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ABSTRACT The complex indoor structure not only introduces line-of-sight (LOS) paths but also non-line-
of-sight (NLOS) paths, which poses a huge challenge to localization. However, most of the existing indoor
localization schemes only utilize a single positioning algorithm for LOS or NLOS environments, resulting
in poor positioning robustness. To solve this problem, we propose an indoor single-site hybrid localization
scheme called HyLoc in this paper. HyLoc combines multiple positioning algorithms and gives full play to
the advantage of each algorithm in either LOS or NLOS environment. In this scheme, a threshold judger
(TJ) is firstly designed to identify whether there is a LOS path depending on the time-domain statistical
features extracted from channel state information (CSI). According to the identification results of TJ, HyLoc
adaptively selects the optimal positioning algorithm. In the LOS environment, an improved multiple signal
classification algorithm (MUSIC) based on forward smoothing technology is applied to obtain the estimated
positioning results. In the NLOS environment, amultipath subspace projection and extreme learningmachine
(ELM)-based fingerprint localization algorithm is proposed for positioning analysis. Finally the experimental
results verify that the proposed HyLoc can realize single-site localization and it has higher positioning
accuracy than traditional ones in the mixed LOS and NLOS environment.

INDEX TERMS Indoor single-site hybrid localization, LOS/NLOS identification, multipath signal
subspace, extreme learning machine.

I. INTRODUCTION
With the extensive applications of the wireless networks,
location-based service (LBS) is becoming a crucial task
in the era of Internet of Things (IOT) [1], [2] [3]. The
global navigation satellite system (GNSS) performs well in
outdoor scenarios. While in complex indoor environments,
due to the fading of satellite signals and the influence of
multipaths, the GNSS system has large position error and
is not suitable for indoor positioning [4], [5]. Therefore,
many indoor positioning schemes based onWi-Fi, Bluetooth,
ZigBee, etc. have been proposed to guarantee the indoor
positioning accuracy [6].
The existing indoor positioning methods can be roughly

divided into two categories: range-based and range-free.
Range-based methods usually depend on the estimation
of time of arrival (TOA), direction of arrival (DOA),
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angle of arrival (AOA), etc [7], [8]. These estimated
ranging parameters will be used to calculate the coordinate
of the target [9]. Therefore, the positioning accuracy is
directly affected by the estimated error of these ranging
parameters [10]. In order to improve the accuracy of these
estimated parameters in the complex indoor environment,
many super-resolution estimation algorithms are proposed
to distinguish line-of-sight (LOS) signal and non-line-of-
sight (NLOS) signals in space or time domain. Among
them, the multiple signal classification algorithm (MUSIC)
[11] and the estimation of signal parameters via rotational
invariance technique (ESPRIT) [12] are the two most classic
algorithms. Different from the range-based methods which
are based on ranging measurements for localization, the
range-free methods make no assumptions about the accessi-
bility of such information. In the recent years, as the most
promising and popular method among existing range-free
methods, fingerprint-based positioning method has drawn
wide attention in both academia and industry [13]. The key
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for the fingerprint-based positioning method is to establish
the mapping relationship between the actual locations and
the signal characteristic fingerprints [14]. Received signal
strength (RSS) [15] and channel state information (CSI) [16]
are generally used as raw data to extract signal features
and establish the fingerprint database. Considering that
CSI describes both amplitude and phase which contain the
fine-grained information of the channel path loss, shadowing,
orientation and delay during the signal transmission, the
performance of using CSI for positioning is much better
than that of using RSS [17]. Radar and Horus are the two
representative RSS-based positioning methods [18], [19]. A
fine-grained indoor fingerprint system (FIFS) exploring the
frequency-domain CSI over all subcarriers has been proposed
in [20]. A large number of machine-learning algorithms,
including convolutional netural network (CNN), random
forest (RF), and support vector machine (SVM) [21], [22],
[23], are widely used to establish the mapping relationship
between location coordinates and fingerprints.

In general, the method depending on the estimation of
ranging parameters and the fingerprint-based positioning
method are the two most commonly used indoor positioning
methods. These methods actually have their own pros and
cons. The positioning accuracy of range-based methods
is usually higher than that of fingerprint-based. However,
in order to guarantee the estimated accuracy of the ranging
parameters, it is necessary to ensure the existence of
LOS path in the indoor environment. While in the NLOS
case, the signals are reflected and scattered due to the
obstacles, resulting in large error bias of the positioning
parameter estimation [24]. The large parameter estimation
error will lead to poor positioning performance. Therefore,
the range-basedmethods is more suitable for LOS conditions.
For the fingerprint-based method, the geometric relationship
between the terminal and the target does not need to be
considered. This method is less affected by the environment
and has higher robustness and reliability, so it has higher
accuracy in NLOS condition.

However, when it comes to indoor localization, it becomes
a huge challenge since the indoor scenarios are actually
mixed LOS andNLOS environments [25], [26].Most existing
indoor localization schemes only utilize a single positioning
algorithm, resulting in poor positioning robustness. In order
to achieve high positioning accuracy in both NLOS and LOS
scenarios, combining multiple methods is an effective solu-
tion. Generally, the solutions to indoor localization problems
under mixed LOS and NLOS conditions can be classified
into three categories: 1) mathematical optimizations [27],
[28], [29], 2) robust estimation techniques [30], [31], 3)
LOS/NLOS identification [32], [33]. The indoor localization
approaches relying on LOS/NLOS identification are the main
focus of this paper. The machine-learning-based techniques
are usually used for LOS/NLOS identification [34]. However,
these techniques rely on additional experimental campaigns
to build up a database, which is very time-consuming

and hard to apply in practice. Reference [35] proposed a
millimeter-wave LOS/NLOS identification scheme utilizing
mean-shift clustering algorithm and a 3D AOA localization
algorithm for both LOS and one-bound reflection NLOS
paths. Though the estimation bias are corrected using
LOS/NLOS identification, the single AOA localization
algorithm limits the position accuracy to some extent. In [36],
a dynamic positioning method based on RSS is proposed
to improve the accuracy and stability of positioning results.
The mixed Gauss model is firstly adopted to describe the
LOS and NLOS propagation effects and at the same time, the
simulated annealing (SA) algorithm is exploited to overcome
the local optimal solution problem. While, as the coarse-
grained parameter, the position performance of RSS-based
methods is actually worse than that of CSI-based methods.
In [37], 8 features were extracted from the received signal
to identify the LOS and NLOS conditions. And in the NLOS
environment, the ranging results were adjusted to mitigate the
influence of NLOS.

The research of positioning schemes in mixed LOS/NLOS
indoor environments is very challenging. What’s more,
though LOS/NLOS identification is applied to correct the
estimation error bias under NLOS environments, the error
bias cannot be corrected completely and the improvement
of positioning accuracy is limited by only using a sin-
gle positioning algorithm. To deal with these problems,
we propose a new indoor single-site hybrid localization
scheme based on LOS/NLOS identification called HyLoc.
In a single station positioning scenario, instead of using
machine-learning-based methods which are hard to apply
in practice, a threshold judger (TJ) is firstly designed
to identify whether there is a LOS path depending on
the time-domain statistical features extracted from CSI.
According to the results of LOS/NLOS identification, HyLoc
adaptively selects the optimal positioning algorithm. In the
LOS environment, an improved multiple signal classification
algorithm (MUSIC) based on forward smoothing technology
is applied to get the estimated TOA and DOA. The least
squares (LS) method is then applied to calculate the coordi-
nate of the target based on these parameters. In the NLOS
environment, a multipath subspace projection (MSP) and
extreme learning machine (ELM)-based indoor fingerprint
localization algorithm is proposed in this paper to realize
localization. In this algorithm, the CSI is firstly organized into
a time-domain matrix and then is projected into a subspace.
This processing not only preserves the channel multipath
information as much as possible, but also reduces the data
dimension. Based on the reduced dimension projected data,
an ensemble of ELM networks is exploited to implement
the fingerprint localization. HyLoc combines multiple posi-
tioning algorithms and gives full play to the advantage
of each algorithm in either LOS or NLOS environment.
Finally, the experiment verifies that the proposed HyLoc
can realize single-site localization and has better positioning
effect than the single method and other existing position-
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ing schemes. In summary, our main contributions are as
follows.
1) We propose an indoor single-site hybrid localization

scheme based on LOS/NLOS identification called
HyLoc in this paper.

