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ABSTRACT Blockchain systems are lauded for their security, and reliability. Security is a cornerstone,
as they employ cryptographic techniques to ensure the immutability of data, making it extremely resistant to
tampering. With decentralized networks, they also reduce the risk of a single point of failure, enhancing
reliability. Model checking plays a vital role in ensuring the security, and reliability of blockchain sys-
tems. However, traditional model-checking approaches face challenges in handling the inherent dynamism
exhibited in blockchain systems. To overcome this challenge, Aspect-Oriented programming (AOP) offers
capabilities to enhance blockchain model checking through the modularization of cross-cutting concerns,
enabling traceability and monitoring, facilitating dynamic instrumentation, and supporting fine-grained
property specifications. The aim of this research is to enable more effective and efficient verification of
dynamic behaviors in blockchain systems compared to conventional model-checking techniques using AOP.
As a result, this research introduces BlockASP, a novel blockchain model verification method that leverages
AOP to analyze and monitor dynamic behavior of the blockchain system. BlockASP integrates the benefits of
aspect-orientation and model checking into the blockchain architecture to strengthen security, and reliability.
This research has examined prior art that are related to blockchain modeling using Object-oriented (OO) and
those are using AOP. Our research has proposed and discussed the BlockASP technique, the research provided
a case study to demonstrate the validity and superiority in facilitating the monitoring of dynamic blockchain
behavior using AOP compared to traditional approaches such as Model-Driven Architecture (MDA).

INDEX TERMS Aspect-oriented programming (AOP), BlockASP, blockchain, model checking, dynamic
behaviors, real-time security verification.

I. INTRODUCTION
Blockchain technology is widely recognized for its transfor-
mative impact on various sectors, including banking, supply
chain management, and healthcare [1]. Its decentralized
nature, immutability, and transparency make it an attractive
solution for numerous challenges [2]. As blockchain systems
grow in complexity, guaranteeing their accuracy and depend-
ability becomes increasingly important, and we believe that
model checking can play a significant role in achieving this
objective [3].

Model checking is a well-established technique in the field
of formal verification that is used to evaluate whether a given
system meets a predefined set of requirements or desired
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attributes. The process involves the creation of a model that
accurately depicts the behavior of the system, followed by a
comprehensive analysis of all possible states and transitions
in order to ascertain the validity of the stated features [4].
Hence, the use of model checking offers a viable approach to
address the inherent difficulty of guaranteeing the accuracy
and dependability of blockchain systems by a comprehensive
examination of all potential states inside the system’s archi-
tecture. In addition, the use of model checking enables the
verification of design choices in blockchain systems. This
allows for the evaluation and comparison of different design
options, parameter settings, or changes in protocols [13].,
or protocol variations [13].

Through the analysis of the formal model under different
scenarios and property specifications, model checking aids in
identifying trade-offs, potential bottlenecks, or performance
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concerns, enabling the optimization of the system’s design
to enhance correctness and reliability [5]. However, conven-
tional model-checking approaches face challenges in han-
dling the inherent dynamism of blockchain systems that can
arise from runtime changes or developing requirements [54].
To overcome these limitations, innovative model-checking
methods are needed that can capture and analyze the dynamic
behaviors exhibited by blockchain systems [6].

Many facets of blockchain systems, including consen-
sus methods, smart contracts, and transaction validation,
have benefited from model checking [2], [38]. Yet, con-
ventional model-checking approaches struggle to accommo-
date the dynamism inherent in blockchain systems, which
may emerge from runtime adjustments or changing system
needs. Consequently, there is a growing demand for inno-
vative methods capable of analyzing dynamic behavior in
blockchain networks. Aspect-oriented programming (AOP)
offers potential in this area by modularizing crosscutting
concerns and enabling flexible instrumentation to monitor
runtime events [7], [15].

