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ABSTRACT Humanmotion prediction is a popular method to predict future motion sequences based on past
sequences, which is widely used in human-computer interaction. Space-time-separable graph Convolutional
Network (STS-GCN) is a conventional mathematical model for human motion prediction. However, the
uncertainty of human movements often leads to the problem of significant prediction error in the prediction
results. This paper first proposed a Multi-scale STS-GCN (MSTS-GCN) model based on the conventional
STS-GCN method to find the relevant factors that affect the prediction results. In our study, the constructed
Multi-scale Temporal Convolutional Network (MTCN) decoder effectively reduced the human motion
prediction error at specific time nodes. To expand the transmission and utilization performance in a larger
receptive field, a Gated Recurrent Unit-TCN decoder was also designed. Finally, a new STS-GCN (NSTS-
GCN) human motion prediction model was proposed, which realized the transmission and utilization of
motion sequence features under a larger temporal perceptual field. To verify the effectiveness of NSTS-
GCN, the Human3.6M dataset, AMASS, and 3DPW dataset were tested. The experimental results show
that the MPJPE error of the proposed model for human joint prediction at each time node is reduced
compared with the conventional STS-GCN model, and the mean reduction was achieved by 3.0mm. All the
experimental results validated the effectiveness of the proposed NSTS-GCN model, which further improved
the performance of human motion prediction.

INDEX TERMS Human motion prediction, decoder, STS-GCN, GRU.

I. INTRODUCTION
In recent years, motion capture data has attracted consider-
able attention for the prediction of human motion, which has
been applied in a wide range of applications. With China’s
aging population, using human motion prediction in-home
monitoring can help reduce accidents among the elderly.
Meanwhile, using human motion prediction in automatic
driving is helpful in preventing traffic accidents and improv-
ing the safety performance of vehicles. In the field of Virtual
Reality and Augmented Reality, this technology is used to
track the user’s body movement to realize an immersive
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experience. The core technology of human motion predic-
tion aims to predict subsequent motion sequences based on
historical human motion sequences, which can enhance the
real-time and efficient human-robot interaction system by
judging human motion changes and motion trajectories in
advance [1]. By predicting human motion trends, the robot
can perform path planning to avoid collision or drift with peo-
ple and improve collaboration efficiency. Therefore, human
motion prediction is of great significance in human-computer
interaction [2], [3], healthcare [4], [5], intelligent driving [6],
and other fields.

Early human motion prediction methods based on deep
learning mostly use Recurrent Neural Networks (RNN) [7],
[8] due to its advantages for time series tasks [9]. However,
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its performance was limited by human body dynamics, which
caused its performance hard to improve further. Another
famous study was performed by Abdullahi, who designed
a bidirectional long-short term memory-fast fisher vector
algorithm to train 3D hand skeletal information of motion
and orientation angle features and further used it to classify
dynamic sign words [10], [11]. One of the representa-
tive works [12], [13] from Sejong University proposed a
cloud-assisted IoT computing framework for human activ-
ity recognition in uncertain low-lighting environments and
applied a lightweight three-dimensional convolutional neu-
ral network architecture to extract spatiotemporal features
from significant frames to easily identify violent behaviors
in video. This group also pre-trained a vision transformer
to extract frame features and did research on identifying
abnormal behaviors in the video [14], [15].
Since (GCN) [16], [17], [18] can compensate for the

inherent deficiency of weak spatial modeling ability that
exists in RNNs, they have achieved good results in human
motion recognition. In recent years, researchers have started
to apply GCN to predict human motion [19], [20], especially
to encode the spatial-temporal features of human skeleton
sequences. Li et al. [21] proposed a Dynamic Multiscale
Graph Neural Networks model to simulate the internal rela-
tionships of the human body extract single-scale features,
and perform cross-scale feature fusion through multiscale
graph computation units, It achieved good results in human
motion prediction. Zhou and his colleagues [22] proposed
a new Multiscale Graph Convolution Network to capture
the correlation among human body components and deeply
explored the correlation between human joints and compo-
nents in the multiscale graph. However, most of the existing
studies consider the dependencies between joints and ignore
the interrelationships between bones, which affects the pre-
diction accuracy. To solve this problem [23], a directed
acyclic graph was used to represent the human skeleton, with
joints as vertices and bones as directed edges and updated
joint and bone features based on the observed human motion
states. This approach successfully predicted human motion
in realistic prediction scenarios. Zhang et al. [24] proposed a
structured method to predict bone points. In their approach,
they used motion features to predict the basic joints. Then
they combined the upper predicted joint points, extracted
motion features to predict the next joint, and then iteration
to the whole bone in the short-term prediction of human
movement.