2) We design an easy-to-apply TJ to distinguish whether
there is a LOS path effectively in HyLoc.

3) We propose the MSP and ELM-based method to
complete fingerprint localization in HyLoc.

Following the introduction, we will describe the measure-
ment model in Section II. Section III presents the proposed
HyLoc in details. The positioning results are analyzed under
the experimental data in Section IV. Finally, the conclusion
is drawn in Section V.

II. MEASUREMENT MODEL
As mentioned above, CSI and RSS are commonly measured
as raw data for positioning analysis. In the view of the fact that
CSI has the advantages of stable state and rich information,
it is used for localization in this paper. CSI describes the
channel characteristics of the communication link at the
physical layer. It not only provides channel information such
as environmental attenuation and distance attenuation, but
also shows the reflection, scattering and diffraction of signal
transmission in the indoor environment. In this paper, the
orthogonal frequency division multiplexing (OFDM) system
is used when we collect the data. Assuming there is a target
to be located and a base station with a known location, the
target sends OFDM signal to the base station for positioning.
The signal model is formulated as

Y = HX + Z, (1)

where Y is the received signal vector, X is the transmitted
signal vector, H is the CSI matrix and Z represents
the additional Gaussian white noise vector. The receiver
estimates the CSI matrix H using the pre-defined signal X
and the receive signal Y . The CSI matrix can be estimated by
the following formula

Ĥ =
Y
X

, (2)

where Ĥ is the estimated CSI.
In the OFDM system, the signal is transmitted through

multiple subcarriers. CSI represents the channel gain vector
of each subcarrier. It describes the process where wireless
signals propagate from the transmitter to the receiver at a
specific carrier frequency. The CSI can be expressed as

H = [H1,H2, · · · ,HK ] , (3)

where K is the number of the subcarriers.Hk denotes the CSI
of the k-th subcarrier and can be expressed as

Hk = |Hk | ejφk , (4)

where |Hk | and φk respectively denote the CSI amplitude and
phase of the k-th subcarrier.

When the device is connected to the wireless network,
the data of each subchannel is extracted through modulation
and demodulation, and the CSI data packet can be obtained.
During the transmission process, due to the interference
of ambient noise and hardware limitations, the phase will
shift. Therefore it is necessary to preprocess the CSI data
to obtain more stable phase information. Carrier frequency
offset (CFO) and sampling frequency offset (SFO) are mainly
considered in this paper. The phase measured on the k-th
subcarrier φ̂k can be expressed as [38].

φ̂k = φk + 2π
k
N

1t + ρ + Z , (5)

where φk is the true phase of the k-th subcarrier, 1t denotes
the sampling interval, N is the size of the fast Fourier
transform, Z denotes the noise and ρ denotes the phase shift
caused by carrier frequency error.

It can be seen that the sampling frequency offset 2π k
N 1t

is a linear function related to the subcarrier index k . We can
perform a linear transformation on the original phase to
remove the influence of 1t and β. Let λPS and λPO
respectively denote the phase slope and the phase offset over
the entire frequency band, then λPS and λPO can be estimated
as follows [38].

λPS =
φ̂k − φ̂1

k − 1

λPO =
1
K

K∑
k=1

φ̂k , (6)

where φ̂k and φ̂1 respectively denote the phase measurement
of the k-th subcarrier and the first subcarrier.
The corrected phase φ̃k of the k-th subcarrier can be

finally obtained by subtracting kλPS + λPO from the original
measured phase

φ̃k = φ̂k − kλPS − λPO. (7)

In the main body of the paper, we will use the
phase-corrected CSI for positioning analysis.

III. THE HYBRID POSITIONING SCHEME BASED ON
LOS/NLOS IDENTIFICATION
In this section, we will propose a hybrid positioning scheme
based on LOS/NLOS identification, whose block diagram
is shown in Fig. 1 and its flowchart illustrating the steps is
depicted in Fig. 2. The HyLoc system consists of two main
parts: an off-line training phase and an on-line positioning
phase. In the off-line training phase, we construct an off-line
map and preprocess the data to generate the ELM network
for all training points that involve NLOS paths. In the
on-line positioning phase, we will execute the LOS/NLOS
identification based on the TJ and the hybrid positioning
scheme based on the LOS/NLOS identification result. Firstly,
the TJ based on the statistical features of CSI is designed
to determine whether the environment is LOS or NLOS.
In the second stage, specific methods are applied separately,
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FIGURE 1. The overall framework of the HyLoc.

FIGURE 2. The flowchart of the HyLoc.

depending on the identified LOS or NLOS environment,
to obtain precise positioning results. For the anchor points
with LOS path, an improved MUSIC algorithm based on
forward smoothing technology is used to estimate the ranging
parameters. Then the LS method is applied to calculate the
coordinate of the target based on these parameters. For the
anchor points with NLOS paths, the fingerprint positioning
method based onMSP and ELM is adopted. According to the
corresponding sight conditions at different anchor points, the
HyLoc combines multiple positioning algorithms to improve
positioning performance.

A. THRESHOLD JUDGER BASED ON CSI STATISTICAL
FEATURES FOR LOS/NLOS RECOGNITION
An easy-to-apply TJ is designed to complete the LOS/NLOS
recognition. After extracting the CSI, four statistical features
are firstly calculated based on the time domain signal mea-
surements. According to the differences of these statistical
features in different environments, the threshold comparison
method is then used to classify each feature. The thresholds
can be determined by the data observation of the sampling
points. A weighted logic detector is finally used to complete
the final recognition. The specific mathematical model of the
LOS/NLOS recognition algorithm is described as follows.

Suppose there is a classification problem

ϑ =

{
1 LOS
0 NLOS .

(8)

We distinguish between LOS and NLOS environments
based on different probability distributions of received signal

FIGURE 3. Threshold judger.

power (RSP). The channel measurement values are continu-
ously observed at the receiver. For the CSI data, we hold that
its amplitude value reflects the power of the received signal.
Therefore, we select the amplitude value of the CSI at the first
subcarrier as the measurement value of the RSP.

Define the amplitude value of the CSI at the first subcarrier
as h0, and the observed RSP vector can be expressed as h0 =[
h01, h

0
2, . . . , h

0
L

]
, where L denotes the channel measurement

length.
We assume that the RSP measurement value is a random

variable h. The probability density function of the random
variable h can be used to describe whether the channel has a
LOS path. For a given RSP measurement vector, define the
p-th moment of the random variable h as

mp =
1
L

L∑
i=1

(
h0i − µ

)p
, (9)

µ =
1
L

L∑
i=1

h0i . (10)

Through a large number of the RSP measurement samples,
the following four statistical characteristics can be got

• the variance Var =
√
m2,

• the skewness Ske = m3/Var3,
• the kurtosis Kur = m4/Var4,
• the hyperskewness Hyp = m5/Var5,

where Skewness, kurtosis, and overskewness are called third-
order, fourth-order, and fifth-order normalized moments,
respectively.

It can be known that in the LOS environment, the
probability distribution of RSP is similar to the Weibull
distribution, while in the NLOS environment, the probability
distribution of RSP approximates the Gaussian distribution.
Based on the difference of the RSP probability distribution
in LOS and NLOS environments, a TJ is designed in this
paper to distinguish different channel environments, and the
structure of the TJ is shown in Fig. 3.

