations. In OMG® model-driven architectures, model-to-
model transformations serve as the primarymethods ofmodel
manipulation, in the broadest sense. In EDA, and specifically
in RT and TL, synthesis and compilation are the prevalent
terms used to bridge the abstraction/refinement gaps from
specifications to implementations. Within the MoD concept,
the decision was made to position design decisions as the
overarching concept, encompassing transformations, com-
pilation, synthesis, satisfaction and optimisation problems.
We think that ‘designing’ is the central activity here, leading
to the choice of using the term design decision as an umbrella
concept for these optimisation, model transformations, and
refinement activities. This includes variable assignment
algorithms, as seen in multi-objective optimisation and
satisfaction problems, in addition to semantic-preserving
and semantic-non-preserving endogenous (intra-language)
and exogenous (inter-language) transformations.

From a categorical perspective, transformation, abstrac-
tion, and design decisions can exhibit several properties often
associated with morphisms in a category. Let us discuss each
of these properties:

1) Commutativity: Within category theory, commutativity
often describes diagrams where morphisms can be
composed in varying orders, leading to the same result.
Relating to design decisions, this property suggests that
certain decisions, when made in different sequences,
can still culminate in the same overall system design.
Nevertheless, it is crucial to recognise that not all
design decisions are commutative, as the sequence
of decision-making can influence the final design
profoundly.

2) Distributivity: For design decisions, distributivity could
mean that a combined design decision (a series of
individual decisions) can be consistently distributed
across various facets of the system design. For instance,
a joint decision to refine both the system architec-
ture and functional specification might be segregated

into separate decisions for the architecture and the
functionality.

3) Reflexivity: Reflexivity in category theory implies that
every object has an identity morphism mapping it to
itself. In terms of design decisions, this can be equated
to a ‘trivial’ decision, leaving the design unaltered.
Related to that is the identity morphism. This refers to a
particular design decision that, when enacted, leaves the
design untouched, stemming from reflexivity. It is akin
to choosing to maintain the current design.

4) Nilpotent: A nilpotent design decision, when repeated
or compounded with itself a certain number of times,
could lead to a trivial decision, effectively ‘resetting’ the
design.

5) Idempotent: An idempotent design decision, upon
repeated application, results in no further design changes
beyond its initial influence. Such decisions can set a
particular design feature to a fixed state.

6) Inverse Transformation: Here, an inverse transformation
would reverse the effects of an initial decision when
applied subsequently, restoring the design to its previous
state.

7) Products: In category theory, a product of two objects
captures their ‘shared information’. In the realm of
design decisions, a product might signify a collective
decision affecting two subsystems or design compo-
nents. This ‘product decision’ would embody decisions
made at the intersection of these components, with the
morphisms (decisions) for each component detailing its
respective impact.

8) Coproducts: Representing the ‘sum’ or ‘union’ of
objects in a category, a coproduct decision in design
could merge independent decisions concerning distinct
design components. Such a decision influences each
component independently, with the cumulative design
impact being the ‘union’ of effects on individual
components.

9) Limits and Colimits: In category theory, when we say
a diagram ‘commutes’, we mean that there exist unique
paths that lead to the same outcome, regardless of the
route taken through the diagram. Limits and colimits
are notions central to this idea. The limit captures the
‘smallest’ object over which a given diagram commutes.
In the context of design decisions, this could be
interpreted as the minimal set of decisions necessary
to implement a specific design feature. Conversely,
colimits can be viewed as indicating the maximal design
impact achievable when a certain set of decisions is
applied.

10) Monoidal Construction: A monoidal construction inte-
grates a bifunctor (a functor of two arguments) denoting
a ‘tensor product’ operation and a unit object serving
as this operation’s identity. Regarding design decisions,
a monoidal category might depict the structure of
amalgamating decisions (via the tensor product) and
the existence of a ‘do nothing’ decision acting as this
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operation’s identity. It offers a structured way to reason
about the amalgamation and sequencing of design
decisions.

Definition 9. Design Rules (3)
Let M = ⟨MoS,MoA⟩ be a source category
where objects signify either models of specification
or models of architecture, and morphisms represent
transformations between these models. Let I be the
target category with objects characterising models of
implementation. Design rules, denoted by 3, is posited
as a functor:

3 :M→ I

This functor maps:
• Objects in M to constraints in I, refining the
implementation to adhere to the stipulated rules.

• Morphisms inM to morphisms in I, conveying the
influence of rules on transformations from specifi-
cations and architectures into implementations.

Design rules, encoded in a coherent linguistic struc-
ture, stipulate the requisite conditions a design must sat-
isfy to ensure its correctness. This linguistic perspective
provides a framework for capturing, interpreting, and
deploying rules.When coupledwith design decisions1,
these rules offer a pivotal layer of interpretation, guiding
the refinement of theMoS andMoA to yield a ‘‘correct’’
implementation in the MoI. In specific design contexts,
such rules can be collectively referred to rules deck.

From a categorical perspective, design rules can be repre-
sented in a category, C, as follows. The objects in C correlate
to the various elements of the design system, including
specifications, architectures, evaluations, design decisions,
and implementations. The morphisms in C denote the
composition grammar or rules, defining how these elements
interact and combine. This formalisation encapsulates the
relationships and rules among different design components.
The rules ensure the validity and compliance of the design by
offering constraints for the components and their interactions.

Example 10 (Design rules). Examples of design rules
include:

• System/Transaction Space: Spatial and temporal isola-
tion criteria for hypervisor partitioning in mixed-critical
systems.

• RT Abstraction: Low-power design rules, design-for-
testability rules.

• Software: Programming guidelines such as MISRA-
C:2004 for C programming language.

• Circuit Space: Electrical rules, design-for-
manufacturability (DfM) rules, design-for-yield rules
(DfY), antenna rules, rules for electrostatic discharge
(ESD) and electro-migration (EM).

• Physical Space: IPC rules for manufactured printed
circuit boards such as IPC J-STD-001, IPC-A-600,

IPC-A-610, IPC-A-620, IPC-6012, IPC-7711/21, IPC-
7251, IPC-7351.

Design rules often emerge as extra-functional requirements
identified during design steps once a particular implementa-
tion is selected. These rules tend to be specific to platform
vendors and manufacturing foundries, acting as a feasibility
assessment for the design. Design rules can be equated with
contracts in a contract-based design, wherein the criteria for
design correctness are articulated.

Definition 10. Model of Implementation (MoI)
Let I be a category where objects encapsulate the
various characteristics of system implementations, and
morphisms depict transformations and interactions
between these implementations. Within this categorical
context, the model of implementation (MoI) can be
construed as a formal modelling language, bearing
similarities to both conventional programming and
hardware description languages.

An object in I represents a parameterisable imple-
mentation, compatible with a refined model of function-
alityMoF′, a refinedmodel of architectureMoA′, design
rules 3, and extra-functional specifications (MoX).
Formally, this association can be expressed as:

MoI : ⟨MoS′ ×MoA′⟩

s.t. MoI |H MoA |H MoS

& MoI ⊢ 3 ∪MoX MoF×MoA :

Pp × Cp, (Ip ∈ MoF)× (Ip ∈ MoA),

(Gh ∈ MoF)× (Gc ∈ MoA)

Here, |H and⊢ should be interpreted asmodels and satisfies
respectively.

Remark 24 (Refinement and derivation of a MoI). The term
refined highlights the distinction between the original models
and their subsequent versions in the implementation. TheMoI
pertains to the ‘physical/geometric’ domain of the Gajski-
Kuhn Y-Chart or the platform-specific model (PSM) in the
OMG’s model-driven architecture (MDA) terminology. Gen-
erally, the technology, platforms, or target implementation
libraries constitute the model of implementation.

Remark 25 (Functional-architectural mapping and imple-
mentation complexity). The design space, often referred to as
the implementation space, emerges from mapping functional
capabilities to architectural opportunities, guided by valid
mappings (design rules and composition grammar/syntax).
The complexity of this space can escalate swiftly for
cross-space designs due to the exponential growth of
possibilities at each abstraction level. To control this, it is
imperative to restrict the options within each complexity
domain to a level that facilitates optimal results.

Example 11 (Examples of MoIs). 1) With functional spec-
ifications in RT abstraction space defined using the
synthesisable subset of VHDL and extra-functional
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specifications like multi-mode multi-corner (MMMC)
or Synopsys design constraints (SDC), and an architec-
tural netlist of standard cells in Verilog, the MoI might
be a GDSII/OpenAccess implementation supported by
foundry-specific PDK and LEF files.

2) Starting with an (MoF, MoA) pair such as ((SystemC,
Synchronous dataflow MoC), LSLA in AADL), the
MoI might consist of C programmes, an implementa-
tion of the Synchronous dataflow MoC with limited
buffers, and a shared memory bus system detailed
in AMD/Xilinx microprocessor hardware specification
(MHS) compatible formats. Here, MoC and MoA
denote the models of computation and architecture,
while MoX embodies extra-functional specifications
such as latency and area footprint.

4) EVALUATION
• Evaluation within design processes can be encountered
in many different stages:
1) before design for early feasibility assessment
2) during design for making design decisions and
design space exploration

3) after design to verify the design outputs, including
verification exercises,

4) after implementation/manufacturing to diagnose and
troubleshoot problematic designs.

• Evaluation models can exist across the different abstrac-
tion spaces in the physical abstraction space where
thermodynamics and electromagnetic interference are
analysed in printed circuit boards andmodules. In circuit
abstraction space, evaluation models are used to assess
transient effects, steady-state conditions, variability, and
noise analysis in addition to random stochastic processes
analysis. In RT abstraction space, static timing analysis
and average power are predominant in digital circuits.
In system space, functional safety, and performance are
among the few relevant characteristics of commercial
and industrial products and systems.

• Evaluation models can include the formal verification
and functional simulation of functionality, e.g. equiva-
lence checking in addition to the performance and cost
evaluation or analysis given a point in the design space
that belongs to the implementation. This can include
formulas and theorems for real-time systems andmodels
of computation such as consistency, liveliness, deadlock,
throughput, buffer size, latency, schedulability. Technol-
ogy, platforms or implementation target libraries such
as DEF/LEF that are typically part of the model of
implementation are also usually shared for the model of
evaluation for evaluation purposes.

Definition 11. Model of Evaluation (MoE)
A model of evaluation is a collection of tools, frame-
works, or/and methods, which may be composite,

that stipulates the specific procedure and relation-
ships required for evaluating both the functional and
extra-functional properties of amodel of implementation
(MoI). This evaluation seeks to answer the question:
‘To what extent does the MoI satisfy the model
of specification (MoS)?’, which can be symbolically
represented as: MoI |H MoS? The MoE serves as a
functor in the category of model design, transforming the
MoI to assess its adherence to the MoS. In mathematical
terms, this can be expressed as:

MoE : ⟨MoI⟩ → MoS

Furthermore, when we elaborate on the components
of the extra-functional specifications (MoX), the MoE
morphism can also be expressed as:

MoE : ⟨MoI⟩ −−−−→
ϑ∈MoX

ϱ ∈ MoX ∪MoF

In this context, ϑ represents a given element within
theMoX, while ϱ signifies the resultant evaluation of the
MoX, which is combined with the model of functionality
(MoF) to provide a comprehensive evaluation of the
MoI.

An alternative categorical counterpart for the model of
evaluation (MoE) as a category can be described as follows:

Let C be a category that represents the model of
evaluation. The objects in C correspond to the different
implementations, denoted as MoI, at a specific level/space
of abstraction. The morphisms in C represent the evaluation
procedures and relationships that map an implementation
to the corresponding specifications, denoted as MoS. This
categorical description provides a framework for studying
the evaluation of implementations and their correspondence
to specifications. It allows for the formal analysis and
verification of functional and extra-functional properties,
aiding in the assessment and validation of the design.

The evaluation model in Definition III-A4 does not seem
to include the case of executable specification, where one
can simulate the effect of the specifications given a set
of inputs to check and evaluate whether it provides the
right results, i.e. validation of whether we are building the
right thing? Since an implementation model at a specific
level/space of abstraction can be considered to be the
specification model of the next/subsequent space/level of
abstraction, one can still see a notion of the term where the
specification model can be evaluated using the evaluation
model, by assuming that MoSi+1 ≃ MoIi. Evaluation
models and other decision-making models may use extended
models iof architecture and specification, or augment
such models to generate design outputs. For example,
superimposing inputs/loads/power/electric/noise sources for
system simulation and environmental stimuli to exercise the
system in relation to the extra-functional analysis of interest.
Additionally, design decisions and evaluation models can
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employ various intermediate languages and procedures to
capture different aspects of the design automation processes
as required.

Example 12 (MoEs).
• Simulation models for metal oxide semiconductors field
effect transistors (MOSFET) such as BSIM family [28]
is an example of aMoE with multi-objective evaluation
functions at the device/physical level.

• Simulation program with integrated circuit emphasis
(SPICE), such as PSPICE, LTSPICE and Spectre is an
example of a MoE with a multi-objective evaluation
system at the circuit level.

