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ABSTRACT Quantifying the impact of design variables in aerodynamic design exploration can provide
valuable insights to designers. Global sensitivity analysis (GSA) is a crucial tool in aerodynamic design
exploration that enables designers to gain valuable insights by quantifying the impact of design variables.
In the field of GSA, the Shapley effect is a powerful alternative to total Sobol indices due to several
mathematical advantages of the former. However, computing the Shapley effect is computationally expensive
due to the large number of permutations involved. To overcome this challenge, surrogate models are often
used to accurately estimate Shapley effects while reducing the number of function calls. This paper aims to
investigate the effectiveness of using PCE to compute Shapley effects for independent inputs in aerodynamic
design exploration. The exact calculation from PCE also enables the rapid assessment of confidence intervals
for Shapley effects, taking into account the randomness in the experimental design via bootstrap resampling.
The usefulness of Shapley effects with PCE is then demonstrated and compared with total Sobol indices
through a nonlinear test function and three engineering problems, including subsonic wing, transonic airfoil,
and fan blade design. The results also show that the confidence intervals of the Shapley effects are narrower
than those of total Sobol indices, allowing better interpretation and higher confidence on the estimated GSA
metric.

INDEX TERMS Global sensitivity analysis, Shapley effects, polynomial chaos expansion, aerodynamics.

I. INTRODUCTION
Assessing the relative importance of input variables to the
output of interest is crucial, and Global Sensitivity Analysis
(GSA) plays a significant role in this regard. In design
exploration, GSA provides essential information on which
design variables have the most significant impact on the
objective function. This helps engineers focus their attention
on these variables and make informed design decisions,
in which such a framework was first investigated in the
context of aerodynamic optimization by Obayashi et al. [1],
[2], who applied GSA to investigate the impact of geometrical
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variables on aerodynamic performances of flying vehicles.
GSA is a useful tool in uncertainty quantification that
identifies the contribution of individual random inputs and
their interactions that affect the random output. This analysis
allows for both quantitative and intuitive assessment of the
influence of multiple input random variables on the random
output in the context of uncertainty analysis. GSA provides
distinct information compared to local sensitivity analysis,
which offers local sensitivity via gradient information.
Variance-based sensitivity analysis [3] is arguably the most
popular form of GSA due to its intuitive concept: the output
variance is decomposed into individual components so that
they correspond to the contribution of the input variables.
Alternatives of the GSA metric include derivative-based
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global sensitivity measures [4] and activity scores based on
active subspace [5]. Typically, a Monte Carlo simulation
(MCS) is used to compute GSA metrics.

A natural approach to perform GSA when the computer
simulation is expensive is to replace the actual function with
a surrogate model. Surrogate models significantly reduce
the number of computer simulation calls compared to a
crude MCS. Instead, the MCS calls the surrogate model to
estimate the sensitivity indices in place of the black-box
simulation. Various surrogate models have been applied for
GSA, including radial basis functions [6], Kriging/Gaussian
process regression [7], [8], support vector regression [9],
[10], random forest [11], and polynomial chaos expansion
(PCE) [12], [13]; for most of the papers in surrogate-based
GSA, Sobol indices [14] is the most widely used GSA
method. Another possibility is to deploy a neural network
as an approximation model [15], [16]. PCE is especially
advantageous for GSA since the estimated Sobol indices can
be exactly computed from the PCE coefficients [12]. PCE is
also suitable for high-dimensional problems by introducing
sparse algorithms to seek the best polynomial subset that
minimizes approximation error (see [17] for a recent review
of sparse PCE). A comparison of various surrogate models
in analytical problems for GSA has been performed by
Cheng et al. [18].

GSA plays an important role in aerodynamic design
optimization and uncertainty quantification. Identifying the
significance of input variables (design or random variables)
on the performance can greatly aid designers in understand-
ing the design landscape of an aerodynamic design problem.
Some recent examples include identifying the most impactful
geometrical design variables for aerodynamic optimization
of delaying airfoil dynamic stall using Kriging and Sobol
indices [19]. Fan et al. use a surrogate model and GSA
to investigate the impact of ducted-fan rotor geometry on
its aerodynamic and structural performance [20]. Another
example is the design optimization of scramjet engines [21],
in which the authors successfully identified via GSA that
injection pressure is the most significant variable, contribut-
ing to roughly 70% on thrust among the four design variables.
Recently, Siddique and Raj applied radial basis function
surrogate and Sobol indices to analyze the sensitivity of
aerodynamic performances [22]. The overarching idea is
that pinpointing the most influential variables can provide
valuable insights into the aerodynamic design problem at
hand. Similarly, GSA also helps aerodynamic designers
in identifying the most significant random input variables
to provide information on how to reduce the variance
of the aerodynamic performance, e.g., due to variable
operating conditions or modeling parameters in high-altitude
propellers [23], turbomachinery [24], transonic airfoil [25],
and hypersonic vehicles [26]

It is common to use total Sobol indices to quantify the
overall effect of input variables on the output function. The
total Sobol index for one variable is calculated by summing

out the main effect and all the interaction terms which include
that variable. The total Sobol indices of all variables are then
ordered to rank the input variables based on their importance.
Sobol indices have demonstrated favourable performance
when the sample size is adequately large [27]. However, one
problem with total Sobol indices is that they somehow lose
their intuitiveness because the sum of total Sobol indices is
not equal to one. One remedy is by introducing the Shapley
effect [28], [29], which is based on the Shapley values from
game theory. In contrast to Sobol indices, the Shapley effect
allocates a variable’s contribution due to the main effect and
interactions more fairly. Calculation of Shapley effects is
notably more expensive than the Sobol indices due to the
large number of permutations that need to be considered.
Shapley effect is more favourable and interpretable than
total Sobol indices in problems with dependent inputs [30].
However, Shapley effects and total Sobol indices can produce
different importance rankings even when the inputs are
independent since the sum of all Shapley effects equals
the total variance. A simple and efficient algorithm for
calculating Shapley effects with independent inputs has been
proposed [31]. The use of Kriging for estimation of Shapley
values in computationally expensive problems has also been
studied [32].