AOP is a programming paradigm that separates out and
abstracts away problems that affect many parts of a sys-
tem [18]. AOP has been successfully employed in numerous
domains [8], [9] to improve the modularity, maintainability,
and evolvability of software systems. This research presents
a novel method that harnesses AOP to analyze and per-
form model checking on the dynamic behaviors exhibited
by blockchain systems. This paper argues that integrat-
ing AOP into blockchain model checking can significantly
enhance the verification of dynamic behaviors. AOP provides
separation of concerns, traceability, dynamic weaving, and
fine-grained specifications to facilitate analysis of blockchain
systems’ runtime adaptations [14], [45], [52]. This research
also examines the efficiency and performance implications of
integrating AOP with model checking.

Building upon the aforementioned potential advantages of
AOP for model checking in blockchain systems, this study
introduces a systematic method to integrate AOP and model
checking, aiming to address the challenges associated with
the dynamic and complex nature of blockchain systems. The
innovative framework presented herein not only supports
the modularization of cross-cutting concerns into separate,
manageable aspects, but also utilizes the dynamic capabilities
of AOP for runtime modification and analysis of system
behavior. By dynamically weaving and unweaving aspects,
it is anticipated that this approach will yield more precise
and flexible verification processes [10]. The paper reviews
prior art that presents the proposed integration and validates
the effectiveness of AOP-based blockchain model check-
ing through a case study. The goal is to advance research
at the intersection of formal methods, distributed systems,
and AO software engineering [47], [52], [53], [54], [56],
[57], [58]. As blockchain technology continues to permeate
various sectors, this research hopes to shed light on this
area.
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This paper is organized as follows. The introduction
provides background on blockchain technology and model
checking, and motivates the need for innovative model check-
ing approaches. Section II gives an overview of key concepts
like AOP, blockchain architecture, and model checking.
Section III reviews prior work on blockchain model check-
ing using object-oriented (OO) and aspect-oriented (AO)
approaches. Section IV introduces our proposed BlockASP
framework and describes its architecture and components in
detail. Section V outlines the workflow for applying Block-
ASP and gives an example. Section VI compares BlockASP
to traditional OO methods. Finally, the conclusion summa-
rizes the contributions and mentions future work. The overall
flow moves from introducing the concepts and motivation,
to reviewing previous work, proposing our novel approach,
describing its application, and concluding with a comparison
and summary.

Il. RESEARCH BACKGROUND AND LITERATURE REVIEW
This section provides a concise overview of the key ideas
and terminology relevant to our research. To effectively apply
and assess the proposed method for blockchain model check-
ing with dynamic behavior analysis using an aspect-oriented
approach, it is crucial to have a firm grasp of some key con-
cepts. Blockchain technology has gained significant attention
due to its potential in providing decentralized, transparent,
and secure systems. However, ensuring the correctness and
reliability of blockchain applications is a critical challenge.
Model checking is a formal verification technique used to
analyze the behavior and properties of systems [54]. This
section explores the use of aspect-oriented (AO) and object-
oriented (OO) approaches in blockchain model checking,
highlighting their importance and advancements [15], [16].

AOP is a paradigm that improves modularity by allowing
the separation of cross-cutting concerns into standalone mod-
ules called aspects. It addresses the limitations of traditional
object-oriented programming in encapsulating behaviors like
logging, security, and monitoring that span multiple com-
ponents. In AOP, aspects modularize these cross-cutting
concerns separately from the core system logic. Pointcuts
specify join points where aspects can be applied, like method
calls or exception handling. By weaving aspects at join points,
AOP enables modularization and reuse of these concerns
[10], [18].

A blockchain is a digital ledger that maintains a sequential
record of transactions. It is designed to prevent unautho-
rized modifications due to its distributed and decentralized
nature. The blockchain operates as a linked list of blocks,
with each block containing a timestamp, a reference to the
preceding block, and a collection of transactions. In simple
terms, a blockchain system consists of three main compo-
nents: nodes (participants), a consensus mechanism, and a
cryptographic algorithm [2]. Blockchain architectures can
vary depending on the specific implementation and use case.
Here, we present a general overview, in a simplified form.
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A blockchain architecture typically consists of blocks, each
containing a list of transactions or data. These blocks are
given a unique identifier called a hash, along with a times-
tamp and a reference to the preceding block [48]. Model
checking is a formal verification technique used to analyze
and verify the correctness of system models. It involves
systematically exploring all possible states and transitions
of a model to check if certain properties or specifications
hold true. Model-checking techniques typically involve the
following steps [12]:

e Model representation: The system to be verified is
represented as a formal model, which captures its
behavior, states, and transitions. The model can be
expressed using various formalisms such as finite state
machines, temporal logic, or Petri nets.