Another basic model commonly used for human motion
prediction is Transform, which uses a self-attention mecha-
nism to process input information and generate the output.
Based on transformer global attention architecture and pro-
gressive decoding strategy, Cai et al. [25] predicted the human
motion according to the kinematic tree gradual prediction
target joint DCT coefficient, the centre of the eight joints
as seed joints, and then estimated the structural connectivity
of the body skeleton, the joint prediction from the centre to

the periphery. Guo et al. [26] proposed a lightweight net-
work based on multi-layer perceptron (MLP), which used
DCT transform to encode time information. This method
also combined the prediction of joint residual displacement
and optimization speed as auxiliary loss. It achieved an
excellent prediction effect with only three components: a
fully connected layer, a normalized layer, and a transpose
operation.

Combine ‘‘spatial attention’’ and ‘‘temporal attention’’
mechanisms, Aksan et al. [27] use a transformer model
to decouple temporal and spatial self-attention mechanisms
composed of temporally coherent postures, then generating
more reasonable future skeletons in the short and long term.
Dang and his colleagues [28] designed a multiple GCN
with multiscale architecture to compensate for the ability
of GCN modelling stratification and context information of
human posture. In detail, a set of GCN forms to extract
features and another set of GCN to add residual connec-
tions between input and output pose, which allows the whole
framework to learn more representative features. Li et al. [29]
proposed a Multiscale Spatio-Temporal Graph Neural Net-
work (MST-GNN), whose core is a multiscale spatiotemporal
graph that simulates motion relationships on different spatial
and temporal scales and successfully implemented human
motion sequences based on skeletal features under motion
category uncertainty. Considering the role of time and
space dimensions separately will limit complex motion and
the understanding of the spatio-temporal dynamics of the
human body. Sofianos et al. [30] proposed the Space-Time-
Separable Graph Convolutional Network (STS-GCN), the
first spatio-temporal separable GCN that decomposes the
spatio-temporal graph connectivity matrix into temporal and
spatial affinity matrices while achieving full exploitation of
joint-joint and time-time correlations. Although STS-GCN
achieves a better human motion prediction performance, due
to the uncertainty and randomness of human motion, there is
still the problem of long-term prediction inaccuracy inherent
in prediction due to the lack of effective features when per-
forming long-time motion sequence prediction.

This paper constructs the Multi-scale Space-Time-
Separable Graph Convolutional Network (MSTS-GCN)
model based on the STS-GCN model by designing the
multiscale decoder MTCN to obtain the motion sequence
characteristics at different time scales, and the human motion
prediction performance at some time nodes are improved,
thus precisely the decoder is an important factor to improve
the model accuracy effectively; based on this analysis result,
the TCN decoder of STS-GCN model is fused with the
GRU [31] to establish the GRU-TCN decoder, which com-
bines the advantages of parallel data processing and higher
efficiency of TCN with the ability of GRU to preserve
the effective information in long-term sequences, to achieve
efficient transmission and utilization of motion sequence
features under a larger time perception field and construct
a complete NSTS-GCN human motion prediction model.
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FIGURE 1. Framework of the STS-GCN model.

The main contributions of this paper include the following:
(1) In order to verify the decoding ability of the

STS-GCN decoder, the MTCN decoder was designed, and
the MSTS-GCN human motion prediction model was con-
structed, which improved some prediction results, and proved
that the decoder is an important factor affecting the accuracy
of human motion prediction;

(2) In order to reduce the error of humanmotion prediction,
the GRU-TCN decoder is designed, and the NSTS-GCN
human motion prediction model is constructed, realizing the
transmission and utilization of motion sequence features in
a larger time perception field, and obtaining more abundant
human motion features;

(3) To verify the effectiveness of NSTS-GCN, we tested it
in the Human3.6M dataset, AMASS, and 3DPWdatasets and
demonstrated that the model can effectively reduce the error
of human motion prediction, reducing the error at each time
node.

II. METHOD
Human motion prediction methods output predicted future
human motion sequences based on the observed his-
torical motion sequences. Two famous frameworks of
encoder-decoder and autoencoder were usually used in this
field. The encoder-decoder framework is typically used for
Sequence-to-Sequence (Seq2Seq) tasks, where the input
sequence is encoded into a fixed-length vector. Then, the
decoder converts that vector into the target sequence. In con-
trast, autoencoders are usually used for dimensionality
reduction and feature learning, which usually do not involve
sequence data processing, but use structures such as fully
connected layers to process the input data. Hence, most
graph convolution-based human motion prediction methods
use encoder-decoder architecture [32], [33], which encodes

the spatio-temporal information of motion sequences by an
encoder, and then decodes the resulting feature vectors to
predict future motion sequences.

The traditional decoder cannot utilize more effective infor-
mation in the decoding process due to the defect of a
single structure, so it is still necessary to construct a novel
decoder to obtain the deep features of historical motion
sequences and reduce the error of human motion predic-
tion. This paper takes the STS-GCN model as the basis,
by designing a decoder architecture based on multi-scale
temporal convolution to obtain features at different scales,
which can reduce the prediction error at some time nodes.
Furthermore, a GRU-TCN decoder was designed, which
combines the advantages of GRU and TCN in process-
ing motion sequence features to obtain a lower prediction
error.