In the TJ, the four statistical features {Var , Ske, Kur ,
Hyp} are firstly compared with the thresholds {Var∗,Ske∗,
Kur∗,Hyp∗} respectively to get four new indicators {ϑ1, ϑ2,
ϑ3, ϑ4}. The final channel state is then obtained by the
weighted summation of these four new indicators. These four
indicators are calculated as follows.

ϑ1 =

{
1 if Var ≤ Var∗

0 otherwise
, ϑ2 =

{
1 if Ske ≤ Ske∗

0 otherwise
,

(11)
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ϑ3 =

{
1 if Kur ≤ Kur∗

0 otherwise
, ϑ4 =

{
1 if Hyp ≤ Hyp∗

0 otherwise

(12)

According to the basic principle of the statistical model,
this LOS/NLOS identification algorithm is reasonable and
feasible. The statistical distribution of RSP in the LOS
environment is steeper because the RSP tends to be concen-
trated around the direct path component. While in the NLOS
environment, multiple reflection paths have great impact
on the received signal, resulting in a flatter distribution.
Therefore, the value of Var is smaller and the value of
Kur is larger in LOS environment. These four statistical
characteristics can be used to determine whether there is a
LOS path. Considering that these four features may have
different confidence levels, different values can be taken for
the weighting coefficients. The weighting coefficients ω =

[ω1, ω2, ω3, ω4] must meet the following conditions

4∑
i=1

ωi = 1, and ωi ∈ [0, 1]. (13)

The final decision index ϑ̂ is obtained by the weighted
summation of these four indicators

ϑ̂ =

4∑
i=1

ωiϑi. (14)

Finally, the channel state identification can be expressed as

ϑ =

{
1 ifϑ̂ ≥ 0.5
0 otherwise,

(15)

where ϑ = 1 denotes the LOS environment and ϑ =

0 denotes the NLOS environment.
It can be noted that when ωi = 1/4, this method

is equivalent to an unweighted multi-threshold detector.
The weights can be modulated according to the actual
environment, so that the features with greater difference in
different channel states will have larger weights in order to
get higher precision recognition results.

The thresholds {Var∗,Ske∗,Kur∗,Hyp∗} and the weighting
coefficients {ω1,ω2,ω3,ω4} of theweighted logic detector can
be obtained from a large number of the RSP measurement
samples. These measurement samples can basically describe
the probability distribution of each statistical feature. The
thresholds and weights are determined based on the following
criteria: the probability of the misjudgment of the statistical
feature should be minimized by the selection of the threshold
values, and the weighting coefficients are selected according
to the probability of the misjudgment of the channel identifi-
cation result after the feature thresholds are determined.

B. AN IMPROVED MUSIC ALGORITHM BASED ON
FORWARD SMOOTHING TECHNOLOGY
In the LOS environment, an improved MUSIC algorithm
based on forward smoothing technology is used to estimate

the ranging parameters. And then the LS method is applied
to calculate the coordinate of the target based on these
parameters.

The principle of the MUSIC algorithm is based on the
phase difference between different antennas when the signals
arrive at the antenna array. In the multipath environment, the
array response of the r-th antenna can be expressed as

9r,θp = e−j2π fk (r−1)d sin θp/c, (16)

where θp is the direction of arrival of the p-th path, d
denotes the spacing between adjacent antennas, fk denotes the
subcarrier frequency of the k-th subcarrier and c denotes the
speed of light.

In addition to the phase difference caused by the antenna
spacing, the phase difference is also caused due to the differ-
ent frequency of each subcarrier. The frequency response of
the k-th subcarrier can be expressed as

�k,τp = e−j2π fkτp , (17)

where τp denotes the propagation time of the p-th path.
It can be known that theMUSIC algorithm is effective only

under the condition that the number of receiving antennas is
more than the number of multipaths. Based on the technology
of OFDM, the method of expanding the virtual antennas is
used to break through this limitation in this paper. Assuming
the CSI matrix collected in practice contains k subcarriers
and r receiver antennas, the received CSI matrix H can be
expressed as

H =


H1,1 H1,2 · · · H1,k
H2,1 H2,2 · · · H2,k

...
...

...
...

Hr,1 Hr,2 · · · Hr,k

 . (18)

Among them, Hr,k represents the CSI value of the k-th
subcarrier on the r-th antenna. We write the matrix H as a
column, that is, expand r antennas into r× k virtual antennas

H̃ = [ H1,1 · · · H1,k H2,1 · · · H2,k

· · ·Hr,1 · · · Hr,k ]T . (19)

H̃ is regarded as the expanded virtual array received signal
and can be written as the following matrix form

H̃ = 2U + Z, (20)

where 2 is the matrix composed of the above-mentioned
phase difference, U is a p × 1 vector representing the
multipath signal attenuation coefficient and Z is Gaussian
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white noise.

2 =



91,θ1�1,τ1 91,θ2�1,τ2 · · · 91,θp�1,τp
...

...
...

91,θ1�k,τ1 91,θ2�k,τ2 · · · 91,θp�k,τp
92,θ1�1,τ1 92,θ2�1,τ2 · · · 92,θp�1,τp

...
...

...

92,θ1�k,τ1 92,θ2�k,τ2 · · · 92,θp�k,τp
...

...
...

9r,θ1�1,τ1 9r,θ2�1,τ2 · · · 9r,θp�1,τp
...

...
...

9r,θ1�k,τ1 9r,θ2�k,τ2 · · · 9r,θp�k,τp



, (21)

where 2 can also be expressed as

2 =
[
a (θ1, τ1) a (θ2, τ2) · · · a

(
θp, τp

) ]
. (22)

After the expanded virtual array CSI H̃ is obtained, the
covariance matrix RH̃H̃ = E

{
H̃H̃

H
}
can be calculated,

and the spatial spectrum function PMUSIC(θ, τ ) can be
constructed according to the MUSIC algorithm

PMUSIC (θ, τ ) =
1

aH (θ, τ )EnEHn a(θ, τ )
, (23)

where En is the eigenspace matrix of RH̃H̃ . According to
the principle of the MUSIC algorithm, En and a(θ, τ ) are
orthogonal, so that the denominator of the space spectrum
is zero. The peak of the spatial spectrum can be found by
changing the angle of arrival and the time of arrival, and then
the position of the receiver can be calculated depending on
the coordinate of the transmitter and the estimated positioning
parameters.

Under the premise that the sources are independent of each
other, the angle of arrival and time of arrival of multiple
sources can be estimated well using the MUSIC algorithm.
Considering that there is only one transmitter, the signals
reach the receiver after multiple reflections and refractions in
space. Under this condition, it is obvious that the signals of
each path are not completely independent. Coherent signals
will seriously affect the estimation accuracy of the MUSIC
algorithm. Therefore, it is necessary to remove relevant
signals to improve the MUSIC algorithm performance.

Forward smoothing technology is used to solve this
problem in this paper. It makes the related signals into
different subarrays. As shown in the Fig. 4, the constructed
r × k virtual antennas are used for smoothing. In order to
smooth coherent sources into independent sources, it must be
guaranteed that the number of subarray elements is larger than
the number of coherent sources, and the number of subarrays
is larger than or equal to the number of coherent sources [39].
We take the number of subarray elements as k

2 +1 (assuming
k is even) and the number of subarrays as r ×

k
2 . In this way,

H̃ can be smoothed into a
(
r ×

k
2

)
×

( k
2 + 1

)
matrix

H̃ =



H1,1 H1,2 · · · H1, k2+1
...

...
...

H1, k2
H1, k2+1 · · · H1,k

H2,1 H2,2 · · · H2, k2+1
...

...
...

H2, k2
H2, k2+1 · · · H2,k

...
...

...

Hr,1 Hr,2 · · · Hr, k2+1
...

...
...

Hr, k2
Hr, k2+1 · · · Hr,k



. (24)

2 is a (r ×
k
2 ) × p matrix

2 =



91,θ1�1,τ1 91,θ2�1,τ2 · · · 91,θp�1,τp
...

...
...