Polynomial chaos expansion (PCE) [33], [34] has been
widely applied for GSA, thanks to its rapid model con-
struction and the availability of analytical forms for some
global sensitivity indices, including Sobol indices [12] and
derivative-based global sensitivity measures [35]. In this
respect, the analytical estimation of global sensitivity indices,
especially Sobol indices, proves helpful because there is no
further need to apply MCS on the surrogate model. Thus,
PCE completely eliminates the uncertainty due to random
sampling on the surrogate model. The PCE technique has also
been extended to take into account multi-fidelity information
for GSA [36]. PCE uses orthogonal polynomials from the
Askey scheme as the basis function. However, arbitrary input
distributions can be handled by arbitrary polynomial chaos
or even purely data-driven [37], [38]. Because non-intrusive
PCE is a surrogate model, any global sensitivity measure can
be estimated by applying MCS on PCE. However, the use of
MCS introduces extra uncertainty to the estimation.

The focus of our research is to examine the utilization
of PCE as a means of estimating Shapley effects for
aerodynamic functions with independent input variables. The
non-intrusive nature of PCE makes it an attractive choice
for a surrogate model, as it can be constructed relatively
quickly compared to other methods like Gaussian Processes
Regression. One of the most significant advantages of PCE
is that the Shapley effects for independent input variables
can be computed analytically from the PCE coefficients. This
feature enables us to eliminate uncertainties caused by ran-
dom sampling in MCS and reduce the problem of computing
Shapley effects of a PCE model by simply post-processing
the PCE coefficients. In this paper, we present the benefits
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of this approach through numerical experiments conducted
on various aerodynamic test functions, especially those
with strong interactions. Additionally, some test problems
demonstrate a different variable ranking based on the total
Sobol indices and Shapley effects. Finally, we also show
how a bootstrap procedure can be utilized to construct a
confidence interval for the Shapley effects estimated from a
PCE model, similar to the approach in [39].

The contributions of this paper are then twofold: (1) the
exact calculation of Shapley effects from a PCE model which
eliminates the use of Monte Carlo simulation, and (2) the
comparison of Shapley effect and total Sobol indices for
GSA of aerodynamic problems, particularly those with strong
interactions, from the viewpoint of variable ranking and
bootstrap confidence interval. The insight obtained from this
research will be useful for those who wish to perform GSA,
especially when faced with computational budget constraints
and a desire for efficient, data-driven decision-making in
aerodynamic design processes.

Section II describes the Shapley Effects for GSA. Section
III describes the PCEmodel and the fast analytical estimation
of Shapley effects from PCE. Section IV shows the numerical
experiment results on aerodynamic problems and the dis-
cussion. Finally, we conclude the paper in Section V with
pointers for future works.

II. SHAPLEY EFFECTS
Let us define a vector of input variables ξ = {ξ1, ξ2, . . . ,

ξm}
T

∈ Rm, where m ≥ 1 is the dimensionality of the
input variables. Each input variable ξi is equipped with a
probability distribution ρξi (ξi). We assume that the random
input variables are independent; thus, we have ρ(ξ ) =∏m

i=1 ρξi (ξi) as the joint probability density function (PDF).
We also define the domain of interest as � =

∏m
i=1�i.

For more compact explanations, we shall use the following
notations. First, we use [1 : m] := {1, . . . ,m} and we also
define a subset of [1 : m] as u (i.e., u ⊆ [1 : m]), {−u}
is the complement of u such that {−u} = [1 : m] \ u, and
|u| is the cardinality of u. The subset of � for an index set
u is defined as �u =

∏
i∈u�i with the corresponding PDF

is ρu(ξu) =
∏

i∈u ρξi (ξi). It is important to note that we have
expressed the probability density function and the domain for
u = [1 : m] as ρ(ξ ) and �, respectively.

Let us also define a function y = f (ξ ) which takes ξ as
the input. The function f (ξ ) is square-integrable in �, that
is,

∫
�
f 2(ξ )ρ(ξ )dξ yields a finite value. It is important to

note that when dealing with bounded problems without any
probability measure (such as in optimization problems), the
approach is similar to that of handling a uniform probability
distribution.

A. ANOVA DECOMPOSITION
By utilizing the ANOVA decomposition, it is possible
to break down a function f (ξ ) into its constituent parts,
including the main effects of individual variables as well as
the interactions between multiple variables. This allows for

a more thorough analysis of the function and its underlying
components, written as

y = f (ξ ) =

∑
u⊆[1:m]

fu(ξu), (1)

which consists of the following summand:

f∅ =

∫
�

f (ξ )ρ(ξ )dξ = E[f (ξ )] (2)

which is the mean of f (ξ ) and

fu(ξu) =

∫
�−u

f (ξ )ρ(ξ−u)(ξ−u)dξ−u −

∑
v⊈u

fv(ξ v), (3)

for a non-empty subset u, where the subscript −u again
indicates ‘‘complement of u’’. For example,

fi(ξi) = E[f (ξ )|ξi] − f0, (4)

fi,j(ξi, ξj) = E[f (ξ )|ξi, ξj] − f0 − fi − fj. (5)

The fi(ξi) term is known as the main effect, which is obtained
by varying ξi alone. On the other hand, the higher-order terms
are known as interactions. For example, fi,j(ξi, ξj) is the effect
of simultaneously varying ξi and ξj.
For a non-empty subset u (i.e., excluding f∅) and j ∈ u, the

following orthogonality condition applies∫
�

fu(ξu)fv(ξ v)ρ(ξ )dξ

=

{
σ 2
u :=

∫
�u
(fu(ξu))

2ρu(ξu)dξu if u = v
0 otherwise

}
(6)

for any u, v ⊆ [1 : m]
Because f (ξ ) is square-integrable, we can obtain the

variance of f (ξ ) (i.e., V[f (ξ )]) by∫
�

(f (ξ ) − f∅)2ρ(ξ )dξ = V[f (ξ )]

=

∫
�

( ∑
∅̸=u⊆[1:m]

fu(ξu)
)2

ρ(ξ )dξ =

∑
∅̸=u⊆[1:m]

Vu (7)

where Vu is called partial variance, which is defined as

Vu = V[fu(ξu)] = σ 2
u . (8)

Basically, Eq. (7) says that the sum of all partial variances
equals the total variance.

The main effect is defined as Vi, reads as

Vi ≡ V[fi(ξi)] ≡ V[E[f (ξ )|ξi]] = V[f (ξ )] − E[V[f (ξ )|ξi]].

