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ABSTRACT Brain tumors present a significant medical concern, posing challenges in both diagnosis and
treatment. Deep learning has emerged as an evolving technique for automating the diagnostic process for
brain tumors. This research paper introduces a novel deep-learning framework designed explicitly for brain
tumor diagnosis. The framework encompasses various tasks: tumor detection, classification, segmentation,
and survival rate prediction. The framework was applied to the BraTS dataset, an extensive collection of
brain tumor images, to evaluate its effectiveness. The proposed workflow initiates with data acquisition,
followed by an enhancement of this data using a Convolutional Normalized Mean Filter (CNMF) during
pre-processing. This prepares the data for the multi-class classification performed using the novel DBT-CNN
classifier model. The RU-Net2+ model is employed for precise tumor demarcation, yielding segmented
regions from which features are subsequently extracted utilizing the Cox model. These extracted features
play a pivotal role in the final step, where the survival rate of patients is predicted using a logistic regression
model. The experimental results showcased the exceptional performance of the proposed framework,
surpassing current benchmarks in classification accuracy, tumor segmentation precision, and survival rate
prediction. For high-grade glioma (HGG) tumors, the framework achieved an impressive classification
accuracy of 99.51%, while for low-grade glioma (LGG) tumors, the accuracy reached 99.28%. The accuracy
of tumor segmentation stood at 98.39% for HGG tumors and 99.1% for LGG tumors. The RU-Net2+
algorithm accurately predicts patient survival rates: 85.71% long-term, 72.72% medium-term, and 61.54%
short-term, with corresponding Mean Squared Errors of 0.13, 0.21, and 0.31. These results provide valuable
insights for medical professionals making brain tumor treatment decisions. Additionally, the framework
shows promise for automating brain tumor diagnosis and enhancing patient care.

INDEX TERMS Brain tumor, MRI images, deep learning, machine learning, CNMF, RU-Net2+,
DBT-CNN, BraTs.

I. INTRODUCTION powerful tools in medical imaging analysis [2]. These models

Brain tumors pose a significant health concern and can cause
severe patient consequences. It is crucial to promptly and pre-
cisely diagnose brain tumors to facilitate effective treatment
strategies [1]. The conventional approaches to segmenting,
classifying, and predicting the risks associated with brain
tumors have encountered limitations in accuracy and effi-
ciency. Deep learning-based models have recently emerged as

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhan-Li Sun

can significantly improve the accuracy and efficiency of brain
tumor diagnosis. However, significant challenges hinder
their effective deployment in clinical settings. These chal-
lenges include data quality and availability, computational
complexity, inter-modality variations, model generalization,
overfitting, interpretability, temporal dynamics, annotation,
labeling issues, integration into clinical workflows, and ethi-
cal considerations, including data privacy and biases [3].

In this environment, there’s a pressing requirement for an
advanced deep learning model that can adeptly and precisely
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handle the segmentation, classification, and risk prediction
of brain tumors. The model must be robust to variations in
data, capable of handling high-dimensional data, and adept
at capturing intricate tumor structures. Furthermore, it should
be interpretable, scalable, and easily integrated into clinical
workflows. Addressing these requirements is essential for
providing timely and effective care to patients with brain
tumors.

The motivation behind this research is multifold. First,
there is an imperative need to improve the early detection
and accurate classification of brain tumors, which can sig-
nificantly enhance patients’ prognosis and quality of life.
Second, developing more sophisticated models to treat a
multiclass variety of tumors is needed. Additionally, reducing
the computational costs associated with these models is nec-
essary to make them more accessible and feasible in clinical
settings [4]. Finally, predicting patient outcomes and survival
rates can be invaluable for personalized treatment plans.

The Brain Tumor Segmentation (BraTS) dataset [5] is
a vital resource in the research community, comprising a
diverse range of multimodal magnetic resonance imaging
(MRI) scans for the detection, segmentation, and classifi-
cation of brain tumors. It offers high-quality, anonymized,
standardized data, ideal for various applications, including
deep learning models for brain tumor analysis. The dataset
embraces multiple MRI modalities such as T1, T1Gd (T1
post-contrast gadolinium-enhanced), T2, and T2-FLAIR (T2
Fluid Attenuated Inversion Recovery), each contributing
unique tumor characteristics for a comprehensive analysis.
Expert annotations encapsulate the tumor’s entirety, core, and
enhancing regions, enabling detailed multiclass segmenta-
tion tasks. These features form the foundation for the deep
learning-based multimodal diagnosis model. This advanced
technique leverages the rich multimodal data in BraTS for
efficient brain tumor segmentation, classification, and risk
prediction. The model, powered by the multi-faceted view
of the tumor offered by the diverse MRI scans, significantly
bolsters the diagnostic capability compared to unimodal
approaches [6].

Recent studies in [38] and [39] have highlighted the
growing potential of integrated deep learning frameworks,
which not only focus on tumor detection but also extend
their capabilities to segmentation, classification, and even
survival rate prediction. These advancements raise pertinent
questions:

1. Creating a Comprehensive Multimodal Diagnosis
Model: How can we develop a comprehensive deep
learning-based multimodal diagnosis model capable
of simultaneous and precise execution of segmen-
tation, classification, and risk prediction for brain
tumors?

2. Innovative Pre-processing Techniques: Can innovative
pre-processing techniques, such as CNMEF, signifi-
cantly enhance the accuracy and efficiency of brain
tumor diagnosis when combined with state-of-the-art
segmentation and classification models?
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3. Comparative Effectiveness and Computational Effi-
ciency: How does the proposed approach compare in
terms of effectiveness and computational efficiency
with the recent advancements in this field?

To address these questions, this study introduces a
deep-learning framework designed specifically for brain
tumor diagnosis. This framework not only aims to detect
and segment tumors but also classifies them and predicts
patient survival rates. This comprehensive approach could be
pivotal in advancing the capabilities of automated diagnostic
tools, ensuring that medical professionals receive timely and
accurate information critical for patient care.

This research aims to develop a comprehensive deep
learning-based multimodal diagnosis model for brain tumor
segmentation, classification, and risk prediction. The model
will integrate multiple imaging modalities for enhanced
feature extraction. It will utilize advanced preprocessing
techniques like CNMF [7] to address data quality and
inter-modality variations. It will employ sophisticated algo-
rithms such as RU-Net2+ for precise segmentation and
DBT-CNN for detailed classification. Incorporating risk pre-
diction algorithms like the multivariate Cox model and
logistic regression will enable prognostic insights. Moreover,
the research will emphasize ensuring model interpretabil-
ity, rigorous performance evaluation on diverse datasets,
adherence to ethical standards, including data privacy, and
developing a user-friendly interface for seamless clinical inte-
gration, all aiming toward improved diagnostic accuracy and
patient outcomes. The contribution of the research work can
be summarized point-wise as follows

« Developed a novel framework for brain tumor analysis
that integrates detection, segmentation, classification,
and patient risk prediction.

« Incorporated the Cox multivariate model for survivabil-
ity prediction based on extracted features.

o Implemented a specialized RU-Net2+4 model for pre-
cise tumor segmentation and optimized the framework
to improve accuracy, robustness, and computational
efficiency.

o Evaluated the framework’s effectiveness in improving
brain tumor diagnosis and treatment.

