
Received 14 September 2023, accepted 4 October 2023, date of publication 17 October 2023, date of current version 25 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3325313

Programmable All-in-One 4×8-/2×16-/
1×32-Bits Dual Mode Logic Multiplier
in 16 nm FinFET With Semi-Automatic Flow
NETANEL SHAVIT 1, (Graduate Student Member, IEEE),
INBAL STANGER 1, (Graduate Student Member, IEEE), RAMIRO TACO 2, (Member, IEEE),
ALEXANDER FISH 1, (Member, IEEE), AND ITAMAR LEVI 1, (Member, IEEE)
1EnICs Laboratories, Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
2Department of Computer Engineering, Modeling, Electronics and Systems, University of Calabria (UNICAL), 87036 Rende, Italy

Corresponding author: Netanel Shavit (netanel.shavit@biu.ac.il)

This work was supported in part by the Israel Innovation Authority in the Frame of the GenPro Consortium and the Israel Science
Foundation under Grant 2511/20.

ABSTRACT In this paper, an improved multiplier architecture, utilizing dual mode logic (DML) targeting
single-instruction-multiple-data (SIMD)-like systems is proposed. The design introduces improvements
at both the architecture and logic gate levels, by capitalizing on their synergistic combination. At the
architecture level, the multiplier design is adapted to accommodate diverse computations based on the
level of the input data parallelism. The main novelty is the incorporation of three different acceleration or
bypass mechanisms jointly. The configurable multiplier has three variable precision configuration options:
a 32 × 32-bit, two 16 × 16-bit, and four 8 × 8-bit multipliers. This bypassing architecture seamlessly
integrates DML logic, which supports two modes of operation: a high-performance dynamic mode and a
low-energy consumption static mode, with smooth mode switching capabilities. By optimizing the DML
mode based on the multiplier’s bit-width, the design enhances active computational block utilization, overall
performance, and energy efficiency. In the dynamic mode, the DML implementation achieves an average
performance improvement of 15% for the 32-bit, 8% for the 16-bit, and 7% for the 8-bit multipliers compared
to the CMOS implementation. In the static mode, the DML implementation demonstrates an average energy
reduction of 28%. When running in combined mode, where the 32-bit multiplier operates in dynamic mode
for acceleration and the 8-bit multiplier operates in static mode for energy savings, the DML implementation
exhibits an average overall performance gain of 15% and up to 18% lower energy consumption. The non-
trivial semi-automation flow utilized for the complex implementation of the proposed architecture is also
presented.

INDEX TERMS Alternative logic family, automation flow, configurable multipliers, design flow, dual mode
logic (DML), dynamic logic, logic gates, multiplier, single instruction multiple data (SIMD).

I. INTRODUCTION
Multiplication is one of the most widely used arithmetic
operations in a variety of applications, such as machine
learning [1], [2], [3], [4], [5], [6], [7], image/video
processing [8], [9], [10], [11], [12], and cryptographic

The associate editor coordinating the review of this manuscript and

approving it for publication was Harikrishnan Ramiah .

operations [12], [13], [14], [15], [16]. Multipliers often
cause computational bottlenecks, so that optimizing their
efficiency is crucial [11], [17], [18], [19]. Embedded
systems and high-performance computing devices incor-
porate a diverse range of multipliers, which vary in
terms of their bit-length, internal architecture, and oper-
ational principles. Specifically, we consider the realm of
high-parallelism in current processors/embedded-systems

116206

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-2011-6329
https://orcid.org/0000-0002-9038-1278
https://orcid.org/0000-0003-3046-2364
https://orcid.org/0000-0002-4994-1536
https://orcid.org/0000-0002-5591-5799
https://orcid.org/0000-0003-3505-6525


N. Shavit et al.: Programmable All-in-One 4×8-/2×16-/1×32-Bits Dual Mode Logic Multiplier

where memory-level-parallelism (MLP) and instruction-
level-parallelism (ILP) exist in almost all processors. In these
cases, depending on the code/application, multiplications of
various lengths may be required as well as a variable number
of parallel multiplications.

The ability to configure or program a single block to
efficiently execute different operations with varying levels
of parallelism is of utmost importance [2], [5], [6], [7],
[9], [10], [13], [20]. Configurable multipliers’ instances are
good candidates for hardware utilization efficiency, improved
overall data-throughput, performance, and area reduction.

Dual mode logic (DML) is a circuit-level technique that
endows logic gates with configurable characteristics [21].
These gates can operate in one mode which is more efficient
in terms of performance (speed), termed the dynamic mode,
and another mode, static, which allows for low-energy
operation. Both modes trade off energy or performance to
achieve their goal. The specificity of the DML feature is
that this configurability can be performed generally per-gate
and on-the-fly. This DML configurability is orthogonal to
architectural improvements and provides additional value.
This article illustrates a paradigm where our configurable
and parallel multipliers leverage DML dual-modularity
and architectural-level solutions to optimize overall system
performance.

The goal of this paper is to present an enhanced multi-
plier architecture that specifically targets single-instruction-
multiple-data (SIMD)-like systems. The multiplier has three
configuration options, allowing for the selection of a 32 ×

32-bit multiplier, two 16 × 16-bit multipliers, or four
8 × 8-bit multipliers. This architecture is implemented
using DML logic and takes advantage of the unique DML
capabilities that give it additional operational versatility.
By dynamically adjusting the DML operation mode based on
the multiplier’s bit width, which affects information flow in
the architecture, the design optimizes the utilization of active
computational blocks, enhances performance, and reduces
energy consumption.

Several DML-based multipliers can be found in the litera-
ture. In previous studies, such as [22] and [23], conventional
multipliers without configurability were implemented, with
specific configurations of 8× 8-bit and 16× 16-bit operands
respectively. Configurable DML-based multipliers have also
been reported [24], [25] and are discussed in detail later in this
paper. In brief, [24] presented a DML-based tiny multiplier
(8-bit operandsmaximum)with some level of configurability.
However, this solution targeted small (number of bits)
multipliers which are far simpler, and are designed for
neural-network acceleration. Given the simplicity of this tiny
multiplier, many architectural advantages and acceleration
techniques are not applicable. In [25], the authors proposed
a medium-size multiplier for 16-bit operands, that also
harnessed DML efficiency and produced excellent results.
However, their multiplier did not contain compression
circuits, and partial product (PP) summation was performed
per element. The absence of such architectural partitioning

limits the modularity or acceleration possibilities in different
stages of the computation. In contrast, our work showcases
larger granularity in acceleration with multiple SIMD-like
resolutions, along with various bypass acceleration modes.
These modes work in conjunction with the three different
operation modes of the DML multiplier, offering enhanced
flexibility and performance.

We present a significant advance by the achievement
of a larger bit-width in DML-based multipliers, handling
a 32 × 32-bit multiplication for the first time. This
milestone derives from the utilization of a semi-automatic
tool, as detailed below, that was developed specifically to
enhance the scalability of DML designs. In contrast to
previous DML studies that have relied on custom designs
and implementation, which impose limitations on device
sizing and design scale-up, our approach overcomes these
constraints. The proposed multiplier was implemented and
fabricated using advanced 16 nm FinFET technology. The
findings presented in this paper are based on the analysis of
the resulting silicon implementation.

