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ABSTRACT Though acoustic speech emotion recognition has been studied for a while, bimodal speech
emotion recognition using both acoustic and text has gained momentum since speech emotion recognition
doesn’t only involve the acoustic modality. However, there is less review work on the available bimodal
speech emotion recognition (SER) research. The review works available mostly concentrate on the use
of convolution neural networks (CNNs) and recurrent neural networks (RNNs). However, recent deep
learning techniques like attention mechanisms and fusion strategies have shaped the bimodal SER research
without explicit analysis of their significance when used singly or in combination with the traditional
deep learning techniques. We therefore, review the recently published literature that involves these deep
learning techniques in this paper to ascertain the current trends and challenges of bimodal SER research
that have hampered it to be fully deployed in the natural environment for off-the-shelf SER applications.
In addition, we carried out experiments to ascertain the optimal combination of acoustic features and the
significance of the attention mechanisms and their combination with the traditional deep learning techniques.
We propose a multi-technique model called the deep learning-based multi-learning model for emotion
recognition (DBMER) that operates with multi-learning capabilities of CNNs, RNNs, and multi-head
attention mechanisms. We noted that attention mechanisms play a pivotal role in the performance of bimodal
dyadic SER systems. However, few publicly available datasets, the difficulty in acquisition of bimodal SER
data, cross-corpus and multilingual studies remain open problems in bimodal SER research. Our experiments
on the proposed DBMER model showed that though each of the deep learning techniques benefits the task,
the results are more accurate and robust when they are used in careful combination with multi-level fusion
approaches.

INDEX TERMS Emotion recognition, acoustic and lexical data, deep learning, attention mechanisms.

I. INTRODUCTION increased the relevancy of affective computing in the research
The growing desire to improve the social intelligence of community. The progressive success of affective computing
agents that can detect and comprehend human affection has with deep learning techniques has continued to facilitate

the improvement of seemingly natural interactions between
The associate editor coordinating the review of this manuscript and human belngs' and intelligent agents Wlthout. encumbrances.
approving it for publication was Manuel Rosa-Zurera. However, besides the success, there are still a number of
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challenges that are of concern to the research community
especially in terms of the transfer of laboratory-generated
models to the natural environment [1]. An analysis of the
existing models needs to be done in order to improve and
make them suitable for the natural environment in which they
are applied. Affective computing is deployed in a number of
applications; health [2], robotics [3], education [4], customer
care [5], psychology [6], etc. Since its proposal in 1997 by
Prof. Picard [7], affective computing has been studied in
form of emotion recognition and sentiment analysis. Emotion
recognition is categorized according to the source of the data.
The emotional data is categorized as physical or physiological
depending on its source. Physical data is from acoustic,
lexical and visual sources and physiological data is from
electrocardiogram (ECG), electroencephalogram (EEG) or
galvanic skin response (GSR). This paper concentrates on
bimodal speech emotion recognition that involves the audio
speech signals and their text transcriptions as emotion
sources.

The applications of speech emotion recognition (SER)
systems need accurate, computationally efficient and robust
models to perform the task of SER. Moreover, they need
to be more robust when deployed in real-time natural
environments [1]. One of the ways to achieve a robust and
accurate performance is the choice of sufficient data used for
training the SER model. A number of unimodal models have
been proposed for SER as reviewed in [1], [8], and [9] and
they exhibit a promising performance. However, it decreases
when transferred to the natural environment. It is however,
prudent to model word-frame interactions between text and
acoustic modalities of speech [10] for more robust emotion
recognition. In addition, as stated in [11] the clues of how it
is said (acoustic) and what is said (lexical) contribute to the
emotion portrayed in an utterance. Moreover, Lian et al. [12]
asserts that there exists cross-modality relationships between
acoustic and lexical features that ought to be carefully fused
with intra-modality features for robust and accurate SER.
Indeed, bimodal SER has been proven to perform better
than unimodal SER either in terms of text or acoustic
data. Lian et al. [12] tested their conversational network
model that uses a transformer and bidirectional gated unit
(BiGRU) with separate acoustic and lexical features before
fusing them to allow the model to benefit from both the
intra and cross-modality feature relationships and found
out that the model performed well on both the interactive
emotional dyadic motion capture IEMOCAP) database and
the multi-lines emotion dataset (MELD) datasets. In [13],
it is also empirically shown that the unimodal features do
not perform as robustly as the fused features. In addition,
the results in [14] show that though the models subjected
to the text modality perform better than those of the
acoustic modality, models subjected to a combination of
the two often give better results than unimodal models.
The same case is reported in [15], [16], and [17] among
others.
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The efficiency and robustness of SER models depend on
two stages; feature extraction and emotion classification.
Robust feature extraction provides the model with elaborate
knowledge about acoustic features like pitch, formant fre-
quencies, and vocal tract. Such features are important for the
discernment of different emotions in speech. Generally, the
two main speech feature extraction techniques are temporal
analysis and spectral analysis [18]. Traditional methods
involve handcrafted methods of extracting local features
from which global features are computed statistically. SER
deep learning models dynamically learn local and global
features that are important to the task with improvement
in generalization, robustness, and accuracy. The overview
of the bimodal SER model framework is shown in Fig. 1.
For both modalities, the framework includes data processing,
feature extraction, model-based learning, and classification.
In terms of the acoustic features, the nature of the speech
signal dictates the extent of data processing. Data processing
is done to ensure feature normalization in order to ensure
that the speaker variations and the ambiance of the recording
environment [19] do not affect the emotional state recognition
process. However, it may involve ensuring equal sequence
length of all the speech signals in the dataset which is the
input to the deep learning model. The speech signals that
are of shorter length than the required are padded and the
longer ones are truncated. The data processing stage also
involves the removal of the silent regions if they do not
carry any emotional clues that are useful to the model. Pre-
emphasis and bandpass filters can also be used to allow only
the frequencies of the speech signal that are considered to
have pertinent cues for emotion recognition. To speed up the
fast Fourier transform process and avoid spectral leakage,
framing and windowing are normally done. The Hamming
and Hanning window functions are used for windowing.
The frames are overlapped after windowing to avoid loss of
signal information. After the data processing phase, the signal
may be fed directly into a deep learning model or low-level
features (LLDs) can be first extracted as local features and
subsequently, high-level statistical features (HSFs) computed
as global features before being fed into the deep learning
model.

The same process is followed for the linguistic features
however the data processing of the text may involve
dropping missing entries in data and standardizing text
through tokenization which involves the removal of stop
words, stemming, and lemmatization. However, some of
these steps are omitted if the bidirectional encoder repre-
sentations from transformers (BERT) is used since it caters
for them. To represent the words in documents (usually
transcribed from voice), one hot encoded text vectors are
used. However, due to the fact that the indices assigned
to the words do not hold any meaning yet similar words
occur frequently with different meanings word embeddings
proved better representations. Traditional word embeddings
like term frequency-inverse document frequency (TF-IDFs),
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bag of words (BoW), static and dynamic word embeddings
like the word2vec, global vectors for word representa-
tions (GloVes), fastText, embeddings from language models
(ELMO), BERT are used as described in Section II before
the deep learning models and fusion with the acoustic feature
representations.

To this end, we have described the bimodal SER system
overview with an assumption that the decision-level fusion
has been used to fuse the two modality feature represen-
tations. However, as described in Section II there exist
three fusion strategies that can be used to fuse the bimodal
features. They include early fusion, intermediate or model-
level fusion, and decision-level fusion. Their merits and
demerits in addition to alignment strategies of the bimodal
features are discussed later in Section II.

The contributions of this paper include;

« A review of the datasets, linguistic and acoustic features
used, their alignment and fusion strategies, and deep
learning models is presented.

« Since the attention mechanisms have recently enhanced
the performance of deep learning models in bimodal
SER research, we provide an analysis of bimodal SER
deep learning models based on attention mechanisms at
early, intermediate and decision fusion levels.

« We also analyze the published results in terms of the
accuracy and robustness of the models and point out the
strength and challenges that need attention in bimodal
SER research.

o We propose a multi-technique model called a deep
learning-based multi-learning model for emotion recog-
nition (DBMER) that operates with multi-learning
capabilities of CNNs, RNNs and multi-head attention
mechanisms and evaluated its performance.

This distinguishes our research from the few published
bimodal SER surveys that review only traditional deep
learning techniques and do not give adequate attention to the
significance of attention mechanisms, alignment, and fusion
strategies.

The rest of the paper is organized as follows: we present a
review of the methods used in deep learning-based bimodal
SER research in Section II. The experiments we used in this
paper are described in Section III in which we also propose
the DBMER SER model. We describe the results obtained in
the different research and our experiments in terms of their
robustness and accuracy in Section IV. A detailed discussion
of the results of the proposed DBMER model and the recent
bimodal SER models and research challenges are presented in
the discussion Section V. We finally conclude in Section VI.

Il. METHODS

In this section, we describe the datasets, features, fusion and
alignment strategies, and the different deep learning tech-
niques used in the bimodal SER research studies. It should
be noted that some of these techniques are also used in
sequence or concurrently to learn the feature representations
of the acoustic and lexical modalities. We therefore, review
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the combinations of these in the literature in a bid to
assess how best the spatial, temporal and grammatical or
semantic Intra and inter-modality features can be represented
for the best robustness and eventual deployment in the
natural environment. It should be noted that, though [20]
agrees that spatial and temporal features are important to
SER, [21] suggests that these features should be combined
with grammatical features to include clues of the semantics
of the uttered words.