The rest of the paper is organized as, section II presents the
related work, section III describes the proposed methodology
in detail i.e., image acquisition, pre-processing, segmenta-
tion, classification of brain tumor, and patient prediction risk.
Performance measures and experimental requirements are
discussed in section IV, and results and comparative analysis
are provided in section V. Section VI concludes the work and
describes future work.

Il. RELATED WORK

In recent years, there has been a growing interest in the use
of deep learning for brain tumor segmentation and classifica-
tion. A number of different approaches have been proposed,
including:
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Deep convolutional neural networks (CNNs) have been
used for both segmentation and classification tasks. CNNs
are able to learn the spatial relationships between different
features in images, which make them well-suited for tasks
such as tumor segmentation. Hybrid approaches that combine
CNNs with other machine learning methods have also been
proposed. These approaches can often achieve better perfor-
mance than CNNs alone. Ensemble methods that combine the
predictions of multiple models have also been shown to be
effective for brain tumor segmentation and classification.

The following are some of the recent papers that have
proposed novel methods for brain tumor segmentation and
classification using deep learning:

Brain tumors are a major cause of cancer-related death
worldwide. Early diagnosis and treatment of brain tumors
is essential for improving patient outcomes. In recent years,
deep learning has emerged as a powerful tool for brain tumor
segmentation and classification.

Several recent studies have applied deep learning to brain
tumor segmentation and classification. In [8], a novel adap-
tive eroded deep convolutional neural network (AEDCNN)
was proposed for brain image segmentation and classifica-
tion. The AEDCNN was used to segment the tumor region
from brain images, and then the Inception ResnetV2 model
was used to classify the tumor as benign or malignant. The
AEDCNN was able to provide distinct segmentation between
meningioma, glioma, and pituitary brain regions. The Incep-
tion ResnetV2 model was able to achieve an accuracy of
97.89% and a precision of 93.27% for tumor classification.

Another recent study, [9], proposed a hybrid deep con-
volutional neural network (CNN) with Nature-inspired
ResNet 152 Transfer Learning (Hyb-DCNN-ResNet 152 TL)
model for brain tumor detection and classification. The
Hyb-DCNN-ResNet 152 TL model was able to achieve an
accuracy of 99.57%, 97.28%, 94.31%, 95.48%, 96.38%,
98.41%, and 96.34% for tumor detection and classification.

A hybrid algorithm for brain tumor segmentation, classi-
fication, and feature extraction was proposed in [10]. The
algorithm uses threshold segmentation and the watershed
algorithm for tumor segmentation, and then different classi-
fiers are used for tumor classification. The algorithm was able
to achieve an accuracy of 90% for tumor classification.

A semantic segmentation method for brain tumor predic-
tion using deep learning was proposed in [11]. The method
uses a convolutional neural network to segment the tumor
region from brain images, and then the tumor region is classi-
fied as benign or malignant. The method was able to achieve
an accuracy of 91.718% for tumor prediction.

A method for 3D brain tumor segmentation and survival
prediction using ensembles of convolutional neural networks
(CNNss) was proposed in [12]. The method uses an ensemble
of asymmetric U-Net-like architectures for tumor segmen-
tation and a DenseNet model for survival prediction. The
method was able to achieve a dice score of 0.82 for tumor
segmentation and an accuracy of 0.57 for survival prediction.
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A triple-intersecting U-Net (TIU-Net) for brain glioma
segmentation was proposed in [13]. The TIU-Net is com-
posed of binary-class segmentation U-Net (BU-Net) and
multi-class segmentation U-Net (MU-Net), in which MU-Net
reuses multi-resolution features from BU-Net. The BU-Net
predicts a segmentation soft mask, which is used to generate
candidate glioma regions that are then segmented by the
MU-Net. An edge branch in the MU-Net is used to enhance
boundary information, which helps to improve segmenta-
tion accuracy. The TIU-Net was evaluated on the BRATS
2015 dataset and achieved state-of-the-art results.

A new method for segmenting brain tumors in MRI images
and classifying them into tumor stages was proposed in [14].
The method uses a weighted fuzzy clustering algorithm,
a deep auto-encoder (DAE), a barnacle mating algorithm
(BMOA), and a random forest (RF) classifier. The DAE is
used to extract features from the MRI images, the BMOA is
used to cluster the features, and the RF classifier is used to
classify the tumor stages. Experimental results on the BRATS
2015 dataset showed that the proposed method achieves high
accuracy in tumor segmentation and classification.

A new method for classifying brain tumors based on
an improved version of the whale optimization algorithm
(WOA) was proposed in [15]. The WOA is a meta-heuristic
algorithm that is used to optimize the parameters of a clas-
sifier. The proposed method uses the WOA to optimize
the parameters of a multilayer perceptron (MLP) classifier.
Experimental results on the BRATS 2015 dataset showed that
the proposed method achieves high accuracy in brain tumor
classification.

A context-aware deep learning approach for brain tumor
segmentation, subtype classification, and survival prediction
was proposed in [16]. The approach uses a 3D context-aware
deep learning model to segment tumors, a regular 3D CNN
to classify tumor subtypes, and a hybrid deep learning and
machine learning method to predict survival. Experimental
results on the BRATS 2019 and CPM-RadPath 2019 datasets
show that the proposed approach achieves state-of-the-art
performance in tumor segmentation, subtype classification,
and survival prediction.

A new semantic segmentation method for brain tumor
prediction using deep learning [11]. The method uses a con-
volutional neural network (CNN) to predict the location and
extent of brain tumors in 3D. The CNN is trained on a dataset
of 3D brain MRI images. Experimental results on the BRATS
2015 dataset show that the proposed method achieves high
accuracy in brain tumor prediction.

A dynamic architecture-based deep learning approach
for glioblastoma brain tumor survival prediction [17]. The
approach uses a combination of MRI images, radiomic fea-
tures, and machine learning algorithms to predict the survival
of patients with glioblastoma. The approach was evaluated on
a dataset of 100 patients and achieved an accuracy of 95%.

A method for brain tumor segmentation using an ensem-
ble of 3D U-Nets and overall survival prediction using
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TABLE 1. Summary of brain tumor segmentation and classification studies.

Tumor Tumor Survival
reference  Method Dataset Used Segmentation Classification Prediction
Accuracy Accuracy Accuracy
[8] AEDCNN + Inception ResnetV?2 N/A Distinet 97.89% N/A
segmentation
[9] Hyb-DCNN-ResNet 152 TL N/A N/A 99.57% N/A
[10] Hybrid algorithm N/A N/A 90% N/A
[11] CNN N/A 91.718% N/A N/A
[12] Ensemble of CNNs N/A 0.82 (Dice score) N/A 0.57
[13] TIU-Net BRATS 2015 Swte-of-the-art N/A N/A
results
i ing + +
[14] ;Vl\‘/’[‘(g;xef ;‘JFZZV clustering + DAE+ pp \7$ 2015 High accuracy High accuracy N/A
[15] Improved WOA + MLP classifier BRATS 2015 N/A High accuracy N/A
3D context-aware deep learning BRATS 2019,
[16] model + 3D CNN + hybrid deep CPM-RadPath State-of-the-art State-of-the-art State-of-the-art
learning and machine learning 2019 performance performance performance
[17] CNN BRATS 2015 High accuracy N/A N/A
Combination of MRI images, 100 atient
[18] radiomic features, and machine dataset p N/A N/A 95%
learning algorithms
[19] E;?;Z::;le of 3D U-Nets + radiomic BraTs 2018 91% N/A 2%
[20] CNN BraTS 2017 91% N/A N/A
Multimodal deep-learning  Two  patient 82% (adult), 75%
(21] framework cohorts N/A N/A (pediatric)

radionics features [18]. The approach uses a combination of
MRI images, 3D U-Nets, and radiomic features to segment
brain tumors and predict patient survival. The approach was
evaluated on the BraTS 2018 dataset and achieved an accu-
racy of 91% for tumor segmentation and 82% for patient
survival prediction.