The proposed multiplier evidences significant improve-
ments. For low energy consumption operation of the system,
the multiplier is used in its static mode, to achieve an
energy reduction of 27%,28%, and 29%, for the 32-bit,
16-bit, and 8-bit multipliers respectively. Boost acceleration
of the system period, up to 15% higher performance,
is achieved by operating in the DML dynamic mode. The
DML mix-mode, which adapts the modes of DML operation
to the multiplier configuration (i.e. the 32-bit multiplier
operates in dynamic mode to boost acceleration, whereas
the 8-bit multiplier operates in static mode to enhance
energy efficiency), presents an improvement of 15% and
18% in both performance and energy, respectively. These
improvements highlight the effectiveness and versatility of
the DML approach in optimizing both performance and
energy efficiency.

The remainder of this paper is organized as follows:
Section II provides an introduction to DML technology.
The architecture of the proposed configurable multiplier is
presented in detail in Section III. Section IV describes the
semi-automation flow for the DML implementation. The
measurement and analysis results are reported in Section V.
Section VI concludes the paper, and summarizes the key
findings.

II. BACKGROUND
In this section, we briefly review literature related to the
DML and we follow with discussing previously proposed
DML-based multipliers architectures.

A. DUAL MODE LOGIC
DML is an alternative logic family to the dominant CMOS
logic. Over the past 15 years, extensive research has been
conducted to better understand and explore the potential
advantages of DML in various architectures and technol-
ogy nodes. The foundational work on DML is discussed

VOLUME 11, 2023 116207



N. Shavit et al.: Programmable All-in-One 4×8-/2×16-/1×32-Bits Dual Mode Logic Multiplier

FIGURE 1. Basic DML gates topology (a) A-type (b) B-type
(c) A-footer-type (d) B-header-type.

in [21], [26], and [27]. Research focusing on the implemen-
tation of DML in scaled nodes has been presented in [22]
and [28], whereas the capability of DML to operate
effectively in 16 nm FinFET technology, proving its unique
dual-modality design intent, can be found in [23] and [24].
The benefits of utilizing DML gates and design techniques

stem from their ability to operate in two distinct modes,
offering flexibility and adaptability to meet specific system
requirements, workloads, and energy budgets. The first
DML operation mode is the static mode, which resembles
conventional static logic families like CMOS. In this mode,
the gate operates in a similar manner, consuming less power
but resulting in a slower frequency due to the unique transistor
sizing employed in DML. The second mode is the dynamic
mode, which works in two phases, as seen in other dynamic
logic families [29], [30]. During the first phase, the pre-
charge, the gate output is pre-charged, regardless of its correct
logic value. In the second phase, the evaluation, the gate
output either discharges or retains its level based on the
logic function. The dynamic mode allows for faster operation
at the expense of higher power consumption. It is worth
noting that DML achieves these features while minimizing
the impact on area, and in many cases, by even providing
area savings. This is made possible through the special
transistor sizing techniques employed in DML, which strike
a balance between power consumption, frequency, and area
utilization [31].
The architecture of a DML gate (Fig. 1) is based on a

standard CMOS gate, which consists of two complementary
pull-up and pull-down networks (PUN/PDN). In addition to
these networks, the DML gate includes an extra transistor
connected in parallel to one of the networks, with its
gate connected to a clocked signal (CLK). There are two
main types of DML gates: the A-type (Fig. 1(a)) and
the B-type (Fig. 1(b)). In A-type gates, the additional
transistor is connected in parallel to the PUN, whereas
in B-type gates, it is connected in parallel to the PDN.
The purpose of this additional transistor is to enable the
dynamic mode of operation in DML. To disable the dynamic
operation in the static mode, the CLK signal is grounded,
to disable the operation of the additional transistor. Note
that the A-type gates and the B-type gates are connected to
complementary signals, according to their structure. In the
dynamic mode, the gate evaluation occurs through only one
of the pull-up or pull-down networks, which determines

the gate delay. This allows for optimizing the critical delay
network for timing by sizing up the transistors accordingly,
while the other network can be sized for efficient energy
consumption.

The utilization of different types of DML gates has certain
implications in terms of their arrangement and operation.
To ensure a proper pre-charge phase, the output of each gate
needs to be connected to the opposite gate type. This is
done by arranging the gates in an alternating fashion, such
as A-type followed by B-type, and so on. By connecting the
gate outputs in this manner, the output of the first pre-charged
gate closes the anti-pre-charged network of the next gate,
which serves as the evaluation network. This arrangement
prevents conflicts and enables a successful pre-charge phase.
During the evaluation phase, all the pre-charge devices are
turned off, and the evaluation signal propagates through
the logic, similar to the operation of Domino logic [29].
In addition, in the design of DML circuits, there is an aim
to maximize the number of gates whose evaluation networks
are predominantly composed of parallel-connected devices,
as discussed in [21] and [31]. This configuration allows for
high-performance evaluation with less area. That is because
the sizing of devices in the evaluation network is done in
a specialized manner to ensure optimal performance during
the evaluation phase of operation, and it needs to be larger in
serial-connected transistors.

DML differs from other dynamic logic families in terms of
the availability of the static mode. This mode is facilitated by
the presence of full PUNs and PDNs that operate in parallel
to the pre-charge devices. These networks are not involved in
the dynamic evaluation process and are specifically included
to enable functional static operation. During the static mode,
the emphasis is on energy reduction rather than performance.
As a result, all the transistors that are not involved in the
dynamic operation, whether the PUN in the A-type gates or
the PDN in the B-type gates, can be sized to a minimum,
thus significantly reducing energy consumption. On the
other hand, in the dynamic mode, the minimal sizing of
the static mode network actually contributes to achieving
high performance. This is because of the minimized input
and output capacitance and increased resistance of these
networks, which reduced interaction with the comple-
mentary evaluation network. All these lead to improved
performance and reduced competition between the two
networks.

The DML gates exist in other versions, known as
A-footer-type (Fig. 1(c)) and B-header-type (Fig. 1(d)) gates.
These footer and header gates play a crucial role in the
seamless connection between non-DML and DML domains.
During pre-charge, the evaluation network is disconnected in
these gates, ensuring a straightforward pre-charge process.
These footer and header gates also serve as separators
between two similar-type gates when such concatenation is
necessary. Their presence allows for efficient organization
and arrangement of the gates, ensuring proper functionality
and avoiding conflicts.

116208 VOLUME 11, 2023



N. Shavit et al.: Programmable All-in-One 4×8-/2×16-/1×32-Bits Dual Mode Logic Multiplier

FIGURE 2. Illustrated architecture of previous DML configurable multipliers in two view versions: the original figure (in the small box), and the compatible
regenerated abstract architecture. (a) oriented for AI acceleration - FlexDML tiny architecture [24], and (b) Double-prediction carry-save adder-based
array multiplier [25].