• Instruction-set computer simulators such as Gem5, Sim-
ics and ARMulators; virtual simulation platform, such
as OVPSim and Imperas OVP populated with power
interception library and ARM A processor models can
be an example of a MoE for instruction/cycle-accurate
functional (and time/power extra-functional) evaluation
at the transaction level.

• Hardware description language (HDL) functional sim-
ulators and static timing analysis engines like Intel
QSim, and Cadence XCellium/Tempus are examples of
MoE for the behavioural and functional specifications
at the RT abstraction. Processor-based or FPGA-based
emulation platforms such as Cadence Palladium or
Protium can be an example of MoE at the RT for
evaluation of the functional specification.

• Logical/Sequence equivalence checking (EC) and par-
asitic extraction are examples of MoE that check the
equivalence of behavioural specifications in relation to
transformed versions in the implementation model at the
RT and logic abstractions.

• Matlab Simulink, OPNet and NoCSim are examples
of MoE to evaluate the functional and extra-functional
aspect of system design at the transaction levels.

Definition 12. Characterisation
Characterisation of evaluation model, is the pro-
cess that aims to resolve unknown implementation-
or technology- or platform-dependant parameters or
attributes or constants.

Characterisation or Identification (or sometimes called
analysis or profiling in the software domain at the system
space) is usually a vendor and platform-specific exercise
aims at identifying technology-dependent characteristics
necessary for the evaluation of the system such as aver-
age/best/worst case communication/execution/response time.
In the RT domain, FPGA vendors and foundries characterise
their technology-specific devices and manufacturing process
(PDK) into corresponding implementation templates and
datasheets on the characteristics of the end product (electrical,
mechanical, timing, power, failure-in-time, etc.).

Example 13 (Characterisation). Examples of characterisation
or model identification may include:

• At the transaction level or system space: software
processes memory footprint characterisation, execution
time characterisation, memory access for transactions,
intra- and inter-chip communication time per transac-
tion, baseline system power consumption, system space
failure-in-time characterisation.

• At the RT space: fall and rise time output propagation
delay per gate and per IP, wireload delay, gate area
characterisation, input and output capacitive/resistive
loads for logic gates, toggling rate or switching activity
probabilities for power estimation. This is apparent
for IEEE 1801 and the corresponding TSV/SAIF/VCD
annotation framework for power evaluation and the
defacto industry standards ‘.lib’ liberty formats for
timing parameters.

• At the circuit space: threshold voltage characterisa-
tion, constant characterisation of electrical parameters
of resistors, capacitance and other elemental circuit
components, maximum and minimum load per circuit
component, inductance/capacitive/resistive parasitics
extraction (IEEE 1481).

• At the physical space: device reliability, e.g. failure in
time of single event upsets, for memory devices.

5) DEVELOPMENT
The development of computer applications or systems
typically occurs within the context of engineering projects.
The primary aim of these projects is often to enhance
existing products or technologies or to introduce new ones.
As products and technologies mature, they can be described
using different modelling maturity levels or technology
readiness levels. For instance, within the aerospace industry
and referencing NASA’s technology readiness level (TRL),
a product might be ascribed level 1 when a prototype is built,
demonstrating its foundational principles. Conversely, when
the product has been proven in an operational environment,
it might attain level 9. To differentiate the design as
it progresses through extensive developmental stages like
TRLs, we employ the term ‘epoch’. While TRL is a staple
in aerospace engineering and research projects, serving as
a motivating factor for the introduction of developmental
stages, similar concepts can apply to other sectors. For
instance, in other industries, engineering or customer change
orders might reflect design modifications which can be
catalogued as shifts along developmental stages.

Within each extensive developmental stage, computer
systems might undergo several smaller, either automated
or manual, engineering processes or steps. These steps are
sometimes encapsulated by design, development, or process
flows and are disseminated among members of one or more
engineering teams. Given their relative brevity compared
to larger developmental stages, we refer to them as ‘sub-
epochs’. The time discrepancy between the design before and
after each of these smaller steps is also termed a sub-epoch.
From this perspective, sub-epochs represent intermediary
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steps in a design flow. In mature computer-aided design
fields, like register-transfer level integrated circuit designs,
automated design flows facilitate the transformation or
refinement of high-level descriptions (e.g., RTL models) into
lower-level physical formats (e.g., GDS-II). Notably, these
design flows invoke various software tools to shift the design
from initial specification to final implementation models.
Typically, these flows are nonlinear, iterative, and encompass
several intermediary phases and representations. Throughout
these intermediary steps, specification models experience
various phases, including architectural refinement, opera-
tional scheduling, resource allocation, functional simulation,
PPA evaluation, and synthesis layout.

Another manifestation of sub-epochs is within software
development methods and versioning. Agile or scaled agile
frameworks (SAFe), for instance, are commonly employed
in software development. Within agile or SAFe, temporal
intervals, such as increments (spanning five iterations/sprints)
or iterations (usually two-week periods), help structure the
developmental stages of a software feature. Sub-epochs
can be used to chronicle these increments and iterations.
Furthermore, epochs and sub-epochs can serve to distinguish
between major and minor software versions, capturing the
evolution through various versions.

6) MODEL OF DESIGN
Drawing upon the aforementioned core components, namely
models of specification (MoS), architecture (MoA), imple-
mentation (MoI), evaluation (MoE), and design deci-
sions/rules (1/3), we are now in a position to present the
model of design (MoD). This model can be viewed as a
2-category or higher-order category that captures the essence
of the design problem.

Definition 13. Model of Design (MoD)
Amodel of design (MoD) is a higher-order category that
formalises the design problem for potential design spec-
ifications belonging to a specific model of specification
(MoS) and architectures (MoA) within an arbitrary
abstraction space. It uses design decisions/Rules(1/3),
given models of evaluation (MoE), to generate an
implementation under a model of implementation (MoI)
at a specific abstraction space.

The MoD can be hierarchical, encompassing various
components and sub-design problems, and can evolve
over time to incorporate multiple development stages.
MoD can also be composed with other MoDs. Formally,
we define MoD as:

o|m|MoDA.s
τ.e : ⟨

o|m|MoSA.sτ.e ,
o|m|MoAA.s

τ.e ⟩

o|m|MoEA.sτ.e
←−−−−−−−

−−−−−−−−−→
o|m|3A.s

τ.e ,
o|m|1A.s

τ.e

o|m|MoIA.sτ.e

s.t. o|m|MA.s
τ.e : ⟨

⋃
∀c

o|m|
c| MA.s

τ.e ⟩

where A: abstraction space, s: sub abstraction space, τ.e:
development time epoch, m:meta-model, o:object instance of
the model, c: component.

From a category theory perspective, we can define the
model of design as follows: Let C be a 2-category (or
higher-order category) that represents the model of design.
The objects in C are categories representing different
components and sub-design problems, denoted as MoS and
MoA, at specific abstraction spaces and development time
epochs.

These objects capture the design problem, the design
specifications, and the implementation, while the arrows
describe how this design is realised and evaluated. Specifi-
cally, the morphisms (or functors) in C represent the design
decisions/rules (1/3), and the 2-morphisms (or functors)
represent the evaluation models that map morphisms to
other morphisms. This effectively transforms the design
specifications into the implementation and evaluates whether
this transformation has been carried out correctly.

Central to our discourse is how model of design (MoD)
concept encompasses perspective on system design. Rooted
in various foundational design methodologies and tax-
onomies, the MoD concept reinterprets and extends these
methodologies, integrating them within a single, unified
framework. Figure 1 provides a visual representation of the
MoD and its intricate relationship with the Gajski-Kuhn
Y-chart, among other methodologies.

The MoD concept, depicted in the figure as triangles
of refinements embraces a hierarchical approach, capturing
models for individual components that collectively constitute
the complete design. This is articulated within the compo-
nent, c: component in o|m|

c| MoDA.sτ.e , facilitating hierarchical
designs across diverse abstraction spaces. Such a methodol-
ogy proves invaluable in ensuring design reuse and effective
encapsulation of design concerns for intricate sub-domains
of hardware and software components. Examples include
general-purpose processors, graphical processors, memory
systems, I/O modules, hypervisors, and real-time operating
systems. Guided by the MoD framework, distinct teams
can systematically develop design models for architectural,
evaluative, and implementational facets of various modules
and components, such as application processors, graph-
ical processors, communication processors, and clocking
modules.

It is essential to position the MoD concept within
the broader landscape of system design methodologies,
particularly for embedded computing systems. The MoD
concept aligns with established academic system design
methodologies, including platform-based design (PBD),
component-based design (CBD), and model-based design
(MBD). In comparison to the double-roof model for hard-
ware/software co-synthesis, the MoD concept introduces
unique nuances. While the software/hardware implementa-
tion models correspond to our model of implementation
(MoI), and top-level specifications are analogous to our
model of specification (MoS), the MoD distinguishes itself
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FIGURE 1. A diagram illustrating MoD concept and its main constituents: model of specifications (MoS,
comprising model of functionality, MoF, and model of extra functionality, MoX), model of architecture
(MoA), model of implementation (MoI), and model of evaluation (MoE), in addition to design
decisions/rules across different levels of (sub) abstractions and hierarchies (see Foundational
Construct 2). The diagram depicts equivalence of MoF, MoA and MoI with the behavioural, structural
and physical domains of the Y-chart. It also shows the analogy of the MoD with Gajski-Kuhn Y-chart
and how design decisions map to design automation activities.
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through its emphasis on evaluation models and development
stages.

Examining the MoD in relation to industrial practices,
such as theV-chart, reveals similarities, especially concerning
developmental stages like architecture, design, and develop-
ment engineering. However, the MoD again differentiates
itself by introducing explicit abstractions and evaluationmod-
els for design components. The seminal Gajski-Kuhn Y-chart
has profoundly influenced the MoD concept, sharing many
of its foundational elements. Yet, the MoD enhances this
by introducing an explicit representation of extra-functional
facets and evaluation models.

Delving deeper into the connections with different devel-
opment frameworks, it becomes imperative to visualise the
MoD framework in relation to established design methodolo-
gies and taxonomies. This comparative analysis accentuates
the enhanced scope and inclusivity of MoD, particularly
highlighting how it integrates diverse methodologies into its
schema.

Remark 26 (On objects, models and metamodels). Models
can belong to different libraries of models (e.g. specification
libraries, evaluation libraries, component libraries, design
libraries, implementation libraries, etc.). In each of these
models, we can derive specific instances that satisfy the
model we call them objects; e.g. a Sobel graph following SDF
is an object or an instance while the general SDF model is a
model at the transaction level. The set of all pins, ports, nets,
cells, clocks of a design can be the objects of an architecture
at the RT abstraction. The models can correspondingly have
meta-models (mMoS,mMoA,mMoE,mMoI) with a potential
addition of other languages that enables manipulating the
model itself: its creation, management and modification.
In various cases, meta-models can be languages to describe
complementary (meta) data for logging design steps and
reporting intermediate/final design results, other informa-
tion such visualisation and views (e.g. graphical/symbol
schematic/physical view, and simulation purposes view),
or other info e.g. versioning, compatibility and executability.
The concepts of object, model and meta-model within the
model of design can be analogous to that from the OMG
meta object facility, whereby theM0-level maps to the objects
compliant with the models oMoD, the domain-specific model
M1-level maps to the MoD models MoD, and the metamodel
M2-level and the meta-language M3-level maps to MoD
metamodels, mMoD.

Remark 27 (MoD and MoD constituents as categories). An
idea behind our definitions of MoD and its constituents
as models is to enable treating them as categories and
defining corresponding morphisms (in the sense of category
theory). This means MoD would comprise categories of
specifications, architectures, and implementations (called
categorical objects or the vertices on the category graphs).
Evaluation models, design decisions, and rules would then be
morphisms, functors and natural transformations that relate
the MoD categorical objects to each other (the arrows on

FIGURE 2. A diagram illustrating MoD as a category of categories: model
of specifications (MoS, comprising model of functionality, MoF, and
model of extra-functionality, MoX), model of architecture (MoA) and
model of implementation (MoI). The model of evaluation (MoE)
and design decisions/rules are depicted as morphisms or arrows. Note +

here technically denotes a categorical co-product.

the category graphs). In that sense, operations on MoD and
its constituents such as unification, categorical products, and
transformations can be formally defined. An illustration of
the MoD as a category of categories is depicted in Figure 2.

Figure 3 features a graph and range of symbols, many
of which are used in category theory, to denote transfor-
mations, relations, and assumptions within and between the
subsystems. MoS, 1/3, MoE, MoA, and MoI represent
categories in the model of design. This might stand for
different aspects of a system design, such as specification
(MoS), evaluation frameworks (MoE), architectures (MoA),
implementation representation (MoI), and change operators
or model transformation units (1/3). Id is a standard
notation in category theory for identity morphisms, i.e.,
morphisms that leave objects unchanged when applied. The
letters inside the arrows (e.g., T, I, R, A, G, C, E) represent
different morphisms, functors, or natural transformations
between categories, that represent various relational aspects
within system design. For example, T means ‘Transform’,
C means ‘Characterise’, G means ‘Guarantee’, etc. The
symbols (|H, ⊢) near each of the nodes represent operations
performed within each category or constraints applied to it.
The double-headed arrows with ‘‘in’’ label are representing
inclusion functors. These would indicate that some elements
or structures from one category can be seen as a part
or structures of another. The complex paths between the
different categories (MoS,1/3, MoE, MoA, MoI) represent
more complex transformations, perhaps involving multiple
steps or the composition of multiple basic transformations.