A. DATASETS

In order to evaluate the performance of proposed bimodal
SER models, datasets are used as inputs either in raw
signal form or extracted features. The choice of datasets in
SER depends on the availability of the datasets and their
nature. It is however, a determinant of the performance and
robustness of the model in different scenarios. We generally
categorize the datasets into three depending on the conditions
and environments in which they were recorded or obtained.
Natural datasets are those that are recorded during naturalistic
tendencies without subjecting the participants to scripted
actions or utterances. Most of these are obtained from
talk shows that were not primarily collected for speech
recognition. The elicited datasets are those that are recorded
by stimulating participants’ emotions. The actions may
include watching movie scenes that consist of different
emotions or putting them in situations where the required
emotions can be elicited. The last and most common type
is the acted datasets which are recorded according to a
script by professional actors that bring out the required
emotions. Though its expensive to obtain any of these types
of datasets, the natural datasets are the scarcest due to the
difficulty in recording naturalistic speech emotions. The
research community is often left with only the remaining two
options which are also not available in many languages in
addition to some of them being publicly unavailable. The
use of the elicited and acted datasets validates a number
of models with good performance but not robust when
deployed in the natural environment. This is because the
conditions in the natural environment in terms of speakers,
age, culture, language, text, and recording conditions do
not match with the recording environments. Therefore, there
is a need for interventions that will bridge the mismatch
between the datasets used in controlled environments which
are used to validate SER models and those existent in real-life
environments.

We opine that since speech data collection is expensive,
adversarial data augmentation techniques and transfer learn-
ing, especially domain adaptation may be possible solutions
to the mismatch since the generated data will be of a similar
distribution as the real data. Though these datasets include a
number of emotion categories, the annotation process needs
to be done carefully. The annotation depends on the ingenuity
and perspective of the annotator. For SER databases, it is
common for the annotators to be listeners or the speakers
themselves and evaluate according to a self-rating system
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FIGURE 1. The bimodal speech emotion recognition (SER) system overview.

TABLE 1. Summary of the three most common datasets.

Dataset Kind Modalities Number of Utterances  Topic Oriented ~ Dyadic
IEMOCAP [22] Acted Lexical, Acoustic, Visual 10,309 No Yes
MELD [23] Natural Lexical, Acoustic 13,000 No No
CMU-MOSEI [24]  Natural  Lexical, Acoustic, Visual 23,500 Yes No

in terms of emotional induction or how they feel. The
accuracy of the annotations by both listeners and speakers for
the emotion speech databases is still a research issue [25].
Though there are many emotion recognition datasets in
existence we only concentrated on the datasets that are used
particularly for combined acoustic and lexical SER in this
article. Since few databases that have both audio and text
modalities exist, we review the three most common speech
emotion datasets that are frequently used to validate bimodal
SER models. Table 1 shows a summary of the three most
common datasets.

1) THE IEMOCAP DATASET

The interactive emotional dyadic motion capture
(IEMOCAP) database [22] was collected at the University of
Southern California as a multi-modal and multi-speaker emo-
tion recognition database. It contains audio, transcriptions,
video, and motion-capture (MoCap) recordings of dialogues
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between dyadic mixed-gender pairs of ten actors recorded
as scripted and improvised utterances in five sessions. This
datasets consists of the discrete emotions of anger, happiness,
sadness, neutral, frustration, excitement, fear, surprise, and
disgust. The actors’ utterances were evaluated by at least
three different annotators for the discrete emotions and two
for the dimensional emotions. The emotions according to
dimensional axes are valence (positive or negative), activation
(calm or excited), and dominance (passive or aggressive).
For each instance of the dialogue to be labeled by the
evaluators, the data was partitioned into 3 to 5 seconds length
utterances. The database consists of dialog and sentence
recordings for about 12 hours. The fact that this dataset
consists of participants of mixed gender in an elicited
emotional environment makes it partly naturalistic. However,
this dataset is heavily imbalanced with one of the emotion
categories having only two utterances. The statements used
are also few compared to what is found in real life. This
explains why it’s often challenging for the proposed SER
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datasets. It should however be noted that most of the articles
reviewed in the literature use four of the emotion categories
in this dataset that seem balanced or can be worked with
when class weights are configured. These are happy or
excited, sad, angry, and neutral. Happy and excitement are
sometimes fused together since the clues of excitement and
happiness are similar in real life and they appear in the
same dimension quadrant of the emotional dimension plane.
We opine that this dataset can be used as in literature with
class weights consideration to alleviate class imbalances.
In addition, the dataset can be used with adversarial data
augmentation techniques [26] and transfer learning strategies
like the one used in [27] to generate feature vectors with
similar distribution which can improve SER accuracy and
robustness.

2) THE MELD DATASET

Multimodal emotion lines dataset (MELD) [23] has more
than 1,300 dialogues and 13,000 utterances from friends
TV series. It was formed by the addition of audio and
visual modality to the text modality that was contained in
the emotion lines dataset (ELD). It includes anger, disgust,
sadness, joy, neutral, surprise, and fear as in the discrete
emotions. The dataset also consists of positive, negative,
and neutral sentiments for each utterance. In addition
to having mixed gender, the MELD dataset focuses on
understanding emotions in conversations that were collected
from TV series and therefore not dyadic like other datasets
which provides more natural emotions. This makes this
dataset more useful in conversation emotion recognition as
compared to IEMOCAP and SEMAINE which are dyadic.
In addition, it gives the proposed SER models an oppor-
tunity to be evaluated on scenarios that involve more than
two interlocutors. The multimodality nature of the dataset
coupled with its naturalistic nature enables SER models to
compute the context of the utterances which is an important
consideration.

3) CMU-MOSEI DATASET

Zadeh et al. [24] proposed the CMU multimodal opinion
sentiment and emotion intensity (CMU-MOSEI) dataset
that is used in emotion recognition and sentiment analysis.
Compared to [IEMOCAP and MELD, CMU-MOSEI is the
largest with more than 23,500 sentence utterance videos from
more than 1,000 online you tube speakers. It consists of data
from visual, lexical, and acoustic modalities. The balanced
mixed-gender CMU-MOSEI dataset consists of various
topics and monologue videos from which sentence utterances
are chosen randomly. The researchers who proposed this
dataset also published an incite through empirical results on
how the three different modalities interact with each other
with different magnitudes of weight for a given utterance.
Due to the fact that this dataset considers a large variety
of speakers and topics in addition to using online videos,
we opine that it is naturalistic and a good representation
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of the natural environment in terms of language, speakers,
culture, and recording environments. However, this kind of
dataset poses a challenge of diverse conditions which may
make bimodal SER models “a jack of all trades and a master
of none”’. Therefore, the possibility of modality influence is
very important to consider when such datasets are used in
SER deep learning studies.

B. FEATURES

As mentioned earlier bimodal SER involves the acoustic
and lexical modalities data as the input to the deep learning
models. In this section, we briefly describe the acoustic
and lexical features pointing out their merits and demerits
that can influence their choices in bimodal deep learning
models.

1) ACOUSTIC FEATURES

Phonemes are the basic building blocks of speech that are
used by speech recognition systems to represent features in
a sentence. A phoneme is a unit of sound that distinguishes
one word from another in a particular language. Allophones
represent variations of phonemes. They are caused by accent,
age, gender, phoneme position within a word and the
emotional states of the speaker. The variability clues about
the emotional state of the speaker needs to be represented in
such a way that the SER model can understand it. It should
however be noted that some researchers urge that raw signal
inputs allow the deep learning model to learn the features by
itself other than handcraft extraction before subjecting them
to the SER model. However, we show in Section III that the
results of our simple experiments in which we compared the
extracted features with raw signals showed that the models
trained on raw signals are robust on some emotion categories
but are not as robust on other emotion categories with which
they belong in the same dimensional plane. Generally, the
acoustic features used in SER models are of four cate-
gories; prosodic, spectral, voice quality, and wavelet-based
features.

Prosodic features represent the variations in loudness,
period of utterance, intonation, and stress. They are expressed
in terms of pitch, energy, and speech duration. These features
are frequently used in literature because they are less affected
by channel mismatch and noise. Psychologically, prosodic
features are said to have a convincing correlation with
the emotional state of human beings [28]. However, it is
suggested in [1] that though these features are robust at
distinguishing between low and high arousal emotions, they
are not as good at emotions that belong to the same arousal
or valence dimension. This same scenario is observed when
raw signals are fed into SER models as we mentioned
earlier.

The spectral features consist of the signal energy at
different frequency bands. They are low-level descriptors of
sound that describe changes per time interval of different
sound spectrum bands. They depict the vocal tract frequency
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response in sound. They are obtained by creating triangular
filters on already constructed log mel spectra and decor-
relating the obtained filter banks using the discrete cosine
transform (DCT). Different from prosodic features that are
robust on intra-arousal and intra-valence emotions, spectral
features are robust at discriminating emotions that exist in
the same valence or arousal plane [1]. Though a number of
spectral features have been proposed, mel frequency cepstral
coefficients (MFCC), linear predictive cepstral coefficients
(LPCC), perceptual linear prediction (PLP), and formant fea-
tures have been used most in the current SER research studies.
Improvement of these spectral features with an emphasis on
using local moments of the Gabor spectrograms has also
been proposed in [29]. Since they take a similar approach
to feature extraction, we describe the most commonly used
MEFCCs.