(9)

On the other hand, the total effect is defined as

VTi =

∑
u∈4i

Vu (10)

where 4i = {(i1, . . . , i|u|) : ∃j, 1 ≤ j ≤ |u|, ij = i} and
4i ⊆ [1 : m]. The total effect for variable i sums the main
effect and all interaction terms that contain variable i.
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For simplicity, we denote the total variable V[f (ξ )] as
simply V . The Sobol indices for a non-empty subset u can
then be defined as

Su =
Vu
V
. (11)

Thus, we have the widely used total Sobol indices defined as
follows

STi =
VTi
V
, (12)

where i = 1, 2, . . . ,m. Although total Sobol indices are
popular, their main drawback is that the sum of total Sobol
indices can be higher than one (i.e.,

∑m
i=1 STi ≥ 1 since∑m

i=1 VTi ≥ V ). Using STi is a viable option for assessing
the significance of input variables. However, in cases where
there are strong interactions between variables, there is a high
risk of misinterpretation, making it challenging to grasp the
input variables’ relative impact on the output.

B. DEFINITION OF SHAPLEY EFFECT
Shapley effect is proposed by Owen [28] to remedy the
normalization problem in total and first-order Sobol indices.
Unlike VTi , the sum of Shapley effect φ equals to the
total variance, i.e.,

∑m
i=1 φi = V , which allows easier

interpretation in the context of GSA. Shapley effect is a
special case of Shapley value from game theory by assigning
a special value function in the formulation.

The Shapley value for the i-th individual variable is defined
by

φi =
1
m

∑
u⊆{−i}

(
m− 1

|u|

)−1

(val(u ∪ {i}) − val(u)), (13)

where val(.) is the value function assigned to the subset
defined inside the bracket.

In the context of GSA, the necessary conditions for val(.)
are val(∅) = 0 and val([1 : m]) = V[f (ξ )]. That is, the
variance for an empty set and with all variables included
equal 0 and the total variance, respectively. We can use the
following value function to satisfy the aforementioned two
conditions:

val(u) = τ (u) = V[E(f (ξ )|ξu)] =

∑
∅̸=v⊆u

Vv. (14)

The τ (u) is interpreted as the expected reduction of the overall
variance when ξu is known. Thus, τ (∅) = 0 and τ ([1 : m]) =

V[f (ξ )]. Notice that τ (u) is not simply Vu, but it is the sum
of all possible Vv where v ⊆ u. However, for a singleton
τ ({j}), τ (u) equals the partial variance Vu. Alternatively, the
following value function can also be used:

val(u) = τ̄ (u) = E[V(f (ξ )|ξ ū], (15)

where ū = [1 : d] \ u.
Thus, by using τ (u) as the value function, the Shapley

effect can be calculated as follows

φi =
1
m

∑
u⊆{−i}

(
m− 1

|u|

)−1

(τ (u ∪ {i}) − τ (u)), (16)

The appealing point of the Shapley effect is that the sum of
all Shapley effects equals the total variance V , that is

m∑
i=1

φi = V . (17)

For easier interpretation, we denote φ̃i as φi/V . Hence,

m∑
i=1

φ̃i ≡

m∑
i=1

φi

V
= 1. (18)

Based on this equation, we can conclude that the Shapley
effect is a more rational approach for gauging the significance
of input variables, unlike total Sobol indices. As evidenced
by some of the test problems presented in this paper, the
rankings of input variable importance can differ between
Shapley effects and total Sobol indices.

For illustration, consider a problem with three input
variables ξ = {ξ1, ξ2, ξ3}

T . By applying Eq. (16), the Shapley
effect for ξ1 can be written as

φ1 =
1
3
τ{1} +

1
6

[
(τ{1,2} − τ{2}) + (τ{1,3} − τ{3})

]
+

1
3
(τ{1,2,3} − τ{2,3}), (19)

which eventually yields

φ1 = V1 +
1
2
V1,2 +

1
2
V1,3 +

1
3
V1,2,3. (20)

There are various ways to calculate Shapley effects for
independent variables, including using random sampling
algorithms. One recent algorithm for computing Shapley
effects is Goda’s method, which also provides a confidence
interval that is vital for further assessment, as described
in [31]. However, random sampling methods may not be
practical for computationally intensive problems. In such
cases, surrogate models can be substituted for the black-box
function to estimate Shapley effects. For example, Kriging
models have been employed in prior studies to compute
Shapley effects, as illustrated in [32]. This paper concentrates
on PCE as Shapley effects for independent variables can be
precisely calculated from the coefficients, as demonstrated
later on.

III. POLYNOMIAL CHAOS EXPANSION
A. NON-INTRUSIVE PCE
The non-intrusive PCE estimates a black-box function f (ξ )
by expanding it using orthogonal polynomials:

f (ξ ) ≈ f̂ (ξ ) =

∑
0∈Kp

α090(ξ ) (21)

where α are the PCE coefficients, 9 are multivariate
orthogonal polynomials, 0 = {γ1, γ2, . . . , γm}, where
γi ≥ 0 for i = 1, 2, . . . is an index set which is part of
an index set Kp. A multivariate orthogonal polynomial 90
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is constructed as the tensor product of univariate orthogonal
polynomials ψ (i)

γi , where i = 1, . . . ,m:

90 =

m∏
i=1

ψ (i)
γi
(ξi) (22)

PCE uses an expansion of polynomials which are orthog-
onal in the following sense:

⟨9i(ξ )9j(ξ )⟩ =

∫
�

9i(ξ )9j(ξ )ρ(ξ )dξ = δij, (23)

where δij = 1 if i = j and 0 if i ̸= j. There exists a poly-
nomial family that satisfies the orthonormality constraints
corresponding to the given input probability distribution. For
example, Hermite and Legendre polynomials are used for
normal and uniform distribution, respectively [33].
In this paper, the index set Kp is generated by using a

total-order expansion of order p, as defined by

Kp ≡ {0 ∈ Nm
: |0| ≤ p}. (24)

To reduce the size of the polynomial basis set, it is also
common to use hyperbolic truncation which takes an extra
parameter q such that

Kp ≡ {0 ∈ Nm
: |0|q ≤ p}, (25)

where

|0|q =

( m∑
i=1

α
q
i

)1/q

. (26)

The regression approach calculates the coefficients by
minimizing the error between the PCE and the data. To use
the regression approach, one collects an experimental design
consisting of n samples X = {ξ (1), . . . , ξ (n)}T and the
responses y = {y(1), . . . , y(n)}T = {f (ξ (1)), . . . , f (ξ (n))}T .
The coefficients α are obtained by solving the following
system of linear equations:

Fα = y (27)

where F is a regression matrix constructed from X and the
index set Kp, with its (i, j) component is Fij = 9j(ξ (i)).
By defining P = |Kp| as the cardinality of the index set, the
size of F and α are then n×P and P×1, respectively. We use
sparse PCE based on least-angle regression (LAR) [40] so
that we can set P > n. The sparse algorithm will give zeros
to less important terms so that the number of non-zero terms
is less than n.
Rewriting the PCE as a sum of the truncated set, we have

the following:

f (ξ ) = f̂ (ξ ) + ε =

P−1∑
j=0

αj9j(ξ ) + ε ≡ αT9(ξ ) + ε (28)

where ε is the residual. The LAR algorithm aims to find the
best subset so as to yield the lowest penalized mean square
error:

α̂ = arg min E
[
(αT9(ξ ) − f (ξ ))2

]
+ λ||α||1, (29)

where the purpose of the regularization term λ and ||α||1
is to enforce sparsity of the polynomial bases. The choice
of L1 norm drives the coefficients of less influential factors
to be precisely zero, thereby encouraging sparsity. The
importance of sparsity becomes evident when working with
high-dimensional problems, as it simplifies the process of
least squares. This contrasts the L2 norm, which dimin-
ishes coefficients but does not force them to be exactly
zero. To minimize the error term, the leave-one-out cross-
validation (LOOCV) is used, and an analytical formulation
is available for computing LOOCV error (ϵLOO) using PCE.
This enables quick scanning of a vast array of basis subsets,
thanks to the rapid estimation of LOOCV error. Further
information on PCE with the LAR algorithm is available
in [40]. It should be noted that although we used LAR,
other non-intrusive PCE building methods such as spectral
projection or other sparse algorithms (as described in [17])
can be utilized.

The root-mean-squared error (RMSE) is to estimate the
error of the PCE model, written as

ϵRMSE =

√√√√ 1
nv

nv∑
i=1

(
f (ξ (i)) − f̂ (ξ (i))

)2
, (30)

where nv is the size of validation samples, f (ξ (i)) is the actual
response, and f̂ (ξ (i)) is the PCE prediction. The LOOCV
error, on the other hand, is computed as follows:

ϵLOO =

√√√√1
n

n∑
i=1

(
f (ξ (i)) − f̂ (−i)(ξ (i))

)2
, (31)

where f̂ (−i)(ξ (i)) is the PCE prediction constructed from a
reduced experimental design by removing the i-th sample
(hence, the name leave-one-out). To ease the analysis, the
errors are normalized according to the interquartile range of
the responses estimated from all available samples.

B. SHAPLEY EFFECTS FROM PCE
As the non-intrusive PCE is essentially a surrogate model,
the most straightforward approach for calculating Shapley
effects from a PCE model is to use a random sampling-based
algorithm or Monte Carlo sampling. Song et al. proposed
a Monte Carlo algorithm [29] that is general and can
be used for both independent and dependent inputs. One
of the latest methods for computing Shapley effects with
smaller confidence intervals for independent inputs is Goda’s
algorithm [31]. However, exact computation of PCE-based
Shapley effects can be advantageous because it enables
even faster computation. Furthermore, exact computation
eliminates the need for confidence intervals since no random
sampling is involved.

The orthogonality of the polynomial terms in PCE is
particularly useful because the PCE can be conveniently
decomposed according to the Sobol decomposition. It is
advantageous that the Shapley effects from the constructed
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PCE model can also be obtained exactly from the PCE
coefficients.

First, it is known that E[f (ξ )] = α0 due to orthogonality
of the PCE basis. Hence, we have the variance of PCE
(i.e., V PC ) as follows:

V PC
= σ 2

PC = V
[ P−1∑
j=0

αj9j(ξ )
]

= E
[( P−1∑

j=1

αj9j(ξ ) − α0

)2]
=

P−1∑
j=1

α2j E[9
2
j (ξ )].

(32)

BecauseE[92
j (ξ )] = 1 due to the orthonormality of the bases,

for any j, we have

V PC
=

P−1∑
j=1

α2j (33)

Obtaining V PC is particularly important when using the
normalized version of Shapley effects. Let us first define Lu
as the set of 0 tuples such that

Lu =

{
0 :

γk > 0 ∀k = 1, . . . ,m k ∈ u
γk = 0 ∀k = 1, . . . ,m k /∈ u

}
(34)

We can then write

f̂u(ξu) =

∑
0∈Lu

α090(ξu), (35)

as the summand in the ANOVA decomposition of PCE that
essentially collects all polynomials that depend only on u. The
partial variance V PC

u of a PCE model can then be written as

V PC
u =

∑
0∈Lu

α2
0E[92

0(ξu)] (36)

The Shapley effect for ξi, where i ∈ {1, . . . ,m}, for
independent inputs can be calculated as

φi =

∑
∅̸=u⊆[1:m],i∈u

Vu
|u|

(37)

Finally, the Shapley effect φi from a PCE model can then be
defined as

φPCi =

∑
∅̸=u⊆[1:m],i∈u

(
1
|u|

∑
0∈Lu

α2
0E[92

0(ξu)]
)

(38)

Eq. (38) simply says the Shapley effect of a PCE model for
any independent input variable can be computed simply from
the coefficients. To summarize: (1) firstly, collect all terms u
that has i as their member (2) secondly, for all admissible u,
gather all polynomials that belong to Lu, (3) square and
sum all the corresponding coefficients and divide it by the
cardinality of u, and, finally (4) sum the terms inside the
bracket for all admissible u.

Lastly, because V PC is also exactly computed, the
normalized Shapley effects of a PCE model is simply written
as

φ̃PCi =
φPCi

V PC . (39)

For example, consider approximating a three-dimensional
problem with a PCE model with the following terms:
f̂ (ξ ) =

∑10
i=0 αj9j(ξ ), created from a total order expansion

of order p = 3 with the addition of the third-level
interaction. Thus, we have the following set of orthogonal
polynomials

90(ξ ) = ψ0(ξ1)ψ0(ξ2)ψ0(ξ3)

91(ξ ) = ψ1(ξ1)ψ0(ξ2)ψ0(ξ3)

92(ξ ) = ψ0(ξ1)ψ1(ξ2)ψ0(ξ3)

93(ξ ) = ψ0(ξ1)ψ0(ξ2)ψ1(ξ3)

94(ξ ) = ψ2(ξ1)ψ0(ξ2)ψ0(ξ3)

95(ξ ) = ψ1(ξ1)ψ1(ξ2)ψ0(ξ3)

96(ξ ) = ψ1(ξ1)ψ0(ξ2)ψ1(ξ3)

97(ξ ) = ψ0(ξ1)ψ2(ξ2)ψ0(ξ3)

98(ξ ) = ψ0(ξ1)ψ1(ξ2)ψ1(ξ3)

99(ξ ) = ψ0(ξ1)ψ0(ξ2)ψ2(ξ3)

