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ABSTRACT Autonomous driving simulators are an effective tool for developing autonomous driving
algorithms so that they are widely used in research and development. However, the similarity of the
virtual model to reality is closely related to the validity of the simulation results. Therefore, analyzing the
characteristics of real sensors is necessary for mathematical modeling of virtual sensors in autonomous
driving simulators. This paper presents a virtual lidar that has a high fidelity operating similarly to reality
in the sensor modeling. The intensity variable factors which represents the strength of the received signal
relative to the transmitted signal are effectively used for improving the fidelity of virtual lidar with a low
computing power. The proposed virtual lidar is implemented in an autonomous driving simulator to show its
feasibility by comparing with the existing virtual lidar. Specifically, the paper focuses on modeling intensity
data with an aim to exhibit trends similar to the intensity measurement results of real lidar, compared
to conventional modeling methods. The proposed virtual lidar is implemented in an autonomous driving
simulator to demonstrate its feasibility by comparison with existing virtual lidar. As a result, there was an
89.21 percent improvement in the average intensity within the region of interest compared to the conventional
modeling method.

INDEX TERMS Driving simulator, fidelity, lidar sensor model, intensity, sim2real.

I. INTRODUCTION
In the development of autonomous driving technology,
accurately perceiving the positions of pedestrians and other
vehicles in the vicinity is directly related to the safety of
passengers and nearby people. In this context, sensors such
as cameras, radars, and lidars are widely used for a driving
environment perception capability of autonomous driving
vehicles. Among them, lidars measure using the transmission
and reception of laser signals, and acquire point cloud data
(PCD) with excellent spatial resolution in centimeters, pro-
viding 3D spatial information. Due to the structural and func-
tional characteristics of the sensors mentioned above, there
is a trend toward developing autonomous driving perception
capabilities through sensor configurations that combine the
strengths and weaknesses of each sensor [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

Meanwhile, evaluating and verifying the driving safety of
autonomous driving functions is a task as important devel-
oping the autonomous functions themselves. Furthermore,
evaluating and verifying high level autonomous driving func-
tions in all test cases of real world environments incurs high
costs and time consumption. Therefore, driving simulators
have been considered as a tool for evaluating and verifying
autonomous driving systems, as they can be used safely,
inexpensively, and with reproducible results [2]. However,
since there are differences between driving simulators and
real-world environments, many researches are being con-
ducted to reduce the discrepancy between virtual models
and reality. This is commonly referred to as the Simulation-
to-Real (Sim2Real) problem, aiming to transfer knowledge
from simulation to real-world situations in areas such as
driving scenarios [3], vehicle dynamics [4], and sensor mod-
eling [5], [6]. In this context, co-simulation software, notably
AVL Model.CONNECT, has been recognized for its role in
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addressing this challenge. It facilitates the integration of vari-
ous simulation methodologies, helping to streamline the tran-
sition from virtual models to real-world scenarios. Building
on this foundation, our research narrows its focus specifically
to the development and optimization of virtual lidar sensor
modeling. A precise and detailed representation of virtual
lidar systems is crucial for enhancing the authenticity of sim-
ulations, bridging the gap between simulated and real-world
environments. Analyzing the characteristics of real sensors
is necessary for developing virtual sensors. A lidar measures
the position of a specific point based on the Time of Flight
(ToF) principle, which calculates the distance by transmitting
a signal at a certain angle, reflecting off a specific point,
and receiving the signal based on the elapsed time. Lidars
can be differentiated based on their signal form and emission
method. In this study, we focus on the narrow-pulsed signal
lidar. This type is prevalent in the market and functions by
rotating either its body or its internal mirrors using a rotor [7].
Rosenberger et al. [8] studied the mechanical operation

characteristics of the Ibeo LUX 2010, which operates using
a narrow-pulsed signal through a rotor. They confirmed that
the LUX 2010 has a zipper shaped measurement range due to
different measurement directions depending on the vertical
scan layer and horizontal resolution. They also emphasized
the need to analyze and reflect the real sensor’s operational
characteristics in the development of virtual lidar. Further-
more, Schaermann et al. [9] proposed a method for evaluating
virtual lidar that is implemented in Vires’ driving simulator,
Virtual Test Drive (VTD). They suggested comparing the
point position measurement results of the sensor by repro-
ducing the same driving scenario in both real and virtual
environments.