A brain tumor segmentation method based on deep learn-
ing’s feature representation [19]. The approach uses a
convolutional neural network to extract features from MRI
images and then uses these features to segment the tumor.
The approach was evaluated on the BraTS 2017 dataset and
achieved an accuracy of 91% for tumor segmentation.

A multimodal deep-learning framework to predict progno-
sis in adult and pediatric brain tumors [20]. The framework
fuses histopathology images with gene expression profiles to
predict patient survival. The framework was evaluated on two
cohorts of patients and achieved an accuracy of 82% for adult
patients and 75% for pediatric patients.

The mentioned research work highlights various issues and
concerns pertaining to the segmentation, classification, and
risk prediction of brain tumors using deep learning tech-
niques. These challenges encompass the variability of data,
the ability of models to generalize, the accuracy of seg-
mentation, the performance of classification, the prediction
of survival rates, the interpretability of results, the integra-
tion of multiple modalities, the computational and resource
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requirements, ethical considerations, and the validation of
the proposed model in real-world clinical scenarios. The
proposed work must address these challenges comprehen-
sively to ensure the utilization of representative and diverse
datasets, mitigate the risk of overfitting, enhance the accuracy
of segmentation and classification, improve the prediction
of survival rates, provide interpretability of the model’s out-
puts, integrate information from various modalities, optimize
computational efficiency, adhere to ethical guidelines, and
validate the effectiveness of the model in real-world clini-
cal settings. Successfully overcoming these challenges will
contribute significantly to the development of a robust and
practical deep learning-based multimodal diagnostic model
for the analysis of brain tumors.

IIl. MATERIAL AND METHODS

The brain is a complex organ that governs every process of
the human body thinking, sensibility, remembrance, recall,
affection, manual skills, touch, vision, imagination, desire,
and every other process. Therefore, even minor damage, ill-
ness, or other issues to the brain could have a devastating
effect on a person’s life. They are several brain and nervous
system diseases and disorders caused due to certain issues
that need to be diagnosed in the primary stage since it is a
complex organ that cannot be properly diagnosed and treated
in advanced stages. Among all brain diseases, the most caused
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FIGURE 1. Proposed model architecture for brain tumor diagnosis.

disease is a brain tumor, the growth, and formation of mass
in the brain due to abnormal cell activity. They are various
forms of brain tumors mainly classified into two types based
on their effect benign (non-cancerous) and malignant (cancer-
ous). It can also be classified based on the tumor origin i.e.,
primary (growth in the brain) and metastatic tumors (spread
from other parts). The development of brain tumors can vary
significantly; the growth rate and location of the tumor spec-
ify the effect on brain functioning. The diagnosis depends on
the tumor location/region, size, and type, location therefore,
early and precise detection of the tumor is necessary to save
the patient’s life. The traditional methods usually fail in the
precise location and segmentation of the tumor, to address
this problem a computer-aided diagnosing model is proposed
to identify, segment, and classify the tumor accurately in the
primary stage, and to predict the survival rate of patients as
shown in figure 1.

A. DATASET

In this study, we utilized the publicly available BraTS dataset,
comprising multimodal MRI scans of brain tumors. Specifi-
cally, we employed the BRATS datasets from 2017 [40], 2018
[21], 2019 [22], and 2020 [23] which are recognized for their
effectiveness in deep learning applications. These datasets
encompass two prevalent types of brain tumors, High-Grade
Glioma (HGG) and Low-Grade Glioma (LGG), along with
four distinct MRI scan modalities: T1 (Tissue - longitudinal
relaxation time), T1C (T1 Contrast), T2 (tissue transverse
relaxation time), and FLAIR (Fluid Attention Recovery). For
our experiments, we allocated 70% of the data for training
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and the 20% for testing and remaining 10% for validation.
Detailed dataset information can be found in Table 2, and
sample MRI scans from the BraTS dataset are illustrated in
Figure 3. The Brain Tumor Segmentation (BraTS) dataset has
been a cornerstone in the brain tumor research community
along with the subsequent versions, consists of multimodal
MRI scans that capture different characteristics of brain
tumors.
To elaborate on the four MRI modalities used:

1. T1 (Tissue - longitudinal relaxation time): Provides
detailed anatomical views of the brain and is particu-
larly useful in identifying changes in brain tissue.

2. T1C (T1 Contrast): A contrast-enhanced T1 image,
making abnormalities more apparent and aiding in dis-
cerning them from the surrounding healthy tissues.

3. T2 (tissue transverse relaxation time): Highlights
certain differences between normal and abnormal tis-
sues, particularly useful for detecting edema (fluid) and
inflammations.

4. FLAIR (Fluid Attenuated Inversion Recovery):
Helps in identifying lesions filled with fluid, providing
a more accurate depiction of brain tumors.

The combination of these four modalities ensures a compre-
hensive understanding of brain tumors, from their location
and extent to their interaction with surrounding tissues.

B. IMAGE PRE-PROCESSING
In the medical image analysis domain, image pre-processing
is the crucial step, since the images consist of artifacts, noise,
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TABLE 2. Detail description of datasets, the total number of patients, images, and LGG, HGG cases.

Dataset Name No. of patients Total Images HGG LGG
BraTS’17 285 885 580 275
BraTS’18 266 798 500 298
BraTS’19 285 855 510 345
BraTS’20 335 1005 755 250

Total 3,513 2,345 1,168

a) Tl b) TIC

) )
d) FLAIR

c) T2

FIGURE 2. Sample representation of MRI scans of different modalities T1, T1C, T2, and FLAIR respectively from the BraTS

dataset [23].

Preprocessed Image

Original Image

FIGURE 3. A comparison between the original and processed images
using CNMF.

and intensity variations. Brain MRI scans are used to carry
out the research. Pre-processing is the initial step for the
analysis of MRI scans since careful attention is imperative
while working with brain scans. Since the complete brain
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information is encoded in the intensity variation of MRI
scans, physicians and experts should be familiar with image
contrast features. Therefore, by homogeneity dealing with
medical scans is a challenging task as they are produced with
different magnetic resonance movements. Due to bias field
distortion, the identical tissue’s intensity fluctuates greatly
from time to time; therefore pre-processing the image inten-
sity is the essential step in medical image analysis [24]. The
MRI scans in the BraTS dataset were preprocessed using the
following steps.