A. STS-GCN MODEL
STS-GCN [30] is a human motion prediction model based on
the Encoder-Decoder framework. The input human motion
history sequence is encoded by the Encoder and converted
into a feature vector of a specific length. Then, the extracted
feature vector is decoded by the Decoder to obtain the
predicted motion sequence. The flow framework of the
STS-GCN model is shown in Figure 1, consisting of an
encoder and 4-layers of temporal convolutional modules. The
detailed procedure is as follows.

The input data of the STS-GCNmodel is a T -frame histor-
ical motion sequence represented by 4in = [X1, X2, . . . , XT ],
where Xi ∈ R3×V is a vector consisting of 3D coordinates or
angles of all human joints in frame i. The number of joints
in this step depends on the selected data set. Suppose we
selected the AMASS dataset, the joint number is decided
as 18.
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FIGURE 2. Structure of the TCN decoder.

The encoder of STS-GCN uses temporal separable graph
convolution to model the input 4in and encodes the motion
sequence into a graph structure G = (v, ε). When encoding
all joint information is completed, it decoded by the TCN
decoder to obtain the joint coordinate information of the
predicted skeleton sequence and output the human motion
prediction sequence for the next K -frames, which is repre-
sented by out 4out = [XT+1, XT+2, . . . , XT+K ].

The encoder of the STS-GCN model uses a 4-layer
spatio-temporal separable graph convolution with residual
connected Parametric Rectified Linear Unit (PReLU) acti-
vation function, to obtain rich motion features in the spatial
and temporal domains through the separable graph convo-
lution, respectively. The decoder of the STS-GCN model
uses a TCN module, which has a simple structure and can
receive sequence inputs of any length and produce output
features of the same length. The decoder’s specific struc-
ture is shown in Figure 2. The historical human motion
sequences are modeled by 4-layer temporal separable graph
convolution, and after obtaining the encoded human motion
sequence information, a temporal convolutional decoder con-
sisting of 4 TCN modules with the same structure is used to
map the encoded output information to the future time range
and predict the future 3D coordinates or angles of human
joints.

From Figure 2, it is clearly found that the decoder
uses 4 TCN modules with the same architecture, each of
which contains a two-dimensional convolution with a ker-
nel size of [3, 3], a BN layer, and a Dropout layer, with
BN used to speed up the convergence of the network and
Dropout used to prevent model overfitting. Each module is
followed by a PReLU activation function to further improve
the model fitting ability. More accurate human motion fea-
tures can be extracted through the iterative motion of the four

temporal convolution modules, and the predicted future
motion sequences will be output.

Since the four temporal convolutions are the same size, the
decoder convolutions’ receptive field is single, which cannot
extract rich feature correlations between different motion
sequences. It also lacks the feature interaction between dif-
ferent timing information. To solve the above problems, this
study proposes the multi-scale decoder MSTS-GCN to real-
ize feature fusion between different receptive field ranges.

B. MSTS-GCN MODEL WITH THE INTRODUCTION OF
MTCN DECODER
To improve the performance of human motion prediction,
most researchers have devoted themselves to making full use
of relevant spatial and temporal information in the process
of encoding historical motion sequences, ignoring the sub-
sequent process of obtaining predicted motion sequences by
decoding. How to effectively utilize the encoding information
obtained from the encoder to obtain humanmotion sequences
with smaller errors by an efficient decoder needs further
study.

The STS-GCN model’s decoder only uses four identical
[3, 3] temporal convolutional layers for decoding motion
sequences, which have a simple structure and a small number
of parameters. The decoding process has a small convolu-
tional field of perception, can only correlate the previous
frame and the next frame, and lacks remote information
interaction between motion sequences. This study resets the
convolution kernel of each layer of temporal convolution in
the TCN decoder and establishes the MTCN decoder to solve
the problem that the TCN cannot obtain effective remote
correlation information, and the MTCN structure is shown
in Figure 3.
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FIGURE 3. Structure of MTCN decoder.

The MTCN sets the convolution kernel sizes of the first
to fourth TCN modules to [3, 3], [5, 5], [7, 7], and [3, 3],
respectively, to equip the network with flexible temporal
perceptual field ranges and thus obtain motion features at
different scales. For the motion sequence information input
to the decoder, the first TCN module keeps the original
convolution kernel setting and obtains the neighboring valid
information through smaller convolution kernels, to obtain
highly correlated motion features. The second and third TCN
modules use incremental convolution kernel sizes to obtain
relevant motion information at farther distances. Finally,
the [3, 3] convolution kernels are used to aggregate the
key information of the before and after frames to obtain
more effective decoding data. The MTCN decoder is applied
to the STS-GCN model, and the MSTS-GCN model is
constructed.

Compared to the performance of two decoders, the major
drawback of the traditional TCN decoder is the single
receptive field. It also caused the extraction of the feature
associations between motion sequences poorly. Hence, it still
has a motivation to improve its performance. The improved
MTCN owns a multi-scale temporal receptive field range,
which can effectively realize the feature interaction between
different temporal information and obtain more effective
decoding information.