910(ξ ) = ψ1(ξ1)ψ1(ξ2)ψ1(ξ3)

with α = {α0, α1, . . . , α10}
T . It is worth noting that

ψ0 = 1 for any input variable. We can then calculate the
Shapley effect for ξ1 by looking at the terms where the
order of the PCE basis for ξ1 is not zero, which leaves us
with 91(ξ ), 94(ξ ), 95(ξ ), 96(ξ ) and 910(ξ ). We can easily
calculate the Shapley effects as follows

V PC φ̃PC1 = (α21 + α24) +
1
2
α25 +

1
2
α26 +

1
3
α210. (40)

Similarly, for ξ2 and ξ3 we, respectively, have

V PC φ̃PC2 = (α22 + α27) +
1
2
α25 +

1
2
α28 +

1
3
α210 (41)

and

V PC φ̃PC3 = (α23 + α29) +
1
2
α26 +

1
2
α28 +

1
3
α210. (42)

The concept is the same for higher-dimensional inputs and
higher order PCE basis. It is worth noting again that not all
interaction terms would exist if a sparse PCE is used.

C. USING BOOTSTRAP FOR BUILDING CONFIDENCE
INTERVAL
As PCE approximates the original model, there may be
a discrepancy between the Shapley effects of the original
function and those obtained through PCE. To inform analysts
about the uncertainty of the estimations, it is crucial to
provide a confidence interval for the PCE-based Shapley
effects due to metamodeling error. One benefit of the
exact calculation of Shapley effects from PCE is that it
can expedite the bootstrapping process. Bootstrapping is

114830 VOLUME 11, 2023



P. S. Palar et al.: Global Sensitivity Analysis in Aerodynamic Design

a valuable technique that enables quantification of the
confidence interval in estimated Shapley effects. It functions
by generating bootstrap samples, each containing a subset
of the experimental design created from sampling with
replacement. It is important to note that bootstrapping in this
context is not employed to determine confidence intervals
from MCS to PCE since the Shapley effects from PCE are
computed exactly.

Following [41], a single bootstrap sample X (j)
boot =

{ξ (1), . . . , ξ (nb)}, where j = 1, 2, . . . ,B, B is the number
of bootstrap replications, and nb is the size of the bootstrap
sample, is created by drawing samples with replacement
from the original experimental design. The bootstrap sample
will likely have identical samples; however, only unique
samples are taken. The j-th bootstrap PCE model f̂ (j)boot (ξ )
is then created by using X (j)

boot as the experimental design.
The statistics of interest, which are φ̃1, . . . , φ̃m, can be
extracted from f̂ (j)boot (ξ ) analytically. By denoting the i-th
Shapley effect from the j-th bootstrap sample as φ̃(j)booti , B PCE
models from B bootstrap samples (each with independent
sampling with replacement) can be constructed to yield
the vector of Shapley effects from bootstrap replications,
i.e, {φ̃

(1)
booti , φ̃

(2)
booti , . . . , φ̃

(B)
booti}. Subsequently, the bootstrap

confidence intervals are computed by calculating the
percentiles.

In this paper, we set B = 500. The construction of 500 PCE
models is significantly faster than evaluating the sampling
points. PCE has a rapid construction process, even when
using sparse algorithms like LAR. It is important to note
that the errors introduced by MCS when estimating the
PCE-based Shapley effects are eliminated during the cre-
ation of the confidence interval from bootstrap resampling.
Therefore, bootstrap resampling is solely used to generate
confidence intervals that replicate the impact of random
sampling.

D. COMPUTATIONAL PROCEDURE
The complete computational procedure to estimate the
Shapley effect using PCE and the associated bootstrap
confidence interval is summarized in the following:

1) Prepare the experimental designX and the responses y.
2) Build the PCE model f̂ (ξ ) using X and y.
3) Compute the Shapley effects φ for all input variables

using Eq. (39).
4) Generate bootstrap samples X (1)

boot , X
(2)
boot ,. . ., X

(B)
boot .

5) Construct B bootstrap PCE models f̂ (1)boot (ξ ),
f̂ (2)boot (ξ ), . . ., f̂

(B)
boot (ξ ) and calculate the corresponding

Shapley effects for each bootstrap PCE model.
6) Estimate the bootstrap confidence interval of the

Shapley effects (e.g., 90% or 95%).

In this paper, we employ a 95% bootstrap confidence interval
to assess the uncertainty in the Shapley effects.

IV. NUMERICAL EXPERIMENTS ON AERODYNAMIC
PROBLEMS
A. PRELIMINARY EXPERIMENT: ISHIGAMI FUNCTION
Before explaining the results from the aerodynamic problem,
a preliminary experiment was performed to compare the exact
calculation of Shapley effects from PCE and MCS. The MCS
method being used is the algorithm proposed by Goda [31],
which provides the confidence interval without the need for
resampling (note that the MCS here is applied on the real
function and not the PCE model). The Ishigami function
was chosen for the preliminary experiment due to its high
nonlinear characteristics described as follows:

f (x) = sin(x1) + asin2(x2) + bx43sin(x1) (43)

where a = 7, b = 0.1, and � = [−π, π]3. Ishigami function
is a highly nonlinear three-dimensional function with a strong
interaction between x1 and x3. On the other hand, x2 does
not interact with either x1 or x3. The analytical total Sobol
indices are as follows: ST1 = 0.5576, ST2 = 0.4424, and
ST3 = 0.2437. On the other hand, the Shapley effects are as
follows: φ1 = 0.4357, φ2 = 0.4424, and φ3 = 0.1218 [31].
The calculation of total Sobol indices and Shapley effects
for the Ishigami function returns different rankings of the
variables. The total Sobol indices overestimate the effect of x1
due to the strong interaction between x1 and x3. On the other
hand, the Shapley effect ranks x2 higher than x1. The Shapley
effect gives a fair share to x1 and x3 for the Ishigami function,
owing to the balanced distribution of the interaction effects.
This example serves as a first example of how both GSA
metrics yield different rankings, which can be substantial in
the context of real-world design.

The experiment was performed using PCE with a maxi-
mum order of 14 and Sobol samplingwith sample sizes varied
from n = 50 to n = 250 in a step of 25. The convergence of
RMSE using 100,000 validation samples is shown in Fig. 1,
which shows that the error is extremely small, especially for
n ≥ 150.

FIGURE 1. The convergence of ϵRMSE based on a PCE model for the
Ishigami function.