B. PREVIOUS DML MULTIPLIERS
Numerous architectural solutions have been presented in the
literature that aim to enhance the efficiency of DML in differ-
ent arithmetic circuits. These solutions focus on optimizing
energy consumption and improving overall performance by
employing various mode-control granularity tactics. These
works present a range of strategies and techniques that enable
fine-tuning of the system’s energy-delay requirements,
hence allowing for better customization and optimization of
DML-based designs.

In the field of multipliers, few studies on DML multipliers
have already been presented, and they are different from
each other by the technology nodes, bit-length, architecture,
and configurable features. In [22] a 8 × 8-bit multiplier was
presented. It was implemented in 28 nm FD-SOI technology,
with column-bypassing PP reduction tree architecture. The
work in [23] demonstrated a 16× 16-bit multiplier, in 16 nm
FinFET technology, based on radix-4 booth-encodedWallace
tree architecture. Both of them did not have configurability
features.

Configurable DML-based multipliers have also been
reported. In [24], a tinymultiplier (4×4-bit) was implemented
in the 16 nm FinFET technology, in a unique architecture

directed towards neural-network acceleration with a high
level of flexibility. The computation starts by processing with
small building blocks over small operands (i.e., 2 × 2-bit
multiplier), then according to the configuration, escalates to
outputs that depend on all or a partial set of the operands,
e.g., results can be added or simply broadcast as outputs in
accordance with the configuration. It was implemented in
3 pipeline stages, each stage had the ability to be configured to
the static or dynamic mode of DML, allowing high flexibility
to attend to the changeable requirements of the system.
Fig. 2(a) illustrates the architecture of this work in two views:
first the original figure from [24] in a small version, and
second abstract-view version. This version was designedwith
the aim to adapt the architecture to a multiplier structure
of inputs–PP–reduction–result, for better comparison ability
with the proposed multiplier in this article. In this version,
it can be seen that the multiplier in [24] has 8-bit operand
inputs, PP and reduction of each 2 × 2-bit separately, and
final adder (of two stages of ripple carry adder) for the final
result.

The multiplier in [25] is a DML configurable multiplier as
well. It was implemented in the 65 nm technology, with carry-
save adder-based array multiplier architecture, and in two

VOLUME 11, 2023 116209



N. Shavit et al.: Programmable All-in-One 4×8-/2×16-/1×32-Bits Dual Mode Logic Multiplier

FIGURE 3. The proposed flexible and accelerated multiplier architecture: (a) data flow, and (b) hardware architecture.

pipeline stages. Its configurability has two precision levels:
a 16 × 16-bit multiplier that works in the dynamic mode of
DML, or an 8× 8-bit multiplier that works in the static mode
of DML. This architecture is also illustrated in Fig. 2(b),
in similar two versions, the original and the regenerated.
In the regenerated version, the 16-bit operand inputs are
shown, followed by PP and accumulation of the data to two
final vectors, and a final adder (of carry skip adder) for the
final result.

The next section presents the architecture of the config-
urable multiplier implemented in this study. A similar figure
to Fig. 2, with the same abstract illustration, is presented to
create a better understanding.

III. THE CONFIGURABLE MULTIPLIER ARCHITECTURE
In this study, a configurable multiplier was implemented
to support different modes of execution: a 32 × 32-bit
multiplier (i.e., full-word), two 16 × 16-bit multipliers (two
half-words), or four 8×8-bit multipliers (four quarter-words),
all on the same hardware. The output of the multiplication
is 64-bit wide, representing either a single 64-bit result,
two 32-bit results, or four 16-bit results, depending on the
selected mode. In comparison to a non-configurable 32-bit
architecture, performing four 8-bit operations would require
four sequential invocations of the 32-bit element. This results
in significant idle time for the combinatorial logic, with
approximately 95% of the logic remaining unused.

This section provides a comprehensive explanation of the
architecture of the configurable multiplier. The overview

highlights the primary advantages of the overall architecture
and outlines its distinguishing factors in comparison to prior
works in the field. It then provides a detailed examination
of the underlying blocks including their specific details and
functionalities.

A. WALLACE TREE ARCHITECTURE
The multiplier architecture is based on the Wallace tree
multiplier [32], which has three main segments: (1) a
parallel PP generator, (2) a compression/reduction stage, and
(3) a final adder. The entire multiplier is constructed using
combinatorial logic, from the input operands to the final
output result.

The architecture of the configurable multiplier is pre-
sented in Fig. 3, where Fig. 3(a) illustrates the three
fundamental segments of the Wallace tree architecture,
and Fig. 3(b) provides a representation of the compatible
hardware implementation.

The main novelty lies in its three distinct acceleration
and bypass mechanisms within the same architecture. These
mechanisms support variable precision operations, which in
turn enable optimal area utilization of the active logic:

1) Input Sequencing to PP Tree Parallelism: The
operands input sequence is dynamically parsed to
handle different configurations, such as processing two
32-bit words, 4 × 16-bit words, or 8 × 8-bit words.
This allows for the implementation of SIMD-like
parallelism in the system where the multiplier is

116210 VOLUME 11, 2023



N. Shavit et al.: Programmable All-in-One 4×8-/2×16-/1×32-Bits Dual Mode Logic Multiplier

FIGURE 4. Schema of the gates (in BLACK the basic CMOS gate, in GRAY the additional transistors for the DML design): (a) AND3 (b) FA (c) HA
(d) MUX2 (e) MUX4.

integrated. This parallelism can be leveraged in various
systems, includingmulti-core processors, highmemory
level parallelism architectures, or ASIC designs. One of
the key differences from previous works such as [24]
and [25] is that they focused on smaller operations and
had limited precision capabilities. Our implementation
targets larger operations and offers three precision
levels, as illustrated in Fig. 3.

2) Accelerating the Compression Tree:One of the main
advantages and sources of significant performance
saving is the inclusion of an accelerated compression
tree (as elaborated below). The compression and
reduction tree takes-up most of the computation
effort reducing from (generally) 1024 PPs to (e.g.,)
9-bit vector; therefore, if embedded, architectural
acceleration-tricks have more potential. This feature,
not included in previous architectures, allows for grad-
ually increased performancewhen operating on smaller
operands in parallel. Specifically, two compression
stages can be saved in the 16-bit mode, and four
stages can be bypassed in the 8-bit mode. Note that
the architecture in [25] (Fig. 2(b)) does not incorporate
any compression, since PPs are directly accumulated.
Therefore, implementing savings in their implementa-
tion and integrating bypasses in their accumulation is
more challenging when DML circuits are embedded,
given the various operation modes and gate-types
involved.

3) Acceleration and Parallelism of the Final Long
Adder: The architecture chunks up the carry skip
adder (CSA) into subchains. Specifically, in the 16-bit
mode, two subchains operate in parallel, while in the 8-
bit mode, four subchains are parallelized. This design
decision enhances efficient utilization of the hardware
and contributes to improved performance. A similar
feature, albeit on a smaller scale, was also presented
in [25] (Fig. 2(b)).