To further investigate its advantages, we conducted the
experiments. Through the experiments, it can be seen that
the MSTS-GCN model based on MTCN achieves good
results in some of the metrics of the human motion
prediction task, which indicates that the performance of
the decoder is an important factor leading to the error,
and the prediction error can be effectively reduced by
improving the results of the decoder, but the MSTS-GCN
model still needs to be improved in some performance
metrics.

In the MSTS-GCN model, only on multi-scale time con-
volution feature interaction between frames is limited. with
the deepening of network layers, the feature information after
multiple extractions will cause inevitable losses, especially
under the premise of long sequence information, the infor-
mation loss is more obvious. In order to make the network
retain more features in the long sequence information, this
study proposed an NSTS-GCN fusion GRU decoder model.

C. NSTS-GCN MODEL WITH THE INTRODUCTION OF
GRU-TCN DECODER
TCN has achieved excellent performance in sequence model-
ing tasks because they allow parallel computation, but TCN
can only utilize nearest-neighbor sequence information, and
the receptive field size is limited to capture relevant infor-
mation of arbitrary length. GRU as a variant of RNN, can
effectively correlate long-time sequence information, which
makes up for the deficiency of RNNs that are prone to gradi-
ent disappearance or explosion and is a common structure for
today’s sequence modeling tasks.

The improved MTCN decoder demonstrates that a
multi-scale temporal convolutional decoder could improve
motion sequence prediction. Based on this experience,
we combine the advantages of TCN and GRU to construct
a GRU-TCN decoder that fuses RNN and temporal con-
volutional neural networks. Then, the proposed GRU-TCN
decoder was applied to STS-GCN networks to construct the
NSTS-GCN human motion prediction model further.

Gated Recurrent Unit (GRU) [31] can obtain the semantic
correlation between long-term time series efficiently and sup-
press gradient dispersion or explosion phenomenon, which
has a simple structure and low training difficulty. GRU has
two inputs (the input of the current time step and the implied
output of the previous time step), two outputs (the output
of the current time step and the implied output passed to
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the next time step), and a core structure consisting of two
gating mechanisms: update gate and reset gate. The internal
operation flow of basic GRU is shown in Figure 4 [31].

FIGURE 4. Flowchart of GRU [31].

The GRU can capture temporal correlations of varying
scales in motion sequences, use update gates for forgetting
and selecting memory information, and use reset gates to
control the output information of the gated loop unit. The
advantage of update and reset gates is the ability to always
retain long-term sequence information without eliminating
historical memory due to time change or forgetting useless
information at the current stage.

Although LSTM can effectively capture the semantic asso-
ciation between long sequences and suppress the gradient
disappearance or explosion phenomenon, its internal struc-
ture is relatively complex, and its training efficiency is low.
To solve the above problem, the GRU structure is proposed.
The GRU has the same effect as LSTM, but its structure
and calculation are more straightforward and more accessible
to train than the LSTM, which can significantly improve
training efficiency.

WhenGRU is applied to humanmotion prediction, its input
information contains the output motion sequence information
ht−1 of the previous node and the input motion sequence
information xt of the current node. The GRU firstly splices
xt with ht−1 for different linear transformations and activates
with the Sigmoid function to obtain the update gate value zt
and the reset gate value rt . Then, the product calculation of
rt and ht−1 is carried out element by element, which controls
the utilization of the implied motion sequence information
ht−1 at the previous node. Next, the reset ht−1 is linearly
transformed by splicing it with xt and activated by the tanh
function to scale the data to the range of -1∼1, to obtain
new implicit motion sequence information h̃t . Finally, the
value zt of the update gate is applied to h̃t and 1 − zt is
applied to the implied motion sequence information ht−1 at
the previous time node, and the two results obtained by the
update gate are summed to obtain the final output, which
is the implied motion sequence information ht transmitted
to the next node. The whole process preserves the previous
motion sequence information by the update gate zt , and when
the update gate value zt tends to 1, the result without the

motion sequence information of the previous node is output,
and the implied motion sequence information ht transmitted
to the next node is only related to the input xt , the implied
motion sequence information ht−1 passed to the previous
node is output when the update gate value zt tends to 0.
The calculation principle [31] of GRU can be expressed as
follows:

zt = σ (Wz · [ht−1, xt ]) (1)

rt = σ (Wr · [ht−1, xt ]) (2)

h̃t = tanh(W · [rt ⊙ ht−1, xt ]) (3)

ht = (1 − zt ) ⊙ ht−1 + zt ⊙ h̃t (4)

where xt is the input value of GRU; zt is the update gate value,
zt has a value range of 0∼1, and its value near 1 means more
data are retained, while near 0meansmore data are discarded;
Wz is the update gate weight matrix; rt is the reset gate value;
Wr is the reset gate weight matrix; σ is the Sigmoid activation
function; ht−1 is the implied state of the previous time step;
h̃t is the transition current node implied state;W is the weight
matrix; ht is the final output implied state of the current
node; ⊙ is the element-by-element product operation of two
homotypic matrices.