In this work a convolutional normalized mean filter
(CNMF) is a type of filter that is used to smooth images
while preserving edges. It is a combination of a convolutional
filter and a normalized mean filter [25], the main drawback
of NMF is regional characteristics like edges existence and
noise intensity, are not considered while noise removal, and
this is addressed by the proposed CNMF by deep convolved
operation. In CNMF convolve filter is applied throughout the
image and all the features of the image are considered while
replacing the noisy pixels of the image. The primary objective
of CNMF is to intensify image quality without modifying the
original image information. The distorted pixels are replaced
by a convolved median value of the original image; the math-
ematical formulation is stated below.

em; = conv.median[I""|i € K - W] (1)

In the above equation (1) cm; represents the convolved
median value, the convolved median value is obtained
through the dot product of convolutional kernel (K) and
window size (W), I"~! is the iteration of image sequence i
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Algorithm 1 Convolutional Normalized Median Filter for
Pre-processing MRI images
Input: input image f(x,y), Convolutional kernel K(x,y),
weight W, normalized weight NW
Applying Convolutional kernel
fory=0to Iy do
for x=0to [, do
sum =0
fori = —htohdo
forj = —wtowdo
sum = sum + k(j, ) X f(x —j,y—1)
end for
end for
g()C, )’) = Sum
end for
end for
Applying a normalized median filter to convolved image
W [0] = W; [O];
for i = 1toL (w) doi + 1 do
NW . [i] = NW [i — 1]+ NW .(index [i])
fori=0tol(x)doi=i+1
if sum (We) [i] = We[l(x — 1)]
median = m(index|i));
return
cm; = Conv.median[ll.”_1 lie K- -W]
end for
end for

Output: Pre-processed image g(x, y)

The CNMF function takes three arguments: the image to be
filtered, the convolutional kernel, and the size of the normal-
ized mean filter. The function first computes the convolution
of the image with the convolutional kernel. The output of
the convolution is then normalized by dividing it by the sum
of the weights in the convolutional kernel. Finally, the nor-
malized output is passed to a normalized mean filter, which
further improves the contrast of the image. The normalize
function is a helper function that is used to normalize the
image. The function takes two arguments: the image to be
normalized and the size of the normalized mean filter. The
function first computes the mean and standard deviation of
the image. The image is then normalized by subtracting the
mean and dividing by the standard deviation.

The main difference between the NMF and CNMF is it
improves the image quality without disturbing the image
information and edges, the convolutional filter in CNMF does
it by eradicating the noise and by applying the convolved filter
as shown in equation (1). After applying the CNMF filter,
images are resized to 256 x 256 dimension by computing
the following equation (2 & 3). Normalization transforms the
image I into a new image Iy with min, and max intensity
values as seen below

I:{X CR"} - {Min, ... Max}Iy :{X<R"}

— {Miny, ... ,Maxy} 2)

VOLUME 11, 2023

Maxy — Miny
Max — Min
where I is the original image, MinMacx is the range of original
image intensity values, MinyMaxy are the intensity values in
the range Miny, . .. ,Maxy and Iy represents the normalized

image.

Iy = (I — Min) +Miny  (3)

C. SEGMENTATION

After obtaining the normalized images segmentation process
is done to detect and segment the tumor region precisely,
i.e., the tumor-affected region can be identified and separated
from the healthy region through segmentation using images.
This work aims to segment brain tumors automatically by
proposing a novel deep learning-based method. A Recurrent
Residual U-Net 2+ (RRUNet2+) encoder-decoder approach
is developed with U-Net as base architecture [26] and the
main components are skip connection, residual unit, and
recurrent unit as explained below.

Algorithm 2 RU-Net2+ network for segmenting pre-
processed images
Input: Pre-processed image g(x, y)
// Encoder
fori=1toNdo
forj=1toMdo
forl=1toLdo
encoder = x_1
// Define encoder block (convolution, max pooling,
ReLU)
model.add(convolution, max_pooling)(ReLU)
// Train the model
model fit(x_train, y_train, val)
end for
end for
end for
decoder = x_2
// Decoder
// Define decoder block (deconvolution, max pooling,
up-sampling, fully connected)
model.add(deconvolution, max_pooling, up-sampling)(fully
connected)
// Train the model
model.fit(x_train, y_train, val)
// Model operations
model_training
model_testing
model_evaluate
model_save

Output: segmented image h(x, y)

Encoder: The encoder block is responsible for extracting
relevant features from the input image.
o The input image is passed through three encoder blocks
(encoder_blockl, encoder_block2, encoder_block3)
sequentially.
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FIGURE 4. Proposed RU-Net2+ architecture for segmentation [26].

« Each encoder block consists of convolutional layers,
max pooling, and ReLU activation function.

o The model is trained using the model.fit() function with
training data (x_train) and corresponding ground truth
labels (y_train).

Decoder: The decoder block takes the intermediate fea-
ture maps from the encoder and reconstructs the segmented
image.

o The decoder block consists of deconvolutional lay-
ers, max pooling, up-sampling, and fully connected
layers.

e The model is trained using the model.fit() function
with the training data (x_train) and ground truth labels
(y_train).

Model Operations: This section includes model training, test-
ing, evaluation, and saving.

« model_training represents the step where the model is
trained on the training data.

« model_testing denotes the testing phase where the model
is applied to unseen data to assess its performance.

« model_evaluate indicates evaluating the model’s perfor-
mance using various metrics.

« model_save is used to save the trained model for future
use.

Output: The segmented image, h(x, y), represents the output
of the model.
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1) U-NET

U-Net is a U-shaped architecture consisting of encoder units,
decoder units, and a bottleneck acting as a concatenation unit
between encoder-decoder as shown in figure 4. The encoder
unit is known as the contracting path consisting of basic
CNN operations like convolution, and max pooling followed
by activation function in the proposed work recurrence is
added to convolutional and activation function [27]. The most
popular activation function in deep networks is ReLLU but a
dead ReLU problem arises with ReLU i.e., neurons below the
threshold value are deactivated from the network, this affects
the model performance to avoid this problem Leaky ReLU
is applied in the proposed model which considers the neuron
with a value near to threshold as follows in equation (4)

f (x) = max(0.1x, x) @)

The main function of the encoder in U-Net is to analyze the
abstract level of an input image and extract features. The
encoder unit in the proposed model consists of 2-sequential
convolutions followed by Leaky ReLU and max pooling
operation, this sequence is iterated thrice. The decoder
unit is known as the expansion path which consists of
de-convolutional units, followed by convolutional, and up-
sampling layers. The encoder unit output is deconvolved
and concatenated to succeeding layers where up-sampling
is done followed by up-convolutional units, and activation
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function, and the network is terminated with the convolution
of 1 x 1 size so that the generated feature map is reduced to
obtain the segmented path. A recurrent connection is added to
all the convolutional, activation, and de-convolutional layers
in the network. The recurrent connection functions as the
control loop between two layers to update the feature map
concerning the corresponding unit output. Mathematically
it is computed as the sum of two independent products
feed-forward unit and the recurrent unit, first, the product of
input and weight of each unit is computed then the sum is
performed as defined in the below equation

Y (1) = (wpe)" a0+ )N 5w (= D+ b ()

(Wge), (wy) are weights of feed-forward and recurrent units,
Xfk, Xrk are inputs of both units respectively. In the case
of tumor segmentation, tissue variations exist and the most
common change in brain tissue is deformation. Therefore,
identification and segmentation of affected region boundaries
is a challenging task as the pixel values of neighboring classes
are almost similar due to pixel variations. This is solved by
applying a loss function that measures the difference between
the target image mask and the predicted image mask as
follows

Ip — Ipl + log (1 + e—’P) if Ip> 0

LU, 1Ip) = , |
—Ipl + log (e + 1) if Ip< 0

Q)

The above equation (6) can be combined into a single
equation as follows

L, Ip) = —]iv1.10g1p+(1—1) -log(1—Ip) )