The following subsections provide a comprehensive expla-
nation of the three segments comprising the Wallace Tree
multiplier, explained in terms of their underlying concepts,
data flow mechanisms, hardware structures, and hardware
implementation through logic gates.

B. PARTIAL PRODUCT
The PP segment of the multiplier stretches out, in a
parallelogram shape of weights, the 1024 1 × 1-bit multipli-
cations between the 32-bit multiplicand and 32-bit multiplier,
as depicted in Fig. 3(a). In the case of a 32-bit multiplication,
each multiplicand and multiplier represents a single 32-bit
number. For 16-bit multiplication, they represent two 16-bit
numbers, and in the 8-bit multiplication mode, they represent
four 8-bit numbers. In the 32-bit multiplication mode, all
the PPs are utilized. However, in the 16-bit multiplication
mode, only two 16 × 16 diagonal parallelograms are
used, and in the 8-bit multiplication mode, only four

VOLUME 11, 2023 116211



N. Shavit et al.: Programmable All-in-One 4×8-/2×16-/1×32-Bits Dual Mode Logic Multiplier

TABLE 1. Configuration table for the enable signals of the different PP
parallelograms.

8 × 8 diagonal parallelograms are employed. These distinc-
tions are illustrated in Fig. 3(a) with different markers.

The hardware implementation of the PP segment is
represented as stage 0 in Fig. 3(b). Each PP bit is generated
by an AND3 gate, which takes inputs from the multiplicand,
multiplier, and enable signal. This gate structure is depicted
in Fig. 4(a). In the smaller multiplication modes, the unused
portions of the PP segment are enabled to generate zeros,
ensuring they do not impact the final result. The calculation
mode is controlled by a 2-bit signal, which determines
the enable signals, as illustrated in Table 1. In this table,
‘‘8-bit parallelograms enable’’ refers to the parallelograms
used only in the 8-bit multiplication, whereas the ‘‘16-
bit parallelograms enable’’ and the ‘‘32-bit parallelograms
enable’’ mean the overhead PPs of the 16-bit (or the 32-bit)
multiplications on the 8-bit (and the 16-bit) multiplications.

C. REDUCTION
The second segment of the multiplier involves the reduction
of the PPs. This reduction transforms the 1024 PP bits into
two 55-bit vectors that feed into the final adder, as well as a
9-bit vector that represents the final result.

The hardware implementation of the reduction process
involves 8 stages of compression, followed by a decision
stage in the ninth stage. In the case of the 32-bit multiplier,
all 8 stages are utilized to generate the two final vectors.
However, for the 16-bit and 8-bit multipliers, only 6 and
4 stages are required, respectively. As a result, these smaller
multipliers enable a bypass mechanism that directs the
compressed results to the ninth stage, as shown in Fig. 3(b).
In compression stages, 1-8, three types of gates are utilized.

The primary components for the compression process are
3:2 compressors, implemented as Full Adders (FAs) as shown
in Fig. 4(b). In addition, 2:2 compressors, implemented as
Half Adders (HAs), shown in Fig. 4(c), are also employed.
To prevent data leakage between sub-parallelograms in the
16-bit and 8-bit multipliers, a few multiplexers (MUX) are
incorporated at the junctions. The MUX gates, illustrated
in Fig. 4(d), are implemented using NAND2 gates, which are
part of the HA gate depicted in Fig. 4(c).

FIGURE 5. The final CSA architecture, which can be divided into
3 different length adders as a function of the multiplier operation.

In stage 9, a group of MUX4 gates (Fig. 4(e)) is employed
to direct the appropriate vectors to the final adder. Each
MUX4 gate selects the input according to the control
signal bits, enabling the standard data flow for the 32-bit
multiplier or choosing one of the bypass inputs for the smaller
multipliers. The MUX4 gate is constructed using MUX2
gates, which are depicted in Fig. 4(d). This configuration
ensures that the final adder receives the correct vectors for
the addition in stage 10.

D. FINAL ADDER
The final adder takes two 55-bit vectors as inputs and
computes the final result of themultiplier. It was implemented
using a CSA, as presented in Fig. 5.

The CSA is constructed with 4-bit ripple carry adder
(RCA) blocks. Each RCA block computes its carry-out and
generates a selection bit for the skip logic. The skip logic
determines whether the carry-in of the entire block should
be propagated to the carry-out or not. A MUX gate is used
to choose between the RCA carry-out and the carry-in of the
RCA block, based on the selection bit. The carry only ripples
through one 4-bit RCA block and the necessary MUX gates,
depending on the parallelism of the specific calculation.

The CSA architecture is well-suited for the configurable
multiplier given the presence of built-in MUX gates [25].
This enables partitioning between different regions of the
partial multipliers and facilitates parallelization. In the CSA,
the 32-bit multiplier utilizes 14 groups of RCA to perform
the summation of 55-bit inputs, with 9-bits of the final
result already generated. The 16-bit multiplier only generates
7-bits of the final result through the reduction process, thus
requiring 7 RCA blocks for the first multiplier and 8 RCA
blocks for the second. Similarly, the 8-bit multiplier produces
5 final result bits in the reduction, necessitating 3 RCA blocks
for the first multiplier and 4 RCA blocks for the remaining
3 multipliers.

116212 VOLUME 11, 2023



N. Shavit et al.: Programmable All-in-One 4×8-/2×16-/1×32-Bits Dual Mode Logic Multiplier

FIGURE 6. Implementation design flow for (a) CMOS (b) DML.

IV. DML CONFIGURABLE MULTIPLIER
The configurable multiplier was implemented twice, employ-
ing two different logic family gates: the conventional CMOS
and the novel DML architecture. The following section
outlines the step-by-step process involved in implementing
the DML architecture in an automated flow, starting from the
initial design idea and progressing to the final tape-out stage.

A. SEMI-AUTOMATIC FLOW
First, the standard automation flow of CMOS gates is
described briefly, as a starting point to the DML flow.

The CMOS design flow is shown in Fig. 6(a). The mul-
tiplier design was implemented using a Python script [33],
which automated the generation of the gate-level netlist.
Synthesis was not used here because the Python generates
a synthesizer’s multiplier structure, and sizing is determined
on the STA iterative step. This script produced gate-level
netlists in both the Verilog and Spice formats. Using
Cadence Innovus, the gate-level netlist served as the basis
for generating the register transfer level (RTL) representation
by CMOS standard cells, from the standard cell library
.lib. Static Timing Analysis (STA), with iterative gate
sizing optimization, was performed to validate the timing
constraints of the RTL design, leveraging the information
from the .lib file. Subsequently, place and route operations
were executed using the CMOS standard cells library .lef
to create a physical implementation of the design. After
completing the physical implementation, STAwas once again
employed to verify the timing aspects of the physical layout.
Finally, the design was ready for the tape-out process.

The DML automation flow adheres to the standard
flow with certain modifications. These modifications are
illustrated in Fig. 6(b), in comparison to standard CMOS
flow, and are detailed in the following paragraphs.