The GRU enables the implied motion sequence informa-
tion output by the human motion prediction model at the
previous time step to be used as part of the input at the current
time step, i.e., in addition to the normal input information,
the input at the current time step also contains the implied
motion sequence information of the previous time step, which
positively influences the output at the current time step by
using the forward motion sequence information.

The decoding process of human motion prediction can be
regarded as a time series problem. When decoding motion
sequence information, it is necessary to repeatedly utilize the
motion sequence information obtained by encoding, and it
is difficult to obtain sufficient motion sequence features by
relying on temporal convolutional layers alone. TCN has the
feature of parallel processing data with low memory occu-
pation but is still inherently limited by the perceptual field
size of convolutional networks, which only utilize the last
module’s output information, and cannot grasp and efficiently
utilize the information related to longer distances. GRU as a
method specifically made for processing time series data, has
a powerful nonlinear fitting capability and can extract the data
features of each output layer well through the cyclic mech-
anism, especially more effective for long-term time series.
We introduce GRU based on the TCN decoder to build a
GRU-TCN decoder, which can deeply utilize the information
encoded by the STS-GCN encoder to obtain better human
motion prediction results. The framework of the GRU-TCN
decoder is shown in Figure 5.

After each TCN module extracts the corresponding time
series information, the GRU selectively stores the motion
features outputted by each TCN module. The third TCN
module of the original decoder can only receive the output
information of the second TCNmodule, but after introducing
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FIGURE 5. Framework of GRU-TCN decoder.

FIGURE 6. NSTS-GCN network flow diagram.

GRU, GRU can selectively store the output information of
the first module as the implied state and use it as the input
of the third module together with the output information of
the second TCN module, to enrich the feature information
received by the third module, and the fourth module and so
on, thus enhance the decoder’s ability to correlate long-range
sequence information and better decode to obtain future
motion sequences.

The GRU-TCN decoder was applied to the original
STS-GCN network as a way to construct the NSTS-GCN
human motion prediction model, and the flow diagram of
NSTS-GCN is shown in Figure 6.

Figure 6 depicts the overall process of the proposed NSTS-
GCN. The detailed steps are given as follows:

Step 1: A piece of skeletal sequence data from human
movement is fed into the encoder NSTS-GCN.
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Step 2: NSTS-GCN first skeleton encodes the input
motion sequence through a 4-layer spatio-temporal separable
encoder. The motion information of spatial dimension and
temporal dimension is obtained, respectively. Furthermore,
the obtained information is encoded into a feature vector.

Step 3: Based on the acquired feature vector, the new
GRU-TCN decoder is used to infer the possible motion trend
of the future skeleton, and the predicted motion sequence is
obtained.

The traditional human motion prediction model STS-GCN
has inherent training difficulties when dealing with human
motion sequence data of a high dimensional and highly
random nature. Therefore, the use of GRU allows further
information propagation between different nodes for the
encoded historical motion states of the encoder, retaining
the current input motion sequence information at each step
of the temporal convolutional neural network and adding
new content to it, while forgetting all past states that no
longer add additional information to the current state, thus
reducing the quantization loss of short-term prediction and
achieving reasonable NSTS-GCN facilitates both short-term
and long-term human motion prediction by combining TCN
and GRU to retain valid implicit motion information while
processing motion sequence features in parallel.

III. EXPERIMENTS
To validate the performance of the proposed NSTS-
GCN model, it was experimentally on three large-scale
and challenging datasets, which were Human3.6M [34],
AMASS [35], and 3DPW [36]. Considering the characteris-
tics of the Human3.6M and AMASS datasets, each dataset
has its own models. To further validate the generalization
ability of the proposed model, the model trained by AMASS
was used to predict human motions.

The graph encoder of the NSTS-GCN model retains the
design of the STS-GCN model and consists of four layers
of STS-GCN spatio-temporal separable graph convolution,
each layer differing only in the number of channels C(l): the
first layer from 3 to 64, the second from 64 to 32, the third
from 32 to 64, and the last from 64 to 3. Each layer of the
graph convolutional encoder adopts batch normalization and
residual connection.

A. DATASET SETTING AND EVALUATION INDEX
1) HUMAN MOTION PREDICTION ON THE HUMAN3.6M
DATASET
For the human motion prediction task, the Human3.6M
dataset is divided into training, validation, and test sets.

Human3.6M is a huge human motion prediction dataset
consisting of 3.6 million 3D human poses and corresponding
images, in which eleven professional actors (six males and
five females) perform 17 scenes of motions (e.g., walking,
eating, etc.) from four different viewpoints in an indoor
experimental environment, and only 15 of these motions were
selected according to the STS-GCN model setup, with each

actor’s body skeleton being represented as 32 key points.
Actors 1, 6, 7, 8, and 9 (S1, S6, S7, S8, S9) were used for
training, actor 11 (S11) for validation, and actor 5 (S5) for
testing. The optimal NSTS-GCN human motion prediction
model trained on the training set is validated and tested on the
validation and test sets to evaluate the model performance.