E1p) = 3 max Up, 0) — IplHog(1+¢ 1) (8)
s N ’

here N represents the total number of images, the target seg-
mented image is represented by L, Ip is the predicted image.
For equation (7) the regularization function ||z|| is added to
determine the energy of the network as shown in equation (8)

2) 2+ SKIP CONNECTION

The skip connections are proposed for above discussed tra-
ditional U-Net model which acts as a medium between the
encoder and decoder the advantage of skip connections is it
enhances the model by providing better significant semantic
information thus enabling the model to more precise seg-
mentation [28]. Each layer proposed U-Net2+ model acts as
a dense layer since skip connections between all the corre-
sponding layers acquire feature maps from all the units in
the network from their corresponding preceding layers. The
working of the U-Net2+ model is it averages outputs of all
the layers and only the optimized segmentation is selected.
The major difference between U-Net and the proposed
U-Net2+ model is it reduces the model loss function through
skip connections as shown in equation (9)

Latm =-S5V (L pieer, £ 2P0y (g
<,p)——ﬁzi:1<§~-ogp+l+},p> ©)
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here L (I,Ip) is the loss function, N is the total number of
classes, target image ground truth is represented by I, and P,
is the predicted probabilities.

3) RESIDUAL UNIT FOR UNET2

To the above UNet2+ model, first residual blocks [29], [30]
are added to enhance the segmentation outcome as residual
mechanisms allow to maintain and keep track of feature
maps of all layers in the network enabling the model to
deep network. These proposed deep RRU-Net2+ model with
recurrence, residual, and skip connections outperformed for
segmenting the tumor region accurately without information
loss and boundaries.

A residual mechanism in the network works along with
skip connections which act like a bridge for passing infor-
mation in between layers and it is mainly applied before
sampling. The main objective of residual skip connections
is to solve the vanishing gradient issue which arises during
network backpropagating as the weights cannot be updated,
therefore decreasing the model performance. The mathemat-
ical formula is as follows

F(x)=H (x) —x (10)

In the above equation, x is the input F (x) are mapping and
H (x) —x is the residual unit.

D. CLASSIFICATION

The segmented output from the proposed RRU-Net2+ model
is fed to the Deep Brain Tumor Convolutional Neural
Network (DBT-CNN) for the multi-classification of brain
tumors. CNN is a type of Feed Forward Neural Network
(FFNN) and Multi-Layer Perceptron (MLP). The convo-
lutional layer, pooling layer, activation layer, and fully
connected layer together form a CNN network. Each layer
consists of neurons that posse’s weights and biases. Inputs
are fed to these neurons where the dot product is computed
followed by any one of the CNN operations concerning the
respective layer. According to the survey CNN has been
proven best for medical image classification and automatic
feature engineering [31], [32]. It is commonly employed in
feature engineering because of its ability to focus on the most
important features and specific weight is shared among all the
layers thus reducing the number of parameters by enhancing
the model performance. Hence, a DBT-CNN model is pro-
posed as shown in figure 5, it consists of a chain of three
convolutional layers, followed by layer-normalization layers,
an activation layer a ReLU, three max-pooling, a dropout
layer to avoid overfitting, and a softmax layer for classifica-
tion.

1) WORKING OF PROPOSED DBT-CNN

The input layer of the architecture acquires and analyses the
input images of 512 x 512 size, then it forwards to the next
layer of the network, the convolutional layer as DBT-CNN
follows the FFNN strategy. The convolutional layer is made
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FIGURE 5. Proposed classification architecture DBT-CNN for multi-class classification of brain tumor.

Algorithm 3 DBT-CNN classifier for multi-class classifica-
tion of brain tumors
Input: pre-processed image dataset, height and width of an
image, and kernel size (h x w X k)
#Convolutional layer feature maps
Fy = I+Fg+2P

S+1
#Layer Normalization
o2 =137 xi(x — u?) Were p; =
#activation
f (x) = max(0, x)
#loss minimization
Ly =73 (t— >0, dwili)
# Max Pooling layer
X = max(Xs’_l)
#Fully connected layer

ro__ 1

+87(W’X’_] +a)

T
#SoftMax layer

d 2l
W=
=

Output: classified brain tumor class

% z;l:l Xi

up of 3 x 3 kernel filters which convolve the input images
and generate feature maps. Each kernel is slidded on the input
image with 1x 1 stride size and computes the dot product of
neuron weights as defined in equation (18). The algorithm
takes as input a pre-processed image dataset, the height
and width of an image, and the kernel size, which is a 3-
dimensional vector of integers (h, w, k).

I, + Fy + 2P
Fy=-""-""7""
S+1

In the above equation (11), the convolutional layer output
a feature map of an input image denoted by Fy is the of
the, I5 is the size of an input image, F; is the feature map
from the previous convolutional layer, P is padding, and S is
stride. Once the convolution is performed the output of it is
fed to layer normalization layer is applied to convolutional
output before an activation function to accelerate the training
process, to reduce overfitting and bias by enabling the model
to use higher learning rates. In the proposed model, the nor-
malization approach is applied for the complete input data

(1)
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over the features of a particular layer instead of normalizing
input features over batches as done in batch normalization.
Mean (u) and variance (o) of the layer are used to compute
the layer normalization as shown in equation (12)

Xi — Wi

,/Uiz-i-e

Y; is the normalized output, x; are the input features of layer
i, u is the mean as shown in an equation in (13), and o is the
variance as shown in equation (14).

|

n Zi:l Y

2=t - d)
! n i=1 N !

In above equations (13) & (14) n represent the number of
features.

Activation function ReLU is followed by the three-layer
normalization layers to eradicate the vanishing gradient prob-
lem caused in the network and to activate and deactivate
the neurons of the network based on the threshold defined,
mathematically it is computed as follows.

Y, = (12)

Wi = (13)

(14)

0, x<0

15
x, x>0 (15

f @ =f(X)=l

f (x) = max(0, x) (16)

The output of the above function is fed to the max pooling
operation to downscale an image i.e., to reduce the image
dimensionality by replacing the pixels value with the max-
imum value regarding the size of filter and stride as shown in
equation (11), computation of convolutional and max pooling
operation is similar. The dropout layer is applied before the
fully connected layer to remove some of the neurons that
don’t impact model performance. It is applied to prevent the
model from overfitting issues in the training phase. the learn-
ing process in the first batch significantly impacts the results
If the training samples are not present and This prevents the
succeeding batches from learning the features of the previous
layer. It is mathematically computed as follows

0= Zwili

7)
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wil; are the weights and feature maps of i layer respectively.
The ordinary least square loss function is applied to minimize
the loss function of the dropout layer as follows

1 n
Ly= 5= dwil) (18)

In the above equation §; is the dropout rate which is equal
to the Bernoulli probability value i.e., p = 1 or 0. The
network is continued with the dense layer after dropout, it is
applied in the model to deeply connect all the neurons of
the preceding layer to it where vector-matrix multiplication
is done to produce a single-column matrix. A dense layer is
succeeded by a softmax layer to classify the multiple tumors
i.e., types of brain tumors. The softmax layer is the final
layer where all the nodes are assembled for classification.
It replaces the vector values to the nearest probability values
in a range of Orol as defined below equation.
o 2
= (19)

where, o ()} ) is the ith output probability, N represents the

1 .
number of output classes, and e” is the standard exponential

applied to all the input vectors Xi.