In the gate-level netlist preparation step, the critical
constraint in the DML design involves the specific con-
catenation requirement of the cell types: A-type – B-type –
A-type – B-type (and vice-versa), as detailed in
Section II-A. To seamlessly integrate the DML into the
automated flow, the Python script, running the multiplier
design, was partitioned into cells consisting of gates arranged

in a B-type – A-type – B-type – A-type sequence. Then,
the CMOS cells were smoothly substituted by the DML
cells, while maintaining the architecture netlist identical to
the CMOS design. The next subsection explores the internal
gate-level modifications implemented to adapt the DML cells
to the prescribed structure.

The next step involves generating an RTL representation
using a standard cell .lib file, followed by performing STA
to verify its timing. However, while creating a DML .lef
file is feasible, the .lib file is not compatible with the
two modes of DML operation. To address this challenge,
a degenerated .lib file was employed, without timing
constraints for individual cells. This decision was justified
because the macros are full mixed-signal blocks, where
timing verification is extensively conducted in an analog
environment (e.g., Virtuoso simulations) rather than relying
on automatic STA. Iterations involving modifications to the
standard cell RTL and timing simulations are performed until
the design satisfies the constraints. The automated generation
of the circuitry representation netlist is a significant challenge
for DML, but is effectively tackled by this automation
approach.

Then the automation flow proceeds with the automatic
place and route step, utilizing the DML standard cell .lef
file. The generation of the DML .lef file was carried out in
coordination with the CMOS standard cell .lef files. After
the place and route step, comprehensive timing simulations
were conducted in the full-custom domain to validate the
final design outcome before proceeding with the tape-out
process.

B. GATE-LEVEL ADAPTATIONS
As mentioned in the preceding subsection, the DML gates
were structured as cells consisting of paired gates arranged
in a predetermined sequence from B-type to A-type. This
design approach inherently ensures the proper cascading
functionality. This subsection describes the adaptations at
each stage of the multiplier’s hardware implementation,
depicted in Fig. 3(b), to ensure compatibility with the cell
structure.

The initial stage, referred to as stage 0, incorporates an
AND3 gate design comprising a NAND3-DML-B-header
gate combined with an INVERTER gate. The AND3 DML
gate structure is depicted in Fig. 4(a), which shows the
additional transistors (in gray) alongside the standard CMOS
cell (in black) to facilitate DML pre-discharge.

The next stages, referred to as stages 1-8, incorporate
FA (see Fig. 4(b)), HA (Fig. 4(c)), and MUX (Fig. 4(d))
gates. The primary modification challenge was encountered
in the FA gates, which were implemented using a mirror
FA architecture. The FA gate comprises three logic levels
in its sum output: Cout-not, Sum-not, and Sum. To extract
an A-type output from the cell (Cout and Sum), both Cout-
not and Sum-not gates must be of B-type. However, this
conflicts with the requirement of Cout-not to be an input to
the Sum-not level, with different gate types. This presents a

VOLUME 11, 2023 116213



N. Shavit et al.: Programmable All-in-One 4×8-/2×16-/1×32-Bits Dual Mode Logic Multiplier

FIGURE 7. (a) The measurement board, (b) the chip micrograph, and (c) the final layout of the CMOS and the DML multipliers.

trapped inverter challenge, as described in previous works
such as [34]. In this implementation, the challenge was
overcome by utilizing the header features. The FA gate was
structured as B-type – B-header-type – A-type, as depicted
in Fig. 4(b), allowing seamless integration into the overall
flow. This FA structure requires two clock stages, where
the CLKd signal is delayed from the CLK signal, ensuring
that the headed gate is delayed to remain in the pre-charge
phase until all its inputs are stable. Notably, in previous
works [22], [23], [25], the mirror-FA was implemented in
an A-type – A-footer-type – B-type structure, which does not
meet our concatenation requirements.

Within stages 1-8, the HA, illustrated in Fig. 4(c),
is composed of an AND2 gate (comprising a NAND2-B-type
gate and an INVERTER-A-type gate) and a XOR2 gate.
The XOR gate presents a challenge since its inputs involve
two signals and their inverses, leading to the recurring
challenge of the trapped inverter. To resolve this prob-
lem the XOR gate was implemented as an A-footer-type
gate.

The final gate in stages 1-8 is the MUX gate (shown in
Fig. 4(d)), constructed by concatenating NAND2 gates. This
configuration resembles the NAND2 DML gate discussed
in detail for the HA gate (depicted in Fig. 4(c)), where the
first NAND gate is the B-type and the second NAND gate
is the A-type. In stages 9 and 10, as depicted in Fig. 4(e)
and Fig. 5, all the components are constructed using the
previously described gates.

V. MEASUREMENTS AND RESULTS
The multipliers were fabricated using TSMC 16 nm FinFET
technology. The measurement board with different voltage
supplies for the two multipliers is depicted in Fig. 7(a). The
physical chip is captured in the micrograph displayed in
Fig. 7(b). In Fig. 7(c) the layout of both the CMOS and DML
multipliers is presented.

The multipliers underwent extensive simulation and mea-
surement processes to evaluate their worst-case timing

FIGURE 8. Static DML vs. CMOS Tpd and Energy Results.

propagation delay (Tpd) and average energy consumption
(Eav). These evaluations were performed for different
multiplier configurations and various voltage levels ranging
from 800mV to 500mV.

Fig. 8 compares the CMOS multiplier to the static mode
operation of the DML multiplier. This comparison highlights
the well-known characteristics of the DML static mode,
which exhibits energy consumption improvement at the
expense of performance degradation. Specifically, the aver-
age energy improvement achieved by the DML static mode,
for a range of supply voltages, is 27%, 28%, and 29% for the
32-bit, 16-bit, and 8-bit multipliers, respectively. However,
the static DML mode incurs a delay overhead of 25%,
28%, and 29% on average for the corresponding multiplier
configurations. A similar comparison of the dynamicmode of
the DML multiplier and the CMOS multiplier is presented in
Fig. 9. As anticipated, the DML dynamic mode demonstrates
improvements in Tpd accompanied by an increase in energy
consumption. On average, the DML dynamic mode achieves
a Tpd improvement of 15% for the 32-bit multiplier, 8% for
the 16-bit multiplier, and 7% for the 8-bit multiplier. It is well-
known [28] that DML’s advantages becomemore pronounced
with deeper logic depth. Clearly, if only Tpd is important one
might think that it is therefore worth-while to always operate
in the 32-bit mode evenwith 8-bits operands. However, owing
to parallelism the computation power reduces in a factor of

116214 VOLUME 11, 2023



N. Shavit et al.: Programmable All-in-One 4×8-/2×16-/1×32-Bits Dual Mode Logic Multiplier

FIGURE 9. Dynamic DML vs. CMOS Tpd and Energy Results.

FIGURE 10. Tpd divided into parts of the configurable multiplier, the
reduction, and the final adder.

four. This feature may aid in compile-time decisions striking
a balance betweenwork-load and overall performance. On the
other hand, the energy consumption in the DML dynamic
mode is higher, with average increases of 37%, 35%, and
23% for the corresponding multiplier configurations. These
findings provide valuable insights into the trade-off between
energy consumption and timing performance in the different
operation modes of the DML multiplier compared to its
CMOS counterpart.