From a systems engineering perspective, this might depict
a model-based or category-based systems engineering pro-
cess. Each category could correspond to a different stage or
aspect of the system design process, with the transformations
representing different design or analysis tasks. The diagram
might express how different models and a change/relation
operator or model transformation unit relate to each other
and interact throughout the design’s sphere. It also hints at
how assumptions, restrictions, and other constraints factor
into these relations and interactions.

Remark 28 (MoI circular reference in MoD). From Defini-
tion 13, MoI appears both as input to MoE and as output of
MoD, which might suggest some sort of circular dependence.
This is usually circumvented by provision/development of
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FIGURE 3. MoD as a category of categories with expanded relationships. Note that the arrows depicting different kinds of
relations between the categories of MoD, which are part of the evaluation models (MoE) and/or design decisions/rules
categories.
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the implementation model (MoI) and how it can be evaluated
(MoE) with respect to specific requirements (MoX) through
characterisation (see Definition 12).

Remark 29 (Real-time systems/models and MoD). Real-
time models such as periodic, sporadic, aperiodic models
can be considered as union of time-related extra-functional
requirement (MoX) such as deadline, latency for untimed
model of computation (MoC) such as KPN on time-triggered
processor based like architectures (MoA) with schedulers.
Real-time analysis such as scheduleability analysis, mapping
problems and end-to-end data propagation can be considered
as part of evaluation models (MoE) and/or design decisions
(1) that are used for the design problem of real-time
systems. Furthermore in a way similar to our remark on
MoCs hierarchy in Remark 7, using the relationship between
real-time systems and model of design, one can capture
different levels of hierarchies for real-time systems as shown
by Stigge and Yi [29].

Remark 30 (MoD relation to platform-based design taxon-
omy). Platform-based design is a well-known conceptual
(meta-model) framework for the electronic system level
(ESL). The MoD definition, compared to a PBD taxonomy
such as [30] differs in the sense that MoD framework
separates the evaluation and architectural models from the
platform, as there could be various ways to evaluate a
platform model and that an architecture maps to different
platforms thereby justifying the distinction of the notions.

Remark 31 (MoD relation to model-based methods). The
role of models within the model of design concept is
central and therefore several similarities can be established
between model based methods such as: model driven
development, model based design, model driven engineering
and model driven architecture (MDA). In particular regards
to the model-driven architecture methodology, a one-to-
one mapping between model of specifications, model of
architecture and model of implementation with computation
independent model, platform specific model and technology
independent model is established. In addition, the role of
transformation in MDA can be directly related to design
decisions in MoD.

Remark 32 (MoD relation to component-based methods).
The role of components within the model of design concept
is central to the model of architecture and computation
(when considering processes as component) at all levels
of abstraction. In circuit level abstraction, the role of
components (or circuit elements) can be viewed to be larger
and more significant since all computation and platforms
elements are merged. The theories developed within the
BIP framework (a component based construction) can be
applicable to the model of architecture and the correctness
of the compositionality.

Remark 33 (MoD relation to HW/SW codesign and the dou-
ble-roof model). MoD is perceived to be hardware/software
codesign from its inception, whereby specifications models

(MoS) play the primary entry role to the design activity.
In order to make the design more inclusive to hardware,
the MoX concepts had been introduced explicit to the MoS,
whereas to be more inclusive to software, the MoB concepts
had been introduced explicitly to the MoS. The architecture
is viewed as a meeting-in-the-middle for both the SW/HW
aspects as opposed to the departure in the double roof
model [31] whereby the implementation and architecture of
hardware and software are viewed separately.

Several industry anecdotes have encouraged our adoption
of hierarchical abstractions and development timelines in
our formalism, taking into account all facets of the model
of design concept: specifications, architecture, evaluation,
and implementation. In the IEC 61508 standard, concerns
regarding formal approaches underline challenges like a
‘‘Fixed level of abstraction’’ and ‘‘Limitations in capturing
all pertinent functionality at a particular stage’’, thus the
emphasis on developmental axes. Consequently, the design
can be articulated usingMoD principles, described at varying
levels of abstraction based on the abstraction spaces inherent
to the MoD’s components. For instance, an MoD at the
RT-Circuit abstraction level might have its MoC and MoF
characterised as a Boolean circuit and disjunctive normal
forms; MoX detailing critical path delays and input/output
loads; MoI composed of standard cells detailed in LEF
file formats, drawing on TSMC 2nm process design kit
technology files; and MoE using inductive, capacitive, and
resistive wireload alongside standard cell delay models.

The MoD concept, given its hierarchical nature,
awareness of abstraction levels, partitioning, model-
centric approach, and inclusiveness of platforms, aligns
with or is compliant with other notions such as:
model-driven engineering/design (MDE/MBD) via the
specification-based framework, component-based design
(CBD) through the component-based architectural frame-
work, and platform-based design (PBD) by presuming
the design process’s implementation. Furthermore, as it
is feasible to have multiple MoDs in principle, it is also
possible to deliberate over various product lines at different
development phases. As depicted in Figure, the MoD might
feature ‘epochs’ and ‘sub-epochs’. This differentiation is
not strictly formal but serves to capture the progressive
design processes within various developmental stages,
contingent upon the industrial standards employed. For
example, a firm might use engineering, product, or customer
change orders/notices to demarcate different development
sub-epochs, while using technology readiness levels to
differentiate between various development epochs.

B. PROPERTIES
In this subsection, we delve into a comprehensive exploration
of properties that follow from our model of design. These
properties, integral to the core findings of our study, illumi-
nate key notions including, but not limited to, development
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time, coherence, complexity, equivalence, and correctness.
Their understanding is pivotal for a holistic grasp of the
broader implications and applications of our model in
Subsection III-C. Let us proceed to dissect each of these
properties.

Property 1. Orthogonality of Design Models (�)
Orthogonality of design models is a property of a model
of design D ∈ o|m|

c| MoDA.sτ.e , that describes the degree
of (categorical) interactions within its constituents S ∈
o|m|
c| MoSA.sτ.e , F ∈

o|m|
c| MoFA.sτ.e , A ∈

o|m|
c| MoAA.sτ.e , and

X ∈ o|m|
c| MoXA.sτ.e , E ∈

o|m|
c| MoEA.sτ.e are intersecting

�(MoD) =
⋂
S ∈ o|m|

c| MoSA.sτ.e,

A ∈ o|m|
c| MoAA.sτ.e,

E ∈ o|m|
c| MoEA.sτ.e

The property �, related to orthogonalisation of design
concerns, is meant to measure the extent of which a
model entity within a specification is repeated within the
architecture and the evaluation model. Since we consider
the implementation model to be the result of the design,
we expect some entities from the architecture or specification
to be present in the implementation. Orthogonalisation of
design models can help in facilitating model exchange
and reuse within different design models. Orthogonality
of design models (�) can be derived from the provided
definition of themodel of design (MoD) by closely examining
the relationships and interactions between its constituent
components.

In the MoD, each design component has a specific role
and purpose: MoS captures the problem specifications, MoA
captures the architecture, and MoE captures the evaluation
models. Together, they provide the necessary elements for
the design. These elements are linked through morphisms
represented by design decisions/rules (1/3) that transform
these specifications into a concrete implementation.

The property of orthogonality (�), from the given defi-
nition, measures the degree of interaction (or intersection)
between these elements. In highly orthogonalised design
models, elements are modular and have minimal over-
laps, meaning they can be modified independently without
affecting the others. This is crucial for reusability and
exchangeability of design models, as changes in one area will
have minimal impact on others.

To compute �(MoD), one computes the intersection of all
elements acrossMoS,MoA, andMoE, through the functor�.
This gives a measure of how much these elements are
intertwined. A larger intersection (higher � value) would
imply a less orthogonal (i.e., more interdependent) design,
while a smaller intersection (lower � value) would indicate
a more orthogonal (i.e., more modular and independent)
design. Therefore, in the context of MoD, � serves as an

indicator of the design’s orthogonality, helping to quantify the
potential for model exchange and reuse.

Note 1. It is important to note that design methods that
observe the orthogonalisation of design concerns [7] can
give rise to reusable design components that are potentially
efficient to implement. This is because, when orthogonalising
concerns, we can avoid repetition and inconsistency between
the models. However, when we try to apply the orthogonal-
isation principle within the models themselves (intra-model
level), e.g. within design decisions (1) and evaluation models
(MoE), it could sometimes be conceptually impossible to
achieve a clean orthogonalisation within design decision
problems and evaluation models as it is usually the case
that design decisions and evaluation overlap and give rise
to inseparable trade-offs. Furthermore, orthogonalisation of
concerns is not applied to the fundamental syntax/alphabet of
the modelling languages, as some overlap and commonality
is in fact needed between different design components to
achieve interoperability.

Property 2. Design Space (ζ )
Design Space: The design space for a model of design
X ∈

o
c|MoD

A.s
τ.e represents the degree of freedom

encompassing all possible permutations of computa-
tional behaviours within the functional domain and
combinations of all potential implementation options,
namely:

ζ (X ) = |oc|MoA
A.s
τ.e | × |

o
c|MoF

′A.s
τ.e |

Thus, design space exploration (DSE) is an iterative
process wherein design decisions are made to assign
design variables (∈ ζ ) to one or more values from their
respective value domain, after evaluation (in line with
MoE and 3), aiming to meet or optimise the design
specifications (∈MoS).

This definition is also intertwined with concepts such
as optimisation/satisfaction or the refinement space for
the design problem, delineating potential pathways for
optimisation/satisfaction or refinement culminating in an
implementation. The definition draws upon prior concepts:
a model of design, according to Definition 13, integrates
specification, architecture, evaluation, and implementation.
Given that extra-functional specifications and evaluation
models, as per Definitions 5 and III-A4, omit design
elements and instead outline supplementary requirements or
their evaluations, they are excluded from the design space.
Through this exclusion process, the residue is the translation
of functional specifications into architectures.

The notion of design space (ζ ) and design space explo-
ration is rooted in the model of design (MoD), quantifying
the conceivable solutions that a design model might embrace.
In line with the MoD definition, a model of design amalga-
mates all design specifications (MoS), architectures (MoA),
and functional domains (MoF) pivotal to the design task. This
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multidimensional expanse of viable combinations constitutes
the ‘design space’. Therefore, when ζ (X ) = |oc|MoA

A.s
τ.e | ×

|
o
c|MoF

′A.s
τ.e |, it fundamentally measures the aggregate number

of combinations of architectures and functional domains for
a specific model of design X . In this equation, |oc|MoA

A.s
τ.e |

represents potential implementations (architectures), while
|
o
c|MoF

′A.s
τ.e | denotes functional prospects. Design space

exploration thus becomes the traverse through this expanse
to pinpoint the optimal solution. Here, ‘optimal’ hinges on
the design transformation process (1/3) and the evaluation
model (MoE) that assess the suitability of a particular combi-
nation vis-Ã -vis the specifications (MoS). In this paradigm,
extra-functional specifications (MoX) and evaluation models
(MoE) do not feed directly into the design space as they do
not usher in new configurations. Consequently, the concepts
of design space and design space exploration as defined
herewith follow from the model of design’s definition.

Note 2 (Various Kinds of Spaces). While the design space
is primarily perceived as an interaction of functional and
architectural space, there exist alternative interpretations of
design spaces:

1) Design space asMoS xMoI (application-specific system
design space, as in ASIC)

2) Design space as MoS x MoA (application-specific
system architecture design space, as in FPGA)

3) Design space as MoX x MoA (functionally agnostic
design-for-X or component-based design, e.g., RT for
time, low-power design of components such as RTOS,
NoCs, memories, processors, etc.)

4) Design space as MoF x MoA (architectural functional
design, as in Kienhuis’ Y-Chat)

5) Design space as MoF xMoI (functional-platform design
space, as in PBD)

Other associated notions describing possibilities within the
models of design encompass: specification space, functional
space, extra-functional space, behavioural space, archi-
tectural space, platform/implementation space, evaluation
space, and design decision space.

The magnitude of the implementation space can swiftly
surge to an exponential scale when contemplating every
potential permutation in the design space. This burgeoning
complexity holds true evenwhen employing a platform-based
design approach, where nuances exceeding the circuit and
logic spheres are abstracted by the platform selection.
For instance, when targeting computing systems via a
platform-based design approach, there exist over 14,427
embedded computing platforms from suppliers such as
mouser.com and farnell.com (excluding original equip-
ment/design manufacturers and OS providers). Yet, in prac-
tical scenarios, this design space can be pruned due to
symmetries and limitations emerging from compliance with
particular design rules and MoX.