91,θ1� k
2 ,τ1

91,θ2� k
2 ,τ2

· · · 91,θp� k
2 ·τp

92,θ1�1,τ1 92,θ2�1,τ2 · · · 92,θp�1,τp
...

...
...

92,θ1� k
2 ,τ1

92,θ2� k
2 ,τ2

· · · 92,θp� k
2 ·τp

...
...

...

9r,θ1�1,τ1 9r,θ2�1,τ2 · · · 9r,θp�1,τp
...

...
...

9r,θ1� k
2 ,τ1

9r,θ2� k
2 ·τ2

· · · 9r,θp� k
2 ·τp



. (25)

In this way, the new spatial spectrum can be obtained by
bringing the 2 obtained after the forward smoothing process
into the original spatial spectrum expression, and the angle
of arrival and the arrival time can be estimated by searching
for the peak. After getting these ranging parameters, the LS
method is applied to calculate the coordinate of the target.

C. FINGERPRINT POSITIONING ALGORITHM BASED ON
SIGNAL SUBSPACE AND ELM IN NLOS ENVIRONMENT
In NLOS environment, a fingerprint positioning algorithm
based on MSP and ELM is proposed for positioning in this
paper. The algorithm can be divided into two steps: MSP
feature extraction and ELM network implementation.

1) MULTIPATH SIGNAL SUBSPACE FEATURE EXTRACTION
The simulation data in this paper is collected using the long
term evolution (LTE) system. According to the LTE system
protocol, we choose 10MHz as the signal bandwidth and
sent 31500 OFDM symbols, with a duration of approximately
0.2 seconds. Therefore the final extracted CSI is a 600 ×

31500 × 2 × 2 tensor at each grid point, representing
600 subcarriers in the frequency domain, 31500 OFDM
sysbols in the time domain and 2 × 2 multi-input multi-
output (MIMO) in the spatial domain. Considering that the
signal receiver we are using in the data collection stage
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FIGURE 4. Schematic diagram of forward smoothing method.

has a receiving cycle period of 1260 OFDM symbols,
and 31500 OFDM symbols contain 25 complete receiving
cycles. So we split the original CSI data into 25 parts and
use the split parts to construct fingerprints separately. We will
finally construct 25 fingerprints at each grid point. However,
the feature dimension of each fingerprint is 600 × 1260 ×

2 × 2 = 302400, which is too high to be used as an input
to the neural network. Thence it is necessary to do data
dimensionality reduction without losing useful information.

In this paper, we use the basic idea of SP based on mul-
tipath signal propagation model to perform dimensionality
reduction and feature extraction on CSI. The multipath SP
algorithm in [40] is extended by using multiple snapshots.
The multipath channel frequency response (CFR) of the k-
th subcarrier and r-th antenna element at i-th OFDM symbol
takes the form as

Hr,k (i) =

P−1∑
p=0

αp(i)e−j2π(fc+k1f )(τp(i)+τr (θp)) + nr,k (i), (26)

where i denotes the index of the i-th OFDM symbol, P
is the number of multipath components, αp(i) denotes the
distance-dependent complex attenuation of the p-th path,
which is usually unknown in most cases. 1f denotes the
subcarrier spacing, fc denotes the carrier frequency, and
nr,k (i) denotes additive white measurement noise with mean
zero and variance σ 2 for the r-th antenna and the k-th
subcarrier at i-th OFDM symbols.

It is reasonable to assume that the multipath delays at
different symbols are similarly constant, so we can simplify
τp(i) into τp. τr (θp) = rτ (θp) denotes the propagation time
difference of the impinging wave between the r-th antenna
and the reference antenna. Meanwhile, due to the effect of
time delay across the antenna element is much smaller than
the path delay, after proper approximation, e−j2π(fc+k1f )τr (θp)

can be also represented as e−j2π fcrτ (θp). Considering the array
element spacing is usually equal to the half-wavelength of
incident signal, we have λ/2 = c/2fc, where λ denotes the
signal wavelength. Therefore, e−j2π fcrτ (θp) can be simplified
as e−jrπsinθp . Eventually, the elements of CFR matrix in (26)

can be rewritten as

Hr,k (i) =

P−1∑
p=0

αp(i)e−j2π fcτpe−j2πk1f τpe−jrπsinθp + nr,k (i).

(27)

Considering the correlation of the CSI at multiple adjacent
subcarriers, we average the frequency responses of a certain
number of subcarriers, and express the time-domain CSI
sequence for the r-th antenna at different OFDM symbols as
follows

xr (i) =
1
K

∑
k

Hr,k (i)

=
1
K

∑
k

P−1∑
p=0

αp(i)e−j2π fcτpe−j2πk1f τpe−jrπsinθp

+
1
K

∑
k

nr,k (i)

=

P−1∑
p=0

αp(i)e−j2π fcτpe−jrπsinθp
∑
k

1
K
e−j2πk1f τp

+

∑
k

1
K
nr,k (i). (28)

Considering there are I symbols in a snapshot, we can
rewrite (28) using vector notation as follows

xr = Arγ + nr , (29)

where xr and nr are the I × 1 vectors, I is the number of
symbols in a receiving cycle period,

xr = [xr (1), xr (2), . . . , xr (I )]T

nr = [nr (1), nr (2), . . . , nr (I )]T . (30)

γ is the P× 1 vector

γ =

[∑
k

1
K
e−j2πk1f τ0 , . . . ,

∑
k

1
K
e−j2πk1f τP−1

]T
,

(31)

and Ar is the I × P matrix

Ar = [e−j2π fcτ0e−jrπsinθ0α0,

. . . , e−j2π fcτP−1e−jrπsinθP−1αP−1], (32)

with αp being the I × 1 vector

αp =
[
αp(1), αp(2), . . . , αp(I )

]T
. (33)

Since the noise can be decoupled from the uniqueness
problem by its nature, we ignore the noise. Suppose we divide
all the subcarriers into U parts, we average the frequency
responses of a certain number of subcarriers separately. The
U sets of the vector xr can be expressed as

X = A(2,T)0, (34)
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where X is the I × U matrix

X =

[
x1r , . . . , x

U
r

]
. (35)

0 is the P× U matrix

0 =

[
γ 1, . . . , γU

]
, (36)

and A(2,T) ≡ Ar is the I × P matrix defined in (32), with
2 = {θ1, . . . , θP−1} and T = {τ1, . . . , τP−1} denoting the
directions of arrival and the delays of transmitter reflections.

It can be noted that the matrix Ar averages the
frequency-domain channel response in the carrier domain and
captures all the multipath delay and attenuation information.
Therefore this matrix will be the basis of the fingerprint
construction in this paper.

For the receiver, the parameters of the channel model
cannot be directly known, that is, Ar cannot be obtained
directly. To derive a similarity-metric for the fingerpring
matching, we resort to the estimation of the matrix Ar using
the Maximum Likelihood (ML) criterion [41].