e Property specification: Properties or specifications that
the system should satisfy are specified using formal
language. These properties define desirable behaviors,
safety conditions, or invariants that the system must
adhere to. Examples of properties include the absence
of deadlocks, preservation of data integrity, or adher-
ence to a given protocol.

e State space exploration: The model checker system-
atically explores the state space of the model by
examining all possible states and transitions. It gener-
ates a state graph or a state space graph that represents
all reachable states and their connections.

e Property verification: The model checker then checks
the specified properties against the state space. It ver-
ifies if the properties hold true in all possible states
or if there are any violations. Counterexamples may
be provided to highlight specific scenarios where the
properties fail.

e Analysis and optimization: Model checking can
involve various analysis techniques to improve effi-
ciency and scalability. These include techniques such
as abstraction, partial order reduction, symmetry reduc-
tion, and property-specific optimizations.

A. MODEL CHECKING USAGE IN BLOCKCHAIN
Blockchain model checking involves the systematic analysis
of blockchain systems to verify their correctness and identify
potential vulnerabilities. Research in this area focuses on for-
malizing blockchain protocols, consensus mechanisms, and
smart contracts to ensure the absence of security flaws, such
as double-spending attacks and data inconsistency issues. The
importance of blockchain model checking lies in its ability to
enhance security, reliability, and performance in blockchain-
based applications. By employing formal verification tech-
niques, model checking helps detect vulnerabilities, prevent
attacks, and ensure compliance with desired properties, such
as consistency, liveness, and fairness. Moreover, it aids in
the development of trustworthy blockchain systems, fostering
trust among users and stakeholders.

According to Afzaal and his team, crowdsourcing is a
computing paradigm that relies on human intelligence for
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complex tasks. However, it faces security and trust issues.
Blockchain technology offers potential solutions, but finding
a suitable consensus protocol for crowdsourcing is challeng-
ing. To address this, the Trust and Transactions Chain (TTC)
protocol is proposed. It selects trusted leaders and validators
based on a trust model. The TTC protocol ensures correctness
and prevents fraud, as well as Sybil and eclipse attacks. Model
checking is used for formal verification, with results analyzed
for verification time and visited states [58].

In [19], Wagner and his colleagues showed that the
verification of distributed agreement protocols and their
applications is challenging due to system complexity and
unboundedness. However, recent progress has shown that
careful modeling can enable the reduction of verification
for unbounded distributed agreement-based systems to small,
finite-state systems using model checking. This work extends
this reduction approach to doubly-unbounded systems with
unbounded data domains tools, called Venus.

In [20], Sadique and his team illustrated an IoT paradigm
that aims to improve society with smart and autonomous
devices, requiring seamless collaboration. However, the
increasing number of connected devices poses identity man-
agement challenges for resource constrained IoT devices.
Traditional systems are not feasible due to device heterogene-
ity. As a solution, this paper presents a distributed identity
management architecture based on distributed ledger tech-
nology (DLT) for edge IoT devices. The proposed model is
adaptable to any IoT solution, enabling secure communica-
tion. The study reviews consensus mechanisms used in DLT
and their connection to IoT research, specifically identity
management. The proposed location-based model is generic,
distributed, and decentralized. Formal verification tools such
as Scyther and SPIN model checker verify the model’s secu-
rity and performance. FobSim, an open-source simulation
tool, analyzes deployment performance for fog and edge/user
layer DLT. The results demonstrate how the proposed decen-
tralized identity management enhances user data privacy and
secure communication in IoT. Similarly, BlockASP employs
formal modeling and logic to verify that a blockchain system
adheres to predefined specifications and properties. It can
check security invariants, performance requirements, privacy
policies, etc. While Scyther, SPIN and FobSim are specific
model checking tools, BlockASP provides a more generalized
framework that can integrate different model checkers and
verification techniques. The key difference is that Block-
ASP utilizes AOP to modularize crosscutting concerns and
enable dynamic analysis of blockchain systems. In contrast,
Scyther and SPIN employ more traditional model checking
approaches. However, BlockASP could potentially leverage
tools like Scyther and SPIN for performing the actual model
checking process once the aspects have been defined. Simi-
larly, FobSim could be used for performance analysis.