Next, we explore the Coherence property. Coherence, in a
category-theoretical context, often refers to the idea that

different paths through a series of morphisms (in this case,
mappings or transformations from one model to another)
yield the same result, essentially maintaining the consistency
of the overall system.

Property 3. Coherence (β)
Coherence: A model of design D ∈

o|m|
c| MoDA.sτ.e ,

is said to be coherent with respect to its constituents
S ∈ o|m|

c| MoSA.sτ.e , F ∈
o|m|
c| MoFA.sτ.e , A ∈

o|m|
c| MoAA.sτ.e ,

X ∈ o|m|
c| MoXA.sτ.e , E ∈

o|m|
c| MoEA.sτ.e and I ∈

o|m|
c| MoIA.sτ.e

iff there exists assume-guarantee relationship between
specification, architecture, evaluation and implementa-
tion that are achieved by applying the design decision
and rules (1,3). Or in other words:

D |H ⟨S, E,A⟩ 1−→
3
I ,∀S, E,A, I

I |H ⟨F ′ ×A′⟩ , I ⊢ 3,∀I,A,F

The definition of coherence within a model of design
expresses this principle: anMoD is said to be coherent if there
is an assume-guarantee relationship between its constituents,
that is, themappings and transformations applied (through the
design decisions 1 and rules 3) produce consistent results,
maintaining the integrity of the overall design.

Given the definition of an MoD, let us examine if the
coherence property follows:

1) First, a coherentMoDmust satisfy the assume-guarantee
relationship between the specifications, evaluation, and
architecture that leads to the implementation, formalised

as D |H ⟨S, E,A⟩ 1
−→
3

I. This captures the idea

that for any valid set of specifications, evaluation,
and architecture, applying the design decisions and
rules will lead to a valid implementation, essentially
saying that the process of going from specifications to
implementation is coherent.

2) The second part of the definition, I |H ⟨F ′×A′⟩, asserts
that the implementation must satisfy the mapping from
the functional domain to the architecture domain. This
maintains the consistency (or coherence) of the mapping
across these domains. The clause I ⊢ 3 indicates that
the implementation should satisfy the design rules, again
asserting the consistency of the design process.

Proving coherence in this context would involve demon-
strating that the design process consistently yields valid
implementations that satisfy the defined rules for any
given set of valid specifications, evaluation models, and
architecture. This is generally a design-specific endeavor and
would depend on the specifics of the design problem and the
associated specifications, evaluation models, architecture,
and design rules.

The use of the term ‘coherence’ here is more akin to
its usage in software engineering or systems design, where
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it refers to consistency or logical integration of various
components, rather than its specific meaning in category
theory.

Notably, this notion of coherence is compatible with that
of Sifakus’ [26] in relation to correctness-by-construction,
in the sense that our criteria on coherence is subsuming
Sifakis’ use of transition systems, model interactions and
priorities to reason about components’ composability and
compositionality. Additionally, one can note that this notion
of coherence relates to the assume-guarantee relations in
contract-based design concepts shown in [9] and [32].

Property 4. Complexity (O)
Complexity: The complexity of design is the complexity
class that indicates the space (S ∈

⋃
∀ns,ks∈N DSPACE

((nsks ))
⋃

NSPACE((nsks ))
⋃

NSPACE((2nsks ))) and
time (T ∈

⋃
∀nt ,kt∈N DTIME((nt kt ))

⋃
∀k∈N NTIME

((nt kt ))
⋃

NTIME ((2ntkt ))) complexity in BigO nota-
tion, O(n) for the model of evaluation and design
decisions. i.e.

O(MoD) : (MoE ∪1) 7→ S, T , ns, nt , kt , ks

Whereby, S, T are the space and time complexity classes
respectively, while ns, nt , kt , ks are the variables describing
the degree of complexity within the complexity classes.
DTIME(f(n)) and NTIME(f(n)) refers to classes of problems
that can be solved in a certain of degree described by
f(n) in deterministic or non-deterministic time respectively.
Conversely, DSPACE(f(n)) and NSPACE(f(n)) are space
complexity classes containing problems that are computable
by deterministic and non-deterministic Turing machines.
The terms SPACE(f) and TIME(f) are used as functions
that determine the space and time complexity classes of a
function, f, respectively.

The complexity of a design, as defined herewith, is about
how difficult it is to evaluate a design or make design
decisions, and it is measured in terms of time and space
complexity. Given the definition of the model of design,
we can say that complexity inherently arises from the various
interactions and mappings that exist within the MoD.

In the context of the MoD, the time and space complexity
can be understood as follows:

• Time complexity (T ): Time complexity is a measure of
the computational resources, specifically time, that an
algorithm or process consumes as a function of the size
of the input. In the context of the MoD, time complexity
is a measure of the computational effort required to
evaluate a design or make design decisions.

• Space complexity (S): Space complexity is a measure
of the amount of memory an algorithm or process uses
as a function of the size of the input. In the context of
the MoD, space complexity is a measure of the memory
resources required to store the information about the
design specifications, architectures, functional domains,

and their corresponding evaluation models and design
decisions.

Given these, the concept of complexity can bemapped onto
the MoD as follows:

The complexity of the MoD, O(MoD), is a function of
the complexity of the evaluation model (MoE) and the
complexity of the design decisions (1), that is, O(MoD) :
(MoE ∪1) 7→ S, T , ns, nt , kt , ks.

To show that this definition follows from the MoD, we can
say that for any MoD X , the set of all possible design
decisions, 1, and all possible evaluation models, MoE, have
some inherent complexity. This complexity is characterised
by a time complexity class T and a space complexity class S ,
with ns, nt , kt , ks being the variables that describe the degree
of complexity within these classes.

In other words, the complexity of evaluating a design
(MoE) or making a design decision (1) in the context of the
MoD falls within some space and time complexity classes
S and T respectively, thereby justifying the concept of
complexity O(MoD).

Given a MoD X , let 1X and MoEX be the set of
all possible design decisions and evaluation models for
X respectively. By definition of time and space com-
plexity, there exists some ns, ks, nt , kt such that 1X ,
MoEX ∈ DTIME(nktt )∪ NTIME(nktt )∪ NTIME(2n

kt
t ) and

∈ DSPACE(nkss )∪ NSPACE(nkss )∪ NSPACE(2n
ks
s ). Hence,

O(MoD) is well-defined.
Therefore, we can conclude that the complexity of a design

is inherent to the MoD and is determined by the complexity
of the evaluation models and design decisions.

Property 5. Solvability (ν)
Solvability: the solvability of a model of design object
X ∈ o

c|MoD
A.s
τ.e is a function that describes the time

and space (t, s) at which the design can be solved
on a given (Turing-complete) computing machine (m)
with finite space and time budgets (Bt ,Bs) for finding
approximate (numerical) or symbolic (exact) solution
for a specific input of specifications, architecture, and
implementation models. When denoting a computing
machine (m) of a time and space budget (Bt ,Bs)
with (m

⊗Bs
Bt ), we can express the solvability ν of an

evaluation or design decision problem as the function
that returns the time and space resources (tr , sr )
connected with that problem i.e.

ν(X ,m
Bs⊗
Bt

) : Solve(X )
m ⊗Bs

Bt
−−−→ sr , tr |sr , tr ∈ R≥0

s.t. Solve(X ) : f (X0,X1,X2, . . . ,Xi) = C 7→ f −1(C)
= {A0,A1,A2, . . . ,Ai) ∈ D|f (A0,A1,A2, . . . ,Ai) = C
A: assigned values and D: Domain of values
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R≥0 is the set of non-negative real numbers. A model is then
solvable if it can be solved using time and space resources
that are bounded (less than infinity) within the resources of
the computing machine, i.e. sr ≤ Bs, tr ≤ Bt .

As most of the design decisions are in general NP-hard,
since most of specific design problems are bounded, they
can still be feasibly solvable in bounded time and space
budget (especially on a high-performance massively-parallel
computing machine). As such solvability and complexity are
different, but related.

The concept of solvability is fundamentally linked to the
computability and complexity theory in computer science.
The ability to solve a problem is indeed a function of the
resources (time and space) available and the complexity of
the problem itself.

In this specific case, the solvability of a model of design is
defined as a function that, given a model and a machine with
certain time and space budgets, produces the time and space
resources necessary to solve the design. This is a plausible
definition, grounded in the understanding of computational
problems.

To show that this property follows from the definition of a
model of design, wemust show that the design problem posed
by an MoD can be mapped onto a computational problem,
and that the resources required to solve this computational
problem are bounded.

1) Mapping the design problem onto a computational
problem: The definition of an MoD describes a process
of turning a set of specifications, an architecture, and an
evaluation model into an implementation using a set of
design decisions. This process can be seen as a function:
given a set of inputs (the specifications, architecture,
etc.), it produces an output (the implementation). This
function is precisely the kind of mapping we need to turn
the design problem into a computational problem.

2) Bounding the resources required to solve the problem:
The solvability function we have defined takes into
account the resources of the computing machine, and
it gives the time and space resources needed to solve
the problem. If the problem is indeed solvable, these
resources must be less than or equal to the machine’s
time and space budgets, i.e., sr ≤ Bs and tr ≤ Bt . If the
problem can be solved within these resource constraints,
then it is considered solvable.

Given these arguments, the concept of solvability is
consistent with the definition of aMoD and can be considered
a property that naturally follows from that definition.

As pointed out, while solvability and complexity are
related, they are distinct concepts: complexity refers to the
inherent difficulty of a problem (often in terms of worst-case
or average-case scenarios), while solvability refers to the
practical ability to find a solution given particular resources.
It is important to note that even if a problem is solvable (in the
sense that a solution exists), it may not be feasibly solvable if
the complexity is too high relative to the available resources.

The solvability can lead to another property, development
time, as they are both related in terms of the time needed
for the computation in the design process. The solvability
property indicates the time and space resources necessary to
find a solution for the design problem. This computation time
is directly related to the development time, which quantifies
the total time required for the design and evaluation processes
within the model of design. Hence, the solvability property
can be considered as one of the contributing factors to the
development time.

We can incorporate this into the definition of the develop-
ment time as a property of the model of design as follows:

Property 6. Development Time (ι)
The development time of a model of design object
Y ∈;o|m|MoDτ.eA.s is a function that quantifies the
total time required for the design and evaluation
processes within the MoD. It includes the time needed
to make each design decision and the time taken
for the evaluation of the design decision against the
specifications, following the design rules (3), to convert
the design specifications (MoS) into the implementation
(MoI). Development Time, ι, is expressed as an integral
function of all design decisions and evaluations over
time, and it varies with the speed (v) and number (n)
of available computational resources:

ι(Y, v, n) :
1
n · v

∫
(1A.s

τ.e + E
A.s
τ.e )dτ.e

1A.s
τ.e represents the time consumed by each design decision at

development time epoch (τ.e) and sub abstraction space A.s.
n: the number of computational resources, and v is the speed
of the computational resources.

The design decisions 1A.s
τ.e include the computation time

required to solve the design problem, as defined by the
solvability property ν.

ν(1A.s
τ.e + E

A.s
τ.e ,

m
Bs⊗
Bt

) :

Solve(1A.s
τ.e + E

A.s
τ.e )

m ⊗Bs
Bt

−−−→ sr , tr = ι(Y, v, n)
|sr , tr ∈ R≥0

Here, ν(Y,m
⊗Bs

Bt ) is the solvability of the design object Y
on a given (Turing-complete) computing machine (m) with
finite space and time budgets (Bt ,Bs). This property holds
provided the design decisions and evaluation processes are
computationally feasible within a given time constraint.

In this property, Y is the object instance in the model
of design, 1A.s

τ.e is the design decision at development time
epoch τ.e and sub abstraction space A.s, and ι(Y, v, n) is the
Development time of the MoD object Y , given a speed v and
number n of computational resources. The development time
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is the integral over the design decisions 1A.s
τ.e with respect to

the development time τ.e, scaled by the speed and number of
computational resources. It gives a measure of the total time
required to conduct and evaluate the design within a given
MoD, considering the computational resources’ speed and
quantity. This property is conditioned on the computational
feasibility of the design decisions and evaluations within the
given time constraint.

Property 7. Predictability (ρ)
Predictability: For a model of functionality or imple-
mentation X ∈

o
c|MoF

A.s
τ.e ∪

o
c|MoI

A.s
τ.e , given a

specific set of variable assignments V , X is said to be
predictable iff E(X ,V) is a singleton with a finite value,
i.e. |E(X ,V)| = 1. A related concept, analysability (µ),
is similar to predictability, except it applies to functional
models.

To show that predictability follows from the model of
design (MoD) as defined earlier, we need to rely on the
definitions provided for the constituent models, and their
relationship with the evaluation function E as follows:

• The definition of predictability is compatible with the
definitions provided in the MoD, as it operates on X ,
a model of functionality or implementation that is part of
the larger model of design. This fits within the structure
of the MoD, where various sub-models combine to form
the overall design model.