In virtual lidar development research, Rosenberger et al.
[10] proposed a ray-casting based virtual lidar, considering
signal divergence, signal-to-noise ratio (SNR), and measure-
ment range due to sensor structure. To evaluate the proposed
virtual lidar, they defined a lidar system flowchart based
on object detection function for the classification of inter-
faces. They also presented a method to assess the fidelity
of virtual lidar implementation, not only by comparing point
positions but also by correlating with surrounding object
list information in the scenario. Linnhoff et al. [11] empha-
sized the importance of not only high fidelity but also the
computational speed for driving simulators. In their study,
they demonstrated that phenomenological based virtual lidar
data, modeled using ray-tracing techniques for high fidelity
virtual lidar and surrounding object list information in the
scenario, could be generated 200 times faster. In this case, the
phenomenological based virtual lidar took into account field-
of-view limitations and atmospheric attenuation. However,
existing virtual lidar research has primarily focused on the
position measurement function, with relatively little atten-
tion given to modeling the intensity, which represents the
reflectivity of the measured points.

Since intensity can reflect the reflective properties of
objects, unlike position measurement results, Hata & Wolf

[12] explained that it can be used to detect roadmarkings such
as solid lines, dashed lines, and crosswalks while driving.
In addition, amethod for estimating the current positionwhile
driving using intensity has been proposed. Wang et al. [13]
described a method for detecting the types of surrounding
objects in a driving environment using both intensity and
position information from the PCD. Through these two stud-
ies, it can be seen that intensity measurement is useful for
developing lidar based autonomous driving functions, and
there is a need for intensity information in driving simulator
virtual lidar.

In this study, we focus on developing a high-fidelity virtual
lidar that operates similarly to its real-world counterpart,
particularly in the sensor modeling aspect of the Sim2Real
problem. For this endeavor, our investigative process utilizes
the open-source driving simulator CARLA [14], renowned
for its modular architecture. This architecture supports the
implementation of variousmodels, including traffic, scenario,
road, and sensor modules, each customizable to meet the
demands of a myriad of tasks associated with autonomous
driving development and verification. Furthermore, CARLA
allows for meticulous adjustments to experimental scenar-
ios by enabling modifications to factors such as weather
conditions, object positioning, surface color, and surface
materials. Importantly, CARLA comes equipped with a pre-
implemented lidar model within its simulation environment,
providing a convenient baseline for the comparison and vali-
dation of our proposed virtual lidar system. Utilizing internal
scenario parameters of CARLA, we analyze the intensity
variable factors vital for improving the fidelity of the virtual
lidar.

Unlike previous studies, our proposed virtual lidar is
keenly focused on the intensity parameter, which is crucial
as it represents the strength of the received signal relative
to the transmitted signal. The objective is to achieve a high-
fidelity virtual lidar that requires low computing power,
accomplished by effectively utilizing weather parameters and
object databases configurable in the driving simulator. The
paper is organized as follows: First, an introduction to the
analysis of real lidar and previous research on virtual lidar is
provided. Next, we define the lidar functional flow and divide
the interfaces to elucidate the intensity modeling, which is
the focal point of our research, describing the causes of
measurement errors and the intensity variable factors in the
process. Subsequently, we delve into the explanation of the
virtual lidar implemented in CARLA, presenting comparison
experiments and results between the existing virtual lidar and
our proposed system. The paper concludes with final remarks
and conclusions.

II. LIDAR ANALYSIS
A. SYSTEM
For autonomous driving functions, a lidar measures the
surroundings using infrared signals with a wavelength of
850∼1550nm, which is non visible light, while considering
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FIGURE 1. Lidar signal acquisition principle.