Assuming 0 =
[
γ 1, . . . , γU

]
is the frequency selective

fading coefficient matrix, which are uncertain parameters that
need to be estimated in conjunction with the spatial-temporal
matrix Ar . According to reference [41], the probability
density function of the averaged CSI sequence xr (i) can be
given by

p
(
x1r , . . . , x

U
r | Ar , 0, σ 2

)
=

U∏
u=1

1

π I det
[
σ 2I

] · exp
(

−
1
σ 2

∥∥xur − Arγ u∥∥2) . (37)

As show in appendix A, Ar can be estimated as:

Âr = argmin
Ar

U∑
u=1

∥xur − ξxur∥
2

= argmax
Ar

M∑
m=1

∥ξxur∥
2, (38)

where ξ is the projection matrix in the column span direction
of Ar

ξ = Ar
(
AHr Ar

)−1
AHr . (39)

It can be easily proved that equation(38) can also be written
as

Âr = argmax
Ar

Tr
{
ξ R̂

}
, (40)

where Tr{·} denotes the trace of the matrix, and R̂ denotes the
covariance matrix of the averaged CSI sequences

R̂ =
1
U

U∑
u=1

xurx
u
r
H

. (41)

From the above derivation, it can be seen that the
estimation of Ar is related to ξ and R̂. Therefore we can map
A to the subspace ξ and R̂ to construct the corresponding

fingerprint. The covariance matrix R̂r,t of the r-th channel
at the t-th training point can be calculated from the averaged
CSI sequence xur . While ξ cannot be obtained directly, so we
use the eigenspace decomposition method to estimate ξ . The
estimation process of the projection matrix ξ r,t of the r-th
channel at the t-th training point is as follows:

1) Calculate the covariance matrix R̂r,t by R̂r,t =
1
U

∑U
u=1 x

u
rx
u
r
H

2) Perform an eigenvalue decomposition of R̂r,t
3) Estimate the signal subspace dimension d̂
4) Extract the first d̂ feature vectors of R̂r,t and obtain V d̂ ={

v1, . . . , vd̂
}

5) Estimate the projectionmatrix by ξ̂ r,t =V d̂

(
VH
d̂
V d̂

)−1
VH
d̂

The projection subspace
{
R̂r,t ,Oξ r,t

}
from different anten-

nas are composed to form the whole fingerprint
{
R̂t ,Oξ t

}
of

the t-th reference point, and then the entire offline fingerprint
database is built.

2) ELM NEURAL NETWORK IMPLEMENTATION

Considering that the functional relationship between
{
R̂t ,Oξ t

}
and the actual position coordinates are unknown, the neural
network is applied for learning and predicting the location
coordinates. During the training phase, using fingerprint
information collected in a certain area, the neural network can
learn the nonlinear mapping relationship between fingerprint
and position coordinates in that area. In positioning phase,
signals are received in the same area and fingerprint informa-
tion is extracted, subsequently this fingerprint information is
processed through the neural network to yield the position
coordinates. An ensemble of a single-layer neural network
called ELM is appled in this paper. This network has the
following two advantages

• The network has only one hidden layer. The weights
and biases from the input layer to the hidden layer are
randomly set in advance, which greatly improves the
training speed.

• The connecting weights between the hidden layer and
the output layer do not need to be adjusted iteratively.
They are determined once by solving the system
equations.

The ELM neural network [42] is indeed significantly
different from the traditional method. In optimization theory,
the introduction of randomness usually helps to enhance
the generalization ability of the algorithm. The method of
randomizing the hidden layer of the ELM neural network
can greatly increase the computing speed and can meet the
requirements of high real-time performance of positioning
services. This is why the ELM neural network is chosen to
learn and predict the position in this paper. As shown in Fig
5, the network includes an input layer, a hidden layer, and an
output layer.

The input layer has N neurons, representing the data
dimension of an input sample. The hidden layer has S
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FIGURE 5. ELM network structure.

neurons. The output layer has M neurons which denotes M
category labels.

Suppose the connection weight matrix ω between the input
layer and the hidden layer is

ω =


ω11 ω12 . . . ω1N
ω21 ω22 . . . ω2N
. . . · · · . . . . . .

ωS1 ωS2 . . . ωSN


S×N

, (42)

where ωsn denotes the connection weight between the n-th
neuron of the input layer and the s-th neuron of the hidden
layer. The connection weight matrix β between the output
layer and the hidden layer can be expressed as

β =


β11 β12 . . . β1M
β21 β22 . . . β2M
. . . . . . . . . . . .

βS1 βS2 . . . βSM


S×M

, (43)

where βsm denotes the connection weight between the m-
th neuron of the output layer and the s-th neuron of the
hidden layer. The thresholds of hidden layer neurons can be
expressed as

b =


b1
b2
...

bS


S×1

. (44)

Considering there are a total ofQ fingerprints and the input
data matrix X can be expressed as

X =


x11 x12 . . . x1Q
x21 x22 . . . x2Q
. . . . . . . . . . . .

xN1 xN2 . . . xNQ


N×Q

. (45)

Suppose the activation function is g(·)and the network’s
output is equal to the actual sample label Oq. Then the final
output label set of the network can be written as

Oq =


o1q
o2q
...

oMq


M×1

(q = 1, 2, . . . ,Q)

=


∑S

s=1 βs1g
(
ωsxq + bs

)∑S
s=1 βs2g

(
ωsxq + bs

)
...∑S

s=1 βsMg
(
ωsxq + bs

)

M×1

, (46)

where ωs = [ωs1, ωs2, . . . , ωsN ], xq =
[
x1q, x2q, . . . , xNq

]T .
Equation(46) can be written as the following matrix form

Gβ = OT , (47)

where
G

(
ω1, ω2, . . . ,ωS , b1, b2, . . . , bl, x1, x2, . . . xQ

)
=


g (ω1x1 + b1) g (ω2x1 + b2) . . . g (ωSx1 + bS)
g (ω1x2 + b1) g (ω2x2 + b2) . . . g (ωSx2 + bS)

. . . . . . . . . . . .

g
(
ω1xQ + b1

)
g

(
ω2xQ + b2

)
. . . g

(
ωSxQ+bS

)

Q×S

(48)

For any Q different fingerprint set
(
xq,Oq

)
, xq =[

x1q, x2q, . . . , xNq
]T

∈ RN , Oq =
[
x1q, x2q, . . . , xMq

]T
∈

RM , assuming that the number of input samples is equal to
the number of neurons in the hidden layer, and the activation
function is infinitely differentiable in any interval, then for
any given ωq and bq, the output matrix G of the single-layer
network is invertible and satisfies ∥Gβ−OT ∥ = 0. Therefore,
when the number of input samples is equal to the number of
neurons in the hidden layer, even if ω and b are randomly
selected, the neural network can also approach the training
samples with zero error.

In practice, the number of training samples is relatively
large. In order to simplify the computational complexity, the
number of hidden layer neurons selected is less than the
number of training samples. For an arbitrarily small error ϵ >

0 and an infinitely differentiable function g(·) in an arbitrary
interval, there is always a single hidden layer feedforward
neural network containing S(S < Q) hidden layer neurons.
For any ω and b, ∥Gβ − OT ∥ < ϵ always meets.

Based on the above principle, even if the number of training
samples is relatively large, the final training error of the
network will approach a certain value. Therefore, ω and
b of the network can be randomly set in advance and the
connection weight β can be determined by the following
formula

min
β

∥Gβ − OT ∥, (49)

and the solution is β = G−1OT .
The basic ELM only considers the empirical error mini-

mization of the training data set, which is prone to overfitting.
Next, we perform a two-norm constraint method on the
weight matrix to optimize it. Considering the goal of network
training is to minimize the norm of training error ∥OT −Gβ∥

2

and output weight ∥β∥
2, the training process can be expressed

as a constrained optimization problem [43]

min
β

1
2
∥β∥

2
+

1
2
C ∥ζ∥

2
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s.t. G · β = OT − ζ , (50)

whereC is the regularization coefficient, ζ is the output error.
For the optimization problem with equality constraints, the
Lagrangian multiplier method is usually used. After solving
the optimization problem we can get β as [43]

β = GT
(
I
C

+ GGT
)−1

OT . (51)

Here we consider that the estimated coordinate position
is equal to the position corresponding to the network’s
output label. However, a single ELM network has only one
hidden layer, which limits its performance. What’s more, the
randomness nature of ELM makes it unstable. Refer to our
previous work [40], several ELM networks with the same
number of hidden neurons but different weights and bias are
jointly optimized to improve the positioning performance.
We average the output results of multiple ELM networks to
obtain the final estimated location coordinates.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of the LOS/NLOS recognition
stage is O(L), where L represents the channel measurement
length. The proposed improved MUSIC algorithm does not
introduce any additional computational complexity, as it
maintains a complexity of O(K 3

+ M0K 2). Here, K denotes
the number of virtual antennas, andM0 represents the number
of spatial spectral search points.In terms of the fingerprint
algorithm, which is based on an ELM network, the primary
computational complexity during localization arises from
subspace feature extraction, which can be expressed asO(I3+
S), with S denoting the number of neurons in the network
and I denoting the number of symbols in a receiving cycle
period. In summary, the complexity of the MUSIC algorithm
is slightly higher but the positioning accuracy is also higher,
while the fingerprint algorithm has a lower complexity and
accuracy in the positioning stage. As HyLoc combines these
two algorithms, its overall computational complexity will
fall between the two extremes, depending on the probability
of LOS conditions. K and I can be selected based on the
actual situation, thereby controlling the algorithm complexity
within an acceptable range.