MFCCs are acoustic low-level descriptors that describe
characteristics of a piece of sound by providing clues
about the rate changes in the different spectrum bands.
It should be noted that the speech signal is split into
multiple intervals (Frames or windows) and short time
Fourier transform (STFT) is applied to each interval to
generate the input power spectrum. The process involves
the implementation of frequencies in terms of the perceived
mel scale which mimics the human auditory system.
The perceived mel scale frequency (melfreq) is described
as.

f
)} = 25951 14+ =— 1
melfreq Oglo( + 700 (1

where f denotes the physical frequency in Hz. The STFT is
applied to each frame of the speech signal to generate the
input power spectrum K(,,) computed according to equation 2.
a(ny denotes the speech segment input and w(,) is the weight
of the window.

Koy = ISTFT (w, x ap)|? )

The next steps in the extraction process involve the com-
putation of filter banks and subsequent triangular filters.
To compute the mel filter banks, the lowest and highest
frequency are converted to mel scale according to equation 2.
The mel log frequency of the power spectrum K, is given
by f; shown in equation 3. Hy(w) denotes the value of the Sth
triangular filter for the Wth frequency.

£y =1ogiq (D Ko [Hinw) 3)

The discrete cosine transform (DCT) is applied to the
list of mel log frequency sub-bands as described in
equation 4

fsb .
T,
¢ = jzzl];- cos (fs—;(] - 0.5)) )

where f(y) denotes frequency sub-bands. i is between 0 and
the number of mel frequency coefficients (n(ufec)). The
amplitudes of the resultant spectrum gives the MFCCs.
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The DCT is applied since the vocal tract is smooth and
therefore the energy levels in adjacent bands tend to be
highly correlated and need to be decorrelated. We refer the
reader to [30] for an exhaustive description of MFCCs feature
extraction process.

The speech features can be extracted in the time domain,
frequency domain and time-frequency domain. Some of
the time domain features include the amplitude envelope
(AE) which gives a rough idea about the audio signal,
root mean square energy (RMSE) which is an indicator of
the loudness of sound, zero crossing rate (ZCR) which is
used to distinguish voiced and unvoiced signals, percussive,
and pitched sounds. The frequency domain features include
the band energy ratio (BER) which provides comparative
information about the energy in the lower and higher
frequency bands, the spectral centroid (SC) that shows the
frequency band where most of the energy is concentrated
(a measure of the brightness of sound) and the spectral
spread (SS) which is majorly used in music processing
to estimate the range around the centroid. Though speech
audio is temporal, the interaction between the time and
frequency domain gives better clues to the deep learning
models. Therefore, the time-frequency domain features are
often used in speech emotion recognition. Examples of time
domain features are MFCCs, LPCCs, mel spectrograms,
etc. However, there is always a trade-off between time and
frequency resolutions using the frame size depending on
the application. If the application requires more time or
frequency resolution, a small or larger frame/window size
is used respectively. These fixed windows are normally
used to avoid spectral leakage during the computation
of the STFT. The trade-off between time and frequency
resolution depends on the application. It should also be
noted that the use of the wavelet transforms (WT) was
proposed to compute the spectral-temporal information
instead of the STFT by using decomposing the signal into
low and high-frequency components [1]. The use of the
WT to extract features like MFCCs, LPCCs for emotion
recognition was proposed in [31] and [32] with improved
performance than those extracted using the discrete Fourier
transform (DFT).

The relationship between the vocal excitation and the vocal
cord in the vocal tract gives clues of the voice quality. The
relationship may be described in terms of the period of
opening and closing of the vocal tract or the ratio of the two
reflex actions. Speech features like shimmer and jitter are
used to describe the voice quality of speech audio signals.
They give clues about temporal variations of the speech
signal. The other voice quality feature that is normally used is
the mel spectrogram which uses the mel scale to approximate
the human auditory system through in terms of the excitation
of the vocal tract.

2) LEXICAL FEATURES
The text transcriptions of the audio speech signal are the other
modality that consists of clues that can be leveraged for SER
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if inter and intra-modality interactions are learned together
after a careful fusion strategy. The text in the lexical modality
is represented by vectors obtained either by vectorization
or word embedding pre-trained models. The techniques of
vectorization include the bag of words (BoW) [33] and the
term frequency-inverse document frequency (TF-IDF) [34].
The BoW represents words by use of a vector that represents
the word count in a document. The TF-IDF represents the
information about the important and less important words
in a document. However, in addition to their individual
challenges in terms of high dimensionality and sparsity, the
above two models do not represent semantic and grammatical
cues of the utterances which makes it hard to use them in
SER systems since the meaning and context of an utterance
is important for the inference of emotions. In the bid to
solve the context and semantics problems pre-trained word
embedding models were proposed to replace vectorization.
The model called word2vec [35] that uses the neighboring
words to infer semantic and grammatical similarities between
them was proposed. The word2vec model maps semantically
close words in meaning to approximately similar embed-
ding vectors using cosine similarity. However, this method
increases the computational cost. The global vector for
word representation (GloVe) [36] was proposed to improve
the performance of word2vec as well as reducing on the
computational cost using a simpler error function for word
embedding representations. GloVe creates the embeddings
using the global context of the document as opposed to the
local context used in the word2vec model which helps it to
produce improved text representations. The other model that
uses the composition of a word for its vector representation
is fastText [37] which uses the skip-gram method. Thus
far, the models discussed compute the meaning and context
statically which may not infer the meaning of the utterance
according to the way it has been uttered. This degrades their
performance hence producing word embeddings that may
not be true representations of the interlocutors’ intention
in SER. The embeddings from language models (ELMo)
and BERT are the two most dynamic pre-trained models
for word embeddings widely used in in bimodal SER. The
ELMo consists of a two-bidirectional language model with
the forward pass containing information about prior words
and the backward pass containing information about the
word after with each producing intermediate vectors that are
fed into the next layer. The weighted sum of the vectors
and the intermediate vectors from the two layers make
the final word representation. Recently, with the advent of
the transformers [38] the BERT model has been proven to
perform better in terms of text representations than all the
other models and is widely used in SER [12], [39] which
has made it the state-of-the-art word embedding model. The
BERT pre-trained models rely on the multi-head attention
mechanism for dynamic contextualization using its parallel
operation to produce semantically rich and high-quality word
embeddings.
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C. GENERAL DEEP LEARNING TECHNIQUES USED IN
BIMODAL SER

Since its advent, deep learning has been applied in a number
of fields and bimodal SER is no exception. Particularly,
recurrent neural networks (RNNs) have been used for ordinal
and temporal tasks like bimodal SER. They consist of
memory cells that keep track of information from prior
sequence inputs to influence the present input and output.
To alleviate the vanishing gradient problem and that of
short-term memory that the vanilla RNNs would face, the
long short-term memory (LSTM) was proposed in [40] to
take care of both long short-term dependencies and context
in sequence data like speech. The LSTM consists of cell
states which enable it to have the ability to remove (forget)
or add information regulated by gates. The gate that uses
the hidden state and the current state of the input to decide
the information to recall or get rid of is called the forget
gate. The input gate is used to update the state with the
information to be stored and the output gate outputs the
filtered version of the cell state. In addition to RNNs,
convolutional neural networks (CNNs) which are capable
of capturing spatial dependencies and learning high-level
representations in speech have been used in bimodal SER
research. Since CNNs are good at extracting high-level
features, the bimodal speech inputs (acoustic and lexical)
are often subjected to them in the local feature learning
block (LFLB) before the temporal feature representations
are learned in the global feature learning block (GFLB).
This is also partly because CNNs are good at dimensionality
reduction which is important for speech data that is often of
a high dimension.

Among the two models that were proposed by
Yoon et al. [15], the multimodal dual recurrent encoder
(MDRE) that uses dual RNNs exhibited commendable
performance of 71.8% of weighted average precision. The
model uses transcripts, MFFCs and prosodic features as
inputs to an all-RNN two-branch model. An all-CNN model
that combines phones and mel spectrogram representations
was proposed in [41]. They claim that emotional cues are
lost when the phonemes and mel spectrograms are converted
into text or audio respectively. This model achieved an overall
accuracy of 73.9% which validates their claim and proposal.
Nonetheless, it is worth noting that the model is not robust
on anger and happiness that belong to the same dimensional
plane of emotional states. Tripathi et al. [42] also reported
that among the experiments they carried out, the all-CNN
model that uses MFCCs and text transcriptions vectors
of the IEMOCAP dataset as inputs exhibited comparable
performance of 76.1%. Their experimental results showed
that regardless of the feature combinations CNNs are good
at modeling high-level emotional cues in speech. However,
a similar scenario that was observed in [41] of less robustness
for anger and happiness still existed in these results. The
robustness of these emotion categories is however different
for the results reported in [15] and [43]. Among the two
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approaches reported in [43], the deep learning approach
that involves feed-forward networks and LSTM and uses
both speech and text feature inputs exhibits a commendable
performance as compared to the other traditional machine
learning classifiers. Though it is argued in this reference that
textual features singly helped to improve the robustness of the
model on the happy and angry emotions, we opine that the use
of LSTM is the other reason that made this possible. This is
because LSTM as opposed to CNN and DNNs considers the
long and short-term dependencies of the current utterance in
relation to the history of the speech sequence. The long-term
dependencies discriminate the emotions irrespective of their
dimensional emotional plane which improves the model’s
robustness. This scenario suggests that the deep learning
models that can employ both RNNs and CNNs can leverage
the two deep learning techniques for better bimodal SER
performance. Recently, Singh et al. [44] proposed the use of
33 assorted features that depict prosody, spectral, and voice
quality of audio features and ELMo extracted embeddings
of transcriptions of the IEMOCAP dataset. The model uses
a hierarchical deep learning-based neural network to exhibit
a comparable performance of 74.5% of accuracy. Besides,
bimodal SER CNNs, RNNs, and DNNs have also been
applied in unimodal acoustic emotional recognition with
promising results [45], [46]. We however opine that since
the temporal and spatial features exist in both lexical [47],
[48] and acoustic [49], [50] modalities, we find it emotionally
rich to use the CNNs and RNNs simultaneously in the LFLB
and GFLB to learn the high and low spatial-temporal features
from the speech features in both modalities. We experimented
with the concurrent feature extraction in the LFLB in [39] and
commendable results that affirm our assertion were obtained.