The authors in [21] proposed that an energy blockchain
is crucial for applications like energy data sharing and
distributed power trading in the energy industry’s digital
transformation. Federated learning (FL) can analyze energy
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data while preserving privacy. However, traditional FL lacks
trust and faces data poisoning and deception attacks in an
energy blockchain environment. To address this, a game
theory-based incentive mechanism is proposed to promote
collaborative security in FL. An FL model is presented,
ensuring privacy and collaborative security. A game model
involving energy departments and a supervisory committee
is constructed, and an incentive mechanism using smart con-
tracts is designed based on game theory. The mechanism
discourages malicious behaviors during iterative training of
FL, even with lower model checking accuracy. The proposed
mechanism achieves collaborative security by leading the
game model to a Nash equilibrium (NE). Security analy-
sis and experimental evaluation demonstrate the feasibility,
robustness, reliability, and low complexity of the incentive
mechanism in energy blockchains. In contrast, BlockASP
utilizes AOP and logic-based formal verification to guarantee
adherence to security properties.

Smart contracts are crucial in blockchain software devel-
opment, and their immutability requires thorough verifica-
tion and validation before deployment [22]. The authors
introduced a model-based testing approach for validating
Ethereum smart contracts and ensuring their correctness.
The process involves four steps: (1) modeling the smart
contract and its blockchain environment using UPPAAL
Timed Automata, (2) generating abstract test cases with
the UPPAAL CO./ER tool, (3) dynamically executing the
generated test cases, and (4) analyzing the test results and
generating reports. The approach is exemplified through its
application on the Ethereum blockchain, specifically the
electronic voting case study. Smart contracts on computer
programs that run on blockchains require thorough secu-
rity checks. Existing tools often yield false positives and
negatives for common vulnerabilities. The research study in
[23] focuses on the specific vulnerability class of unchecked
low-level calls, which is challenging to detect. A proposed
approach for Ethereum smart contracts reduces this class
to model-checking, employing linear temporal logic (LTL)
and an off-the-shelf model checker. After evaluating nearly
200 smart contracts, the approach proved highly effective,
detecting zero false positives and negatives.

The researchers in [24] suggested that coalition logic (CL)
is a suitable approach for verifying the properties of smart
contracts on a blockchain. However, smart contracts can be
upgraded by introducing new versions on subsequent blocks.
This paper extends a recent formalism that allows reason-
ing about updated CL models by introducing a temporal
modality that connects newer versions to previous ones [17].
This extension is a step towards verifying the properties of
smart contracts with upgrades. The paper also discusses the
properties of the resulting logic and the complexity of its
model-checking problem. A recently introduced use of smart
contracts is to execute business processes on blockchains.
Composite smart contracts, which execute other contracts
through external calls, present security challenges. To address
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this issue, Mouhamad and his team proposed verifying the
security and correctness of composite smart contracts in
Ethereum. The approach utilizes finite state machine mod-
els and model checking, considering both standard and
context-dependent properties. Computation tree logic is used
to express the properties, and the nuXmv symbolic model
checker verifies the model [25].

Alwhishi and his team [26] worked on the crucial task of
verifying the reliability and efficiency of blockchain systems
based on smart contracts. However, it remains a challenging
task and a topic of active research across various domains.
This paper focuses on the verification of these systems, which
are modeled using trust protocols under uncertainty. To tackle
this problem, the authors propose a verification approach
called three-valued model checking. They introduce a new
logic, extending the Computation Tree Logic of Trust (TCTL)
to the three-valued case (3v-TCTL), which enables reasoning
about trust with uncertainty in smart contract-based systems.
A transformation approach is also presented to reduce the
3v-TCTL model-checking problem that exists in the classical
case [26].