For prediction based on 3D joint coordinates, the 22 key
points annotated with the dataset were selected according
to the STS-GCN model, and the Mean Per Joint Position
Error (MPJPE) proposed in Human3.6M was used as the loss
function, and the Euclidean distance between each predicted
3D joint position and the real joint position is calculated, and
the error is measured in millimeters (mm). The MPJPE is
calculated as:

MPJPE =
1

V (T + K )

∑T+K

k=1

∑V

v=1
∥ x̂vk − xvk ∥2 (5)

where V is the number of key points of the human skele-
ton; T is the number of observed frames; K is the number
of predicted frames;x̂vk ∈ R3 is the predicted v-th joint
coordinate of the k-th frame; xvk ∈ R3 is the real v-th
joint coordinate of the k-th frame. For prediction based on
the angle representation, the 16 key points of the dataset
labeled according to the STS-GCN model are selected, and
the average L1 distance between the predicted obtained joint
angle and the real joint angle is used as the loss function,
i.e., Mean Angle Error (MAE), and the measured angle error
is measured in degrees (◦). To facilitate the comparison of
results with other studies, we also adopt this unit. The MAE
error is calculated as follows:

MAE =
1

V (T + K )

∑T+K

k=1

∑V

v=1
|x̂vk − xvk | (6)

where x̂vk ∈ R3 is the angle of the v-th joint in the k-th frame
predicted in the exponential mapping representation; xvk ∈

R3 is the true value of the v-th joint angle in the k-th frame.

2) HUMAN MOTION PREDICTION ON THE AMASS DATASET
A total of eighteen existing motion capture datasets were
collected in the AMASS dataset, and only thirteen of them
were selected according to the original STS-GCN model.
Eight of the thirteen datasets were used for training, four
for validation, and one for testing (the dataset used for test-
ing was named BMLrub). The AMASS dataset consisted of
forty human subjects who performed walking movements,
and the human body of each person’s pose was represented
by 52 joints, including 22 body joints and 30 hand joints,
following the STS-GCN model focusing only on body joints,
dropping four static joints, and predicting a human motion
sequence containing 18 body joints.

3) HUMAN MOTION PREDICTION ON THE 3DPW DATASET
The 3DPW dataset consists of 60 video sequences cap-
tured by cell phone cameras with 51,000 frames, including
indoor and outdoor activities. The generalizability of the
NSTS-GCN model obtained by training from the AMASS
dataset is tested using 3DPW.

VOLUME 11, 2023 115133



R. Li et al.: Human Motion Prediction Based on Space-Time-Separable Graph Convolutional Network

FIGURE 7. Comparison of visual results of eating motion prediction sequences.

TABLE 1. The number of frames in a motion sequence in relation to time.

TABLE 2. MPJPE index comparison between NSTS-GCN and STS-GCN models in eating motion.

B. DATASET RESULTS
Quantitative and qualitative evaluation of the performance of
the NSTS-GCN model and other advanced human motion
prediction models on short-term predictions of less than
500 milliseconds (ms) and long-term predictions of greater
than 500 milliseconds (ms). The comparison models include
the ConvSeq2Seq [37] model that uses convolutional lay-
ers to encode long-term and short-term historical motion
sequences separately; the LTD-X-Y [38] model using DCT
to encode the frequency of video sequences (X denotes the
number of observed frames and Y denotes the number of
predicted frames); DCT-RNN-GCN [39] model that extends
based on the LTD-X-Y with RNN and motion attention
mechanism; BC-WGAIL-div [40] model with reinforcement
learning; and STS-GCN, the base model adopted by NSTS-
GCN, which uses temporally separable graph convolution for
human motion prediction for the first time.

All algorithms use 10 frames of motion sequences as
input for a total of 400ms, except for LTD, which uses
multiple inputs, predicting 2∼10 frames (80∼400ms) of
human motion sequences in the future is a short-term predic-
tion, and predicting 14∼25 frames (560∼1000ms) of motion
sequences in the future is a long-term prediction. For the
sake of comparison, all algorithms use accepted standards for
action prediction, The correspondence between the number of
frames ofmotion sequences and time is shown in Table 1 [30].

The NSTS-GCN model is realized based on Pytorch1.7.1
deep learning framework. All the experiments use a single
NVIDIA GeForce GTX 1050Ti graphics card, 4G video
memory, CPU Intel (R) Core (TM) i5-2320 CPU@3.00GHz,
and a Python version of 3.7.0. Themodel was optimized using
the Adam optimizer for 50 epochs, the initial learning rate
was set to 0.01, and the learning rate was reduced by 1/10
for every 5 epochs after the 20th epoch. The model uses
10 frames (400ms) of human motion sequences as obser-
vations to predict 25 frames (1000ms) of human motion
sequences in the future.