the safety of people’s eyes around it, and operating at a limited
peak power. In this case, the arbitrarily transmitted narrow
pulsed signal P0 to measure surrounding objects is shown
in Fig. 1, where Pr is the signal reflected by surrounding
objects and received, Pa is the signal that has disappeared
due to diffuse reflection, and Pt is the signal absorbed and
converted into heat. The distance measurement is calculated
by the difference between the transmission time and reception
time, 1t, and the speed of light, c, where the distance d is
c1t/2. There are several methods used for measuring the
reflectivity characteristics of objects. For an example, Ibeo’s
pulse width method outputs the pulse width length of the
received Pr signal from the object [15]. For another example,
Velodyne’s intensity method outputs the intensity value by
applying the reflectance correction factor provided by the
National Institute of Standards and Technology to the ratio
of the transmitted signal’s strength to the received signal’s
strength [16].
In a lidar, the transmitted signal can diverge as the flight

distance increases, allowing multiple objects to be measured
simultaneously. Glass, rain, fog, and dust may also causemul-
tiple received signals. LUX 2010 names each of these signals
as an ‘Echo’. An example of multiple Echo occurrences is
shown in Fig. 2, and each has a unique position value and
reflectivity value [15]. In the case of VLP-16, specific signals
among multiple Echo signals can be received through sensor
settings [16]. There are three representative specific reception
modes: the first signal reception, the last signal reception,
and the strongest signal reception. The first signal reception
is a mode that receives the signal measured first, such as
receiving the signal Pr,1 due to dust in Fig. 2. The last signal
reception is a mode that receives the signal measured last,

FIGURE 2. Example of lidar multi echo signal measurement.

such as receiving the signal Pr,3 due to the wall in Fig. 2. The
strongest reception is a mode that receives the signal with
the highest intensity, like the last signal reception, receiving
the signal Pr,3 due to the wall in Fig. 2. Additionally, there is
a Dual reception mode that combines the above modes.

Based on the above analysis and the research of
Rosenberger et al. [10], focusing on object detection func-
tionality, the lidar system interface in this paper is as shown
in Fig. 3. Interface (IF)1 has the same message structure as
the LUX 2010’s sensor output interface, including multiple
Echo data and returning object reflectivity in a Pulse width
form. IF2 is identical to the VLP-16’s sensor output interface
and returns one signal among multiple Echo signals through
receptionmode settings and internal sensor processing. In this
paper, we handle the strongest signal reception mode. The
arbitrary point position values measured by a lidar are output
in a spherical coordinate system with vertical channel ω,
horizontal angle α, and measured distance d. IF3 converts
the spherical coordinate system to a Cartesian coordinate
system in the form of [x, y, z] centered on the lidar, excluding
intensity and converting location information only into a
3D array PCD. IF3 represents the lidar 3D spatial measure-
ment functionality focused on in the previous research, and
when using multiple lidars, it is aligned based on the vehicle
coordinate system. Finally, IF4 is an object list information
with a completed PCD signal processing such as point clus-
tering, object classification, object detection, and tracking.
It includes information such as the type of object, the central
coordinates of the object, and the size of the object bounding
box. It can be extended to include messages for arbitrary
objects identifier for tracking, tracking progress, and object
heading direction.

B. MEASUREMENT ERROR
High fidelity virtual lidar should apply measurement errors
that occur in reality. Measurement errors refer to cases where
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FIGURE 3. Lidar system interface definition.

points in the PCD are not measured or the position of points
is measured differently from the actual location. In this study,
we deal with the effects of weather and rotor rotation. First,
Vargas Rivero et al. [17] classified weather effects as dirt or
insect cover on the lidar cover, water (or snow) cover, sig-
nal scattering, and absorption during raindrops (and/or fog,
dust), wet state of the measured target object (i.e., snow cov-
ered state, dust covered state), and changes in measurement
environment lighting.

Filgueira et al. [18] conducted experiments on the impact
of rainfall on lidar measurement results. Rainfall was mea-
sured in liters per square meter per hour, using the unit
l/

(
m2h

)
. They placed the VLP-16 on the sidewalk next to the

road for 60 days and measured common elements in driving
environments such as concrete walls, road surfaces, lane
control poles, traffic signs, and building information signs.
The impact on the measurement results was compared using
the number of point per rainfall, the distance to the points
(location information) per rainfall, and the average intensity
of the Region of Interest (ROI) per rainfall for each object by
setting the ROI. The experiment showed that as the intensity
of the rain increased, lidar’s PCD point loss and changes in
average intensity were observed.