• Predictability Condition: The predictability condition
states that E(X ,V) must be a singleton with a finite
value, given a set of variable assignments V . In the
MoD, the evaluation function E is used to assess
design decisions. If, given the particular assignments of
variables, E applied to X results in a unique and finite
output, then the model is predictable.

• Analysability: The concept of analysability extends
predictability to functional models, fitting into the
definitions provided within the MoD, as functionality is
a core aspect of the design model.

As such, predictability provides a criterion that can be
used to assess the quality of design in terms of the clarity
and determinacy of its outcomes given specific variable
assignments. Calculating this property in a particular design
problem heavily depends on the definitions and characteris-
tics of E(X ,V) and certainly that of the design specifications
and its transformation via design decisions. If E(X ,V) can
be guaranteed to always produce a single, finite value given
a set of variable assignments, then predictability follows
naturally. However, if E(X ,V) can produce multiple values
or is undefined for certain inputs, the predictability of X may
not be guaranteed.

Analysability of functional models allows their unambigu-
ous compilation and transformation to implementable models
as shown in [4]. The notion of predictability is related to
Kopetz’ determinism in the context of distributed computing
systems, and Stephan Edwards and Edward Lee definition of

determinism applicable to models of computation as follows:
‘‘A physical system behaves deterministically if, given an
initial state at instant t and a set of future timed inputs, then
the future states and the values and times of future outputs are
entailed’’ [33]. ‘‘Let M = (S, I ,O,C,E,B, p) be a model
of computation (MoC) where S is the set of all legal system
specifications (i.e., supplied by a designer), C be the set of all
legal choices that can be made in implementing any system,
I and O be the sets of inputs and outputs accounted for by the
model of computation, E and B be the sets of environmental
inputs and behaviours not accounted for by the model of
computation, and p : S×C → (I×E ∈ O×B) be the system
implementation function for themodel of computation, which
takes a system specification and implementation choices and
returns a system that transforms known and unaccounted-for
inputs into known and unaccounted-for outputs. A model of
computation M is deterministic if for all s ∈ S, c ∈ C ,i ∈ I ,
and e ∈ E , there is some function d : S × I → O
such that p(s, c)(i, e) = d(s, i), b’’ [34], [35]. Predictability
and solvability concepts can help with choosing efficient
ways of solving design problems or ruling out theoretically
known computations from being considered as infeasible
such as Ackermann functions and haulting problems. The
definition may be extended to cover stochastic processes
and probabilistic distribution of values and as such allow
capturing fundamentally uncertain phenomenon through the
probability function P , e.g. 0 < |P(E(X ) ∈ D)| ≤ 1

Property 8. Synthesisability (θ)
Synthesisability: for a specificationmodel at a particular
(sub) abstraction space to be synthesisable, there should
exist at least a corresponding implementation model at
that (sub) space or subsequent (sub) levels.

To show that the concept of Synthesisability (θ) follows
from the model of design (MoD) as defined earlier, we can
establish its validity by analyzing the definitions provided for
the constituent models and the structure of the MoD.

• Definition Compatibility: Synthesisability is defined
here in terms of the existence of a corresponding
implementation model for a given specification model
at a particular abstraction level or at subsequent levels.
This is in line with the structure of the MoD, which
considers these different abstraction levels and includes
both specification models (S) and implementation
models (I) as constituents.

• Synthesisability Condition: The condition for a spec-
ification model to be synthesisable is the existence
of at least one corresponding implementation model.
This is consistent with the principles of the MoD,
which stipulates the transformability of specifications
into implementations through design decisions (1) and
rules (3). It also aligns with the assumptions that the
design decisions and rules are consistent, and they
lead to at least one feasible implementation for each
specification.
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Therefore, synthesisability as a property does follow from
the model of design. Here is a sketch of the proof: Given a
specification model S, the existence of an implementation
model I is guaranteed by the defined design decisions1 and
rules3. If we assume that1 and3 are complete (they cover
all possible design decisions and rules needed to transform
specifications into implementations) and consistent (they do
not contradict each other), then for every specification model
S there must exist at least one corresponding implementation
model I. Therefore, S is synthesisable. This proof relies on
the assumption that 1 and 3 are complete and consistent.
If they are not, then the synthesisability of S might not be
guaranteed.

As opposed to model-based design, platform based design
(PBD) aided by contract theory can simplify the question
of synthesisability substantially due to the fact that PBD
methodology starts by the assumption that there are existing
models that can be used for the implementations (platforms)
provided that there exists a mapping that satisfies the
contractual conditions (and the specifications).

Property 9. Decidability (η)
Decidability: a model of design is said to be decidable iff
it contains solvable design decisions (1) and evaluation
models (MoE) for correctly deriving implementation,
if it is synthesisiable, from specification and architec-
tural models.

Decidability in the context of a model of design (MoD)
is defined as the capacity to make solvable design decisions
(1) and to correctly derive implementation models from
specification and architectural models via evaluation models
(MoE), provided that it is synthesisable.

To show that this concept follows from theMoD as defined,
we can consider the following:
• Solvability: This property is a prerequisite for Decidabil-
ity. The solvability of a model of design is defined as
the possibility to solve the design within a certain time
and space budget on a Turing-complete machine. This
is a central aspect of the MoD definition, where time
and space complexity are accounted for in the concept
of Complexity.

• Synthesisability: As previously established, Synthesis-
ability is a concept that follows from the MoD. It states
that for a specification model to be synthesisable, there
should exist a corresponding implementation model.
This concept is essential for the concept of Decidability,
since a model can only be decided if it can be
synthesised.

• Evaluation models (MoE): The existence and func-
tionality of evaluation models (MoE) is a part of the
MoD structure. The role of these models in deriving
implementations from specifications and architectural
models is inherent to the MoD.

Considering these, we can claim that the property of
decidability follows from the MoD. Given a model of design,

let us assume that it contains solvable design decisions and
evaluation models. If this model is synthesisable, then it
means for every specification and architectural model, there
exists a corresponding implementation model. Using the
evaluation models, the implementation model can be derived
correctly from the specification and architectural models.
Thus, the model is decidable. This argument assumes that
the design decisions are solvable and the evaluation models
can correctly derive the implementation models. If these
conditions are not met, then the model may not be decidable.

Note 3. Decidability encompasses the synthesisability of
the implementation and the solvability of the design model.
A decision problem, characterised by a true/false outcome,
is deemed decidable if a reliable method exists to ascertain
the correct answer. For intricate evaluation models, particu-
larly dealing with physical processes, decidability might be
fundamentally constrained due to factors such as: unclear
initial conditions and states for memory and time-invariant
systems, especially those perceived as chaotic in nature;
unpredictable inputs for systems of equations with feedback
loops; and models that are either non-solvable or whose
analysis yields ambiguous results as shown by Edward A. Lee
in his works with ‘‘Determinism’’ [35].

Property 10. Validity (φ)
Validity: for a specification S to be valid with respect to
a model of design D ∈ o|m|

c| MoDA.sτ.e , it should match its
corresponding requirementsR. The matching is defined
by a function or relation M : S × R → {true, false},
where M (S,R) = true iff S satisfies all conditions
imposed byR.

To demonstrate that the validity property is upheld
according to the MoD definition, we must consider the
relationship between a specification and its requirements.
Given the expansive definition of a model of design
(MoD) as a mathematical structure encapsulating various
facets of design, the connection between requirements and
specifications in this scenario is not immediately clear.
Nevertheless, the property definition implicitly suggests that
both specifications and requirements are integral to the
model. They are constituents of the MoD, perhaps portrayed
as entities within its category.

Let us denote the set of all specifications as S and the set of
all requirements as R. We might envisage the function M as
a morphism or functor in the category representing the MoD.
This function, or relationship, maps pairs of specifications
and requirements to a binary truth value.

With these assumptions, the validity property can be
perceived as asserting that for each specification S ∈ S,
a corresponding requirement R ∈ R exists such that
the morphism M (S,R) returns true. Formally, given a
specification S ∈ S and an associated requirement R ∈
R for which M (S,R) returns true, S is, by definition of
validity, valid in relation toR. Therefore, if a valid pairing of
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specification and requirement (S,R) exists for every S ∈ S,
then the validity property applies to the full design model.
This deduction relies on the presence of the morphism M
and the manner in which requirements and specifications are
organised and interrelated within the MoD. If the actual MoD
fulfils these conditions, then the validity property naturally
emerges from the MoD’s definition. Otherwise, the MoD
might require adjustments to cater for these elements.

Validity pertains to the correctness of the specifications
model in terms of its association with the outcomes of
earlier stages: be it another design output (in the context
of hierarchical design), phases during design maturation,
subsequent engineering change orders, or in alignment with
requirement intentions (often articulated in natural language
documents). The last is challenging to evaluate, but the
other elements can be verified, for instance, through formal
methods.

Property 11. Verifiability (υ)
Verifiability: For a design D ∈ o|m|

c| MoDA.sτ.e to be
verifiable, there should exist a verification function V :
D×3×G→ R, where3 is the set of design rules, and
G :

⋃
G represents the set of all rules of compositions.

The verification function should satisfy the following
conditions:
• For any design D and any sets of rules 3 and G,
V (D,3,G) should be a real number representing
the degree of verification coverage, VC , of the
design with respect to the given rules.

• V should be designed such that it quantifies the
degree to which the design adheres to the func-
tional and extra-functional properties as outlined
by the rules 3 and G.

The verification coverage VC of a design can then be
defined as follows:

VC(D) = V (D,3,G)

A design is considered verifiable if 0 ≤ VC(D) ≤ 1.

To show the verification function is well-defined for a
specific design problem, meaning it returns a unique value
of VC for each set of inputs, we can examine the following:
1) Define the verification function within the MoD: As per

the given property, we assume there exists a verification
function V : D ×3×G→ R.

2) Show that V is well-defined: To do this, we need to show
that for every design D and every set of rules 3 and
G, there is a unique VC ∈ R such that V (D,3,G) =
VC . This will require having a method to compare the
functional and extra-functional properties of a design
with the rules 3 and G, which might be dependent on
the specifics of the rules and designs at hand.

3) Show that V returns a value between 0 and 1: The
range of the function V is the set of real numbers, but
the value returned should be a degree of verification
coverage, which is bounded between 0 and 1. This might

be achieved by normalising the results of the verification
process, or defining the verification function in a way
that it always returns a value in this range.

4) The design is considered verifiable if 0 ≤ VC(D) ≤ 1.
This is a straightforward consequence of the previous
steps, assuming V is well-defined and always returns a
value between 0 and 1.

Verifiability relates to the correctness of design as a result
of design decisions or evaluation. Verifiability of a design can
be demonstrated through assertions, proofs based on formal
methods, emulation, simulation, and virtual and physical
prototypes. In register-transfer level design, logic equivalence
checking (LEC), layout versus schematic (LVS) and design
rule check (DRC) can be considered a typical example to
contribute to the verifiability of design. Verification coverage
refers to the degree to which a verification exercise or set
of verification exercises addresses all specified functional
requirements for a given system or component.

Property 12. Testability (ψ)
Testability: for an implementation to be testable to a
degree called test coverage (TC), it must be observable
and controllable to that degree with respect to testing
implementation errors affecting design variables and
domains.

Observability (ϖ ) for a model, comprising of
internal variables with value domains (V ∈ D), indicates
the degree to which all these variables are measurable.

Controllability (κ) describes the degree to which the
model variables can be changeable within its possible
domain of values.

Here, the notions of observability and controllability are
introduced, which are standard concepts in systems theory
and engineering. Testability is then defined in terms of these
concepts, along with the introduction of a degree of test
coverage, which is a common measure in electronic testing
and software testing. To compute the testability within a
specific model of design, the following can be examined:

1) Define observability: The concept of observability in
this context is introduced as a measure of how well the
internal variables of a model can be measured. Formally,
for a model M with internal variables V ∈ D, where
D is the domain of possible values for these variables,
observability ϖ can be a function ϖ : M → [0, 1],
such that ϖ (M) measures the degree to which all
variables in V are measurable. This can be formalised
further depending on the specifics of how measurability
is defined in this context.

2) Define controllability: Controllability in this context is
a measure of how well the internal variables of a model
can be changed within their domains. Formally, for a
modelM with internal variables V ∈ D, controllability
κ can be a function κ : M → [0, 1], such that
κ(M) measures the degree to which all variables in V
can be changed within their domains. This can also be
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formalised further depending on the specifics of how
changeability is defined in this context.

3) Define testability: Testability in this context can then
be defined in terms of observability and controllability.
Formally, for an implementation I, the test coverage TC
could be a function TC : I → [0, 1], where TC(I) =
ψ(ϖ (I), κ(I)), and ψ is a function that combines the
measures of observability and controllability in some
way to quantify testability.

Note that a complete proof would require more specific
details about the model, the variables and their domains, and
how observability and controllability are defined. Further-
more, the way in which observability and controllability are
combined to quantify testability can also influence whether
this property holds.

Testing and testability in this context concerns the model
of the implementation and possible defects/faults that could
occur in it as an unintentional result of the construction (for
hardware) or development (for software and soft hardware).
Test coverage is thus affected by the assumption on the
fault models, the design or unit or system under test, and
the observability and controllability of the system’s internal
components. Test coverage refers to the degree to which a test
or set of tests addresses all faults presumably present in the
implementable system.