1) HUMAN3.6M DATASET RESULTS
Table 2 and Figure 7 show the quantitative and qualitative
prediction results of the eating motion in the Human3.6M
test set, respectively. The quantitative evaluation gives the
model’s MPJPE joint coordinate prediction error at different
time nodes (80ms, 160ms, 320ms, 400ms, 560ms, 720ms,
880ms, and 1000ms) for each motion comparison results,
and qualitative evaluation gives the model prediction results
comparison for motion sequences within 0∼1000ms.

As can be seen from Table 2, NSTS-GCN has reduced the
joint coordinate error at each time node of motion prediction
compared to STS-GCN, with the largest reduction of 4.1mm
in MPJPE error at the 320ms and the smallest reduction
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FIGURE 8. Comparison of visual results of posing motion prediction sequences.

TABLE 3. MPJPE index comparison between NSTS-GCN and STS-GCN models in posing motion.

TABLE 4. Average MPJPE index comparison of human motion prediction model on Human3.6M test set.

of 0.8mm in MPJPE error at the 80ms, with an average error
of 2.25mm at all moments.

The first row of motion sequences in Figure 7 shows
the true human pose, the second row shows the predicted
results of the STS-GCN model, and the third row shows
the predicted results of the NSTS-GCN model. It can be
seen that the coordinate positions predicted by NSTS-GCN
and STS-GCN are almost the same before the 320ms,
which are consistent with the real values of the joints,
but between 320ms and 720ms, the leg position and arm
position predicted by NSTS-GCN and STS-GCN gradually
deviate from the real positions, and after the 720ms, com-
pared with STS-GCN, the NSTS-GCN predicted the leg
position and arm position closer to the real position than
STS-GCN, which proved the validity of the model motion
prediction.

Table 3 and Figure 8 show the quantitative and qualitative
prediction results of the Human3.6M test focused on posing
movements, respectively. The comparison of the results of
the two networks illustrates the superiority of our proposed
NSTS-GSN model.

From Table 3, it can be seen that the NSTS-GCN has a
larger reduction in joint coordinate error compared to the
STS-GCN model in both motion sequence predictions, espe-
cially in the long-term prediction phase, with the smallest
reduction in MPJPE error of 1.7mm at the 80ms and the
largest reduction in MPJPE error of 17.0mm at the 1000ms,
with the average error at all moments of 8.2mm.

Due to the large lateral amplitude of the pose motion,
to better present the prediction results, except for the 1st
frame and the 25th frame, Figure 8 only lists the even frames
of the motion sequence, i.e., between the 160ms and 320ms
including the 5th, 6th, 7th and 8th frames, Figure 8 only gives
the 6th and 8th frames, and so on for the remaining frames.
From Figure 8, it can be seen that the prediction results of
NSTS-GCN and STS-GCN models are approximately the
same before the 160ms, and after the 160ms NSTS-GCN
gradually shows better prediction results. For the arm posi-
tion of the pose motion, NSTS-GCN can generate prediction
results with smaller errors compared with STS-GCN.

Table 4 statistically shows the results of NSTS-GCN and
MSTS-GCN human motion prediction models with other
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TABLE 5. Average MAE index comparison of human motion prediction model on Human3.6M test set.

TABLE 6. Average MPJPE index comparison of human motion prediction model on BMLrub test set.

advanced models on the Human3.6M test set, which shows
the mean MPJPE comparison for 15 motions in the test set.

From Table 4, it can be learned that when tested on the
Human3.6M test set, the MPJPE error of the MSTS-GCN
model with the MTCN decoder decreased compared to both
the STS-GCN and other human motion prediction models at
prediction sequence lengths of 320ms (frame 8) and above
and at the 80ms (frame 2) and 160ms (frame 4) of the short-
term prediction, the prediction error increased compared
to STS-GCN. The NSTS-GCN model with the GRU-TCN
temporal convolution decoder achieves the lowest prediction
error at all frames compared to the STS-GCN, MSTS-GCN,
and other human motion prediction models. Compared with
the STS-GCN model, the MPJPE errors at the 80ms (frame
2) to the 1000ms (frame 25) are reduced by 1.2mm, 1.6mm,
4.3mm, 3.1mm, 4.0mm, 3.1mm, 3.0mm, and 4.0mm, respec-
tively, and the average errors at eight different moments are
reduced by 3.0mm, which can be seen that the NSTS- GCN
model performs better in long-term prediction.

A comparison of the MAE of the NSTS-GCN and MSTS-
GCN human motion prediction models with other advanced
models for 15 motions on the Human3.6M test set is shown
in Table 5.

As can be seen from Table 5, the MAE metric on the
Human3.6M test set, MSTS-GCN only has a slight advantage
in the long-term prediction at greater than 500ms, and the
short-term prediction error at less than 500ms has increased
compared to the STS-GCN model.