Fig. 10 provides insights into the acceleration of the
multiplier when changing its configuration, regardless of
the operating modes. The internal propagation delay of the
multiplier was analyzed through simulations, specifically
examining the contribution of different parts of the multiplier
to the overall delay. The reduction part, encompassing stages
0-9 in Fig. 3, and the final adder (stage 10) were evaluated
separately. The acceleration observed in the reduction part is
attributed to the availability of the bypass option. While the
32-bit multiplier utilizes all 10 stages, the 16-bit multiplier
bypasses stages 7 and 8, resulting in 8 stages. Similarly, the
8-bit multiplier only passes through 6 stages and bypasses
stages 5-8. In the final adder part, the acceleration is attributed
to the shorter rippling path. Although the RCA unit calculates
the skip logic of all blocks in parallel for all configurations,
the difference lies in the number of MUX gates the data path
needs to traverse. For the 32-bit, 16-bit, and 8-bit multipliers,
the maximum number of MUXs encountered is 14 blocks,
8 blocks, and 4 blocks, respectively (as depicted in Fig. 5).
These variations in the number of MUX gates contribute

FIGURE 11. Mix mode of DML with different usage percentages of 32-bit
and 8-bit configurations.

to the observed acceleration in the final adder part of the
multiplier. Overall, these findings demonstrate the impact
of configuration changes on the internal propagation delay
of the multiplier, thus highlighting the acceleration achieved
in the reduction part and the final adder part for different
multiplier configurations.

The maximum efficiency of the DML multiplier can be
achieved by leveraging a mixed mode of operation that
combines the strengths of both the dynamic and static modes,
based on the specific requirements of the system. This
study investigated the feasibility of using a mixed mode
configuration where the 32-bit multiplier operates in the
dynamic mode to accelerate slower operations, while the
8-bit multiplier operates in the static mode to conserve
power consumption during common operations. In this
configuration, the timing degradation of the static mode
does not impact the overall performance of the multiplier,
and the energy consumption in the dynamic mode becomes
negligible due to the power-saving nature of the static mode
configuration. Fig. 11 illustrates the improvements achieved
for different utilization percentages of the multipliers, in both
performance and energy consumption, compared to the
same percentages in the CMOS implementation. The power
improvement is shown on the left Y-axis, while the timing
improvement is shown on the right Y-axis. The results
indicate an average timing improvement of approximately
15% across the entire range of supply voltages. This timing
improvement is related to the fact that while the worst
case operation of the CMOS implementation is the 32-bit
multiplier, the DML implementation’s worst case is the 32-
bit multiplier in the faster dynamic mode. When using the
32-bit multiplier for less than 15%of the operations, the DML
multiplier demonstrates power improvement. The power
improvement becomes more significant at lower supply
voltages. These findings highlight the benefits of using a
mixed-mode configuration in the DML multiplier, since
it allows for optimized power consumption and improved
timing performance.

Finally, a comparison to previous works is provided in
Table 2. The comparison includes smaller DML multipliers
from previous publications, with extrapolations to 32 ×

32-bit multipliers [23], [24], [25], as well as state-of-the-
art (non-DML) 32 × 32-bit multipliers reported in the

VOLUME 11, 2023 116215



N. Shavit et al.: Programmable All-in-One 4×8-/2×16-/1×32-Bits Dual Mode Logic Multiplier

TABLE 2. Comparison Results.

literature [18], [19]. Our multiplier demonstrated the best
performance and energy consumption trade-off, while also
occupying a smaller area. As compared to [23], which is
also fabricated in 16 nm FinFET and operates at 0.8V supply
voltage, we achieve 24%/42%/38% higher frequencies,
in parallel to energy consumption saving of 49%/39%/48%,
in the static DML, dynamic DML and CMOS, respectively.
Notably, the multipliers in [24], which are 16 nm FinFET and
0.8V as well, are arranged in a 3-stage pipeline, enabling
higher frequency operation, but at the expense of increased
latency. In our implementation, there is a degradation of
9%/29%/1% in the frequency, with a significant energy
saving of 83%/78%/80% less energy consumption, in the
same respective operation modes. As compared to [25], note
that it was fabricated in a 65 nm technology (therefore with
a 1.2V nominal supply voltage), we show 49%/60%/78%
performance improvement, with 80%/73%/78% energy con-
sumption savings. This makes sense even considering that
voltage (X0.66) and technology (X0.25) scaling lead to
lower energy consumption with performance improvement
along with more complex and accelerated design. Similarly,
as compared to [19] (also 65 nm, 0.9V supply voltage), our
CMOS results indicate 28% higher maximum frequency with
65% less energy consumption, and in comparison to the
two outstanding architectures in [18] (65 nm and 1V), about
400%/600% with 84%/92% improvement in performance
and energy is achieved.

Generally, DML design can be area efficient as compared
to CMOS blocks. However, this depends on the application
and designer. For example, in [22], [23] the DML multiplier
is more area efficient than CMOS; however, in [24] and in
this work the opposite is true. The reason lies in the fact
that the novel sizing of DML gates becomes more efficient
when the standard CMOS transistor sizing (i.e., up-sizing
Xi factors) is not minimal. In our comparative design, for
simplicity (and as a worst-case), the CMOS implementation
usedminimum gate sizing (as the DML-based design), so that
due to the additional overhead of the DML control, the
total area is impacted. The area footprint of our design is

4447.9µm2 for the DML implementation and 3043.8µm2 for
the CMOS, slightly larger than [23]. This is reasonable since
we incorporate a more complex compression circuitry and
control and bypass cost with this negligible overhead. The
other designs consume much more area, due to either more
flexibility [24] or older technology nodes [18], [19].

VI. CONCLUSION
We presented an improved multiplier on the architecture
level and the logic gate level. At the architecture level,
we implemented a configurable multiplier, which can be
programmed dynamically to three configuration options:
a 32 × 32-bit multiplier, two 16 × 16-bit multipliers,
and four 8 × 8-bit multipliers. All the configurations
are on the same hardware, with high area utilization and
bypass mechanisms for acceleration. Even this innovative
multiplier shows significant improvements in comparison to
previous publications in the literature. In addition, at the
gate level, we used the DML logic with two modes of
operation: the fast dynamic mode and the low energy static
mode. Each mode of operation presents its own familiar
characteristics when operating separately: high frequency in
the dynamic mode, and low energy consumption in the static
mode. Furthermore, when the DML’s mode of operation is
adapted to the multiplier’s configuration option, the data
showed improvement in both frequency performance and
energy consumption, of 15% and 18%, respectively. Finally,
we presented the non-trivial semi-automation flow utilized
for the complex implementation of the architecture. This
semi-automation flow is likely to be useful for future complex
DML design.

ACKNOWLEDGMENT
The authors would like to thank Or Maltababashi for his
devoted assistance with the CMOS’s Python script, and
also would like to thank Ido Assaf for his efforts with the
DML’s Python script generation and the DML standard cells
layout.