Property 13. Accuracy (α)
Accuracy: for a model of evaluation E ∈ o

c|MoE
A.s
τ.e that

models the true functional specification or implementa-
tion figures Etrue, is said to be accurate within accuracy
percentage ϵA.s% iff

|E(X )− Etrue(X )|
max (|E(X )| , |Etrue(X )|)

≤ ϵA.s,∀X

where X ∈ o
c|MoI

A.s
τ.e ∪

o
c| MoF

A.s
τ.e .

The property of accuracy can be broken down as follows:
1) The quantity |E(X )−Etrue(X )|

max(|E(X )|,|Etrue(X )|) represents the relative
difference between the estimated value produced by
the model of evaluation E and the true value Etrue.
The denominator ensures that the difference is scaled
appropriately and avoids issues with division by zero.

2) The requirement |E(X )−Etrue(X )|
max(|E(X )|,|Etrue(X )|) ≤ ϵA.s states that

this relative difference must be less than or equal to
a specified accuracy level ϵA.s. This implies that the
evaluation provided by E should be within the ϵA.s

threshold of the true value for all models X , where
X is either a model of implementation or a model of
functionality.

3) The condition ∀X indicates that the requirement holds
for all models of implementation or functionality in the
MoD.

Given these elements, we can see that the accuracy
property aligns with the provided MoD framework.

It states that for a model of evaluation to be considered
accurate, its evaluation of any model (whether it is a model of

implementation or functionality) should be within a specified
accuracy level of the true value. This can be seen as a measure
of how well the model of evaluation is able to accurately
represent the true functional specification or implementation
figures for any given model.

The notion of accuracy can be useful to reason about
quality of results and performance numbers reported during
the various stages of developments. In practice, models used
at early stage tends to be less accurate compared to those
used in last stage of design or ‘sign-off’. The accuracy of
models can also relate to the errors made due to numerical
approximation methods used to solve or optimise during
decision making and evaluation methods.

On top of the aforementioned considerations, the accuracy
can also be affected by 1) transformational approximation
such as the reduction of real numbers in the specification
space versus the standard IEEE floating formats, or 2)
architectural choices such as approximate computing archi-
tectures; or 3) data compression/conversion related data
losses such as those in audiovisual processing or noise-
induced analogue-to-digital quantisation.

Note 4. Valid models of specifications imply valid specifica-
tions which imply that they comply with the intended design
requirement.

Note 5. Testable model of implementation imply the ability
to apply tests on the implementation to confirm that it is free
from implementation errors, faults or failures to a certain
test/diagnostic coverage as a result of innate imperfection
within the manufacturing process.

Property 14. Equivalence (≃)
Equivalence between different parts of a model-of-
design can be established, as far as certain essential
property (or properties) is (are) concerned, if there is
an isomorphism (a bijective morphism with an inverse)
between the constituting models that preserves the
structure. This means, for each element of a model,
there exists a corresponding element in the other model,
such that they produce the same output(s) for the same
input(s), as far as specific concerns are in view.

Furthermore, an equivalence between models (inter-
preted as categories) can be defined by establishing
functors in each direction between the models and
demonstrating natural isomorphisms between these
functors and the identity functors on each model. These
functors must preserve the structure in terms of the
essential properties in concern.

To investigate the definition of equivalence within the con-
text of a model-of-design framework, especially in relation to
isomorphism and category equivalences in category theory,
we consider the following:

Firstly, we explore the notion of isomorphisms. Isomor-
phism between constituent models in MoD: For a pair of

VOLUME 11, 2023 116337



T. Mohammadat: MoD for Computing Systems: A Categorical Approach

models within MoD (let us take A and B as examples),
an isomorphism between them can be defined as a pair of
morphisms f : A→ B and g : B→ A such that f ◦ g = idB
and g ◦ f = idA. Here, ‘◦’ represents the composition of
morphisms, and id is the identity morphism of a model. This
definition ensures that for each element in one model, there
is a corresponding element in the other, producing identical
outcomes under identical conditions, thereby retaining the
model structure.

Next, we turn our attention to category equivalence.
The models in MoD can be interpreted as categories,
with individual components serving as objects and their
interrelations as morphisms. A functor F : A → B
maps objects and morphisms in A to those in B. Similarly,
a second functor G : B → A is described. Natural
isomorphisms are introduced by two sets of morphisms:
η : idA → G ◦ F and µ : F ◦ G → idB, both of
which meet the coherence requirements of being both natural
and isomorphic. These functors and natural transformations
establish an equivalence of categories, indicating the models
are structurally analogous.

The equivalence property within the model-of-design
framework, which borrows from both isomorphisms and
category equivalences in category theory, proves invaluable
when analysing various design models and scrutinising their
suitability for reuse and interchange. This includes:
• Structural analysis: Through the equivalence property,
different models can be analysed structurally. Identify-
ing two equivalent models implies they have matching
structural properties, regardless of the specifics of
their individual components. This capability enables
high-level comparisons of different designs or models,
setting aside the finer details.

• Model reuse: If two models are proven equivalent under
certain conditions, onemodel might be repurposed in the
stead of the other without altering the entire system’s
function. This facilitates capitalising on pre-existing
models, curtailing the duration and effort in crafting new
designs.

• Model exchange: In the same vein, equivalent models
can be exchangedwith ease, introducingmore adaptabil-
ity into the design process. This is particularly beneficial
in intricate systems with multiple interacting models,
as analogous models can be introduced or replaced as
necessary without compromising system efficiency.

• Simplification and abstraction: The equivalence prop-
erty can be instrumental in streamlining complex
models. If a convoluted model corresponds to a more
straightforward one, the latter can be employed for
analysis, easing the comprehension of system dynamics.
This fosters enhanced abstraction, which is pivotal in
navigating the intricacies of design procedures.

• Interoperability: Establishing equivalence between var-
ious design models augments interoperability - an
essential aspect whenmodels, shaped by disparate teams
or tools, are intended to coalesce. Proving equivalence

guarantees that the models can be melded without
friction.

Note 6. The equivalence property within the model-of-design
framework is not only about structural congruence but also
about ensuring an approximate or exact correspondence in
‘essential’ attributes between two models. Here, the term
‘essential’ is contingent upon the specific characteristics
that are deemed critical or relevant to the models under
examination.
To elucidate further, equivalence in the MoD context is

reminiscent of congruence, and this is particularly vivid when
considering models for their interchangeability, structural
resemblance, and potential reuse. To appreciate its utility, one
might look towards the realm of algorithm analysis. Here,
distinct sorting algorithms like bubble sort and merge sort
could be seen as equivalent if the primary focus is on the
end result of sorting, rather than performancemetrics or their
internal mechanisms.
Similarly, in design representation, diverse representations

such as a visual design schema, a layout portrayal, and a
textual description of the same design may be perceived as
equivalent if the assessment pivots around the structural or
functional integrity of the design. Though these methods of
representation differ in format, they encapsulate identical
fundamental design attributes. Consequently, they can be
interchangeably used without compromising the core design
information.
Thus, the emphasis is on discerning and juxtaposing the

‘essential’ facets of the models in question. By doing so, the
power of the equivalence property in the MoD framework
is harnessed, amplifying the analysis, reuse, exchange, and
interoperability of different design models, culminating in
more streamlined and potent design processes.

In essence, the equivalence property within the MoD
framework is a potent tool, amplifying the analysis, reuse,
exchange, and interoperability of distinct design models,
culminating in more streamlined and potent design processes.

Building on the equivalence foundation and the focus on
optimising design processes, we naturally progress to an
equally vital aspect of the MoD framework: the intricate
property of correctness. Grasping this concept, especially
in its abstract form, presents a challenging yet rewarding
endeavour.

Property 15. Correctness (γ )
Correctness: is a concept that is used to reason about:
• specification correctness (γs) implying a validated
specification freedom from errors considering wrt
intended requirements (relates to correctness-of-
specifications),

• architectural correctness (γa) implying verified or
equivalence checking for the architecture freedom
from errors considering its correspondence to
correct composition (relates to correctness-of-
composition),
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• evaluation correctness (γe) implying the evaluation
freedom from errors considering the degree of
accuracy associated with the evaluation wrt each
functional or extra-functional metric being evalu-
ated (relates to correctness-of-evaluation),

• design correctness (γd ) implying that design deci-
sions can be verified wrt freedom from errors
considering the transformation from specifications
to implementations honouring design rules (relates
to correctness-by-design),

• implementation correctness (γi) implying imple-
mentation correctness freedom from errors con-
sidering faults and failures that occur during
implementation e.g. during deployment of pro-
grams and manufacturing (relates to correctness-
by-construction).

As such, for a design to be correct (in the sense of⋃
γs, γa, γe, γd , γi), each model X ∈ o|m|

c| MoSA.sτ.e and Y ∈
o|m|
c| MoIA.sτ.e that belongs to a coherent MoD, Y |H X .
The concept of correctness (γ ) as defined here is a compre-

hensive umbrella term that encompasses various dimensions
of correctness related to different aspects of a model-of-
design (MoD) - specifically, specification correctness (γs),
architectural correctness (γa), evaluation correctness (γe),
design correctness (γd ), and implementation correctness (γi).
Each of the five categories of correctness is intrinsically
tied to different facets of the model. The specification,
architecture, evaluation, design decisions, and implementa-
tion all have inherent correctness conditions that need to
be satisfied for the model to be considered correct as a
whole. The last sentence of the definition essentially states
that for an implementation model (Y) to be correct with
respect to a specification model (X ), the implementation
must satisfy (or model) the specifications - a necessary
condition for correctness in many design and development
processes. It underlines the fundamental requirement of
coherence within a MoD, which necessitates congruence
and consistency between all its constituent models and their
transformations.

In essence, the notion of correctness underscores the
coherency of a design, stipulating that the outputs of
the design models should accurately mirror the provided
specifications. In some design models, the verification
process can be incorporated within the evaluation model
itself, as expressed by the formula MoE(MoI ,MoS,∼=) =
true, false. Here,∼= symbolises the categorical equivalence of
models, also known as congruence.

The level of correctness required is directly proportional
to the established criteria for acceptable degrees of accuracy,
test coverage, and verification coverage. As the demand for
correctness escalates, it necessitates an increase in evaluation
and design efforts, thereby calling for more computational
resources. This highlights a potential trade-off between the

turn-around time (TAT), synonymous with the time to design,
and the desired level of correctness.

The paradigm of correct-by-construction computing sys-
tem design processes can be interpreted as encompassing
all facets of correctness, including specification correct-
ness, architectural correctness, evaluation correctness, design
correctness, and implementation correctness. The presented
concept of correctness extends Sifakus’ notion by incor-
porating abstraction and refinement considerations between
different levels of abstraction. This is particularly relevant in
system or high-level synthesis, model-to-model refinement,
and vertically-oriented design problems like platform-based
design and model-driven engineering, exemplified in the
traditional double-roof model by Keutzer et al. [7], [36].

The interpretation of correctness here diverges from the
conventional correct-by-construction concept as it specifi-
cally refers to the physical production of the implementation
model within the context of electronic system design, such
as integrated circuits and systems-on-chips. In contrast,
Sifakus’ interpretation focuses on the assembly of abstract
components. Further exploration of the correctness concept
in relation to contracts, component-based design, interfaces,
and the derivation of interesting properties and theories
from these notions has been extensively addressed in
Benveniste et al. [32].

C. PROPOSITIONS AND COROLLARIES
Drawing from the properties, core constituents, and founda-
tional constructs we have outlined, this subsection presents
key propositions and corollaries that underscore the sig-
nificance of the model-of-design framework. Specifically,
these findings illuminate the conditions under which a model
of design can be automated and the criteria for ensuring
its correct automation, thus offering insights into the very
essence of design modelling.

Proposition 1. Criteria for Potential Automaticity
A design can be potentially automated iff it can be
described as amodel of design, in away that is decidable
and coherent.

Proof: The proposition states that a design can be
potentially automated if and only if it can be described as
a model of design in a way that is decidable and coherent.
Here is how the reasoning and proof for this proposition could
be laid out, based on the definitions and properties we have
discussed so far:

• The essence of a model of design is that it provides
a formalised, systematic way to represent and reason
about design problems. It does this by capturing and
integrating different aspects of the design – its specifi-
cations, architecture, and implementation – as well as
the design decisions and evaluation rules that guide the
transformation from specifications to implementation.
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• Decidability, in this context, refers to the idea that there
exists a finite procedure (algorithm) that can determine
whether a given design satisfies its specifications. For a
design to be decidable, it must be possible to formalise
the design problem in such a way that this procedure can
be applied.

• Coherence, on the other hand, refers to the consistency
and completeness of the design. A coherent design is one
where all the different aspects of the design - the specifi-
cations, architecture, implementation, design decisions,
and evaluation rules - fit together in a consistent way and
provide a complete picture of the design.