Blockchain technology has gained significant attention,
particularly for automating asset transfers [27]. However, the
presence of malicious participants in the network creates
vulnerabilities in blockchain consensus algorithms, leading
to potentially devastating consequences. Surprisingly, despite
the flaws observed in various consensus algorithms, there
has been no comprehensive verification of any blockchain
consensus. This paper addresses this gap by conducting
model checking on the consensus algorithm of the Redbelly
blockchain. In [28], smart contracts play a crucial role in
blockchain applications, ranging from encrypted digital cur-
rency to various domains. However, due to the immutability
of the blockchain, any bugs or errors in smart contracts can
lead to substantial economic losses since they cannot be mod-
ified once deployed. Recently, numerous security issues have
been identified in smart contracts, highlighting the impor-
tance of verifying their correctness before deployment on the
blockchain. This work focuses on the verification of smart
contracts in Ethereum transactions, using the Spin model
checker for formal verification.

Krichen and his colleagues showed that the security of
smart contracts is a significant challenge that hinders their
advancement. The authors in [28] and [29] identified the
urgency of verifying the correctness of smart contracts before
their deployment due to the immutability of the blockchain.
Despite the progress made in the verification of smart
contracts, the authors have acknowledged a lack of compre-
hensive synthesis of these findings. In contrast to numerous
other studies, our approach offers a more robust and real-time
solution by capturing dynamic behaviors of the blockchain
system, establishing a finite state model of the system that
incorporates aspects and dynamic behavior data, and apply-
ing formal logic to explore all possible states and transitions.
Hence, our research builds upon and extends the work done
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in [26], [27], [28], and [29], and other similar works [30],
[311, [32], [33], [34], [35], by providing a comprehensive,
real-time model-checking framework for blockchain systems.

These studies highlight the importance of thoroughly ver-
ifying smart contract correctness and security due to their
immutability once deployed on blockchains. However, our
BlockASP framework provides a robust and generalized
approach for blockchain model checking, including smart
contracts. It utilizes AOP to modularize crosscutting con-
cerns like security policies. It also can complement existing
smart contract verification tools by providing a flexible way
to inject security aspects and properties into the contract
logic. Formal verification can then validate adherence to these
security specifications. For instance, BlockASP aspects can
encapsulate security requirements while nuXmv or another
model checker verifies the contract modeled as a finite state
machine, so this prevents false positives. Upgrading contracts
can be handled by dynamically weaving new aspects to rep-
resent added features. Advice can link old and new contract
versions. Composite contracts can be modeled composition-
ally in BlockASP using inter-type declarations to connect
contracts, and dynamic weaving then enables checking inter-
contract interactions.

B. OBJECT-ORIENTATION (00O) -BASED BLOCKCHAIN
MODEL CHECKING

Early research in blockchain model checking predomi-
nantly utilized object-oriented approaches to analyze system
behavior. OO model-checking techniques enabled the veri-
fication of blockchain protocols, transaction validation, and
smart contract execution. The researchers in [36] introduced
model-checking methods to validate a modeling language
called RPOO, which is an object-oriented Petri net. The
aim is to enhance the applicability of model checking in
model-based software development. To achieve this, the
study offered a way to specify object properties with-
out delving into the intricacies of Petri nets, utilizing the
Petri nets’ semantics solely for constructing the state space
of the models. Additionally, they present algorithms for
assessing properties expressed in the branching-time tem-
poral logic CTL. The proposed approach emphasizes the
explicit representation of the state space, focusing on its OO
characteristics.

However, Ceska et al. [37] spoke about the state space
explosion problem which poses a significant hurdle to
infinite-state model checking. To mitigate this challenge,
several advanced techniques were proposed to reduce the size
of state spaces. Among these techniques, partial-order reduc-
tion emerged as a successful approach, particularly in the
realm of software systems. Ceska and colleagues investigated
the utilization of partial-order reduction in the context of
object-oriented Petri nets, which incorporate dynamic instan-
tiation, late binding, and garbage collection as distinctive
features. The study aims to assess the effectiveness of apply-
ing partial-order reduction in managing state space explosion
within the OO Petri net paradigm. The limitations of OO
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paradigms in addressing crosscutting concerns and complex
interactions in blockchain systems led to the exploration
of aspect-oriented approaches. Our research is designed to
address the dynamic and crosscutting nature of concerns in
blockchain systems that cannot be effectively handled by OO
paradigms [37].