116216 VOLUME 11, 2023



N. Shavit et al.: Programmable All-in-One 4×8-/2×16-/1×32-Bits Dual Mode Logic Multiplier

REFERENCES

[1] T. Abtahi, C. Shea, A. Kulkarni, and T. Mohsenin, ‘‘Accelerating
convolutional neural network with FFT on embedded hardware,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 9, pp. 1737–1749,
Sep. 2018.

[2] D. Wu, X. Fan, W. Cao, and L. Wang, ‘‘SWM: A high-performance
sparse-winograd matrix multiplication CNN accelerator,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 5, pp. 936–949,
May 2021.

[3] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, ‘‘Optimizing the convolution
operation to accelerate deep neural networks on FPGA,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 26, no. 7, pp. 1354–1367, Jul. 2018.

[4] W. Huang, H. Wu, Q. Chen, C. Luo, S. Zeng, T. Li, and Y. Huang, ‘‘FPGA-
based high-throughput CNN hardware accelerator with high computing
resource utilization ratio,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 33,
no. 8, pp. 4069–4083, Aug. 2022.

[5] C. Ding, Y. Huan, L. Zheng, and Z. Zou, ‘‘Dynamic precision multiplier
for deep neural network accelerators,’’ in Proc. IEEE 33rd Int. Syst.-Chip
Conf. (SOCC), Sep. 2020, pp. 180–184.

[6] P.-H. Kuo, Y.-H. Huang, and J.-D. Huang, ‘‘Configurable multi-precision
floating-point multiplier architecture design for computation in deep
learning,’’ in Proc. IEEE 5th Int. Conf. Artif. Intell. Circuits Syst. (AICAS),
Jun. 2023, pp. 1–5.

[7] W. Mao, K. Li, Q. Cheng, L. Dai, B. Li, X. Xie, H. Li, L. Lin, and H. Yu,
‘‘A configurable floating-point multiple-precision processing element for
HPC and AI converged computing,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 30, no. 2, pp. 213–226, Feb. 2022.

[8] D. Guevorkian, A. Launiainen, V. Lappalainen, P. Liuha, and K. Punkka,
‘‘A method for designing high-radix multiplier-based processing units
for multimedia applications,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 15, no. 5, pp. 716–725, May 2005.

[9] D. J. Moni and P. E. Sophia, ‘‘Design of low power and high speed
configurable booth multiplier,’’ in Proc. 3rd Int. Conf. Electron. Comput.
Technol., vol. 6, Apr. 2011, pp. 338–342.

[10] R. Ramya and S. Moorthi, ‘‘Design and implementation of accuracy
configurable multi-precision multiplier architecture for signal processing
applications,’’ in Proc. IEEE Recent Adv. Intell. Comput. Syst. (RAICS),
Dec. 2018, pp. 89–93.

[11] B. Boro, K. M. Reddy, Y. B. N. Kumar, andM. H. Vasantha, ‘‘Approximate
radix-8 booth multiplier for low power and high speed applications,’’
Microelectron. J., vol. 101, Jul. 2020, Art. no. 104816.

[12] M. M. A. Basiri, S. C. Nayak, and N. M. Sk, ‘‘Multiplication acceleration
through quarter precision Wallace tree multiplier,’’ in Proc. Int. Conf.
Signal Process. Integr. Netw. (SPIN), Feb. 2014, pp. 502–505.

[13] L. Nan, X. Zeng, Q. Ding, W. Li, Y. Du, and L. Chen, ‘‘Research of special
instructions for finite field x multiplications of cryptographic algorithms,’’
in Proc. IEEE 3rd Adv. Inf. Technol., Electron. Autom. Control Conf.
(IAEAC), Oct. 2018, pp. 1608–1613.

[14] L.-M. Nan, X.-Y. Zeng, W. Li, C. Lin, Y.-R. Du, and Z.-B. Dai, ‘‘Research
of special instructions for composite field multiplications in symmetric
cryptographic algorithms,’’ inProc. 14th IEEE Int. Conf. Solid-State Integr.
Circuit Technol. (ICSICT), Oct. 2018, pp. 1–4.

[15] S. Bayat-Sarmadi,M.Mozaffari Kermani, R. Azarderakhsh, and C.-Y. Lee,
‘‘Dual-basis superserial multipliers for secure applications and lightweight
cryptographic architectures,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 61, no. 2, pp. 125–129, Feb. 2014.

[16] D. Zoni, A. Galimberti, and W. Fornaciari, ‘‘Flexible and scalable FPGA-
oriented design of multipliers for large binary polynomials,’’ IEEE Access,
vol. 8, pp. 75809–75821, 2020.

[17] P. Patali and S. ThottathikkulamKassim, ‘‘Efficient modular hybrid adders
and radix-4 booth multipliers for DSP applications,’’ Microelectron. J.,
vol. 96, Feb. 2020, Art. no. 104701.

[18] L. M. G. Rocha, M. Macedo, G. Paim, E. Costa, and S. Bampi,
‘‘Improving the partial product tree compression on signed radix-2m

parallel multipliers,’’ in Proc. 18th IEEE Int. New Circuits Syst. Conf.
(NEWCAS), Jun. 2020, pp. 182–185.

[19] B. Ramkumar and H. M. Kittur, ‘‘Faster and energy-efficient signed
multipliers,’’ VLSI Des., vol. 2013, p. 13, 2013.

[20] S.-R. Kuang and J.-P. Wang, ‘‘Design of power-efficient configurable
booth multiplier,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 3,
pp. 568–580, Mar. 2010.

[21] I. Levi and A. Fish, Dual Mode Logic: A New Paradigm for Digital IC
Design. Cham, Switzerland: Springer, 2021.

[22] R. Taco, I. Levi, M. Lanuzza, and A. Fish, ‘‘An 88-fJ/40-MHz [0.4 V]–
0.61-pJ/1-GHz [0.9 V] dual-mode logic 8×8 bit multiplier accumulator
with a self-adjustment mechanism in 28-nm FD-SOI,’’ IEEE J. Solid-State
Circuits, vol. 54, no. 2, pp. 560–568, Feb. 2019.

[23] N. Shavit, I. Stanger, R. Taco, M. Lanuzza, and A. Fish, ‘‘A 0.8-V,
1.54-pJ/940-MHz dual-mode logic-based 16×16-b booth multiplier in 16-
nm FinFET,’’ IEEE Solid-State Circuits Lett., vol. 3, pp. 314–317, 2020.

[24] I. Stanger, N. Shavit, R. Taco, M. Lanuzza, L. Yavits, I. Levi, and
A. Fish, ‘‘FlexDML: High utilization configurable multimode arithmetic
units featuring dual mode logic,’’ IEEE Solid-State Circuits Lett., vol. 6,
pp. 73–76, 2023.

[25] R. De Rose, P. Romero, and M. Lanuzza, ‘‘Double-precision dual mode
logic carry-save multiplier,’’ Integration, vol. 64, pp. 71–77, Jan. 2019.

[26] I. Levi, A. Kaizerman, and A. Fish, ‘‘Low voltage dual mode logic:
Model analysis and parameter extraction,’’Microelectron. J., vol. 44, no. 6,
pp. 553–560, Jun. 2013.