Kutila et al. [19] aimed to develop a lidar with low weather
impact and experimented with the feasibility of measurement
using high peak power in strong fog conditions. Since the
peak power cannot be increased for the 905nm wavelength,
which is close to visible light (400∼700nm), due to the
eye safety issues for people around, they focused on the
1550nm wavelength, which allows for higher peak power.
In this process, they measured the impact of weather related
measurement results in VLP-16 and LUX2010, which will be
used to evaluate the 1550nmwavelength lidar to be developed
later. Here, the intensity of fog was measured using the road
visibility meter unit, and the intensity of rain was measured

using the vertical height of rain per hour [mm/h] unit. They
measured ideal experimental control group situations without
rain and fog, heavy rain situations with 33mm/h, mild fog
situations with road visibility of 15m, and strong fog situa-
tions with road visibility of 40m. The experiment found that
while rain also affects lidar measurements, the impact of fog
is greater, and the loss of PCD points increases depending on
road visibility in foggy conditions.

Rotor rotation effects occur when creating a single PCD,
as the lidar body or the internal mirror used to change the
direction of the signal transmitter and receiver rotates 360◦

to aggregate measurement results. This happens because the
lidar or surrounding objects like vehicles move during the
measurement. This creates PCDs similar to motion blur phe-
nomena that occur in cameras. Research is being conducted to
correct PCDs for distortions caused by such lidar movement
by fusing sensor data from Global Positioning Systems and
Inertial Measurement Units [20].

III. INTENSITY DATA VARIABLE
Building upon the work of Linnhoff et al. [11], which uti-
lized object list data from a driving simulator for virtual
lidar implementation, this study seeks to analyze the factors
affecting the intensity of actual lidar measurements about tar-
get objects. Specifically, this research investigates the influ-
ence of reflection characteristics and color of the measured
objects on their reflectivity. Surface reflection characteristics
can be categorized into three types: specular reflection, dif-
fuse reflection, and retroreflection. Considering a scenario
in which a signal impinges upon the surface of an object
at an angle θ , the following reflection phenomena can be
observed: first, specular reflection occurs when the signal is
reflected in the opposite direction (180◦

−θ) and is commonly
observed on smooth surfaces, akin to amirror; second, diffuse
reflection scatters the incident signal in multiple directions
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FIGURE 4. Reflection characteristic experiment: (a) diffuse reflector, (b) retroreflector.

FIGURE 5. Test results for reflection characteristics through VLP-16: (a) diffuse reflector, (b) retroreflector.

and typically manifests on rough surfaces as a prevalent
reflection form; third, retroreflection reflects the signal at the
same incident angle θ and transpires on surfaces composed
of special retroreflective materials.

The intensity of the VLP-16 is an 8-bit unsigned integer
with no specific SI unit, ranging from 0 to 255. This digital
number represents the ratio of received signal strength to
the emitted signal strength for a pulse sent to detect objects,
serving as a post-processed result of the received pulse width.
The intensity value reflects the object’s characteristics: val-
ues from 0 to 100 correspond to 0 to 100% reflectance
measurements on diffuse reflective surfaces, whereas val-
ues from 101 to 255 are indicative of retroreflective sur-
faces, with values approaching 255 denoting ideal reflectance
forms. Utilizing this information, object level data can
be employed for classification, necessitating the incorpo-
ration of this phenomenon in virtual lidar. Consequently,

experiments are conducted to assess the performance of the
actual sensor depending on the object’s surface reflection
characteristics.

The experimental sensor used in this paper is the VLP-
16, and measurements were taken of traffic signs coated
with diffuse reflective surfaces and traffic signs coated with
retroreflective surfaces under identical weather conditions.
Taking into account the horizontal measurement range of
the VLP-16 and the distance to the measured objects, the
reflection characteristic measurement environment was set up
as shown in Fig. 4. The obtained PCD from themeasurements
was used to set the ROI around the traffic sign signals, and
the intensity values were represented in a graph as shown in
Fig. 5. The intensity values closer to 0 are represented in blue,
while those closer to 255 are represented in red.

The experiment showed that there was a significant differ-
ence in intensity values between diffuse and retroreflective
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FIGURE 6. Intensity cumulative distribution by reflection characteristics through VLP-16: (a) diffuse reflector, (b) retroreflector.