IV. EXPERIMENTAL RESULTS
In this section, the proposed HyLoc are compared with
several existing schemes by simulation. The experiment setup
is firstly introduced. Then we verify the performance of
each sub algorithm of the proposed Hyloc algorithm. Finally,
we verify the positioning performance of the proposed Hyloc
algorithm and compare it with other algorithms.

A. EXPERIMENT SETUP
In order to verify the performance of the HyLoc proposed
in this paper, the ZedBoard software radio platform is used
to obtain practical CSI information. ZedBoard is a low-cost
development board based on the Xilinx Zynq-7000 extended

TABLE 1. ZedBoard main parameters.

TABLE 2. Experimental parameters.

processing platform. The main parameters of ZedBoard are
shown in Table 1:
The laboratory is used as the test scenario to obtain actual

CSI information. In order to simulate a real environment,
there are people moving around during the experiment.

Two development boards are used in the experiment to
simulate a simple sending and receiving process based on
the LTE protocol on a PC. In the data collection phase,
the position of the transmitter is fixed and the receiver is
placed on a pre-divided grid point. A downlink transmitting
program keeps running on the transmitter platform at the
frequency of 2GHz. The floor plan of the laboratory is shown
in the Fig. 6. We divided the laboratory, with an approximate
area of 50m2, into a grid of square cells with side length
0.5m. And we use these 105 grid points as training points.
Some of points are LOS and some are NLOS to consider
the LOS/NLOS mixed scenario. In addition, we randomly
selected 12 non-grid points as test points. At each point,
the receiver continuously receives signal packets and extracts
CSI, repeating multiple times at the same point to obtain
sufficient measurement data. In this experiment the signal
bandwidth is 10MHz and the signal reception duration is 0.2s.
The final extracted CSI is a 600 × 31500 × 2 × 2 tensor
for each point, representing 600 subcarriers in the frequency
domain, 31500 OFDM symbols in the time domain and 2×2
multi-input multi-output (MIMO) in the spatial domain. The
specific experimental parameters are shown in Table 2.

B. LOS/NLOS IDENTIFICATION PERFORMANCE
We first verified the effectiveness of the proposed
LOS/NLOS identification algorithm. Fig.7 shows the
identification accuracy of the proposed method at different
distances from the transmitter. In our experimental environ-
ment, the proposed method achieves a NLOS identification
accuracy of 88% for all sampling points. And it can be
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FIGURE 6. The floor plan of the laboratory.

FIGURE 7. LOS/NLOS identification accuracy at different distances from
the transmitter.

observed that there is no direct correlation between LOS
identification accuracy and propagation distance. This is
because the proposed method utilizes statistical features of
the signal, which are unrelated to the overall signal strength.
This result proves the effectiveness of the proposed method
and serves as the foundation for subsequent positioning.

C. IMPROVED MUSIC PERFORMENCE
In this section we conducted a comparison between the
improved MUSIC algorithm and the classic MUSIC algo-
rithm. Fig. 8 present the spatial spectrum generated by
both algorithms for the same point. It is evident that the
classic MUSIC algorithm may overlook the peak, while the
improved algorithm, after undergoing smoothing, reveals two
new peaks near the −30◦ arrival angle. This is because
one source may generate highly correlated multipath signals

FIGURE 8. The spatial spectrum of diffirence method.

after passing through similar propagation paths, resulting in
the classical MUSIC algorithm being unable to distinguish
between different paths. Similar phenomena were observed
at many points in the experiment, which demonstrates
that smoothing processing can effectively eliminate the
occurrence of missed or misjudged peaks and enhances the
robustness of the algorithm when relevant sources exist.

D. COMPARING THE POSITIONING ACCURACY OF
FINGERPRINT AND MUSIC ALGORITHM
We divided the test points into NLOS and LOS sections,
and used two methods to locate all test points. Each
point was repeated multiple times and the positioning error
was counted. Fig. 9 shows the positioning performance
of two methods in two different environments. It can be
clearly observed that in LOS environments, the MUSIC
algorithm achieves higher localization accuracy, while in
NLOS environments, the fingerprinting algorithm achieves
higher localization accuracy. Therefore, the idea of using
MUSIC algorithm in LOS scenario and fingerprint algorithm
in NLOS scenario is reasonable in the proposed Hybrid
localization algorithm.

E. POSITIONING ACCURACY OF PROPOSED HYLOC
The Hyloc algorithm proposed in this paper leverages
LOS/NLOS identification to fully exploit the strengths of
both methods, thereby achieving higher positioning accuracy
in mixed LOS/NLOS environments. The positioning results
of the HyLoc is shown in Fig. 10 and Fig. 12.
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FIGURE 9. Positioning error cumulative distribution function (CDF) of
diffirence method in different scenarios.

FIGURE 10. Comparison of Hybrid positioning scheme and single
positioning method.

FIGURE 11. The floor plan of positioning effect.

It can be seen from Fig. 10 that when the improvedMUSIC
algorithm is singly used, it shows poor positioning results.
This is because the positioning method based on parameter
estimation is highly dependent on the propagation environ-
ment, and the existence of NLOS paths greatly increase the

FIGURE 12. Comparison of existing classic methods.

TABLE 3. Comparison of errors in different positioning methods.

estimation error. When the fingerprint positioning algorithm
is singly used, the performance is better than that of improved
MUSIC algorithm. It also shows that the positioning results
of the fingerprint method is less affected by the environment.
Finally, through LOS/NLOS identification and integrating
the two positioning methods, it can be obviously seen that the
performance of the proposed HyLoc is the best, which proves
the effectiveness of the hybrid scheme.

Fig. 11 is an intuitive positioning result diagram of the
HyLoc. A total of 12 test points are selected. It can be seen
that although several points have large errors, most points can
achieve good positioning results. Among them, the general
positioning results of the points with LOS path is better than
that of points with NLOS paths.

We also compare our proposed hybrid positioning scheme
with Hours [19] and FIFS [20] systems, which are two classic
positioning methods. The obtained minimum mean square
error (MMSE) distance and median error distance are shown
in Table 3, and the obtained cumulative distribution function
(CDF) curve of MMSE is shown in Fig. 12. It can be seen
that the performance of the HyLoc is much better than the
other two positioning systems. Using the HyLoc, the position
coordinate MMSE of 80% test points is within 2m. The
proposed HyLoc can achieve the best positioning accuracy.
In terms of algorithm complexity, as both FIFS and Hour
algorithms are fingerprint based positioning algorithms, their
positioning phase has a similar complexity to the fingerprint
algorithm proposed in this paper and lower then improved
MUSIC. However, these two methods do not fully utilize the
fingerprint information in the received signal, nor do they
utilize the information of the direct path, resulting in lower
positioning accuracy.

V. CONCLUSION
Aiming at the problem of unsatisfactory positioning per-
formance in mixed LOS and NLOS environment, this
paper proposes a hybrid localization method based on
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LOS/NLOS identification which realizes single-site localiza-
tion. Depending on the different probability distributions of
RPS in different propagation environments, four statistical
characteristics are firstly calculated and a TJ is designed to
identify whether there is a LOS path in the environment.
According to the identification results of TJ, the HyLoc
adaptively select the optimal positioning method. For the
environment with LOS paths, MUSIC algorithm is used
to estimate the positioning parameters, and the forward
smoothing technology is used to eliminate the influence of
coherent signals. For the environment with NLOS path, the
MSP and ELM-based fingerprint localization algorithm is
propsoed to complete positioning, using a signal subspace
method to do dimensionality reduction and signal feature
extraction, and an ensemble of ELM network to estimate
the positioning results. Finally, the experimental results show
that the HyLoc proposed in this paper can realize single-site
localization and has better positioning performance than
the single method and several existing classic positioning
methods.