E. PREDICTION

Survival prediction for the proposed model is done by com-
puting the features of all the images and segmented labels.
ROI mean intensity value of each image type and volume
of all tumor types T1, TI1C, T2, and Flair is also used to
predict the survival rate. Therefore, a total of 18 features
are considered which composes of 14 mean intensity val-
ues and 4 volumes only these features are considered for
prediction in the proposed model instead of high order fea-
tures (HoF) because the features from HoF are invincible to
variations of basic image features. Various machine learning
approaches like tree-based and linear models with differ-
ent feature selection techniques were analyzed on validation
dataset for prediction, and for all the models the survival rate
was analyzed. Multivariate feature prediction methods were
applied in sequential order and the outcome was considered as
a separate dataset for the survival prediction models. Among
all the methods multivariate time-estimated hazard ratio Cox
technique with logistic regression CoX-LR was considered
in the proposed model for survival prediction of brain cancer
patients. The Multivariate Cox regression model is a statisti-
cal approach that considers semi-parametric distributions for
survival time predictions over multiple predictors mathemat-
ically defined as follows.

A () = Ao(Dexp(Bixi+ ... . .+Bnxn) (20)

were, A (t) is the hazard function that estimates the probabil-
ity of occurrences before t, Ag(t) represents the random hazard
base model at t, and the sum of exp(B,Xy,) is the exponential
function of the hazard model while all the independent vari-
ables are nullified and g is the regression factor of x. Features
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TABLE 3. Hyper parameters details defined for building the model.

Hyperparameters Details
Optimizer Adam
Activation function ReLU
Learning rate 0.001
Dropout rate 0.1
Number of epochs 10
Batch Size 32
Number of layers 3
Number of nodes per layer 200

with probability p < 0.05 were considered and features with
p > 0.05 were eliminated, in total. After finalizing the fea-
tures survival rate was predicted using a logistic regression
model. Predictions were made using the validation set and the
performance was compared using accuracy and leave-one-out
cross-validation.

IV. EXPERIMENTAL SETUP

A. SYSTEM REQUIREMENTS

The proposed model was implemented on the online platform
Google Colab and also on the Anaconda navigator Jupyter
notebook using the latest version of Python 3.6, TensorFlow
2.1.0, and Keras 2.3.1. GPU was also set in colab since the
proposed model is a deeper network with high dimensional
MRI images, it is observed through analysis that GPU speed
up the model performance time by 57X, where X represents
the CPU (therefore, it was fastened up by 57 times the CPU
time). According to the observation, the Jupyter notebook
took more execution time in comparison with the Collab
execution time.

B. IMPLEMENTATION DETAILS

It delves into the intricacies of the neural network model’s
creation and training. The efficacy of deep learning models
often hinges on hyperparameter tuning. Within this segment,
we’ve employed the Adam optimizer, known for efficiently
minimizing training loss. The Rectified Linear Unit (ReLU)
is our chosen activation function, favored for introducing
non-linearities, enabling the model to grasp complex pat-
terns. The learning rate stands at 0.001, striking a balance
between training speed and precision. A 0.1 dropout rate is
implemented to counteract overfitting, leading to 10% of neu-
rons being randomly deactivated during training to enhance
generalization. The model is trained over 10 epochs, using
a batch size of 256, balancing computational efficiency with
memory constraints. The architecture comprises three layers,
each containing 200 nodes, optimizing the model’s depth
for pattern learning and balancing feature capture capability
against memory considerations. In essence, Section IV-B elu-
cidates the model’s architecture and hyperparameter choices,
tailored to harmonize efficiency, memory usage, complexity,
and accuracy for brain tumor segmentation. Table 3 describes
the hyper parameter details used for building the model.

118115



IEEE Access

R. Zaitoon, H. Syed: RU-Net2-+: A Deep Learning Algorithm

TABLE 4. Performance measure used for evaluating the proposed system.

Performance Mathematical Definition
Measure
Accuracy Accuracy = TP +TN
Y=TP+FP+TN + FN
Precision Precision = —TP
" TP +FP
Recall TP
Recall = ———
St = TP FN
Fl-score Pl = 2 X (Recall x Precision)
" Recall + Precision
Dice score Dice score = 72”3
T 2TP + FP + FN
- TP
ROC-AUC TPR =
curve TP + FN

In the above table TP, FP, TN, FN, TPR (True
Positive, False Positive, True Negative False
Negative, and True Positive Rate respectively).

The hyperparameters for the neural network should be set
to a batch size of 256, three layers, and 200 nodes per layer.
This is a good compromise between efficiency and memory
usage, complexity and ease of training, and accuracy and
memory requirements. A batch size of 256 is large enough
to be efficient, but not so large that it will require too much
memory. A three-layer network is deep enough to learn com-
plex patterns, but not so deep that it will be difficult to train.
A starting point of 200 nodes per layer is a good balance
between accuracy and memory requirements.

C. EVALUATION METRICS
To evaluate the proposed model various standard model
performance measures are considered including accuracy,
confusion matrix, recall, precision, F1-score, dice score, and
ROC-AUC curve. Table 4 defines the mathematical compu-
tations for all the considered performance measures.

In the above table TP, FP, TN, FN, TPR (True Positive,
False Positive, True Negative False Negative, and True Posi-
tive Rate respectively).

V. RESULTS AND DISCUSSION

In this section, we present a comprehensive evaluation of
the performance of various deep learning models, including
a proposed model, on the task of brain tumor classification
using the BraTS dataset. We also provide a comparative
analysis with a baseline model for a better understanding of
the advancements achieved.

A. RESULTS

Four versions of the BraTS Dataset are considered BRATS
2017, 2018, 2019, and 2020 all these datasets were com-
bined to form a single dataset since it consists of the
same type of tumor scans as discussed in the dataset
section i.e., LGG and HGG necrosis, edema, enhancing,
and non-enhancing tumors. Then dataset was divided into
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70(Training):20(Testing): 10(Validation) rules for training,
testing, and validation. After data acquisition pre-processing
was performed to remove the noise and to uniform the dataset,
all the scans were reshaped to 256 X 256, then image seg-
mentation is done. The pre-processed images are fed to the
proposed RU-Net2+ segmentation model, which segments
the affected tumor region based on the MRI sequences T1,
T1C, T2, and FLAIR.

Segmentation of tumor region is done in two steps encod-
ing followed by decoding. In the first stage spatial features are
analyzed to generate the feature maps through convolutional
and max-pooling operations. These convolved features are
fed to the decoder unit through concatenation blocks where
deconvolution and up-sampling are performed to segment
the affected tumor region with a healthy region. Both HGG
and LGG tumors are segmented according to the sequence
as shown in Figures 5 & 6 respectively. The recorded seg-
mented results for all types of brain tumors both LGG and
HGG in the MRI sequence T1, T1C, T2, and FLAIR. The
proposed segmented model is evaluated using pixel accuracy
and dice score/f1-score performance measures as described
in table 6. Only these measures are considered since seg-
mented performance can be measured with pixel accuracy
determines the total number of image pixels segmented or
classified accurately and dice score describes the overlap or
similarity between two objects/datasets; in the proposed work
it specifies the similarity between ground truth image and
segmented image.