Though these approaches report commendable results,
they are weak at learning the context and semantics of
the utterances/sentences which affects their robustness when
applied in the real natural environment. The attention
mechanisms have been applied in bimodal SER research to
alleviate this challenge. In addition to dynamically learning
the context of the utterances in either the LFLB, GFLB,
or both, the attention mechanisms help in modeling the
inter and cross-modality interactions between the test and
acoustic modality in bimodal SER. A combination of CNNss,
RNNSs, and attention mechanisms have shown commendable
performance in bimodal SER. In some cases, they have been
used alone, especially transformer encoder or multi-head
attention mechanisms with a commendable performance.
We discuss the general attention mechanisms and their impact
on bimodal SER in the next sub-section.

D. ATTENTION MECHANISMS USED IN SER

As argued in [25], the idea of focusing on the attention
of particular speech features in SER was first suggested
in [51] and [52]. In [51], consideration of maximum energy
to depict prominent emotional cues was proposed. In [52],
the bidirectional long short-term memory (BiLSTM) with
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FIGURE 2. The deep learning model used to carry out feature
performance evaluation experiments.

extreme learning machine (ELM) was modeled to consider
the uncertainty of emotional labels in utterances. With deep
learning techniques being applied in various research areas,
more robust attention mechanisms [53], [54], and [38] were
proposed. In addition to consideration of long-term depen-
dencies, the attention mechanisms compute context vectors
of a given input with reference to the surrounding inputs.
Additive [53] and multiplicative [54] attention mechanisms
are used in combination with CNNs and RNNs separately
or in combination in a sequential operation [55], [56], [57],
and [58]. The attention mechanism in [38] called transformer-
based multi-head attention operates dynamically and involves
a parallel computation to obtain context vectors. They also
employ residual connections and layer normalization to better
their performance. It has been deployed in [12], [59], [60],
[61], and [62] among others. Because of the merits and
drawbacks of the usage of attention mechanisms, we are
motivated that careful use of all or a combination of some
of them allows the model to take advantage of their merits
limiting individual drawbacks. It is however stated in [63] that
global attention mechanisms are suitable for speech emotion
recognition. It is also worth noting that for the transformer-
based multi-head attention mechanism, the decoder part
of the transformer is omitted for SER models. Careful
considerations ought to be put in mind when selecting an
appropriate attention mechanism or their combination [64]
for multi-modal SER [65] since it involves the fusion of
emotional information from different modalities that are
usually implicitly aligned.

Early or feature-level fusion, model-level fusion, and
decision/late fusion are the three approaches to multi-modal
fusion that exist in SER studies. Early fusion involves
the concatenation of features at the input stage however,
the results obtained using this approach are affected by the
sparsity of data [66]. Decision-level fusion is applied at the
classifier level and ensemble techniques are used to obtain
the required values according to the performance metrics
used. Model-level fusion involves the splicing of latent
representations obtained from different modality channels
in order to take advantage of the feature and decision-level
fusion simultaneously. It should be noted that early fusion
and late fusion prevent models from learning intra and
inter-modality interaction characteristics respectively [67].
Multimodal fusion involves the alignment of the features
in different modalities explicitly or implicitly [68]. The
explicit approach assumes prior alignment of features in
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order to find relationships between the different modalities.
For implicit, the model learns the alignment of the different
modality features progressively as it trains [69]. In the next
sub sections, we present the aspects in which attention
mechanisms have been applied in bimodal SER research
studies in terms of alignment and fusion levels.

1) ATTENTION MECHANISMS AT MODALITY EARLY FUSION
LEVEL

It is argued in [69] that implicit alignhment strategy is more
naturalistic than explicit alignment. Therefore, researchers
have utilized deep learning techniques like attention mecha-
nisms to implicitly align features with an aim of producing
emotionally informative feature representations of multi-
modalities. Though automatic speech recognition (ASR)
systems are often used to output aligned features, they are
more explicit than implicit. Recently implicit alignment has
been achieved by applying attention mechanisms at the
feature alignment level of the SER deep learning models.
Xu et al. [70] used an attention mechanism to enable the
model to align audio and text representations. The resultant
multi-modal aligned features were combined for emotion
recognition. The attention of a constituent of a sequence in
terms of the other among different modalities is computed
from hidden states of the two different modalities. In [71]
the final hidden representation of each modality is used to
compute the attention scores of each modality in relation to
the other in a multi-hop attention neural network.

At the early fusion, Yoon et al. [15] argue that there
is a need for additional knowledge for effective bimodal
SER. The cross-attention mechanism [72] has particularly
been used in SER to model contextual correlations between
the two modalities and provide additional information for
the task. They operate in such a way that the query is
of one modality and the key and value are of the other
modality for better computation of the contextual vectors
among the features. In some cases, the last hidden states
of the different modalities are used as query and key
respectively to compute the global attention between the
two modalities. Cross-attention networks apply attention
weights of one modality to the other in order to align the
emotional cues. In [12], the same cross-attention mechanism
arrangement was used in terms of transformer encoders for
each modality before concatenation with speaker embeddings
for conversation emotion recognition. Furthermore, to model
intra and inter-modality interactions Sun et al. [10] proposed
a model that uses cross and self-attention mechanisms. Cross
attention mechanism was configured to guide one modality
to attend to another modality and vice versa while the
self-attention mechanism was used to learn the intra-modality
characteristics.

2) ATTENTION MECHANISMS AT DECISION FUSION LEVEL
Among the experiments carried out in [15], an attention
mechanism was applied to compute context weights among
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the transcriptions in relation to the acoustic features at the
decision level. This setup was compared with the no-attention
set up which performed better than the earlier one. A similar
setup was proposed in [16] where the attention mechanism
was applied for the audio modality and not for the text
before the concatenation of all modalities with the bimodal
representation at the decision level. The results from these
experimental setups show that the choice of attention mech-
anisms and how to configure them matters for commendable
performance. Also, for better-aligned feature representations
and since the contextual considerations are important in both
modalities, we opine that attention mechanisms should be
applied in both modalities. In the bid to learn a variety
of emotionally rich features in speech signals (audio only)
for better accuracy, an ensemble of three deep learning
branches some of which use attention mechanism is also
proposed in [73] which is a good study of decision level
fusion.

3) ATTENTION MECHANISMS AT INTERMEDIATE FUSION
LEVEL

Deep learning models that separately learn feature represen-
tations before combination at the decision level ignore the
interaction between the two modalities. This arrangement
does not allow the different modalities to interact explicitly.
On the other hand, early fusion also splices features without
the model explicitly learning the emotionally rich intra and
cross-modality interactions. On the contrary, intermediate
or model-level fusion splices resultant representations of
the different modalities after learning them which allows
the model to understand both the inter and cross-modality
features and continue learning other features after con-
catenation. A model that pays attention to audio and
visual features at each time step was proposed in [74].
This model concatenates feature representations obtained
from both early and decision-level fusion using learnable
attention weights for emotion prediction. Poria et al. [75]
proposed multi-level attention for audio, video, and text
modalities. In their approach after feature extraction from
the utterances, the feature representations are fused using
an attention network and the resultant representation is used
in the step that follows which learns new utterances rep-
resentations using LSTM and another attention mechanism
before sentiment classification. Zheng et al. [12] proposed a
conversation emotion recognition model (CTNet) that fuses
the speaker embeddings and features learned from single
and cross-modality transformer encoders at the intermediate
level that exhibited a commendable performance. This proves
that the model benefits from the intermediate fusion of
the intra and inter-modality characteristics without ignoring
their interactions. This approach motivated us to propose
the CoSTGA model [39] which at the intermediate level
learns and fuses temporal, spatial, and semantic features
at multi-levels for bimodal SER. This model showed
commendable performance when validated on the [IEMOCAP
dataset.
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TABLE 2. Ranges of parameters used in the experiments.

Parameter [ Range of Values
Optimizer Adam

Learning rate 0.0004 - 0.001
Batch size 32 & 64
Epochs 50 - 100
Number of heads 2-4

Embedding dimension | 256

Kernel Regularizer L2 -0.00001
Kernel Initializer Glorot Uniform Initialization
Dropout rate 20% - 50%

However, we argue that with the recent progress in
bimodal SER research fueled by the use of transformer
encoders and the multi-head attention mechanism which
is its basic building block, attention-based models will
exhibit better performance without configuration of any other
deep learning techniques. This is however possible with a
well-thought choice of the modality features, their alignment
and appropriate objective functions.