The MAE of the NSTS-GCNmodel was reduced by 0.01◦,
0.02◦, 0.03◦, 0.01◦, 0.05◦, 0.02◦, and 0.04◦ for the rest of the
prediction frames, except for the 80ms when the same error

value was maintained, which proved the effectiveness of the
NSTS-GCN model for human motion prediction.

2) AMASS DATASET RESULTS
The human motion prediction models were trained on the
AMASS dataset and tested for performance on the BMLrub
sub-dataset. Table 6 shows the comparison of short-term
prediction and long-term prediction average MPJPE results
based on 3D coordinates for different human motion predic-
tion models on the BMLrub test set.

As can be learned from Table 6, when tested on the BML-
rub, the MPJPE index of the MSTS-GCN model with the
MTCN decoder is reduced compared to the STS-GCNmodel
except for the 80ms, 160ms, and 400ms. The NSTS-GCN
model with the GRU-TCN decoder increases the MPJPE by
0.4mm compared to the STS-GCN only at 400ms (frame 10),
has the same error value at 560ms (frame 14), and decreases
the MPJPE values at other frames by 1.6mm, 0.1mm, 0.8mm,
0.5mm, 0.5mm, 0.5mm, 0.1mm, and the average error at
eight different moments was reduced by 0.4mm, proving that
the NSTS-GCN model has good motion prediction perfor-
mance. Although MSTS-GCN has slightly better long-term
prediction than NSTS-GCN, it is known collectively that the
NSTS-GCN model has more comprehensive human motion
prediction performance.

3) 3DPW DATASET RESULTS
The best humanmotion predictionmodel obtained by training
the AMASS dataset was tested on the 3DPW dataset to
examine the generalization performance of the model Table 7
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TABLE 7. Average MPJPE index comparison of human motion prediction model on 3DPW test set.

shows the test results of the human motion prediction model
on the 3DPW dataset.

As can be seen from Table 7, the MPJPE error metrics
of the MSTS-GCN and NSTS-GCN models on the 3DPW
test set are generally higher than those of the STS-GCN
model, but compared with other advanced human motion
prediction models, the NSTS-GCN model excels in the
MPJPE error metrics corresponding to short-term predic-
tion and long-term prediction, achieving a more desirable
human motion prediction This indicates that the NSTS-GCN
model is a good predictor of human movement. This indi-
cates that the NSTS-GCN model has certain advantages
in capturing motion coherence and long-term dependence,
and can better model and predict the temporal evolution of
human motion sequences. However, the overall prediction
effect could be better than the original model. On the one
hand, the data set includes indoor and outdoor environments.
It is not only collected in a single laboratory environment,
so the data set has higher requirements for the model’s pre-
diction performance. On the other hand, the model tested
on this dataset is trained on the AMASS dataset, and the
prediction has a specific difficulty. The model’s general-
ization decreases after using GRU to optimize the original
network.

In summary, the NSTS-GCN model with GRU-TCN
decoder shows good performance in motion sequence predic-
tion by testing on the Human3.6M test set, BMLrub test set,
and 3DPW datasets, it is a good human motion prediction
model.

IV. CONCLUSION
Due to the single convolution receptive field of the STS-GCN
decoder, the feature association between different motion
sequences cannot be well extracted, and the feature inter-
action during the extended timing information needs to
be improved. To solve the problem, this study proposed
the multi-scale time convolution decoder MTCN to obtain
the motion sequence information of different time recep-
tive fields and constructed the MSTS-GCN model. This
model demonstrated that the decoder’s performance has an
essential impact on the human prediction results. Unfortu-
nately, MSTS-GCN is also challenging to effectively obtain
short-term motion sequence information. However, GRU

can remember the long-term relevant information of the
motion sequence. Hence combining the advantages of tem-
poral convolution TCN and GRU, we design a GRU-TCN
decoder, which captures richer motion sequence features, the
NSTS-GCNhumanmotion predictionmodel was constructed
and tested on the Human3.6M, BMLrub, and 3DPW datasets.
The experimental results on the Human3.6M test set showed
that the NSTS-GCN model decreased on the MPJPE and
MAE prediction index compared with the STS-GCN. The
results of the BMLrub test set show that the NSTS-GCN
only increases the MPJPE error at 400ms by 0.4mm, and the
prediction errors at the rest of the time nodes are reduced. The
results of the 3DPW test set show that the prediction error of
NSTS-GCN increases slightly. By comparing the quantitative
and qualitative results with other human motion prediction
models, it is clear that NSTS-GCN is an effective human
motion prediction model. NSTS-GCN adopts an encoder-
decoder framework, which can utilize less effective action
information and cannot achieve efficient human motion pre-
diction. Subsequent consideration can be given to human
motion prediction based on human intention, increasing the
input motion prediction model to further improve human
motion prediction performance. Despite the advantages of
NSTS-GCN, several disadvantages exist when using this
model to predict human motion. Due to the use of GRU to
extract associations between longer motion sequences, the
generalization of the model has decreased. Moreover, the
generalization performance of the new model still has
the motivation to further improve.
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