Given these properties, we can make the following
argument:

1) By capturing the design problem in a MoD, we can
represent it as a formal model. This makes it possible
to apply systematic reasoning and computation to the
design.

2) If the design is decidable, then we can construct
an algorithm that determines whether a given design
satisfies its specifications. This means that we can
automate the process of checking the design against its
specifications.

3) If the design is coherent, then all its parts fit together
in a consistent and complete way. This means that we
can automate the process of integrating these parts into
a complete design.

4) By combining steps 2 and 3, we see that if a design
is both decidable and coherent, then we can automate
both the process of checking the design against its
specifications and the process of integrating the parts of
the design into a complete whole. This means that the
design process itself can be automated.

This reasoning suggests that if a design can be represented
as a decidable and coherent MoD, then it has the potential to
be automated. It is important to note, though, that this does
not guarantee that the design can be automated in practice
– only that it has the potential to be. Practical automation
would also depend on other factors, such as the availability
of suitable computational resources and the complexity of the
design problem.

We can give further credence to Proposition 1 as follows:
by describing the design problem in model of design
vocabulary means it can be translated into formal models
for specifications, architectures and design rules, since
all of these models are language-based (see Foundational
Construct 1). The criteria on decidability and coherence
imply the solvability and completeness of themodel of design
to use design decisions and evaluations to correctly derive
an implementation. By simplifying the automation problem
of the realisation of the model of design as a compilation
problem that transforms a computer language to another
and by process of induction from theories developed for
compilers and formal languages, we can deduce that if a
design problem can be captured by a model of design, it has

the potential to be automated when the criteria on decidability
and coherence are satisfied. □
Having established the foundational relationship between

the potential for automation and the properties of the model
of design, we now delve into the specific criteria that ensure
correct design automation.

Proposition 2. Criteria for Correct Design Automa-
tion
A design of an embedded computing can be guaranteed
to be automated and correctly implemented iff the
criteria on decidable, coherent, and deterministicmodel
of design are met, with:
• valid model of specifications, φ,
• verifiable to the maximum degree, VC = 1, and
solvable design decisions and evaluation model,
to the highest degree of accuracy (ideally absolute),

• testable to the maximum degree, TC = 1, model of
implementation,

• ample computational resources,
• Complete consideration of practical design con-
straints reflected within the model of specifica-
tions, and specific design complexities, which
are inherent in the design rules and architectural
choices.

• a fully controlled design environment with no
variability or randomness.

Proof: This proposition follows from the MoD frame-
work as follows:

• Validity of model of specifications (φ): According to the
MoD, a valid model of specifications (MoS) accurately
represents the requirements and constraints of the design
problem. If the MoS is not valid, the rest of the
design process may not yield a correct solution, as it
would be based on flawed or incomplete specifications.
Therefore, validity of MoS is a prerequisite for correct
design.

• Verifiability and Solvability of design decisions and
evaluation model: In the MoD framework, design
decisions are made based on the evaluation model
(MoE). Verifiability ensures that the outcomes of these
decisions can be checked against the MoS. Solvability
ensures that for every design decision, there exists an
acceptable solution that can be reached through the
application of design rules. If MoE is not solvable or
verifiable to a degree of 1, it may result in incorrect or
unsolvable designs.

• Testability of models of implementation: According to
the MoD, a model of implementation (MoI ) is a product
of the design process. If the MoI is not testable to a
degree of 1, it might not be possible to fully verify that
the implementation meets the specifications, leading to
inability to ascertain the freedom from potential errors
in the final product.
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• Ample computational resources, practical design con-
straints, and specific design complexities: These factors
are inherently associated with the design process.
If these are not taken into consideration, the design
process may not lead to a feasible and optimal solution,
despite the design being decidable, coherent, determin-
istic, and meeting all other conditions.

• Controlled design: Variability or randomness in the
design environment can introduce uncertainty in the
design process, which can lead to incorrect or sub-
optimal solutions. Therefore, a controlled environment
is necessary to guarantee the performance accuracy of
the final design.

In the proposition, several ideal conditions are mentioned,
such as maximum verifiability and testability (VC = TC
= 1), highest degree of accuracy, and fully controlled
environment. These ideals represent the best-case scenarios,
where every aspect of the design process is under perfect
control and can be measured with absolute precision.
In practice, however, these ideals may not be achievable due
to various limitations and uncertainties inherent in the design
process.

Nevertheless, these ideals serve as guiding principles
for the construction of design flows. By striving towards
these ideals, one can continuously improve the design
process, aiming for higher degrees of verifiability, testability,
accuracy, and control. These improvements can lead to more
efficient, reliable, and robust designs, thereby advancing the
quality of computer system design.

To further support Proposition 2, we can consider the
following: by Property 15 and the Notes 3, 4 and 5, it follows
that a design process with the criteria in Proposition 2
can have implementation that are correct, to the degrees
of validity, verifiability, testability and accuracy stated
therewith. From the remarks and proposition 1, it follows
that a design process with such properties may also be
automated.

We could also employ results from category theory to
strengthen the credence of the proposition through the
applicability of the Yoneda Lemma to the model of design.
To apply the Yoneda Lemma to the correctness of the
proposition, we must translate our design problem into
categorical terms and then use the lemma to deduce certain
properties about our designs. The Yoneda Lemma builds on
the Yoneda Embedding (see Foundational Construct 3) and
essentially states: For any category C and an object A in C,
the functorHom(−,A) : C → Sets is representable, i.e., there
exists a bijection between Hom(X ,A) (morphisms from X to
A) and the natural transformations from Hom(−,A) to any
functor F : C → Sets. This bijection is natural in X . To apply
this lemma to our model of design (MoD):

I Categorical representation of MoD: Let C be our cate-
gory where objects are design components or modules,
and morphisms represent relationships or interactions
between these components.

II Applying Yoneda (lemma): Given an ideal design
component A in C, according to the Yoneda Lemma,
the entire nature of A (or its specification, in design
terms) can be determined by considering all possible
interactions (morphisms) from all possible components
(objects) to A.

Now, let us relate this to the proposition. Assume a design
component A which satisfies the conditions mentioned in the
proposition:

i If the model of specifications, φ, is valid, it means that
every morphism leading into A is well-defined, ensuring
the correct nature of A.

ii The verifiability and solvability of design decisions
ensure that everymorphism (relationship) intoA from any
other object (design component) in C is both achievable
(can be constructed) and can be checked against φ.

iii Testability of the model of implementation ensures that
the practical (or implemented) morphisms into A truly
represent the ideal interactions, i.e., the morphisms in C.

iv Using the Yoneda Lemma, we infer that if all interactions
(morphisms) into A from any object are correctly
defined and implemented, then the intrinsic nature (or
specification) of A is as intended. Thus, A is correctly
designed and implemented.

Therefore, by the Yoneda Lemma, if all criteria in the
are met, the design of an embedded computing system
is guaranteed to be automated and correctly implemented.
This inference has transformed the problem of design
correctness into a categorical one, where the Yoneda Lemma
can be applied. Through this lemma, we have provided a
foundational reasoning for why the proposition holds. □

From the conceptual framework of the models and the
propositions given for the criteria for potential automaticity
and correctness, the following corollaries and implications
can be derived:

Corollary 1. Design Models Reuse
Design models within different models of design can
be reused iff they belong to models that are equivalent
(X ≃ Y , (See equivalence in Property 14).

The proliferation of different design methods, techniques,
architectures, and evaluation poses a question on whether
some of them can be reused within other established method-
ologies. By capturing established design methodologies as
models of design, assessing whether or not they can be
enhanced by incorporating other models (of specifications,
architecture, evaluation) can be possible through Corollary 1.
The corollary helps us re-frame the question to be a question
on model congruence. While the corollary might seem trivial,
an implication of it is that if we were to enable design results
exchange between system level design, we need to establish
or adopt common (standardised) languages for design
capture (specification), simulation/analysis (evaluation) and
implementation.
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Corollary 2. Design Composability
Models within different models of design are compos-
able iff each model is individually analysable and the
superset of all the models are analysable and coherent.

As more full or partial design methods and flows become
available, each with their own strengths and weakness,
composing superior design flows and methods become of
interest. Corollary 2 can guide such composition by imposing
two criteria on the possibility of such composition on the
analysability of the individual models and the coherence of
the composite model. For example, to enable the construction
of a composite design flow using the specification model for
ForSyde [18] and the implementation model of CompSOC
[37], 1) each of the models need to be individually analysable
and 2) the composition needs to be semantically and
syntactically coherent. This usually leads to the question on
the existence of an evaluation model for CompSOC MoI
that is compatible with ForSyDe MoS, and whether there
exists design decisions algorithms for converting ForSyDe
MoS into CompSOCMoI. This insight can also be applied to
similar hardware/platform generators such as in the network-
on-chip system generator (NSG) [38].

Corollary 3. Computer-aided HW/SW Codesign
General-purpose and application-specific computing
systems can be described using MoD formalism. When
that is made, formal methods, compilation, synthesis
and optimisation methods can be used to design
such systems to achieve superior quality of results
with respect to extra-functional requirements or faster
turn-around time with respect to design automation
time, through more efficient evaluation and design
exploration.

The existence of design method is not the same thing
as having system-level computer-aided hardware/software
co-design automated flows. In fact, as far as our literature
survey work is concerned, there are no complete system-
level computer-aided hardware/software co-design flow.
Corollary 3 remarks that such design automation can be
guided by the appropriate formalism of the design issue in
question.

Corollary 4. Design Correctness
For potentially automatic and correct MoD to hold to
a reasonable extent, the following principles can be
considered as a consequence of proposition 2:
• complete analysable specification models, i.e.
Turing-complete functional models and design-
purpose complete extra-functionalmodels, to allow
effective design specification capture;

• architectures that satisfy extra-functional specifi-
cations and are predictable to allow sound design
decisions;

• evaluation models, MoE, that are accurate to the
extent needed by the design to allow credible
qualitative results and comparative analysis.

• design decisions and evaluation models that are
solvable/decidable for the design problem/objects:

• since MoD relies on coherence of constituents,
a required criterion as a priori is provably
correct transformational design refinements
with assume-guarantee relationships between
transformed components.

To have a (system level) design automation framework,
does not necessarily mean it can give rise to outputs
that are correct-by-design. Corollary 4, capitalises on the
concept of correctness defined in Property 15 and spells out
various criteria for what could be made to enable correct
construction of design automation methods of computer
hardware/software codesign.

Corollary 5. Constructing Design Flows
The concept of a model of design inherently accounts
for development stages (MoDA.sτ.e) and different design
decisions, thus enabling us to formally construct
various design flows. These flows are a description
of possible design decisions at different stages (1A.s

τ.e)
and relevant rules (3A.s

τ.e), considering aspects such as
the functional specification descriptions in MoF, extra-
functional requirements in MoX, architectural solutions
in MoA, evaluation frameworks in MoE, and possible
implementation in MoI across different abstraction
levels.

Examples for design flow construction:

• High-level synthesis Flow: We can define an MoD as
a transaction-level to RTL (Register-Transfer Level)
transformation process. In this flow, we start with func-
tional specifications (MoF) and extra-functional speci-
fications (MoX) related to latency and area constraints,
which might be described in a format like SDC (Synop-
sis design constraints). The architecture model (MoA)
could be a globally-asynchronous locally-synchronous
(GALS) digital design, incorporating full-scan test logic
and JTAG debugging features. For the implementation
model (MoI), the target output is an RTL level HDL
(hardware description language), such asVHDL.Design
decisions (1) and evaluations might involve selecting
architectures for computing and communication, control
logic inference, syntactic checking, data type transfor-
mation, re-timing, andmemory inference. An evaluation
model (MoE) for the latency and area might include a
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layout estimator and logic equivalence checks or logical
functional simulations. Design rules (3) could cover
criteria for testability and scheduleability, and rules
for non-synthesisable constructs usage in System-C or
VHDL. This can be further connected to various existing
digital IC flows from Synopsis or Cadence, or FPGA
flows from Intel, AMD/Xilinx or Microsemi.

• Reconfigurable systems flow: In this scenario, we can
define an MoD as a transaction-level to combined
RTL/ELF (executable and linkable format) transforma-
tion process. This flow involves partitioning of Simulink
blocks into M files that can be further transformed into
transaction-level for functional specifications (MoF)
and extra-functional specifications (MoX) regarding
latency and area constraints. Similar to the first flow,
these might be presented in a format like SDC,
as input for the high-level synthesis flow above. The
architecture model (MoA) could be a multi-processor
system-on-chip with reconfigurable features. A possi-
ble implementation model (MoI) could target devices
like AMD/Xilinx Ultrascale or Intel Agilex, which
have embedded local memory and ARM-A profile
RISC multi-core processors for software computation
described in ELF (executable and linkable format)
files. This is in addition to hardware accelerator logic
derived from an RT abstraction space language such
as VHDL. Design decisions (1) and evaluations might
involve architecture selection for hardware/software co-
designing, software compilation, resource allocation,
on-chip network design, and memory and peripheral
management. An evaluation model (MoE) for the
latency and area might include a memory consumption
evaluator and programmable logic estimator. Design
rules (3) could cover criteria for software debugging,
hardware/software composability rules and security
checks for off-chip memory and networks, and bitstream
booting.