Nonetheless, attention mechanisms result in complex
models that are at risk of over fitting during training
especially because of the scarcity of speech emotion datasets.
In addition, since emotion cues don’t appear in the whole
sequence of utterances it is possible for attentive models to
focus on irrelevant or noisy parts of speech. This is amplified
if the data contains biases that may influence the training.
Due to the complexity, the models that involve attention
mechanisms can also be challenging to interpret especially in
terms of understanding why the model attended to specific
regions. To avoid the repercussions of complexity that
eventually cause training instability, we used optimization,
data augmentation, and regularization techniques in our
experiments in this paper. We also used ablation studies to
ascertain the impact of models with and without attention
mechanisms. In addition, some attention mechanisms that
operate in sequences may lead to high memory usage which
makes it challenging to deploy the models on resource-
constrained devices. For this reason, we used self and
multi-head attention mechanisms in our experiments since
these involve a parallel operation that may not be as
memory-intensive as the sequential counterparts. It should
also be noted that multi modality model performance is
sometimes affected by loss of intra-modality information
during the integration of modalities. This challenge is
often solved by use of appropriate model fusion strategies
discussed earlier and utilized in our experiments. This
challenge can also be addressed by use of synchronous and
asynchronous representations as used in [76]. To solve most
of the challenges of attention mechanisms transfer learning is
often utilized. The authors of [77] and [78] solved the possible
challenges by use of transfer learning with commendable
results. Though transfer learning offers a number of advan-
tages that include improved performance, faster training.
domain adaptation and data scarcity solutions, it has some
disadvantages. Transfer learning is more applicable when the
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source and target are related in order to achieve significant
performance. In SER studies where there are small datasets,
it may not be of benefit to fine tune the pre-trained models
since it will cause over fitting. Transfer learning does not also
work if there is a domain mismatch. It should also be noted
that most of the models are highly parameterized which may
distort the training and eventual deployment in low resource
devices. This is in addition to not being easy to interpret
and dependency on pre-trained models for commendable
performance.

Ill. EXPERIMENTS

In this section, we describe the experiments carried out to
further analyze the reviewed concepts in this paper. We car-
ried out experiments to ascertain the effect of three commonly
used acoustic features in SER research works. We also present
experiments on the use of the different common deep learning
techniques and their combination. We eventually propose
a multi-technique model called the deep learning-based
multi-learning model for emotion recognition (DBMER) that
operates with multi-learning capabilities of CNNs, RNNs,
self and multi-head attention mechanisms. We evaluated the
performance of the proposed DBMER MODEL using the
IEMOCAP dyadic datasets described in the previous section.
We considered happy, sad, angry and neutral as the emotion
categories for these performance evaluation experiments.
To avoid challenges that come with the imbalanced nature
of the datasets, we configured class weights as functions of
the smallest class. Table 2 shows a summary of the parameter
ranges used in these experiments.We used Keras 2.6.0 API,
TensorFlow 2.6 as the back-end with python programming,
and Nvidia GeForce RTX 2080 super graphics processing
unit (GPU).

A. EXPERIMENTS ON ACOUSTIC FEATURES IN SER
RESEARCH

The choice of the features used for SER models greatly
determines their performance. We carried out experiments
using the German dataset of Berlin (EMODB) [79] which is
a purely unimodal acoustic dataset to show the challenges
that exist if the choice of features is not done carefully.
As earlier mentioned, each of the feature categories is
robust at some dimensional emotions but performs less on
the others. We carried out experiments on the performance
comparison of the individual mel spectrograms, MFCCs, and
a combination of them in addition to chroma grams and found
out that a combination of prosodic, spectral, and voice quality
features provides a more robust performance as compared
to individual features. In these experiments, we considered
features that can depict loudness, pitch, and quality of sound.
The MFCCs and chroma grams were extracted as spectral
features and mel spectrograms as voice quality features. The
mean value of these features extracted from each frame was
calculated to obtain the high-level statistical features (HSFs)
and was separately used as input to the model in the first
experiments. In the other two experiments, a combination
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of either MFCCs and mel spectrograms or MFCCs, chroma
grams, and mel spectrograms were used as input to the model
after concatenation.

We carried out the experiments using the model shown
in Fig. 2 that consists of four convolution layers each with
pooling layers where necessary for local feature extraction
and self-attention and bidirectional layers of 64 units that
were used for global feature learning before the feature repre-
sentations are fed into a dense layer and a subsequent softmax
layer for classification. The self-attention mechanism was
configured in order to further consider the global context of
the speech representations. We used the exponential linear
unit (ELU) as the activation function.

B. EXPERIMENTS ON THE USE OF DIFFERENT DEEP
LEARNING TECHNIQUES IN SER RESEARCH

In this subsection, we present the most significant experi-
ments we carried out on the different deep-learning tech-
niques commonly used in SER Research. The experiments
were carried out with the goal of ascertaining the significance
of; bimodal SER compared to unimodal SER, the use of
single deep learning techniques, and the use of a combination
of deep learning techniques. In dyadic speech experiments,
we used the [IEMOCAP dataset to evaluate the models in these
experiments. The MFCCs were extracted from the speech
signal and used as the acoustic features while the BERT
pre-trained model was used to compute the lexical feature
vectors for the text modality.

Because of considering long-term dependencies in sequen-
tial tasks LSTM [40] and its variants like the BILSTM have
been proposed in most SER studies. It is against this premise
that we also chose to use the BILSTM technique to ascertain
the significance of bimodal SER compared to unimodal SER
in the first experiment. In this experiment, the model which is
composed of two BiLSTM layers of 128 units each, two dense
layers with a softmax layer for classification was separately
configured for both acoustic and lexical modalities. Layer
normalization was configured with a dropout regularization
rate of 0.5. The Layer normalization was to ensure a similar
scale of the activations from the LSTM layers and therefore
stabilize the training process to improve the performance of
the model.

We also carried out two different experiments to find
out the significance of the use of only one deep learning
technique for bimodal SER. Particularly, we configured
multi-learning models with either only BiLSTM layers or
transformer encoders (TED) which use multi-head attention
for both acoustic and lexical branches before splicing them
to form inputs for the global feature learning block (GFLB)
in an intermediate-level fusion strategy approach. All the
BiLSTM layers had 256 units with dropout regularization
and layer normalization. For the transformer encoders,
we used the positional encoding stated in [38] for the lexical
modality and one convolution layer of 128 filters for the
acoustic modality. Four heads were used for multi-head
attention mechanism in each transformer encoder with layer
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normalization and dropout regularization of 0.5. Another
experiment that resulted into the proposed DBMER model
was also carried out. This experiment was aimed at ascer-
taining the significance of a combination of all the reviewed
deep learning techniques with multi-level intermediate-level
fusion. The framework of the proposed DBMER model is
described in the next subsection. In all these experiments, the
BiLSTM layers are configured with the hyperbolic tangent
activation unit while the rectified linear unit (ReLU) is used
for all the other layers. We also carried out experiments to
ascertain the generalization capabilities of the model in multi
stream acoustic and non-dyadic SER scenarios.

C. THE PROPOSED DBMER MODEL

As shown in Fig. 3, the proposed DBMER model is a
multi-learning model that accomplishes the task using CNNss,
RNNSs, self, and multi-head attention mechanisms at two
subsequent intermediate fusion levels. To learn high-level
features of both the acoustic and lexical modalities the
extracted features were subjected to two convolution layers
of 128 filters with a kernel size of 3, L2 regularization of
0.00001 and the weights were initialized using the Glorot
uniform initialization. Each of the learned high-level features
is fed into the transformer encoders with a configuration
described in the previous subsection. These features learned
in each modality branch are spliced at the first level
fusion before being fed into a convolution layer of the
same configuration that learns the inter-modality high
level feature representations. The learned features at this
stage are subjected to learning of long-term dependencies
among them using the BiILSTM whose configuration is as
described in the previous section. However, the BiLSTM
in the proposed DBMER model differs from the one used
in the previous section since self-attention is configured
with it to allow the model to compute the contextual
relationships of the inter-modality representations. A similar
BiLSTM and self-attention mechanism layer arrangement
is subjected to individual modalities to learn the long-term
dependencies and their contextual relationships before the
second intermediate-level fusion of the individual modality
representations with the bimodal representations. After the
second fusion level, the resultant feature representations
are fed into a transformer encoder to further compute
the relationship between them before being subjected to
the classification of the emotional states that is done
by the softmax layer. It should be noted that throughout this
model, dense layers of 128 units are used to ensure the same
dimensions for concatenation where necessary.

D. EXPERIMENTS ON THE GENERALIZATION
CAPABILITIES OF THE PROPOSED DBMER MODEL

To evaluate the proposed DBMER model’s generalization
capabilities and performance in the real-world scenarios,
we evaluated the proposed DBMER model on datasets that
involve presence of noise, variations in speech, and other
environmental factors and non dyadic speech.The datasets
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TABLE 3. The datasets used in the generalization experiments.