The convergence of the Shapley effects for the Ishigami
function is shown in Fig. 2. It can be seen that the Shapley
effects from PCE eventually converged to those of analytical
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FIGURE 2. Convergence of the Shapley effects obtained from PCE for the
Ishigami function.

values. The result shows that the bootstrap successfully built
empirical distributions of the Shapley effects subjected to
randomness due to random sampling. The uncertainty for
n = 50 is especially high; however, the bootstrap confidence
interval progressively diminishes with larger sample sizes,
resulting in an extremely narrow uncertainty band at n = 250.
Let us now consider a scenario in which the Shapley effect

is approximated using LAR-PCE with a maximum order
of 14 and an experimental design employing n = 1000
through Sobol sampling. The resulting PCE is highly accu-
rate, such that the Shapley effects from PCE are extremely
close to the analytical value. Even when employing boot-
strapping, the PCE-derived confidence interval is remarkably
narrow to the extent that it coincides with the analytical
values. Fig. 3 presents the analytical and estimated Shapley

FIGURE 3. Comparison of the Shapley effects obtained from PCE with
n = 1000 and MCS applied on the true Ishigami function with n = 104 to
n = 107. Also shown are the analytical Shapley effects for reference.

effects obtained from PCE for n = 1000 (represented by
straight lines). Further, the Shapley effects derived from
MCS are displayed for n = 104 to 107, with the variation
shown on a logarithmic scale. We can see that even with
a sufficiently large sample size (n = 104), the confidence
interval obtained fromMCS is still large due to the extremely
nonlinear nature of the Ishigami function. This contrasts PCE,
which requires only 150 samples to achieve a sufficiently
small confidence interval. A large number of samples is
required for MCS to obtain Shapley effect estimates within
an acceptably narrow confidence interval. Approximately
107 MCS samples are necessary to achieve accurate Shapley
effect estimations with sufficiently tight confidence intervals.
Using MCS with sample sizes ranging from 104 to 106 is
still insufficient, particularly when sample sizes are limited,
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resulting in notably wider confidence intervals. In such cases,
it becomes challenging to discern significant differences,
especially between x1 and x2, due to the high uncertainty
associated with the estimations.

The rest of this paper details the application of PCE-based
Shapley effects on aerodynamic problems. It is worth
noting that implementing the MCS-based Shapley effects
on the aerodynamic problems may not be practical due to
the following considerations: (1) the cost of evaluating a
single evaluation is expensive, which renders the use of
MCS infeasible, and (2) the data might come in any form
(e.g., Sobol sampling) and it is difficult or not possible
to perform more simulations. Thus, for the following
aerodynamic problems, we focus the study on the PCE-based
Shapley effects and perform a comparison with total Sobol
indices. Further, the LOOCV error is computed to assess the
accuracy of the PCE on the aerodynamic problems due to
relatively limited sampling points.

B. TEST CASE 1: 8-VARIABLE SUBSONIC WING ANALYSIS
WITH VORTEX PARTICLE WAKE
The first aerodynamic problem is the GSA of a subsonic
wing to investigate the effect of wing twists on aerodynamic
performance [42]. The input variables are the twist angle at
eight different sections of an untapered wing with NACA
2412 airfoil, varied from -10 to 10 degrees. The analysis
evaluates the drag coefficient (Cd ) using the vortex particle
wake solver available in FLOW5. The problem is solved
at a Reynolds number of 11.8 × 106 and a Mach number
of 0.5, with a wingspan of 6 m and a chord length of 1 m.
The wing is symmetric at the centre, and eight sections are
positioned linearly in the spanwise direction from the wing’s
centre to its tip. The variables number one and eight are the
closest to the root and the tip, respectively. Fig. 4 depicts
the resulting pressure distribution from the vortex particle
wake solver of the nominal geometry and the locations of the
eight sections. Sparse PCE models with a maximum order of
3 were constructed using an experimental design with various
sample sizes from 50 to 500 in a step of 50, obtained from
Sobol sampling. However, we found that the Shapley effects

FIGURE 4. The nominal geometry used in the first aerodynamic test
problem and the corresponding pressure calculated using the vortex
particle wave solver. Also shown are the locations of the eight sections.

FIGURE 5. The convergence of ϵLOO for the subsonic wing problem.

already converged at n = 150. Thus, we only show the results
up to n = 150.
Fig. 5 depicts the convergence of the cross-validation error

with the sample sizes varied from n = 50 to n = 150 in a
step of 10. The error is small even for the smallest sample
size (approximately 10−3), and it reduces further with an
increase in sample size. However, as shown later, the case
with n = 50 still yields a large bootstrap confidence
interval.

The problem exhibits a strong interaction, with the sum
of all total Sobol indices being equal to 1.751. Additional
analysis reveals that three strong interaction terms are present,
namely ξ1 − ξ2 (S12 = 0.172), ξ2 − ξ3 (S23 = 0.221), and
ξ3 − x4 (S34 = 0.1466). The convergence of Shapley effects
for the four most impactful variables is shown in Fig. 6.
We have omitted the convergence plots for the remaining four
variables to avoid overcrowding the display. From the result,
it is interesting to see that the uncertainty band is still wide
for n = 50 and n = 60, especially the former. The Shapley
effect values at n = 50 are already in close alignment with
those at n = 150, with a particularly narrow uncertainty
band for the latter. Nevertheless, the high uncertainty from
the bootstrap confidence interval at n = 50 makes it difficult
to assess the variable importance. In other words, adding
more samples is necessary to increase the confidence. The

FIGURE 6. Convergence of the Shapley effects of four representative
input variables (i.e., x1, x2, x3, and x4) for the subsonic wing problem.
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uncertainty becomes acceptable at n = 80, and the band
diminishes further when more samples are added. Based on
this information, one might consider stopping adding more
samples when the bootstrap confidence interval is narrow
enough (e.g., at n = 80).

FIGURE 7. Shapley effects and total Sobol indices results for the subsonic
wing problem with n = 50, n = 100, and n = 150.

Figure 7 compares the total Sobol indices and Shapley
effects of all variables computed for representative sample
sizes (n = 50, n = 100, and n = 150). Despite the
significant interaction, both total Sobol indices and Shapley
effects produce the same ranking of variables. However, the
interpretation of Shapley effects is more meaningful due to
their normalization property. The effect of twist on the drag is
more pronounced for wing sections closer to the root, except
for the section located precisely at the root. Additionally,
it is apparent that twisting the wing at the outermost section
only slightly affects drag production. From an aerodynamic
perspective, twisting a wing at locations close to the root
generates more drag because the pressure is higher at these
locations. Conversely, twisting the wing precisely at the root

has a smaller effect because it only marginally alters the twist
at other locations.