A consequence ofMoD being a composite of other models,
is that classes based on the complexities of the sub-models
can be constructed. In the same way MoCs are specified
as dynamic versus static, and architectures can be classified
on basis of topologies or processor/software complexities,
and evaluation models can be different depending on
what analysis methods/ accuracies can give rise to, design
problems can be categorised into classes.

Corollary 6. MoD as a Taxonomy
Design problems and methods can be classified under
MoD formalism to enable comparative analysis between
different methods and the composition of more sophis-
ticated design methods.

An interesting implication of capturing design methods as
models of design is that, it can enable posing questions that
can help in design method resuse. For example, if we take
two design methods Daedalus [39] and HOPES [40], and

wish to use the simulation and synthesis engines provided
by Daedalus for HOPES input specifications in a flow that
is potentially automatic and correct, we can use proposition 2
to guide us in that exercise in examining:

1) the coherence in term of syntax and semantics of the
unified model of design

2) the decidablity of the unified model of design
3) the verifiabilty of the design decisions within the context

of the unified of design
4) the accuracy of the evaluation models within the context

of the unified of design
5) the synthesisablity and testability of the implementation

models within the context of the unified of design
6) the validity of intermediate specification models across

abstraction levels, hierarchies and development stages

Another interesting implication of capturing design meth-
ods as design models is that it can enable elevated discussions
regarding how a design methodology can be improved to
cover different design problems, by extending the specifica-
tion model or the architectural models. Other improvement
works can be in relation to the accuracy and efficiency of
design decisions and evaluation models.

IV. DISCUSSIONS AND RELATED WORK
In this paper we presented a model of design, which we
can consider as a category of design models C that captures
the different components or aspects of the design, such
as models of specification (MoS), models of architecture
(MoA), models of evaluation (MoE), models of imple-
mentation (MoI), and design decisions/rules (1/3). The
objects in C represent the specific instances or representations
of these components, while the morphisms represent the
transformations or mappings between these objects. We then
use the theorems and axioms from category theory, to assist
reasoning about the design models such as:

1) Composition: The composition of morphisms in the
category allows us to combine and sequence transfor-
mations between models. Given two morphisms f :
A → B and g : B → C , their composition g ◦
f : A → C represents the transformation obtained by
applying f followed by g. This property ensures that
transformations between models can be composed in a
consistent manner.

2) Associativity: The composition ofmorphisms is associa-
tive, meaning that for any three morphisms f : A→ B,
g : B → C , and h : C → D, the composition is
associative as (h◦g)◦f = h◦(g◦f ). This property ensures
that the order in which transformations are applied does
not affect the final result. In the context of model of
design, it ensures that the sequence in which design
transformations are applied does not impact the overall
design outcome.

3) Identity morphisms: For every object A in the category,
there exists an identity morphism idA : A →

A that serves as the neutral element with respect
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to composition. The identity morphism preserves the
structure or properties of the object when composedwith
other morphisms. In the context of model of design,
identity morphisms allow for the preservation of the
original properties and structure of the models during
transformations.

By leveraging these properties, we can reason about the
compatibility between models and ensure that the transfor-
mations applied to the models preserve their properties and
structure. These properties also facilitate the development
of reasoning techniques and tools for analysing the impact
of transformations on the design, identifying compatibility
issues, and ensuring the correctness and integrity of the
design process.

When examining design problems within engineering
contexts, transitioning from abstract concepts to specific
applications uncovers shortcomings in current design meth-
ods. These limitations include inhibiting correct automation
and restricting design reuse across methodologies, often due
to inconsistencies in design decisions and discrepancies in
the syntax and semantics of modelling languages. In addi-
tion, gaps exist in the transformation process of several
extra-functional industrial requirements and standards, thus
further obstructing automation.

We observe echoes of these issues in the works of
numerous researchers. For instance, in ‘‘System Design
Automation: Challenges and Limitations’’ Joseph Sifakis
[10] promotes system design as a process involving end-to-
end, correct-by-construction, and scalable transformations.
He advocates for achieving semantic coherency using a
unified component framework and leveraging existing ‘con-
structivity’ results for the development of rigorous system
design flows.

Alberto Sangiovanni-Vincentelli et al. also shared relevant
insights, stating that the main challenges in adopting
platform-based design methodologies (PBD) relate to the
absence of precise definitions and characterisations of
platforms and their associated design flows in the industry
today [30], [41], [42]. This vagueness creates difficulties
when transitioning designers from traditional methodologies
such as ASIC flow to the PBD paradigm and developing the
necessary tools to support this paradigm.

Since these challenges were first published between
2000 and 2015, no common framework resembling the work
detailed here has emerged. A possible exception is B. Baily,
G. Martin, and T. Andersson’s 2005 book ‘‘Taxonomies
for the Development and Verification of Digital Systems’’
(TDVDS) [43], which provided rather unifying definitions for
several industrial concepts, including system models, archi-
tectures and design processes. In their work, they compiled
several views on the relevant axes using four main areas:
1) temporal detail, 2) data value detail, 3) functional detail,
and 4) structural detail. The work defined concise definitions
for the degrees and granularities involved in each of the
four dimensions. Furthermore, the taxonomy clarified the
relation between the taxonomy and other existing concepts

such as platform based design, hardware-software codesign,
and abstraction layers in software. For example, within
platform-based models, they used: functionality (model of
functionality), market (guiding specification), and structure
(architecture). For hardware-software co-design, they also
discussed the plane describing the interactions between hard-
ware, software, hardware-dependent software (firmware),
and manufacture (implementation of system). Within the
software domain, they described the relationship between
high-level objects, (low-level) code, real-time system and
hardware. Our model of design concept shares several of
these aspects while giving emphasis for the evaluationmodels
and design rules that were not explicitly captured in the
TDVDS works.

However, other works have touched upon related concepts.
Ecker and Schreiner [44], for instance, introduced the notions
of model-of-design and model-of-thing, mostly discussing
templates and views useful for hardware generators. While
hardware generators are crucial, we argue that limiting
design problems to hardware generators provides a narrow
view of the concept within system-level and cross-level
computer systems design or in hardware/software codesign
and cosynthesis context.

Densmore et al. [30] offered a taxonomy related to
platform-based design at the system level and linked this
taxonomy to the Gajski-Kuhn Y-chart. Although their
platform-based taxonomy is fascinating for mapping prob-
lems, it does not necessarily delve into the role of generic
architectures and their relation to extra-functional specifica-
tions in the context of design.

Moreover, the RASSP taxonomy and the Rugby model by
Jantsch et al. [45], [46] warrant interest. Rapid-prototyping of
Application Specific Signal Processors (RASSP) workgroup
published a flat taxonomy that shares many concepts
with our framework, using information and time as main
axes of design abstractions. However, their work lacked
a hierarchical structure through architectures, evaluation,
computation, and design decisions that our model of design
provides.

On a different note, the Rugby model represents electronic
system design as a progression from design idea (high
abstraction) to physical system (low abstraction), tracked
over a development time axis. They captured data and
time as considerations for the design’s development through
abstraction levels. Yet, they overlooked the relation of design
activities to the evaluation or architectural or extra-functional
aspects.

Lastly, Ecker et al.’s 1996 work [47] proposed a specific
model for VHDL design flow representation, adding testing
to the Y-chart. While this model contributes a testing element
to the design problem, it does not address verification aspects
of design (i.e., are we building the thing right?) or the
validation of requirements (i.e., are we building the right
thing?). Also, their design cube did not clearly define the
roles of architectures or the evaluation of extra-functional
requirements.

116344 VOLUME 11, 2023



T. Mohammadat: MoD for Computing Systems: A Categorical Approach

As previously discussed, we consider the MoD concept to
be not only compatible but also dependent on formalism like
MoCs andMoA, in addition to already existing views on aca-
demic system design methodologies like: PBD, CBD, MBD,
etc. When compared with design methodologies double-roof
model for hardware/software co-synthesis [31], [36], we note
that the software/hardware implementation models map to
MoI and the top-level specifications map to our MoS;
the difference between MoD concepts and the double-roof
and the X-chart is the explicit distinction/emphasis on
the evaluation models and the development stages. When
compared with industrial practices such as the V-chart,
we note the similarities of having development stages
including requirement, architecture, design and development
engineering efforts in the models, but we also note that
MoD adds the explicit invocation of the different abstraction
levels and evaluation models over design components. The
Gajski-Kuhn Y-chart [15], [17] has inspired the MoD
concept and therefore share all its constituents, however,
MoD adds the explicit modelling of extra-functional aspects
and evaluation models. OMG model-driven architecture
(MDA) principles had also inspired the development of
MoD concept, especially in the definition of model-to-model
transformations as a critical component in design decisions,
MoD adds to it the explicit invocation of behavioural
models and model of computations to allow sound analytical
formal transformations that are potentially correct-by-design.
Kienhuis’ Y-chart has significantly influenced the definition
of MoD concept, but we included the development stages to
allow the cross-compatibility with engineering practices, e.g.
technology readiness levels and engineering change orders.
Moreover, MoD extends frameworks such as Component
based Design/Integration/Construction (CBD/CbC) such as
BIP by the inclusion of evaluation models, design decisions,
and design rules. MoD extends Platform-based Design
and meet-in-the-middle concepts by the explicit inclusion
of development stages. MoD extends Model based/driven
Engineering/Development/Architecture (MBD/MBE/MDA)
by introducing platform related abstraction layers and
implementation dependent evaluation models. All in all, the
formalism that can be adopted from the MoD concept can
be used to allow formal methods and analyses to apply such
as in [22] and [48], which in turn can create opportunities
to shortening development time and reduced verification
and testing costs, by virtue of correct automatic design in
addition to optimal design outputs, by virtue of computer-
aided optimisation.

This high-level overview leads to a few key insights into
potential applications of our model of design (MoD) concept:
• The MoD framework can encapsulate various stages
of design processes, useful for tracking technological
readiness, specification versioning, and engineering
changes (Corollary 5). It allows comprehensive capture
of related design aspects like product lifecycle stages
and tool versions, facilitating different development
practices.

• The MoD concept can be applied beyond embedded
computing systems to a wide spectrum of com-
puting technologies including general-purpose, high-
performance, and consumer systems (Corollary 3).
Multiple models of functionality (MoF) and models of
extra-functional specifications (MoX) can characterise a
broad range of benchmarks. This method is particularly
beneficial for manufacturers and suppliers of processors
and electronics and is aligned with established method-
ologies.

• The MoD can address design challenges of emerg-
ing technologies and applications, including non-Von
Neumann and more-than-Moore systems, quantum
computing, and large-scale language models (Corollar-
ies 1, 2, 3, 4). The MoD provides a structured approach
to solving the solvability, automation, and correctness of
such design problems, bridging the productivity gap in
complex system design.

• The MoD allows for the construction of formal design
methodologies by outlining design decisions at various
stages and relevant rules (Corollary 5). Examples
include high-level synthesis flows and reconfigurable
system flows.

• With MoD, design problems and methods can be
systematically classified, enabling comparative analy-
sis and composition of sophisticated design methods
(Corollary 6). This aids in identifying missing elements
in existing designs and requirements for automation and
CAD tools.

V. CONCLUDING REMARKS
This paper offered a model of design (MoD) concept
for describing design problems of computing systems in
a consolidated way while keeping in view the intrigu-
ing sub-problems of evaluation, model transformation and
optimisation to satisfy design specifications including extra-
functional ones. The key to our work is the necessity
of identifying fundamental commonalities across computer
design models, spanning both hardware and software appli-
cations. By discerning shared characteristics, we leveraged
foundational principles from formal languages and category
theory, capturing these commonalities in a structured manner
that honours the inherent complexities, facilitating a unified
reasoning system. We then exploit the emergent properties
of our conceptual framework to derive high-level insights
into diverse design challenges. To that end, we defined
five main constituents: the model of specifications (MoS),
model of architecture (MoA), model of evaluation (MoE),
model of implementation (MoI), and design decisions/rules
(1/3). The model-of-design constituents can be expressed
at multiple levels of abstractions and different development
stages. When using tools and models for constructing design
methodologies or flows, the model of design can help to
identify:
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1) coherency issues between the specifications, implemen-
tation and architectural models,

2) the degree to which correctness can be achieved with
regards to the accuracy of evaluation models and design
decisions, verification coverage, and test coverage,

3) the efficiency of the overall system design with respect
to the degree to which the evaluation models and design
decisions are solvable and decidable, and

4) development strategy for the design problem across
hierarchies and abstraction levels that evolves over time.

We have identified several future research avenues related to
the model of design concept, including:

• Formulating theorems that facilitate the construction and
reuse of designmethods, catering to different abstraction
levels and development stages.

• Harnessing the ontological attributes of the design
model to systematically examine and understand con-
temporary advancements in the field.

• Establishing distinct classes within the model of design
to address a range of design problems more effectively.
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