Dataset [ Language [ Gender [ Kind [ Samples Used | Emotions [ Emotions Used
RAVDESS [80] EN F&M Acted 1440 8 7
SAVEE [81] EN F&M Acted 480 7 7

TESS [82] EN F Acted 2800 7 7
CREMA [83] EN F&M Acted 7442 6 6
ASVP [84] CH, EN,FR,RU,OT F&M Natural 13829 12 6

EN: English, CH: Chinese, FR:French, RU:Russian, and OT:Others. F: Female, M: Male
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FIGURE 3. The proposed DBMER bimodal SER framework.

that depict real-world scenarios were used. For the multi-
stream SER, we used the Ryerson audio-visual database of
emotional speech and song dataset (RAVDESS) [80], surrey
audio-visual expressed emotion (SAVEE) [81], Toronto
emotional speech set (TESS) [82], crowd-sourced emotional
multimodal actors dataset (CREMA) [83] and the audio,
speech, and vision processing lab emotional sound database
(ASVP) [84]. Due to the data scarcity issues alluded to earlier,
we combined RAVDESS, TESS, and SAVEE since they were
collected in a similar controlled manner and they all contain
speech data spoken in the English language with differences
in accent and gender distribution. The speech data in the
CREMA datasets was collected in the English language from
a variety of races and ethnicities that included African Amer-
ican, Asian, Caucasian, Hispanic, and Unspecified. We also
chose to evaluate the model on the ASVP dataset released
by the South China University of Technology because it
contains speech and non-speech emotional data. This data
was collected from movies, TV shows, YouTube channels,
and other websites in Chinese, English, French, Russian, and
other languages which makes the ASVP more realistic and
non-scripted with no language restriction. The details of the
datasets used in these generalization experiments are shown
in Table 3. In the multi stream SER experiments we replaced
the text modality with melspectrograms generated from the
speech signals using librosa 0.9.0. Due to the data scarcity
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TABLE 4. Performance analysis of the common acoustic features in
bimodal SER models.

Tnput [ A(%) | F1(%) | CH(%) | C5(%) | CA(%) | CN(%)
Raw signal SIS | 80.52 07 92 99 71
Mel 80.00 | 78.91 73 79 67 60
MFCCs 85.46 | 85.71 40 93 88 87
Mel & MFCCs | 94.55 | 95.48 40 100 100 93
All 89.09 | 87.77 53 71 88 87

challenges, we carefully apply data augmentation by adding
noise to the acoustic data and then extracting the MFFCs and
mel spectrograms from the noisy data. To ensure fixed sizes,
we keep track of the maximum number of frames and apply
padding. Since we proposed this model for dyadic speech we
also attempted to evaluate it on MELD non-dyadic speech
datasets.

IV. RESULTS

In this section, we present the results of our experiments.
we present the results that show the effect of three different
acoustic features and their combination commonly used
in SER research. The results that depict the benefits of
the combination of CNNs, BiLSTM, self, and multi-head
attention that constitute the proposed DBMER model for
dyadic bimodal SER are also presented. We also describe the
evaluation results of the proposed DBMER model in terms
of its generalization capabilities. The results are presented
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TABLE 5. Performance of the different SER deep learning techniques on the IEMOCAP dataset.

Model [ Modality | Fusion Level | UA(%) | WA(%) | P(%) | R(%) | F1(%) | Loss

BILSTM Acoustic (A) | - S870 | - 60.08 [ 54.63 | 53.50 | 1.3956
BiLSTM Lexical (L) | - 6123 | - 42.13 | 85.83 | 56.68 | 0.9707
BiLSTM A+L Multi 70.13 | 6670 | 70.54 | 69.11 | 69.90 | 0.9284
TED A+L Single 6127 | 5084 | 6515 | 56.33 | 60.40 | 1.0488
TED + BiLSTM A+L Single 61.01 | 55.60 | 63.69 | 57.72 | 60.61 | 1.0057
Proposed DBMER | A+L Multi 7418 | 74.80 | 77.02 | 70.00 | 7330 | 0.7352

TABLE 6. Individual confusion ratio of the different deep learning techniques used for bimodal SER.

Model | Modality | Fusion Level | CA(%) | CH(%) | CN(%) | CS(%)
BiLSTM A+L Multi 67 56 74 70

TED A+L Single 36 31 44 92

TED + BiLSTM A+L Single 40 50 36 95

Proposed DBMER | A+L Multi 79 71 68 81

CH, CS, CA, and CN are confusion ratios for happy, sad, angry, and neutral respectively.

in terms of unweighted accuracy (UA), weighted accuracy
(WA), precision (P) recall (R) and F1 score (F1). For a
more informative analysis of the capabilities of these models,
we also present the losses they exhibit.

A. EXPERIMENTAL RESULTS ON ACOUSTIC FEATURES

The results of experiments on acoustic features are sum-
marized in Table 4 which shows the performance in terms
of accuracy (A) and F1 score (F1) obtained by the simple
model. We also present comparative results of the robustness
of the model in terms of the confusion ratio of the
different classes of emotions for each input. The results
show that for all the inputs, the accuracy and F1 score
can be commendable however, the robustness especially
in terms of the confusion error of high arousal dimension
emotions needs to be given more attention. It should
however be noted that the performance of MFCCs highly
depends on the choice of parameters like the number of
filters in the filter bank discussed earlier in the extraction
process.

B. EXPERIMENTAL RESULTS ON DEEP LEARNING
TECHNIQUES

Results of the Dyadic Bimodal SER Experiments including
the Proposed DBMER Model: The results of the experiments
described in Section III about the use of different deep
learning techniques including the proposed DBMER are
presented in Tables 5 and 6. Table 5 also shows the fusion
levels and modalities involved in the different experimental
models. Table 6 presents the confusion ratios of the different
emotional states. These results show how robust the models
are at detecting independent emotions. It should be noted
that the fusion strategy used for all experiments is the
intermediate-level fusion since it was proved to be the best
strategy for bimodal SER in the reviewed literature. From
the tabulated results, we observe that the bimodal model
that uses BiLSTM exhibits comparable performance with
the proposed DBMER model that combines all the deep

VOLUME 11, 2023

learning techniques. Therefore, we present the confusion
matrices of these two models in Fig. 4 for analysis of their
robustness.

Results of the Generalization Capability Experiments of
the Proposed DBMER Model: The results of the proposed
DBMER model evaluation on datasets that depict different
real life scenarios are presented in Table 6. These results
show an outstanding performance exhibited by the model
on a broad spectrum of languages, accents, gender and
cultures. The results also show the robustness of the model
in different environments since the datasets considered
were collected in different real life scenarios. To further
facilitate the analysis of the generalization of the proposed
DBMER model, we present the confusion matrices obtained
when the model is exposed to unseen data in Fig. 5.These
confusion matrices continue to show the generalization of
the proposed DBMER model. This data is from ASVP
datasets which consists of a minimum of five languages
and a combination of RAVDESS, SAVEE and TESS which
depicts American and British English accent. For the MELD
non-dyadic datasets, the proposed DBMER model exhibits
an average performance compared to the dyadic IEMOCAP
datasets. This is due to the rapid changes of emotion cues as
interlocutors and their voices change in a sequence of utter-
ances of non dyadic speech which may need a specialized
model.

V. DISCUSSION

A. DISCUSSION OF RESULTS OF THE EXPERIMENTS ON
ACOUSTIC FEATURES

The experimental results show that models that use raw
signals can achieve a commendable accuracy and F1 score
however, they are not robust in terms of discriminating the
high arousal emotion states of happy and angry. This is partly
because the emotional cues of happy and angry are similar
in terms of emotional dimension. Therefore, robust models
that aid complex speech signal processing are required if they
are to be used in SER systems. The experiments also show
that mel spectrograms which depict voice quality cues in a
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speech signal are quite robust for happy and sad however the
model still does not perform well especially for the neutral
and angry emotions that tend to be confused with all the other
emotions. On the other hand, MFCCs can be used by models
if the interest is to achieve robustness for sad, angry and
neutral however, the models that use them still confuse happy
and other emotions especially anger with which they belong
to the same plane. Moreover, a combination of MFCCs and
mel spectrograms improves the robustness results further to
as high as 100% for sad and angry but the confusion ratio
for happy remains the same. A combination of MFCCs, mel
spectrograms and chroma grams that takes the pitch of sound
into consideration improves the confusion ratio of happy
but there is need for its robustness for the other emotions
compared to the model that uses a combination of MFCCs
and mel spectrograms. These results show that, in terms of
the robustness of deep learning-based SER systems, models
that use a combination of features perform better than those
that either use a single kind of features or those that use
raw signals. It should however, be noted that for all the
inputs, the accuracy and F1 scores are commendable which
further suggests that accuracy and F1 score are not enough for
SER studies especially for deployment in real-life situations.
This informs why in addition to accuracy and F1 score, it is
necessary to analyze the individual confusion ratio of each
emotion class.