FIGURE 7. Color characteristic experiment: (a) red, (b) yellow, (c) blue.

TABLE 1. Intensity difference by reflection characteristics.

measurements, and it was possible to distinguish between
the traffic sign panel and the traffic signpost in the dif-
fuse reflection measurement results. The cumulative distribu-
tion of intensity based on reflection characteristics is shown
in Fig. 6. For diffuse reflection, the intensity of traffic signs
was found to be between 60 and 80, while for retroreflection,
the intensity was between 240 and 255. For quantitative ver-
ification, Table 1 is composed of ‘‘Number of point’’, ‘‘Total
intensity’’, and ‘‘Average intensity’’. Specifically, ‘‘Number
of point’’ represents the total count of all measured points
within the ROI. ‘‘Total intensity’’ refers to the cumulative
sum of intensity values of all these measured points. Finally,
‘‘Average intensity’’ is derived by taking the sum of intensity
values of all points within the ROI and dividing it by the
number of point.

Considering that color may influence reflectivity, it was
hypothesized that changes in an object’s surface color would
affect intensity as well. This assumption was tested in a
previous study [21] by examining the variations in intensity
based on color. In this experiment, the VLP-16 sensor was
employed to investigate the differences in intensity between
panels of different colors, made of the same styrofoam mate-
rial. The results from the yellow and black panels in the study
revealed differences in intensity values, confirming that color
does indeed impact intensity.

To incorporate the effect of surface color into virtual
lidar, the measurement environment was configured as shown
in Fig. 7. Red, yellow, and blue traffic control bollards,
which are commonly seen in driving environments, were
measured using the VLP-16 sensor. The ROI was set around
the bollards, and the PCD results based on intensity measure-
ments are presented in Fig. 8. Although the differences were
less pronounced compared to those observed for reflection
characteristics, it was evident that intensity varied depending
on the color. The cumulative intensity distribution by color,
as shown in Fig. 9, indicated that the strongest intensity
values were measured for the blue bollards. For quantitative
verification, the total number of point measured based on the
ROI, the sum of intensities, and the average intensity results
are presented in Table 2.
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FIGURE 8. Test results for measuring color characteristic through VLP-16: (a) red, (b) yellow, (c) blue.

FIGURE 9. Intensity cumulative distribution by reflection characteristics through VLP-16: (a) red, (b) yellow, (c) blue.

TABLE 2. Intensity difference by color characteristics.

IV. VIRTUAL LIDAR SIMULATION
For the validation of the proposed virtual lidar, a driv-
ing simulator, CARLA, is used as a simulation platform.
CARLA provides assets such as road segments, vehicles,
pedestrians, buildings, trees, and various traffic signals
and signs for configuring driving scenarios. Additionally,
it offers virtual sensor models simulating real autonomous
driving sensors, including cameras, lidar, radar, GPS, and
IMU. Semantic sensors for feature development, such as
collision detection sensors, lane detection sensors, driving
stability sensors, object type segmentation image sensors,
and object type segmentation lidar, are also available. The
CARLA lidar is implemented using the ray-casting tech-
nique, and its input and output parameters are in accor-
dance with CARLA [14]. As evident from the CARLA

lidar input parameters, the default settings for a realistic
sensor include a 45% random point deletion probability
and a 40% probability of deleting points with an intensity
of 0. However, in this study, these error models are set
to 0%. The raw data output from CARLA lidar is a four
dimensional array representing the position of the measured
point and reflectivity, composed of [x, y, z, intensity]. The
intensity generation model of CARLA lidar is given by
Equation (1).

I = e−a·d · I0 (1)

where I represent the intensity measured by CARLA lidar,
a is the atmospheric attenuation coefficient, d is the distance
between the measured object and the lidar signal receiver,
and I_0 is the original intensity generated by the measured
object. From this Equation (1), it can be observed that the
CARLA lidar only considers the ‘loss during the signal’s
travel from the object to the lidar signal receiver’ in inten-
sity generation. However, the actual lidar intensity measure-
ment is influenced by ‘loss during the signal’s travel from
the lidar transmitter to the object’, ‘loss during the signal’s
travel from the object to the lidar signal receiver’, ‘measured
object surface reflection angle’, ‘measured object surface
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FIGURE 10. Proposed LiDAR modeling method.