Unlike early research that relied on OO paradigms, the
proposed framework leverages AOP to effectively handle
the crosscutting concerns inherent in complex blockchain
systems. Beyond merely providing static verification, our
model aims for real-time capturing of dynamic behaviors
to offer a more nuanced and complete understanding of the
system’s state. Unlike existing work that focuses on explicit
state space representation, our approach uses a finite state
model enriched with AOP and dynamic behavioral data for
comprehensive verification.

Our framework also incorporates formal logic for a rig-
orous exploration of all states and transitions, a feature that
makes it more exhaustive in scope. While prior work like that
of Ceska et al. focused on tackling the state space explosion
problem through specialized techniques such as partial-order
reduction, our AOP-based model inherently offers a more
efficient state space traversal.

C. ASPECT-ORIENTATION (AO)-BASED BLOCKCHAIN
MODEL

AOQOP provides a promising approach to overcoming the chal-
lenges posed by object-oriented paradigms in blockchain
model checking. By modularizing crosscutting concerns,
AOP enables the separation of blockchain-specific con-
cerns, such as consensus, security, and fault tolerance. This
approach allows for more precise analysis, easier mainte-
nance, and scalability in the verification process. Although
several attempts of using AOP with model checking such as
in [41], [42], [43], and [44], less attention has been paid to
using AOP model checking in the context of blockchain. That
is where our proposed approach and research comes in to fill
the gap.

The authors in [39] stated that AOP is a programming
paradigm that enables modularization of crosscutting con-
cerns, such as synchronization policies, resource sharing,
and performance optimizations, by separating them from
objects as independent aspects. The weaving process, per-
formed by a compiler known as a weaver, integrates aspects
and objects to form a cohesive program. However, verify-
ing the correctness of a woven program in AOP presents
challenges, as crucial behaviors are heavily influenced by
aspect descriptions. To address this issue, this research
paper proposes an automatic verification approach utilizing
model-checking techniques to detect unexpected behaviors.
In [40], the researchers introduce a novel framework for ver-
ifying properties of system transaction-level models (TLM)
during simulation. TLM is gaining popularity for high-level
hardware design, offering improved simulation performance
and early prototyping for system-on-chip (SoC) designs. The
framework utilizes AOP techniques to automate monitoring
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of the design under verification and enable the creation of
assertion checkers tailored to TLM requirements. Neither
of the above-mentioned works touched significantly on the
blockchain environment.

BlockASP adds several unique contributions that distin-
guish it from other studies on model checking using AOP.
While existing research in AOP-based model checking has
largely been focused on modularizing crosscutting concerns
like synchronization policies, resource sharing, and perfor-
mance optimizations, it has paid limited attention to the spe-
cific context of blockchain systems. For example, although
some work has been done on verifying woven programs in
AQP or on using AOP techniques in transaction-level models
(TLM) for system-on-chip (SoC) designs, these studies have
not been specifically tailored for blockchain environments.

Moreover, our work fills this gap by focusing on real-
time model-checking in the unique landscape of blockchain
systems. Not only do we utilize AOP to modularize cross-
cutting concerns inherent in blockchain, such as consensus
algorithms, security features, and fault tolerance, but we
also introduce real-time capabilities for capturing dynamic
behaviors [11], [36], [37]. This leads to a more accurate and
efficient model-checking process specially designed for the
complexities and nuances of blockchain technology. There-
fore, our framework offers a more specialized, robust, and
real-time solution for blockchain model checking, setting it
apart from existing research in significant ways.

lll. BLOCKASP: AOP-BASED MODEL CHECKING

FRAMEWORK FOR BLOCKCHAIN SYSTEMS
BlockASP architectural solution meticulously engineered to

address the unique security challenges inherent to blockchain
technologies. Leveraging the modular benefits of AOP [46],
BlockASP seamlessly integrates with contemporary model-
checking algorithms, creating a robust and real-time security
assessment toolset that significantly outperforms existing
solutions.