B. DISCUSSION OF RESULTS OF THE PROPOSED DBMER
MODEL
1) PERFORMANCE OF THE PROPOSED DBMER MODEL FOR
DYADIC BIMODAL SER
From the results presented in Tables 5 and 6, it is observed
that bimodal dyadic SER performs better than unimodal
SER. These results show that a combination of both acoustic
and lexical features is emotionally richer than either of
the modalities. This is especially evident in terms of F1
score and loss values which indicates that the bimodal
models learn more emotionally rich features and are able
to distinguish between the emotional states accurately as
compared to unimodal models. However, it is noted from
the results that the lexical features perform better than the
acoustic features. This is because the lexical features carry
semantic and grammatical cues of the utterances which help
the model to easily learn the possible emotional states as
compared to the acoustic modality. This is further evidenced
by the differences in the loss values with the acoustic
modality model having a loss of 1.3956 compared to the
lexical modality model’s loss of 0.9707. However, in terms
of bimodal SER, it is also observed from the results that
multi-level fusion is more beneficial than single-level fusion.
This confirms the conclusions drawn in [12] and [39] in
which multi-level intermediate-level fusion strategy was
implemented for bimodal dyadic SER.

In terms of the deep learning techniques, the experimental
results show that though models that use BiLSTM and
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TABLE 7. Performance evaluation of generalization capabilities of the
proposed DBMER model.

Datasets UA(%) WA(%) P(%) R(%) F1(%) Loss

RAVDESS 93.65 94.03 9440 93.65 94.04 0.3390
CREMA 84.00 84.00 84.50 83.60 84.24 0.7934
ASVP 84.40 8340 84.97 83.84 84.41 0.8696

RAVDESS + SAVEE + TESS 9340 9342 94.86 92.16 93.44 0:3698

transformer encoders (which use only multi-head attention)
are good techniques for SER, they don’t perform well
when applied singly. However, because of the sequential
modeling capability of the BiLSTM, it performs better than
the transformer encoder for this task. This is observed in all
the metrics used with a difference of 8.86% of unweighted
accuracy, 15.86% of weighted accuracy and 9.50% of F1
score. The loss increases from 0.9284 to 1.0488. A model
that combines BiLSTM and Transformer encoders at single
level fusion does not perform better than a model that
uses only BiLSTM with multi-level fusion. This can be
explained since understanding the context without analyzing
the long-term dependencies is not sufficient enough to
infer emotions in addition to the benefits of multi-level
fusion which improves the accuracy and robustness of the
models.

Well knowing that CNN is better than RNNs and attention
mechanisms in learning high-level features we chose to use
the BiLSTM, self and multi-head attention mechanisms in
combination with CNNs. This model is named the deep
learning-based multi-learning model for emotion recognition
(DBMER) which we propose in this paper. The pro-
posed DBMER model’s performance showed that a careful
combination of all the common deep learning techniques
coupled with multi-level fusion benefits bimodal dyadic
SER as compared to the other approaches experimented
on earlier. The performance in terms of the considered
metrics is improved compared to the all-BiLSTM model
tested in similar conditions. The unweighted and weighted
accuracy improved from 70.13% to 74.18% and 66.70% to
74.80% respectively. The loss exhibited by the proposed
DBMER model is reduced from 0.9284 to 0.7352. This
confirms that the proposed model learns emotionally rich
cues to be able to infer emotional states. To confirm these
observations, an analysis of the robustness of the model
compared to the other approaches is presented in Table 6. It is
observed that, compared to the other approaches the proposed
DBMER model is uniformly robust for the four individual
emotions depicted from dyadic speech. There is a tremendous
improvement in the confusion ratios of the proposed DBMER
model compared to the single-level fusion models that use
the transformer encoder or in combination with the BILSTM.
The prediction analysis of the BiLSTM model and the
proposed DBMER model is shown in the confusion matrices
presented in Fig. 4. It is further affirmed that the proposed
DBMER model is more robust than the BILSTM model due
to the multi-technique learning approach that benefits the
model with emotionally rich cues in terms of the high-level
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TABLE 8. Performance analysis of the the proposed DBMER on the datasets used in the generalization experiments.

Dataset [ CA(%) | CD(%) | CF(%) | CH(%) | CS(%) | CP(%) | CN(%)
RAVDESS 100 o1 95 o4 96 100 82
CREMA 87 78 71 93 82 - 93
ASVP 86 88 86 80 82 - 78
RAVDESS + SAVEE + TESS | 92 91 92 89 92 97 88

features learned by the CNNs, the long-term dependen-
cies learned by the BiLSTM and the context computed
using the self and multi-head attention mechanisms at all
levels.

2) PERFORMANCE OF THE PROPOSED DBMER MODEL IN
TERMS OF ITS GENERALIZATION CAPABILITIES

As alluded to in the results section the proposed model is
robust on all the datasets it was evaluated on in a multi
stream approach. The purpose of the experiments was to
evaluate how the model performs in real-world scenarios,
where noise, variations in speech, and other environmental
factors can affect its performance. Because of the careful
combination of the deep learning techniques and the ability
of the proposed DBMER model to learn both intra and
inter modality representations at two fusion levels, the model
learns most of the cues it needs to be robust in any condition
it is faced. The local features learned by the CNN, long
term dependencies learned by the BiLSTM and the context
learned at all the levels of the model makes it robust in
presence of noise, accent, gender and cultural issues evident
in the multi-language ASVP datasets, the multi-cultural
CREMA datasets and the combination of RAVDESS, SAVEE
and TESS datasets. An analysis of the confusion ratios
of the different emotions considered in the generalization
experiments is presented in Table 8. In this table CA,
CD, CF, CH, CS, CP and CN are confusion ratios for
angry, disgust, fearful, happy, sad, surprised, and neutral
respectively. These results show that the model uniformly
recognizes all the emotions and predicts them with minimal
confusion. We however opine that the model is more robust
on dyadic and purely acoustic data but less robust on
non-dyadic speech data because of the rapid changes in
emotion cues as more than two interlocutors participate in
a speech or conversation which complicates the training.
We never carried out cross corpus experiments because
as [85] suggests it is obvious that there will be a challenge
of feature distribution discrepancy that will affect the SER
performance besides the need for diverse datasets that are
non-existent. A solution to this problem could be domain
adaptation and other transfer learning strategies that are out
of scope of this paper.

C. COMPARISON OF RESULTS OF THE SOTA DEEP
LEARNING MODELS

In this section, we present a comparison of the results of
recently proposed bimodal SER models that use different
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deep-learning techniques. Table 9 presents these results in
terms of weighted accuracy (WA), unweighted accuracy
(UA), and F1 Score (F1) with details of datasets, the deep
learning techniques, and fusion strategies used.

From the results we sampled in recent bimodal SER
literature shown in Table 9, it is evident that researchers have
deployed deep learning techniques to enhance performance
in emotion prediction. However, it is also evident that the
reported performance depends on the dataset and the number
of emotion categories chosen. The common datasets for
dyadic bimodal SER is IEMOCAP dataset. We however
present a few studies that attempt to incoporate non dyadic
bimodal SER using CMU-MOSEI, and MELD datasets.
Each of the datasets has merits and demerits as discussed
earlier and should be carefully considered to avoid models
that exhibit good performance in laboratory experiments
and poor performance on deployment. There also exist
many emotions in daily life however, only four (sad, happy,
neutral, and angry) are commonly used in literature. The
sampled results also show that a careful combination of the
different deep learning techniques benefits automatic speech
emotion prediction. As an example, attention mechanisms
have been shown to benefit every model in which they
are deployed except in [15] where the model without
attention performed better than the attention-based models.
This performance could be because of the way the attention
mechanism was deployed in this paper where the attention
is computed as a similarity score between the text and
audio representations yet the intra-modality features also
need attention since some utterances are more emotionally
rich as compared to others. Nonetheless, we note that the
advent of attention mechanism techniques especially self and
multi-head attention mechanisms improve robustness in SER
systems. This is because in real life emotions are inferred
from contextual speech. Therefore, an attempt to compute
the context in audio or text or both modalities should exhibit
better performance. Among all the attention mechanisms,
Multi-head attention that operates in a parallel and dynamic
manner for all the utterances improves the execution speed
as well as computing the pre and prior contexts in a speech
signal sequence. However, recently [92] showed that transfer
learning could be utilized without the use of attention
mechanisms with comparable performance. This is because
attention mechanisms especially multi-head attention takes a
lot of time to train and execute yet there is insufficient labeled
SER data that the long training requires. This may result into
complexity problems explained in Section II. To alleviate
these challenges, the authors of [77] and [78] applied transfer
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FIGURE 4. The confusion matrix results for dyadic bimodal SER. (a) BiLSTM. (b) DBMER.
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FIGURE 5. The confusion matrix results for the generalization experiments of the proposed DBMER model. (a) A combination of RAVDESS, SAVEEE

and TESS datasets. (b) ASVP datasets.

learning either in one branch or both to register commendable
performance. The results in [65] inform researchers that
the choice of the cost and/or loss function determines the
performance of the proposed model. They chose to use the
additive angular margin loss (ArcLoss) primarily used in face
recognition to achieve state-of-the-art comparable results.
ArcLoss focuses on the angles between features and weights
to achieve comparable performance. The approach proposed
in [94] configures cross attention between the speech and
text features. This informs why their models perform slightly
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better than our proposed DBMER model. It should also be
noted that we compared our proposed DBMER model with
models that include techniques other than those that we
reviewed and subsequently used to constitute it. The addition
of these techniques that we don’t use in our experiments is to
show that these deep learning techniques can exhibit an even
better performance when enhanced with other techniques.
Besides this, our emphasis was on the possibility of using the
reviewed deep learning techniques in line with suitable fusion
strategies.
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TABLE 9. Comparison of results of the SOTA deep learning models.