At n = 50, the Shapley effects still exhibit a relatively
high level of uncertainty. The total Sobol indices display
even higher uncertainty, leading to interpretation confusion.
Notably, the 97.5% quantiles of the total Sobol indices for
x6, x7, and x8 are considerably larger than their estimated
values due to the overcounting of the interaction terms. This
overcounting issue does not occur in the case of Shapley
effects, as the weights are allocated fairly to the ANOVA
terms. The uncertainty at n = 50 is high because the sparse
PCE is still sensitive to the changes in the experimental
design at such a low sample size. However, the smaller
uncertainty in Shapley effects compared to total Sobol indices
is advantageous. The confidence intervals’ widths become
small enough at n = 100, even narrower for n = 150. Despite
having the same variable ranking, there are significant
differences between the magnitudes of Shapley effects and
Sobol indices.

C. TEST CASE 2: 12-VARIABLE TRANSONIC AIRFOIL WITH
UNCERTAIN GEOMETRY
The next case is an inviscid transonic airfoil case with
uncertainty in the geometry adopted from Baar et al. [43].
The baseline design is the FFAST airfoil (see Fig. 8) where
the output of interest is the drag coefficient (Cd ) evaluated
using the inviscid solver from SU2 [44]. The ordinate of the
airfoil is subjected to uncertainties that are parameterized
using disturbance functions. The absis coordinate is denoted
as xc and the disturbance function fi(xc), where i =

1, 2, . . . , d and d is the number of disturbance functions,
is defined such that

x̄w =
xc − c0
1 − 2c0

, xc ∈ [c0, 1 − c0] (44)

fi(xc) = sin(φx̄w)
sin(iπ x̄w)

i
(45)

where c0 = 0.15 is selected as the starting point of the
disturbance function. There are 12 variables in total assigned
to the upper and lower surfaces, with each surface assigned
six disturbance functions. The disturbance functions are
labeled as upi and loi for the upper and lower surfaces,
respectively, where i ranges from 1 to 6. Fig. 8b provides

FIGURE 8. FFAST airfoil geometry and the six disturbance functions. Note
that the disturbance functions are scaled according to the random
variable ξ .
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a visualization of these six disturbance functions for each
surface.

The exact mechanism of how the disturbance function
alters the airfoil geometry is defined as follows:

1yupper(xc) =

m/2∑
i=1

ξ
upper
i fi(xc) (46)

1ylower(xc) = −

m/2∑
i=1

ξ loweri fi(xc) (47)

where ξi are Gaussian random inputs with E[ρ(ξ )] = 0 and
σ [ρ(ξ )] = 0.005 truncated to ξ ∈ [−0.0125, 0.0125]. The
case is evaluated at Mach number M = 0.8, making it
sensitive to the changes in geometry. We denote the ξupper

and ξ lower as up and lo, respectively, for ease of reading.
The evolution of ϵLOO for the 12-variable transonic airfoil

problem is shown in Fig. 9, in which we varied the sample
size from 100 to 900 in a step of 100. It can be seen that
the ϵLOO consistently decreases as the sample size increases,
which appears to level off at large sample sizes. Nevertheless,
the error is considered acceptable in the context of GSA.
What matters most is the inclusion of uncertainty estimates
for the calculated Shapley effects, ensuring the ability to draw
reliable insights.

FIGURE 9. The convergence of ϵLOO for the 12-variable transonic airfoil
problem.

Fig. 10 depicts the convergence of four representative
input variables (i.e., up1, up2, up5, and lo3) to show how
the band of uncertainty decreases as we increase the sample
size. With small sample sizes, especially n = 100 and
n = 200, the uncertainty band is still large, making it difficult
to draw solid conclusions regarding the input importance.
In such a situation, one might wish to add more samples
until the level of uncertainty is small enough for reliable
sensitivity analysis. At n = 600, the uncertainty begins
to reach a more acceptable level, and the distinct impact
of each variable becomes more evident. The variables in
the problem have strong interactions, with the sum of total
Sobol indices calculated from sparse PCE with n = 900
being 1.3145. The problem is challenging to approximate

FIGURE 10. Convergence of the Shapley effects of four representative
input variables (i.e., up1, up2, up5, and lo3) for the 12-variable transonic
airfoil problem.

using PCE, necessitating a large number of samples to
achieve sufficiently narrow confidence intervals.

Fig. 11 displays the calculated GSA metrics and their
associated uncertainty estimates for all variables at sample
sizes of n = 300, n = 600, and n = 900. The uncertainties
are relatively high for n = 300, although the differences
between the variables are already apparent. An interesting
trend can be observed by extracting the GSA indices from
the coefficients. The comparison between total Sobol indices
and Shapley effects indicates that the two metrics agree
on the ranking of the first four most important variables,
namely up2, up4, up1, and up3 based on the magnitude of the
indices. However, there is a discrepancy in the interpretation
of the fifth most important variable. According to total Sobol
indices, up5 is more important, while Shapley effects suggest
that lo2 should be prioritized. This difference in interpretation
can be attributed to the fact that total Sobol indices indicate
that all upper surface variables are more important than any
of the lower surface variables. While total Sobol indices
interpretation says that all upper surface variables are more
important than all lower surface variables, Shapley effects
show that lo2 is more important than up5 and up6. Therefore,
according to Shapley effects, to minimize the variance caused
by uncertain geometry, the deformation mode of the lower
surface represented by lo2 should be addressed first before
considering the high-frequency deformation modes of the
upper surface represented by up5 and up6.

Notably, the bootstrapped Shapley effects exhibit lower
variances than those of total Sobol indices. This observation
is intriguing since the total Sobol indices have an unbounded
range on the right side (i.e., ST ≥ 1). However, this
unbounded nature of the total Sobol indices poses a challenge
when interpreting the associated uncertainty. Consequently,
Shapley effects offer a more natural approach to account for
the main effect and interactions, and their lower variances
obtained from PCE also provide greater confidence in the
precision of the estimated values. It is worth noting that the
prediction accuracy of PCE on this problem is not as high as
the other problems, where alternative surrogate models may
offer higher accuracy. In fact, one potential drawback of the
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FIGURE 11. Shapley effects and total Sobol indices results for the
uncertain transonic airfoil problem with n = 300, n = 600, and n = 900.

fast estimation of PCE-derived Shapley effects stems from
the PCE itself, which might be less accurate for some types
of problems.