APPENDIX A
DERIVATION OF EQUATION (38)
From (37), the log likelihood function of the received signal
can be expressed as

log p
(
x1r , . . . , x

U
r | Ar , 0, σ 2

)
=C − IU log σ 2

−

U∑
u=1

1
σ 2

∥∥xur − Arγ u∥∥2 , (52)

where C is a constant. After removing the constant term, the
maximum likelihood estimation of Ar can be expressed as[
Âr , 0̂, σ̂ 2

]
= argmax

Ar ,0,σ 2
log p

(
x1r , . . . , x

U
r | Ar , 0, σ 2

)
= argmin

Ar ,0,σ 2
IU log σ 2

+
1
σ 2

U∑
u=1

∥∥xur − Arγ u∥∥2 .

(53)

Taking the partial derivative of γ u and σ 2 and setting them
to 0, we obtain the maximum likelihood estimate of γ u and
σ 2 as

γ̂ u
=

(
AHr A

)−1
AHxur . (54)

σ̂ 2
=

∑U
u=1

∥∥xur − Arγ u
∥∥2

IU
. (55)

Subsequently, substituting (54) and (55) into (53) we can
obtain

Âr = argmin
Ar

IU log

∑U
u=1

∥∥xur − ξxur
∥∥2

IU
+ IU

= argmin
Ar

U∑
u=1

∥xur − ξxur∥
2, (56)

which is equation (38).

REFERENCES
[1] Y. Li, Y. Zhuang, X. Hu, Z. Gao, J. Hu, L. Chen, Z. He, L. Pei,

K. Chen, M. Wang, X. Niu, R. Chen, J. Thompson, F. M. Ghannouchi, and
N. El-Sheimy, ‘‘Toward location-enabled IoT (LE-IoT): IoT positioning
techniques, error sources, and error mitigation,’’ IEEE Internet Things J.,
vol. 8, no. 6, pp. 4035–4062, Mar. 2021.

[2] A. Li, J. Fu, H. Shen, and S. Sun, ‘‘A cluster-principal-component-analysis-
based indoor positioning algorithm,’’ IEEE Internet Things J., vol. 8, no. 1,
pp. 187–196, Jan. 2021.

[3] W. Zhang, K. Yu, W. Wang, and X. Li, ‘‘A self-adaptive AP selection algo-
rithm based on multiobjective optimization for indoor WiFi positioning,’’
IEEE Internet Things J., vol. 8, no. 3, pp. 1406–1416, Feb. 2021.

[4] S. Sadowski, P. Spachos, and K. N. Plataniotis, ‘‘Memoryless techniques
and wireless technologies for indoor localization with the Internet of
Things,’’ IEEE Internet Things J., vol. 7, no. 11, pp. 10996–11005,
Nov. 2020.

[5] J. Hu, D. Liu, Z. Yan, and H. Liu, ‘‘Experimental analysis on weight
K -nearest neighbor indoor fingerprint positioning,’’ IEEE Internet Things
J., vol. 6, no. 1, pp. 891–897, Feb. 2019.

[6] H. Li, Z. Qian, C. Tian, and X. Wang, ‘‘TILoc: Improving the robustness
and accuracy for fingerprint-based indoor localization,’’ IEEE Internet
Things J., vol. 7, no. 4, pp. 3053–3066, Apr. 2020.

[7] E. Y. Menta, N. Malm, R. Jäntti, K. Ruttik, M. Costa, and K. Leppänen,
‘‘On the performance of AoA–based localization in 5G ultra–dense
networks,’’ IEEE Access, vol. 7, pp. 33870–33880, 2019.

[8] J. Chadha and A. Jain, ‘‘Anatomization on range-free localization
algorithms in wireless sensor networks,’’ in Proc. 2nd Int. Conf. Power
Energy, Environ. Intell. Control (PEEIC), Oct. 2019, pp. 489–492.

[9] C. Gao, G. Wang, and S. G. Razul, ‘‘Comparisons of the super-resolution
TOA/TDOA estimation algorithms,’’ in Proc. Prog. Electromagn. Res.
Symp. Fall (PIERS-FALL), Nov. 2017, pp. 2752–2758.

[10] H. Xiong, M. Peng, S. Gong, and Z. Du, ‘‘A novel hybrid RSS and
TOA positioning algorithm for multi-objective cooperative wireless sensor
networks,’’ IEEE Sensors J., vol. 18, no. 22, pp. 9343–9351, Nov. 2018.

[11] X. Li and K. Pahlavan, ‘‘Super-resolution TOA estimation with diversity
for indoor geolocation,’’ IEEE Trans. Wireless Commun., vol. 3, no. 1,
pp. 224–234, Jan. 2004.

[12] V. U. Prabhu and D. Jalihal, ‘‘An improved ESPRIT based time-of-arrival
estimation algorithm for vehicular OFDM systems,’’ in Proc. IEEE 69th
Veh. Technol. Conf.(VTC Spring), Apr. 2009, pp. 1–4.

[13] K. Witrisal, P. Meissner, E. Leitinger, Y. Shen, C. Gustafson, F. Tufvesson,
K. Haneda, D. Dardari, A. F. Molisch, A. Conti, and M. Z. Win, ‘‘High-
accuracy localization for assisted living: 5G systems will turn multipath
channels from foe to friend,’’ IEEE Signal Process. Mag., vol. 33, no. 2,
pp. 59–70, Mar. 2016.

[14] J. Fan, S. Chen, X. Luo, Y. Zhang, and G. Y. Li, ‘‘A machine
learning approach for hierarchical localization based on multipath MIMO
fingerprints,’’ IEEE Commun. Lett., vol. 23, no. 10, pp. 1765–1768,
Oct. 2019.

[15] N. Etemadyrad and J. K. Nelson, ‘‘A sequential detection approach to
indoor positioning using RSS-based fingerprinting,’’ in Proc. IEEE Global
Conf. Signal Inf. Process. (GlobalSIP), Dec. 2016, pp. 1127–1131.

[16] X. Li and J. Zhu, ‘‘Improved indoor positioning method based on CSI,’’ in
Proc. Int. Conf. Intell. Transp., Big Data Smart City (ICITBS), Jan. 2019,
pp. 274–277.

[17] Y. Zhang, D. Li, and Y. Wang, ‘‘An indoor passive positioning method
using CSI fingerprint based on AdaBoost,’’ IEEE Sensors J., vol. 19,
no. 14, pp. 5792–5800, Jul. 2019.

[18] P. Bahl and V. N. Padmanabhan, ‘‘RADAR: An in-building RF-based user
location and tracking system,’’ in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), 19th Annu. Joint Conf. IEEE Comput. Commun. Societies,
Mar. 2000, pp. 775–784.

[19] M. Youssef and A. Agrawala, ‘‘The Horus WLAN location determination
system,’’ in Proc. 3rd Int. Conf. Mobile Syst., Appl., Services, Jun. 2005,
pp. 205–218.

[20] J. Xiao, K. Wu, Y. Yi, and L. M. Ni, ‘‘FIFS: Fine-grained indoor
fingerprinting system,’’ in Proc. 21st Int. Conf. Comput. Commun. Netw.
(ICCCN), Jul. 2012, pp. 1–7.

[21] C. Xu, B. Firner, Y. Zhang, and R. E. Howard, ‘‘The case for efficient and
robust RF-based device-free localization,’’ IEEE Trans. Mobile Comput.,
vol. 15, no. 9, pp. 2362–2375, Sep. 2016.