Ref. Dataset Techniques Fusion Level No. of Emotions  WA(%) UA(%) F1(%)
IEMOCAP Dual RNNs Decision 4 - 71.8 -
(5] IEMOCAP Dual RNNs + Attention Decision 4 - 69.0 -
[70] IEMOCAP BiLSTM + Attention for Alignment Intermediate 4 72.5 70.9 -
[85] IEMOCAP TDNN + BiLSTM +Pretrained models
for text Decision 4 73.5 71.0 -
[l6]  IEMOCAP CNN + BiLSTM + Attention Feature and Decision 4 71.06 72.05 -
[86]  MELD Transformer based Attention +
Graph Neural Networks Feature 7 61.8 - -
IEMOCAP RNN + Multi-Head Attention Intermediate 4 74.33 73.23 73.77
[14] CMU-MOSEI  RNN + Multi-Head Attention Intermediate 7 99.19 99.19 -
MELD RNN + Multi-Head Attention Intermediate 7 59.94 63.26 59.66
[44]  IEMOCAP Hierarchical Deep Neural Network Feature 4 - 74.5 -
IEMOCAP CNN based multi stage fusion Intermediate 4 - 72.6 -
(7] MSP-Podcast CNN based multi stage fusion Intermediate 4 - 56.0 -
IEMOCAP Self and Cross Attention Intermediate 7 61.2 56.0 -
[10] MELD Self and Cross Attention Intermediate 7 - - 59.2
IEMOCAP Multi-Head Attention + BiGRU Intermediate 4 83.6 - 83.8
[12] IEMOCAP Multi-Head Attention + BiGRU Intermediate 6 68.0 - 67.5
MELD Multi-Head Attention + BiGRU Intermediate 7 62.0 - 60.5
IEMOCAP BiLSTM + Memory Compressed Attention
691 + GRU + ArcLoss Intermediate 7 728 625 -
IEMOCAP BiLSTM + Memory Compressed Attention
+ GRU + ArcLoss Intermediate 4 82.4 80.6 -
[88] IEMOCAP Self Attentional BiILSTM and
Multi channel CNN (MCNN) Feature and Decision 4 74.98 75.05 -
[89]  MELD CNN + LSTM + Meaningful
Neural Network (MNN) Feature and Decision 7 - 86.69 -
IEMOCAP CNN + BiLSTM + Attention + Autoencoders Intermediate 4 74.8 - -
[90] CMU-MOSI CNN + BiLSTM + Attention + Autoencoders Intermediate 2 79.85 - -
MELD CNN + BiLSTM + Attention + Autoencoders Intermediate 7 63.85 - -
[39] IEMOCAP Multi-level fusion with DCC + BiLSTM +
Multi-head and Self Attention Intermediate 4 75.50 75.82 75.57
IEMOCAP Transfer Learning with RoOBERTa
[91] and Inception ResNet-V2 Intermediate 4 72.8 - -
CMU-MOSEI  Transfer Learning with RoOBERTa and
Inception ResNet-V2 Intermediate 6 99.2 - -
MELD Transfer Learning with RoBERTa and
Inception ResNet-V2 Intermediate 7 63.8 - -
[92] IEMOCAP CNN + BiLSTM + Cross Attention Decision 4 80.51 79.22 -
[93] IEMOCAP CNN + Transformer + Score fusion Decision 4 73.5 73.0 -
[94]  IEMOCAP BiLSTM + Self Attention
with weight correction and confidence measures  Intermediate 4 76.6 76.8 -
[771  IEMOCAP CNN + Attention with only
transfer learning in the text branch Decision 4 85.5 80.7 -

The sampled results showed in Table 9 also conform with
the assertions in [12] and [39] that intermediate fusion of
text and audio representations benefits the bimodal SER
systems compared to using either feature or decision level
fusion singly. It should however be noted that the models
that use both feature-level and decision-level fusion also
perform well. This is because intermediate-level fusion is a
hybrid of both feature and decision-level fusion that only
combines representations in their intermediate form. This
is usually coupled with intra-modality representations that
enable repetitive learning for better performance.

D. COMPLEXITY AND PERFORMANCE IN SER MODELS

Though combining multiple deep learning techniques is
beneficial to the SER models, there is an increase in the
complexity of such models. The complexity brought about by
the increase in trainable parameters can potentially improve
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the model performance however there is a scarcity of datasets
for SER studies to sustain the training of such highly
parametrized models without overfitting or causing gradient
descent challenges. Due to this scarcity, it’s advisable to
use low-parameterized models to avoid overfitting. However,
we found out that the use of pre-trained models can
improve the performance of the multiple deep-learning
technique models. This was evident when we used the BERT
embeddings in the text branch which increased the total
number of parameters to 116,600,969 with only 7,116,424
trainable parameters registering a good performance for
four emotions from dyadic speech. The models that did
not include the BERT embeddings had only 5,585,159 total
number of parameters and 5,582,855 training parameters
which did not negatively affect the performance significantly.
It should however be noted that in order to achieve good
performance of complex multi-technique models with a small
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number of datasets, regularization techniques like dropout,
L2 regularization, gaussian noise addition, and other data
augmentation strategies should be utilized. In addition, the
use of transfer learning to improve the performance of
complex multi-technique SER models is a good solution to
this challenge as observed from the results in [77] and [78].
On the whole, though the models appear complex, the
strategies configured to optimize the training determine their
performance.

E. CHALLENGES OF BIMODAL SER AND FUTURE WORK
Bimodal dyadic SER has improved to a great extent with
the advent of deep learning. Nonetheless, a number of
issues need to be addressed by researchers to be able to
deploy models in natural environments in real-time. Most
of the literature available models bimodal dyadic SER as
a non-multilingual task yet the real world is not only
multilingual but multi-cultural with different accents and
emotional behavior. This derails the development of off-the-
shelf models for SER applications and needs to be given
attention by researchers. We have attempted to assess the
generalization of our proposed DBMER model for similar
aspects in a multi-stream approach and a commendable
performance was registered. Similarly, cross-corpus bimodal
SER remains a challenge. It is suggested in [85] that there
is a feature distribution discrepancy that affects the SER
performance besides the need for diverse datasets that are
non-existent. A solution to this problem could be domain
adaptation and other transfer learning strategies that are
out of the scope of this paper. Also, little work has been
done in this aspect due to the lack of an all-round corpus
that can enable multilingual and multi-cultural SER studies.
In [96], the authors only related data collected from YouTube
as the source dataset, and the IEMOCAP dataset was used
as the target. It however remains a challenge to train and test
models of this nature or even consider the source and target
datasets of different languages with commendable results.
In addition, limited datasets coupled with the complexity of
speech pose challenges to bimodal SER studies. This leads
to models with commendable performance in laboratory
experiments but poor results in real environments. The
ambiance of the environments in which the models are to
be deployed also needs to be given attention by researchers
from the time of data acquisition to modeling and design
with noise and voice perturbations as major aspects found
in the real environment. In addition, the purpose of the
models being proposed should be clear since there are many
dyadic and non-dyadic bimodal SER use cases in the real
world.

Ethical issues are an important aspect during the develop-
ment and deployment of artificial intelligence (Al) systems
like SER and ought to be considered. There should be
consent from the participants during the emotional speech
data collection. The collected data should be safeguarded
from privacy infringement. Developers and users should be
aware of the environmental conditions in which the data
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was collected and its characteristics before it is used to train
any models. This is because biases related to gender, race,
accent, culture, and the environment affect performance when
deployed in the real world. In this paper, we carried out an
evaluation putting all these discriminatory distributions into
consideration especially during the choice of the datasets
to use for experiments. Another emerging ethical issue that
will require specialized models to support SER systems is an
assessment of the emotional impact on a human being after an
emotion is recognized and revealed to him/her by a machine.
Music recommendation systems have been proposed in [97]
and [98] to improve or maintain the users’ mood upon facial
emotion detection. This should be done for all Al systems
to handle the impact that HCI systems can have on humans.
Recently, the authors of [99] proposed to recognize emotions
and influence YouTube to play music that can stabilize one’s
mood. In [100], contextual affective hashtag information
in tweets was used to rank music recommendations in an
unsupervised approach. Therefore, ethical considerations are
an important factor to consider during SER deployment in the
real world.

VI. CONCLUSION

In this paper, we reviewed the different aspects involved in
deep learning-based bimodal SER research. We presented
recent literature on the datasets, features, deep learning
techniques, and some of the recent results published in the
literature. We opine that all the aspects in the bimodal SER
framework are important for robust performance. We found
out that there are few publicly available datasets for bimodal
SER research which hampers the full deployment of proposed
models. We also noted that attention mechanisms when used
with other deep learning techniques play a pivotal role in
the performance of bimodal SER systems by computing the
context score of the features. We also carried out experi-
ments on the significance of CNNs, RNNs, and attention
mechanisms which are the common techniques used in
literature. Subsequently, we proposed a deep learning-based
multi-learning model for emotion recognition (DBMER)
that operates with multi-learning capabilities of CNNs,
RNNs, and multi-head attention mechanisms and evaluated
its performance on acoustic and dyadic bimodal speech.
It was found that a careful combination of these techniques
improves bimodal SER performance. On the other hand,
to avoid the demerits of attention mechanisms that include
long training periods and the need for sufficient data that is
not available in addition to complexity, transfer learning can
be used. However, cross-corpus and multilingual research and
the acquisition of all-round datasets remain open problems in
bimodal SER research.
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