[27] I. Levi and A. Fish, ‘‘Dual mode logic: Design for energy efficiency and
high performance,’’ IEEE access, vol. 1, pp. 258–265, 2013.

[28] N. Shavit, R. Taco, and A. Fish, ‘‘Efficiency of dual mode logic in
nanoscale technology nodes,’’ in Proc. IEEE Int. Conf. Sci. Electr. Eng.
Isr. (ICSEE), Dec. 2018, pp. 1–4.

[29] Y. Sun and V. Kursun, ‘‘Carbon nanotubes blowing new life into NP
dynamic CMOS circuits,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 61, no. 2, pp. 420–428, Feb. 2014.

[30] B. Majji and K. Ragini, ‘‘Design and implementation of RNB multiplier
using NP domino logic,’’ in Proc. Int. Conf. Recent Trends Microelectron.,
Autom., Comput. Commun. Syst. (ICMACC), Dec. 2022, pp. 270–275.

[31] I. Levi, A. Belenky, and A. Fish, ‘‘Logical effort for CMOS-based dual
mode logic gates,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 22, no. 5, pp. 1042–1053, May 2014.

[32] C. S. Wallace, ‘‘A suggestion for a fast multiplier,’’ IEEE Trans. Electron.
Comput., vol. EC-13, no. 1, pp. 14–17, Feb. 1964.

[33] H. Marinberg, E. Garzón, T. Noy, M. Lanuzza, and A. Teman, ‘‘Efficient
implementation of many-ported memories by using standard-cell memory
approach,’’ IEEE Access, vol. 11, pp. 94885–94897, 2023.

[34] V. Yuzhaninov, I. Levi, and A. Fish, ‘‘Design flow and characterization
methodology for dual mode logic,’’ IEEE Access, vol. 3, pp. 3089–3101,
2015.

NETANEL SHAVIT (Graduate Student Member,
IEEE) received the B.Sc. (summa cum laude) and
M.Sc. degrees in electrical engineering from Bar-
Ilan University, Ramat Gan, Israel, in 2017 and
2019, respectively, where he is currently pursuing
the Ph.D. degree.

His current research interests include low-power
and high-frequency logic families and digital
circuit design, in wide abstraction layers: from
the transistors level to the architecture level, from

full custom to EDA tools, from design, layout, and simulations to chip
measurements.

INBAL STANGER (Graduate Student Member,
IEEE) received the B.Sc. and M.Sc. degrees in
electrical engineering from Bar-Ilan University,
Ramat Gan, Israel, in 2018 and 2020, respectively,
where she is currently pursuing the Ph.D. degree.

Her current research interests include the design
of low-power and high-frequency digital circuits
under extreme process, voltage and temperature
variations, and specifically the design of unique
logic families under cryogenic temperatures.

VOLUME 11, 2023 116217



N. Shavit et al.: Programmable All-in-One 4×8-/2×16-/1×32-Bits Dual Mode Logic Multiplier

RAMIRO TACO (Member, IEEE) received the
M.S. degree in electrical engineering from Uni-
versity San Francisco de Quito, Quito, Ecuador,
in 2012, and the Ph.D. degree in electrical engi-
neering from the University of Calabria, Rende,
Italy, in 2017. In 2017, he joined the Emerging
Nanoscaled Integrated Circuits and Systems Lab-
oratories, Bar-Ilan University, Ramat Gan, Israel,
as a Postdoctoral Fellow. In 2020, he joined
Universidad San Francisco as the Head of the

Institute of Micro and Nanoelectronics, Quito. He led the first integrated
circuit designed in Ecuador. In 2023, he joined DIMES as a Senior
Researcher. His research interests include high-speed and energy-efficient
mixed-signal VLSI designs and energy-efficient IC memories.

ALEXANDER FISH (Member, IEEE) received
the B.Sc. degree in electrical engineering from
the Technion—Israel Institute of Technology,
Haifa, Israel, in 1999, and the M.Sc. and Ph.D.
(summa cum laude) degrees from Ben-Gurion
University (BGU), Israel, in 1999 and 2002,
respectively. He was a Postdoctoral Fellow with
the ATIPS Laboratory, University of Calgary,
Canada, from 2006 to 2008. In 2008, he joined as a
Faculty Member with the Electrical and Computer

Engineering Department, BGU. He founded the Low Power Circuits and
Systems (LPC&S) Laboratory, specializing in low power circuits and
systems. In July 2011, he was appointed as the Head of the VLSI Systems
Center, BGU. In October 2012, he joined the Faculty of Engineering,
Bar-Ilan University, as an Associate Professor, and the Head of the Nano-
electronics Track. In March 2015, he founded the Emerging Nanoscaled
Integrated Circuits and Systems (ENICS) Laboratories. Currently, he is
a Full Professor and the Co-Director of the EnICS Impact Center. His
research interests include power reduction methodologies for high speed
digital and mixed signal VLSI chips, energy efficient SRAM and eDRAM
memory arrays, CMOS image sensors and biomedical circuits, systems
and applications, and cryogenic CMOS circuits. He has authored over
190 scientific papers in journals and conferences. He also submitted more
than 30 patent applications of which 22 were granted. He has published three
book chapters and two books as an editor.

He founded and served as the Editor-in-Chief for the Journal of Low
Power Electronics and Applications (JLPEA) (MDPI), from 2012 to 2018,
and he was an associate editor of IEEE various journals. He is an Associate
Editor of IEEE ACCESS journal, Microelectronics Journal (Elsevier), and
Integration, the VLSI Journal (Elsevier). He also served as the program
chair and the chair of different tracks of various IEEE conferences.
He was a co-organizer of many special sessions at IEEE conferences,
including IEEE ISCAS, IEEE Sensors, and IEEEI conferences. He is a
member of the Technical Committee of the European Solid-State Circuits
Conference. He is also a member of the VLSI Systems and Applications and
Bio-Medical Systems Technical Committees of IEEE Circuits and Systems
Society.

ITAMAR LEVI (Member, IEEE) received the B.Sc.
andM.Sc. degrees in electrical and computer engi-
neering from Ben-Gurion University, in 2012 and
2013, respectively, and the Ph.D. degree from
Bar-Ilan University (BIU), Ramat Gan, Israel,
in 2017.

He was a Research-Associate with the UCLou-
vains Crypto-Group, UCLouvain, Belgium, until
2019. He is currently a Computer-Engineering
Faculty Member with BIU, where he is also a

member of the Emerging Nanoscale Circuits and Systems Laboratories
(EnICS). His current research interests include digital circuit design
and acceleration, embedded systems security, security evaluation analysis
for cryptographic devices, side-channel and fault-injection attacks and
countermeasures, and cryptographic implementations. He has (co)authored
over 60 journal articles and international conference papers and seven patent
applications, he coauthored a book on Dual-Mode-Logic: A New Paradigm
for Digital IC Design and serves in various technical committees of IEEE
CAS Society and Hardware Security journals and conferences.

116218 VOLUME 11, 2023