D. TEST CASE 3: FAN-BLADE DESIGN
The fan-blade design adopted from Seshadri et al. with
25 input variables [45] is the next realistic test case. The
output of interest is the non-dimensionalized efficiency,
which was obtained using a steady-state RANS solver
with Spalart-Almaras turbulence closure model with wall
function. Each geometry is meshed by 1.75 million mesh
elements. Seshadri et al. presented three fan designs, but only
the first design (i.e., design A) is utilized in this study. The
simulation of blade A is carried out at Re = 7.8 × 106,
with the pressure and temperature at the bypass outlet equal
to 1.005 × 105N/m2 and 288 K, respectively. There are
25 variables that correspond to the modification of dihedral,
leading edge (LE) recamber, trailing edge (TE) recamber,
sweep, and skew, which are specified at five spanwise

locations. For a more comprehensive understanding of this
particular case and to view the blade’s shape, interested
readers are referred to the original paper [45]. To provide
an idea of the input-output relationship, Fig. 12 displays
a three-dimensional scatter plot of the top three important
variables (as per the Shapley effects discussed shortly) with
the non-dimensionalized efficiency represented by colour.
The plot illustrates that, in general, an increase in x8, x9, and
x10 would result in an increase in efficiency. However, the
response is nonlinear, with a quadratic-like shape, as noted
by Seshadri et al. [45]. Although not entirely comprehensive,
the plot depicted in Fig. 12 provides an approximate mental
picture of the input-output relationship.

FIGURE 12. A three-dimensional scatter plot of the three most active
variables colored by the non-dimensionalized efficiency.

A total of 584 samples are available from the simulation;
thus, we use n = 584 to construct the sparse PCE with
pmax = 3, yielding ϵLOO = 5.2 × 10−2, which was
deemed to be sufficiently accurate for GSA purposes. In this
particular case, our attention is directed towards examining
Shapley effects derived from the sparse PCE only using the
complete set of available samples. Employing bootstrapping
for a relatively large dimension (specifically, m = 25) incurs
significant computational costs, so we focus only on using
all samples. Moreover, the findings from the previous three
problems have already validated the convergence of Shapley
effects based on PCE.

The results are shown in Fig. 13. In line with the
observation of Seshadri et al., the LE recambering variables
are the most important set of variables, followed by TE
recambering. The skew variables exhibit a minor contribution
to the efficiency, while the other variables are almost non-
influential. The interaction appears to be quite strong, with a
sum of total Sobol indices equal to 1.2157. The confidence
intervals created through bootstrapping are sufficiently nar-
row, indicating a robust conclusion regarding the variables’
importance.

The importance ranking derived from total Sobol indices
and Shapley effects differ slightly. To be exact, total Sobol
indices assigned the 15th variable (i.e., TE recambering
variable) as the third important variable, while Shapley
effects place the said variable in number four. Instead,
Shapley effects rank the 8th variable, which belongs to
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FIGURE 13. GSA of the fan blade design using PCE with n = 498.

the LE recambering class, in the third position. Similar
to the subsonic wing problem, this discrepancy in ranking
may result in a different design strategy for the fan blade.
For instance, designers may concentrate exclusively on
LE recambering as they are aware that the three most
important variables, according to Shapley effects, belong to
that particular set.

V. CONCLUSION
The aim of this research paper is to explore the use of
sparse PCE for estimating Shapley effects in the context of
aerodynamic design exploration. One of the main objectives
of aerodynamic design is to identify the relative impact
of geometric variables on aerodynamic performance. For
instance, if engineers know the variables that contribute
the most to aerodynamic efficiency, they can focus on
controlling these variables to a greater extent. Shapley effects
are considered to be a better alternative to total Sobol
indices for GSA, as they have a normalization property,
which means that the sum of unnormalized Shapley effects
is equal to the function’s variance. Once a PCE model is
developed, the Shapley effects can be calculated exactly,
eliminating uncertainty due to Monte Carlo simulations.
Bootstrap estimates the randomness in Shapley effects caused
by random sampling, which is now accelerated thanks to the
exact calculation from PCE.

To demonstrate the usefulness of Shapley effects, the
research focuses on three aerodynamic problems with strong
interactions between input variables. The confidence interval
is a critical aspect as it provides analysts with information
about the uncertainties in Shapley effect predictions. The cost
of estimating Shapley effects from PCE is virtually equivalent
to that of Sobol indices, as both are derived from PCE
coefficients. Hence, the bulk of computational cost comes
from constructing the PCE model. Using PCE-based Shapley
effects, aerodynamic designers can obtain fast insight into
the global sensitivity of the design variables, allowing more
efficient and informed decision-making in the design process.

This expeditious analysis facilitates the identification of
critical variables and informs design adjustments with-
out the computational burdens associated with alternative
methods.

The results of our study reveal several important trends.
Firstly, we demonstrate that PCE can be utilized to estimate
Shapley effects rapidly. Secondly, our findings indicate that
total Sobol indices and Shapley effects can produce different
importance rankings. However, using Shapley effects is
more natural in considering interaction terms, making their
results more logical and easier to interpret. In the case of
the transonic airfoil with uncertain geometry and fan blade
design, the use of Shapley effects results in a distinct ranking
when compared to Sobol indices. This disparity may lead
to a distinct approach for design or variance minimization
concerning uncertainty. Thirdly, the confidence intervals for
Shapley effects are lower than those of total Sobol indices,
which is particularly significant when the sample size is
small. Finally, the uncertainty associated with total Sobol
indices is higher than that of Shapley effects, mainly due to
the overcounting of interaction terms. As a side note, although
fast estimation of Shapley effects from PCE is desirable given
a sufficiently accurate approximation, users should be careful
with certain classes of problems, e.g., when a discontinuity is
present in the input-output relationship. The Shapley effects
derived from PCE might be inaccurate and give false insight
in such a scenario.

In future studies, the adoption of a Bayesian form
of PCE could yield additional advantages, as no further
bootstrap procedures are required to construct confidence
intervals resulting from random sampling. Moreover, we are
intrigued by the possibility of obtaining the analytical
formula of Shapley effects from kernel-based models, such
as Kriging and support vector regression. In the context of
aerodynamic optimization, one promising research direction
is to investigate the information obtained from Shapley
effects-based GSA for real-world design optimization. For
instance, exploring the potential of Shapley effects to reduce
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the dimensionality of geometrical design variables to improve
efficiency in optimization. Finally, it is interesting to explore
the potential utility of Shapley effects within a dynamic
system, wherein the sensitivity of input variables and their
interactions change over time.
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