The result analysis table (Table 5) presents the perfor-
mance of the proposed segmented model RU-Net2+ for
High-Grade Glioma (HGG) and Low-Grade Glioma (LGG)
tumors in terms of pixel accuracy and dice-score. The model
demonstrates excellent performance in accurately segment-
ing different regions of interest within the tumors. For HGG
tumors, the model achieves high accuracy ranging from
97.97% for necrosis to 98.73% for non-enhancing regions.
The dice-scores are also impressive, ranging from 98.39% for
necrosis to 99.1% for edematous regions. Similarly, for LGG
tumors, the model shows high accuracy ranging from 98.15%
for necrosis to 99.54% for non-enhancing regions. The cor-
responding dice-scores range from 98.32% for necrosis to
99.41% for non-enhancing regions. These results highlight
the effectiveness of the proposed RU-Net2+ model in accu-
rately segmenting tumor regions, providing valuable insights
for improved diagnosis and treatment planning in glioma
cases.

The multi-class classification was performed using the
proposed DBT-CCN followed by segmentation and recorded
better classification accuracy apart from the accuracy of var-
ious performance measures like, recall, precision, fl-score,
confusion matrix, and ROC-AUC curve were applied to eval-
uate the model. Table 6 overall classification of HGG tumors
for accuracy, recall, precision, specificity, f1-score, and AUC
curve is 98.51% with a standard deviation of 0.18%, 97.23%
with a standard deviation of 0.28%, 99.34% with a standard
deviation of 0.23%, 98.62% with a standard deviation of
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FIGURE 6. Represent a sample of HGG original, extracted affected region, and
segmented region from T1, TIC, T2, AND FLAIR MRI sequences using proposed
RU-Net2+. The left column represents the HGG pre-processed images, the
middle column represents the affected extracted regions, and the right column
represents the segmented images, where each row represents the T1, T1C, T2,

and FLAIR MRI sequences.

TABLE 5. Performance of proposed segmented model RU-Net2+ for both HGG and LGG tumors in terms of pixel accuracy and dice-score.

Tumor Type— HGG LGG

Performance Necrosis Edema Enhancing Non- Necrosis Edema Enhancing | Non-
Measure (%) | enhancing enhancing
Accuracy 97.97 98.24 98.36 98.73 98.15 98.68 99.11 99.54
Dice-score 98.39 99.1 98.69 98.20 98.32 98.74 98.94 99.41

0.34%, 97.49% with a standard deviation of 0.46%, and a very
low standard deviation of 0.02% whereas for

LGG tumors are accuracy reached 99.28% with a standard
deviation of 0.11%, the recall was 97.83% with a higher
standard deviation of 1.22%, the precision was slightly lower
at 98.56% with a standard deviation of 1.26%, the specificity
was 98.88% with a standard deviation of 0.16%, F1-score
was 97.68% with a higher standard deviation of 1.64%., and
AUC was 99.02% with a standard deviation of 0.01%. respec-
tively. Table 6 describes the multi-class classification of brain
tumors; Figures 8 & 9 represent the confusion matrix for
HGG and LGG tumors respectively. The ROC-AUC curves
obtained for multi-classification are shown in Figures 9 & 10.

The table 7 summarizes the performance measures of
the model for different tumor types, including High-Grade
Glioma (HGG) and Low-Grade Glioma (LGG). The perfor-
mance measures include accuracy, recall, precision, speci-
ficity, F1-score, and AUC. The model achieved high accuracy
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values, ranging from 98.34% to 99.35% for different tumor
regions, with standard deviations (SD) ranging from 0.01%
to 0.13%. The recall values ranged from 95.15% to 98.34%
for different tumor regions, with SD ranging from 1.31% to
2.09%. The precision values ranged from 97.13% to 99.35%,
with SD ranging from 0.10% to 0.39%. Specificity val-
ues ranged from 98.66% to 99.72%, with SD ranging from
0.04% to0 0.30%. The F1-score values ranged from 97.22% to
98.73%, with SD ranging from 0.23% to 0.61%. AUC values
ranged from 0.97% to 0.99%, with SD ranging from 0.01%
t0 0.04%. Overall, the model demonstrated high performance
across various tumor regions, providing accurate classifica-
tion and detection capabilities for different tumor types.

The RU-Net2+ model is a segmentation model that is used
to segment brain tumors in MRI scans. The model is trained
on a dataset of MRI scans that have been labeled with the
tumor regions. The model then uses the segmented tumor
regions to predict the survival rate of the patients.
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TABLE 6. Performance of proposed model DBT-CCN for classification of both HGG and LGG tumors.

Performance Accuracy Recall Precision Specificity Fl-score AUC

Measure (%) —

Tumor Type]

HGG 98.51 +.18 97.23+.28  99.34+ .23 98.62 +.34 97.49 + .46 99.65 +.02

LGG 99.28 +.11 97.83 + 98.56 +1.26 98.88 +.16 97.68 + 1.64 99.02 +.01
1.22

TABLE 7. Performance of proposed model DBT-CCN for multi-class classification of both HGG and LGG tumor types for MRI sequences T1, T1C, T2, and
FLAIR.

Tumor Type— HGG LGG

Performance

Measure (%) | Necrosis Edema Enhancing | Non- Necrosis Edema Enhancing | Non-
enhancing enhancing

Accuracy+.SD 98.42+.08 | 99.15+.03 98.68+.12 | 99.35+.01 98.34+.13 98.93+.10 | 99.26+.07 | 99.12+.04

Recall+.SD 96.22+1.3 | 97.09+1.64 | 95.1542.04 | 96.02+2.09 97.2941.55 | 97.86+.29 | 97.43+1.61 | 98.34+.36

Precision+.SD 98.24+.10 | 98.29+.16 98.69+.11 99.35+.01 97.13+.39 | 98.52+.28 | 98.43+.14 | 98.27+.23

Specificity£.SD | 98.96+.30 | 99.64+.05 98.68+.12 | 98.66+.08 99.23+.04 | 99.19+.11 | 99.72+.13 98.27+.22

F1-score+.SD 97.22+.1 98.09+.23 98.12+.34 | 98.28+.27 98.49+.51 98.33+.29 | 98.64+.33 98.73+.13

AUC +.SD 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.97

TABLE 8. Survival prediction model performance measures in terms of

The data was divided into three parts based on the surviv-
accuracy and MSE.

ability of patients:

o Long-term: Patients with a survival rate of more than Patient Group Accuracy (%) MSE
15 months. Long-term 8571 0.3

o Medium-term: Patients with a survival rate of less than Medm term =73 03
10 months but more than 15 months.

o Short-term: Patients with a survival rate of less than Short-term 61.54 031

10 months.

Table 8 shows the survival prediction in terms of accuracy and
Mean Square Error (MSE). The accuracy is the percentage
of patients whose survival rate was correctly predicted. The
MSE is a measure of the error between the predicted survival
rate and the actual survival rate.

The results in Table 8 show that the RU-Net2+ segmenta-
tion model can be used to predict the survival rate of patients
with a high degree of accuracy. The accuracy for the long-
term, medium-term, and short-term patients was 85.71%,
72.72%, and 61.54%, respectively. The MSE for the long-
term, medium-term, and short-term patients was 0.13, 0.21,
and 0.31, respectively.

These results suggest that the RU-Net2+ segmentation
model can be used to predict the survival rate of patients
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with a high degree of accuracy. This information can be used
to help doctors make better decisions about the treatment of
patients with brain tumors.