FIGURE 11. Virtual Lidar weather impact comparison experimental environment: (a) top view, (b) side view.

TABLE 3. Intensity difference by weather impact comparison experiment.

characteristics’, ‘measured object surface color’, and ‘mea-
surement environment weather’. Therefore, we propose a
virtual lidar with increased fidelity that reflects the effects of
‘measured object surface characteristics’, ‘measured object

surface color’, and ‘measurement environment weather’
without increasing computational complexity, by utilizing
the object information and driving scenario weather data
provided by CARLA in real time.
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FIGURE 12. Virtual Lidar’s weather impact comparison experiment image: (a) reference weather (rain intensity R = 0, fog intensity F = 0),
(b) heavy rain (R = 1, F = 0), (c) dense fog (R = 0, F = 1), (d) heavy rain & fog (R = 0.75, F = 0.5).

FIGURE 13. PCD acquisition results of weather impact comparison
experiment of CARLA Lidar.

Fig. 10 presents the block diagram of the proposed vir-
tual lidar system, operating as follows: The system employs
CARLA’s semantic lidar for object segmentation, recogniz-
ing surfaces such as metal, wood, and retroreflective mate-
rials. Once surfaces are identified, they are compared with
a database generated from actual lidar measurements, yield-
ing intensity values ranging from 0 to 255. Surface color
information is extracted from the object model, and a color

reflectance correction coefficient, based on empirical mea-
surements, is applied to the intensity value. To simulate
lidar measurement errors, the system utilizes the simula-
tor’s weather parameters, including rain intensity (R, varying
from 0 to 100%) and fog intensity (F). For rain, White Gaus-
sian (WG) noise with a mean of 0 and a standard deviation
between 0 and 0.2 is applied to the PCD, with the standard
deviation increasing linearly with R. For fog, a random point
deletion probability between 0 and 0.8 is applied to the
PCD based on the value of F, following the experiment by
Kutila et al. [19], which demonstrates that more points are
randomly removed from the PCD under heavier fog condi-
tions. Similarly, the system applies WG noise with a mean
of 0 and a standard deviation between 0 and 0.2 to the PCD
by the value of F. If both rain and fog are present, the standard
deviation ofWG is applied based on the higher value between
R and F.

In summary, the proposed virtual lidar system adjusts
the intensity value of the existing PCD based on empirical
measurement results when surface characteristics and color
change. Subsequently, errors induced by rain and fog are
incorporated into the generated PCD. This approach lever-
ages the simulator’s information without adding computa-
tional complexity, thus creating more realistic PCDs.

The experimental environment includes recursive reflec-
tive surfaces of traffic signs, road regulation bollards, and
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FIGURE 14. PCD acquisition result of weather impact comparison experiment of proposed Lidar: (a) reference weather (rain intensity R = 0, fog
intensity F = 0), (b) heavy rain (R = 1, F = 0), (c) dense fog (R = 0, F = 1), (d) heavy rain & fog (R = 0.75, F = 0.5).

vehicles typically encountered in driving scenarios. The
experimental environment in Fig. 11 measures four condi-
tions by altering the weather parameters R and F, as illustrated
in Fig. 12. The first condition represents a clear day, the sec-
ond condition simulates heavy rain, the third represents heavy
fog, and the fourth condition encompasses a combination of
rain and fog.

Since the conventional CARLA lidar is not affected
by weather conditions, its measurement results are shown
in Fig. 13. The first condition represents a clear day, the sec-
ond condition simulates heavy rain, the third represents heavy
fog, and the fourth condition encompasses a combination of
rain and fog. However, the proposed lidar, as in previous
studies, experiences measurement errors due to rain and fog,
with results displayed in Fig. 14. The comparison experi-
ment environment shows the number of point, total intensity,
and average intensity in Table 3. This demonstrates that the
proposed method successfully simulates measurement errors
caused by weather conditions compared to CARLA lidar.