VOLUME 11, 2023 115045



J. Zhang et al.: HyLoc: An Indoor Single-Site Hybrid Localization Scheme

[22] P. Davidson and R. Piché, ‘‘A survey of selected indoor positioning
methods for smartphones,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 2,
pp. 1347–1370, 2nd Quart., 2017.

[23] H. Chen, Y. Zhang, W. Li, X. Tao, and P. Zhang, ‘‘ConFi: Convolutional
neural networks based indoor Wi-Fi localization using channel state
information,’’ IEEE Access, vol. 5, pp. 18066–18074, 2017.

[24] Z. Abu-Shaban, X. Zhou, and T. D. Abhayapala, ‘‘A novel TOA-
based mobile localization technique under mixed LOS/NLOS conditions
for cellular networks,’’ IEEE Trans. Veh. Technol., vol. 65, no. 11,
pp. 8841–8853, Nov. 2016.

[25] C.-H. Park and J.-H. Chang, ‘‘Robust LMedS-basedWLS and Tukey-based
EKF algorithms under LOS/NLOS mixture conditions,’’ IEEE Access,
vol. 7, pp. 148198–148207, 2019.

[26] Y. Li, S. Ma, G. Yang, and K.-K. Wong, ‘‘Robust localization for
mixed LOS/NLOS environments with anchor uncertainties,’’ IEEE Trans.
Commun., vol. 68, no. 7, pp. 4507–4521, Jul. 2020.

[27] S. Zhang, S. Gao, G. Wang, and Y. Li, ‘‘Robust NLOS error mitigation
method for TOA-based localization via second-order cone relaxation,’’
IEEE Commun. Lett., vol. 19, no. 12, pp. 2210–2213, Dec. 2015.

[28] G.Wang, H. Chen, Y. Li, and N. Ansari, ‘‘NLOS error mitigation for TOA-
based localization via convex relaxation,’’ IEEE Trans. Wireless Commun.,
vol. 13, no. 8, pp. 4119–4131, Aug. 2014.

[29] R. M. Vaghefi and R. M. Buehrer, ‘‘Cooperative localization in NLOS
environments using semidefinite programming,’’ IEEE Commun. Lett.,
vol. 19, no. 8, pp. 1382–1385, Aug. 2015.

[30] T. Qiao and H. Liu, ‘‘Improved least median of squares localization
for non-line-of-sight mitigation,’’ IEEE Commun. Lett., vol. 18, no. 8,
pp. 1451–1454, Aug. 2014.

[31] F. Yin, C. Fritsche, F. Gustafsson, and A. M. Zoubir, ‘‘EM- and JMAP-ML
based joint estimation algorithms for robust wireless geolocation in mixed
LOS/NLOS environments,’’ IEEE Trans. Signal Process., vol. 62, no. 1,
pp. 168–182, Jan. 2014.

[32] I. Guvenc, C.-C. Chong, and F. Watanabe, ‘‘NLOS identification and
mitigation for UWB localization systems,’’ in Proc. IEEE Wireless
Commun. Netw. Conf., Mar. 2007, pp. 1571–1576.

[33] D. Jin, F. Yin, M. Fauß, M. Muma, and A. M. Zoubir, ‘‘Exploiting
sparsity for robust sensor network localization in mixed LOS/NLOS
environments,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2020, p. 5915.

[34] S. Maranò, W. M. Gifford, H. Wymeersch, and M. Z. Win, ‘‘NLOS
identification and mitigation for localization based on UWB experimental
data,’’ IEEE J. Sel. Areas Commun., vol. 28, no. 7, pp. 1026–1035,
Sep. 2010.

[35] B. Hu, H. Tian, and S. Fan, ‘‘Millimeter wave LOS/NLOS identification
and localization via mean-shift clustering,’’ in Proc. IEEE 30th Annu. Int.
Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Sep. 2019, pp. 1–7.

[36] G. Qing, K. Wei, and T. Wanchun, ‘‘Wireless positioning method based
on dynamic objective function under mixed LOS/NLOS conditions,’’ in
Proc. Ubiquitous Positioning, Indoor Navigat. Location-Based Services
(UPINLBS), Mar. 2018, pp. 1–4.

[37] K. Yu, K. Wen, Y. Li, S. Zhang, and K. Zhang, ‘‘A novel NLOS mitigation
algorithm for UWB localization in harsh indoor environments,’’ IEEE
Trans. Veh. Technol., vol. 68, no. 1, pp. 686–699, Jan. 2019.

[38] X. Wang, L. Gao, and S. Mao, ‘‘CSI phase fingerprinting for indoor
localization with a deep learning approach,’’ IEEE Internet Things J.,
vol. 3, no. 6, pp. 1113–1123, Dec. 2016.

[39] T.-J. Shan, M. Wax, and T. Kailath, ‘‘On spatial smoothing for direction-
of-arrival estimation of coherent signals,’’ IEEE Trans. Acoust., Speech,
Signal Process., vol. ASSP-33, no. 4, pp. 806–811, Apr. 1985.

[40] J. Fan, H. Sun, Y. Su, and J. Huang, ‘‘MuSpel-Fi: Multipath subspace
projection and ELM-based fingerprint localization,’’ IEEE Signal Process.
Lett., vol. 29, pp. 329–333, 2022.

[41] E. Kupershtein, M. Wax, and I. Cohen, ‘‘Single-site emitter localization
via multipath fingerprinting,’’ IEEE Trans. Signal Process., vol. 61, no. 1,
pp. 10–21, Jan. 2013.

[42] G.-B. Huang, Q.-Y. Zhu, andC.-K. Siew, ‘‘Extreme learningmachine: The-
ory and applications,’’ Neurocomputing, vol. 70, nos. 1–3, pp. 489–501,
Dec. 2006.

[43] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, ‘‘Extreme learningmachine
for regression and multiclass classification,’’ IEEE Trans. Syst. Man,
Cybern. B, Cybern., vol. 42, no. 2, pp. 513–529, Apr. 2012.

JINBO ZHANG received the Ph.D. degree in
signal and information processing from the Beijing
University of Posts and Telecommunications,
Beijing, China, in 2014. He is currently a Senior
Engineer with the Science and Technology on
Communication Networks Laboratory, The 54th
Research Institute of CETC, Shijiazhuang, China.
His general research interests include signal
processing and wireless communications, with
an emphasis on MIMO communication technol-

ogy, practical issues in 5G and 6G systems, and microwave/millimeter
wave/terahertz communication systems. In these areas, he has published
more than 20 journals and conference papers, and has filed more than ten
patents in recent years.

HAO SUN received the B.S. degree from Xidian
University, Xi’an, China, in 2020. He is currently
pursuing the M.S. degree with Xi’an Jiaotong
University, Xi’an. His general research interests
include indoor high-precision positioning technol-
ogy and 5G key technology.

YUJIE FENG received the B.S. degree from
Xi’an Jiaotong University, Xi’an, China, in 2021,
where he is currently pursuing the M.S. degree.
His general research interests include channel
parameter estimation and high-precision position-
ing technology.

JIANCUN FAN (Senior Member, IEEE) received
the B.S. and Ph.D. degrees in electrical engi-
neering from Xi’an Jiaotong University, Xi’an,
Shaanxi, China, in 2004 and 2012, respectively.
From August 2009 to August 2011, he was a
Visiting Scholar with the School of Electrical
and Computer Engineering, Georgia Institute of
Technology, Atlanta, GA, USA. From September
2017 to December 2017, he was a Visiting
Scholar with Technische Universitat Dresden

(TUD), Germany. He is currently a Professor and the Associate Dean
of the School of Information and Communications Engineering, Xi’an
Jiaotong University. His general research interests include signal processing
and wireless communications, with emphasis on MIMO communication
systems, practical issues in 5G and 6G systems, navigation and localization,
andmachine learning application for wireless communication. In these areas,
he has published over 100 journals and conference papers. He was a recipient
of the Best Paper Award at the 20th International Symposium on Wireless
Personal Multimedia Communications, in 2017.

115046 VOLUME 11, 2023