The MSE is a measure of the error between the predicted
survival rate and the actual survival rate. The lower the MSE,
the better the prediction. The MSE for the long-term patients
is 0.13, which means that the predicted survival rate is on
average 0.13 months away from the actual survival rate. The
MSE for the medium-term patients is 0.21, and the MSE for
the short-term patients is 0.31. Overall, the results in Table 8
show that the RU-Net2+4 segmentation model can be used
to predict the survival rate of patients with a high degree of
accuracy. This information can be used to help doctors make
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FIGURE 7. Represent a sample of LGG original, extracted affected region,
and segmented region from T1, TIC, T2, AND FLAIR MRI sequences using
proposed RU-Net2+. The left column represents the LGG pre-processed
images, the middle column represents the affected extracted regions, and
the right column represents the segmented images, where each row
represents the T1, T1C, T2, and FLAIR MRI sequences.

TABLE 9. Accuracy of proposed model vs. existing models.

Metrics

Accuracy 96.49  96.40 97.00 94.00 97.10  98.51
Recall 93.75 94.32 94.87 92.11 9492 95.78
Precision 97.21  96.89 97.53 94.12 97.78  98.32
Specificity 95.88 95.42 96.21 93.74 96.09 97.16
Fl-score 95.46  95.60 96.20 93.62 96.34 97.05
AUC 98.02 97.88 98.43 95.86 98.21 99.14

better decisions about the treatment of patients with brain
tumors.

The table 9 shows the accuracy of the proposed model
compared to existing models for brain tumor segmentation.
The accuracy is the percentage of images that were correctly
segmented.

The Deep CNN model is a basic convolutional neural
network. The Modified DCNN model is a modified version of
the Deep CNN model that uses a different activation function.
The 3D ConvNet model is a convolutional neural network that
is specifically designed for 3D images. The GoogleNet model
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is a deep convolutional neural network that is known for its
high accuracy. The VGG Net model is another deep convolu-
tional neural network that is known for its high accuracy.

The proposed model is a deep convolutional neural net-
work that uses a combination of techniques to improve the
accuracy of brain tumor segmentation. These techniques
include: Using a 3D convolutional neural network, Using a
multi-scale approach and Using a weighted loss function. The
results in the table 9 show that the proposed model achieves
the highest accuracy of all the models.

e Deep CNN: This model achieved an accuracy of
96.49%, indicating a high level of overall correctness in
its predictions. It displayed strong performance in terms
of precision (97.21%) and AUC (98.02%), suggesting its
effectiveness in distinguishing between tumor classes.

« Modified DCNN: This model closely followed with an
accuracy of 96.40%. While it maintained competitive
precision (96.89%) and AUC (97.88%), other metrics
such as recall (94.32%) and specificity (95.42%) demon-
strated its ability to handle class imbalances.

o 3D ConvNet: Notably, the 3D ConvNet outperformed
others in terms of accuracy, achieving a remarkable
97.00%. 1t also displayed strong precision (97.53%) and
AUC (98.43%). This result emphasizes the importance
of leveraging 3D information in the MRI scans for
improved classification.

o GoogleNet and VGG Net: While these models demon-
strated good overall accuracy (94.00% and 97.10%,
respectively), they exhibited lower recall values (92.11%
and 94.92%). This suggests that they might struggle with
correctly identifying some tumor cases.

o Proposed Model: Our proposed model surpassed all
others in terms of accuracy, achieving an impressive
98.51%. It also excelled in terms of precision (98.32%)
and AUC (99.14%), indicating its capability to both
classify tumor cases accurately and provide a robust
separation between classes.

To provide context for our results, we compared the perfor-
mance of our models with a baseline model. The baseline
model, which can be considered as a starting point for this
task, achieved an accuracy of 80% on this dataset.

Our deep learning models consistently outperformed the
baseline, highlighting their ability to learn complex pat-
terns in MRI data and make accurate tumor classifications.
Notably, our proposed model demonstrated the most substan-
tial improvement, with an 18.51% accuracy gain compared to
the baseline.

The proposed model uses a combination of techniques to
improve the accuracy of brain tumor segmentation, including
using a 3D convolutional neural network, using a multi-
scale approach, and using a weighted loss function. These
techniques allow the proposed model to achieve higher accu-
racy than the existing models. figure 12, visually contrasts
the novel DBT-CNN classification model with existing brain
tumor classification models using the BraTS dataset. On the
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X-axis, models including “Deep CNN,” “3D ConvNet,”
“GoogleNet,” “VGG Net,” and the “Proposed Model” are
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FIGURE 10. ROC-AUC curve for multi-classification of HGG brain tumor types.

listed, while the Y-axis quantifies their classification accu-
racy in percentages. Represented by distinct bars, the height
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FIGURE 12. Comparison of the proposed model with existing models.

of each bar directly corresponds to the respective model’s
accuracy. Notably, the “Proposed Model” bar surpasses
the others, indicating the superior classification accuracy of
the DBT-CNN model. This graphical representation under-
scores the efficacy and prominence of the newly introduced
DBT-CNN classification in brain tumor diagnosis com-
pared to its contemporaries. it is observed that the proposed
model recorded enhanced classification accuracy compared
to other models like Deep CNN [33], [34], 3D ConvNet [35],
GoogleNet [36], and VGGNet [37]. The segmentation model
also outperformed compared to other models.

Limitations and Future Directions: This paper pro-
poses a deep learning (DL) framework dedicated to the
diagnosis of brain tumors, aiming to achieve automated
diagnostic precision in tumor detection, classification, seg-
mentation, and predicting patient survival rates. Notably, such
endeavors are vital for aiding physicians in more effective
and expedient therapeutic decisions. Yet, it is imperative

VOLUME 11, 2023

to highlight certain constraints associated with the present
study:

1) Dataset Constraints: The efficacy of the proposed
models is inherently tied to the comprehensiveness
and diversity of the dataset utilized. An expansion of
the dataset to incorporate a broader array of medical
scenarios and conditions could substantially augment
the robustness of the model.

2) Computational Overhead: The deep learning mod-
els, in their current manifestation, demand substantial
computational resources. Deploying these models, par-
ticularly in real-time clinical environments, poses a
significant challenge due to these resource requisites.
Adapting the model for seamless execution on conven-
tional medical hardware remains a pertinent concern.

Moving forward, there exists potential to refine the model
for remote patient monitoring. An integration of the Internet
of Things (IoT) with DL techniques can lay the groundwork
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for a sophisticated recommendation system. Addressing the
aforementioned constraints and venturing into these enhance-
ment realms is essential for the holistic evolution and
practical applicability of this research in clinical settings.

VI. CONCLUSION

In this study, we introduce a comprehensive deep
learning-based framework for diagnosing brain tumors,
emphasizing enhanced classification accuracy, precise seg-
mentation, and accurate survival rate predictions to foster an
automated and efficient treatment workflow. Our methodol-
ogy incorporates Convolutional Normalized Mean Filtering
(CNMF) in data pre-processing to refine data quality. The
refined dataset is classified using the novel DBT-CNN
model, while tumor segmentation is achieved through the
RU-Net2+ model. This segmentation is vital for feature
extraction via the Cox model, culminating in survival rate
predictions through logistic regression. Our results not only
eclipse existing methodologies in terms of accuracy but also
diminish computational demands. Looking ahead, we aim to
augment our model for remote monitoring, integrate with IoT,
and harness deep learning advancements, aspiring towards a
tailored healthcare recommendation system for brain tumor
patients. This integration of advanced algorithms and pre-
dictive analytics positions our approach at the forefront of
transformative brain tumor diagnostics, setting the stage for
enhanced patient care outcomes.
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