Especially in the comparative experiment on measurement
results according to weather changes such as rain and fog,
using the real lidar from [19], it was found that there was
no significant change in the total number of points during
heavy rain. However, there were substantial changes in the
total number of points in foggy conditions. By comparing
the number of points in ‘reference weather’ and in adverse
weather conditions as shown in Table 3, it is evident that the
total number of points changes depending on the weather,
with foggy conditions having a particularly significant impact
on the number of points. Furthermore, the results measured
using the lidar modeling method proposed in the study show
that while the average intensity is 13.671 in clear ‘reference
weather’ conditions, it ranges between 30 to 35 in adverse
weather conditions like heavy rain and dense fog, indicating
that these conditions influence the intensity measurement
results.

To validate the implementation fidelity of the proposed vir-
tual lidar, identical real and virtual measurement experiment
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FIGURE 15. Virtual Lidar fidelity comparison experimental environment: (a) Real environment front view, (b) Real environment side view,
(c) Virtual environement front view, (d) Virtual environment side view.

FIGURE 16. PCD acquisition results of fidelity comparison experiment: (a) CARLA Lidar, (b) Proposed Lidar, (c) Real Lidar.

environments were set up, as shown in Fig. 15. The imple-
mentation fidelity validation experiment measured data using
the VLP-16, proposed virtual lidar, and CARLA lidar, with
the resulting PCD shown in Fig. 16. Comparing the PCD
maps, it appears that there is aminimal difference between the
VLP-16 PCD and the proposed lidar PCD. To quantify these
differences, the number of point, total intensity, and average
intensity for each lidar PCD are displayed in Table 4. The
results show that there is a nearly twofold difference in the

number of point between the real and virtual lidars. Compar-
ing the proposedmethod with the conventional CARLA lidar,
it is evident that the intensity of the proposed method is more
similar to reality.

To further investigate the differences in intensity, the cumu-
lative intensity distribution for each lidar is shown in Fig. 17.
The real lidar and the proposedmethod’s cumulative intensity
distributions are similar, confirming the effectiveness of the
proposed method in enhancing implementation fidelity.
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FIGURE 17. Intensity cumulative distribution by fidelity comparison experiment: (a) CARLA Lidar, (b) Proposed Lidar, (c) Real Lidar.

TABLE 4. Intensity difference by fidelity comparison experiment.

In light of these observations, we sought to systematically
evaluate the improvement in average intensity performance
of the proposed lidar method relative to the conventional
CARLA lidar. The absolute error from the real lidar measure-
ments was calculated for each model, defined as the abso-
lute difference between the model and real values. For the
CARLA lidar, this computation involved taking the absolute
difference between 244.344 and 46.737, which resulted in
an absolute error of 197.607. Conversely, the proposed lidar
yielded an absolute error of 21.334, derived from the absolute
difference between 25.403 and 46.737.

Subsequently, we determined the percentage improvement
in error of the proposed method relative to the CARLA lidar,
as calculated using Equation (2).

I =

(
1 −

Proposed error
CARLA error

)
× 100 (2)

Based on Equation (2), the improvement percentage is
approximately 89.21%. This highlights that the proposed
lidar method realizes an approximate 89.21% reduction in
error in average intensity measurements when compared with
the CARLA lidar.

V. CONCLUSION
In this paper, we have analyzed the lidar system focusing on
the lidar sensor model to reduce the discrepancies between
driving simulators and reality. Specifically, we investigated
the impact of surface reflectance characteristics and surface
color of the lidar measurement model, and proposed a virtual
lidar system with a consideration of the effects of weather
conditions. By comparing the proposed method to conven-
tional lidar modeling techniques in a measurement experi-
ment environment, we demonstrated that our approach could

reduce the differences with real lidar measurements. Notably,
in the ROI concerning average intensity, we observed an
89.21% improvement in performance compared to traditional
modeling methods. The diffuse reflectance properties and
brightness of surface colors were not used in the proposed
method. Moreover, the weather parameters of the simula-
tor are not quantitative, making it challenging to apply the
method to other simulators. Despite these limitations, our
approach utilizes object information within the simulator and
the high real time performance of the ray-casting technique,
enabling more realistic lidar outputs with lower computing
power. By incorporating the effects of reflection angles on
object surfaces, it is expected that the implementation fidelity
of the proposed virtual lidar system can be further improved.
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