Upon the strategic injection of pre-defined AOP aspects
into the target blockchain system, BlockASP kick-starts
an intricate model-checking pipeline. Each aspect comes
pre-loaded with state-of-the-art statistical model-checking
algorithms. These algorithms are designed to rigorously ana-
lyze the real-time, dynamic behaviors of the blockchain
system as they unfold. This analysis is backed by a Finite
State Machine (FSM) that is programmatically generated to
encapsulate not only the system’s dynamic behavior but also
the operational logic introduced by the injected aspects.

What sets BlockASP apart is its adoption of formal logic
frameworks, most notably temporal logic, which serves as
the underpinning for its model-checking engine. This enables
BlockASP to systematically traverse every possible state and
transition within the blockchain environment, providing a
comprehensive assessment of the system’s adherence to its
specified security and functional parameters. It’s worth not-
ing that the use of formal logic ensures the logical rigor and
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completeness of the verification process, effectively closing
any loopholes that could be exploited.

In technical terms, BlockASP represents a paradigm shift in
how blockchain security is approached, marrying the modular
advantages of AOP with the rigorous analytical power of
model-checking algorithms. This confluence allows Block-
ASP to offer a highly granular, real-time security assessment
tool that is uniquely positioned to meet the ever-evolving
challenges of blockchain security.

Figure 1 illustrates the design of the BlockASP framework,
highlighting the various layers and modules, and their corre-
sponding benefits and challenges. The architecture is based
on four primary layers: the Block Analysis Layer, the Block
Aspect Layer, the Model Checking Layer, and the Advice
Layer. The layers form a sequential process that starts with
the integration of AOP with blockchain model checking, fol-
lowed by identifying and capturing dynamic behaviors using
AOP, model checking of dynamic behaviors in a blockchain
system, and finally, evaluation and refinement.

The initial phase of the proposed Analysis Layer involves
the collection of AOP/OO applications, which serves as the
identifier for the crosscutting concerns code requirements.
In this layer, the OO application is refactored into AOP
applications by identifying the expected results based on the
code behavior for subsequent phases. To accomplish this,
a tracer is utilized to monitor the code behavior step by
step, extracting the crosscutting concern requirements and
mapping them to contextual properties in the analysis model
phase (context data). This layer comprises the data analysis
module, which reads blockchain’s transaction data, such as
transaction ids, input transactions, output transactions, and
malicious or hacked transactions, etc.

The Analysis Layer involves gathering a collection of web
service (WS)-based blockchain applications along with their
specific application requirements. This information serves
as a foundation for understanding the context and needs of
various blockchain applications. After that, a context-aware
model is established to analyze the WS-based blockchain
applications. This model should also capture the relationships
between different application crosscutting concerns, such as
performance, security, and reliability, and the contextual fac-
tors that influence them [55]. In a traditional approach, the
Aspect] Weaver traces states of objects using context-related
data, where BlockASP leverages Aspect], to trace the states
of objects in the blockchain applications. This allows you
to check and manipulate block states in the context of the
overall application. By doing so, you can track and analyze
context-related data throughout the application lifecycle.

The Block Aspect Layer introduces blockchain to analyz-
ing crosscutting concern and its relationship with the context
that we encapsulated in aspect, and exposure for context;
it presents the states of objects for each piece of class and
for each transaction’s class. The layer provides immutable
and transparent functionality. It comprises the Data Hash-
ing Module, which generates unique hash values for each
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FIGURE 1. The overall sequential process of the proposed approaches.

data item, which retrieves data and its associated metadata
from blockchain transactions. In our previous examples, the
ledger was implemented as a Map<String, Double> inside
the blockchain class, where the keys represent the account
identifiers (e.g., names), and the values represent the block
values.

The Model Checker Layer facilitates the practice of sta-
tistical model checking, wherein it encompasses the ledger
responsible for identifying the code’s behavior based on
extracted attributes and parameters. The ledger is responsible
for documenting all transactions that have taken place within
the system. It also determines and applies the most suitable
verification technique, such as propositions, depending on
the specific details of the data request. The utilization of a
data-driven methodology enhances the efficacy of transaction
preservation and optimizes the implementation of check mea-
sures by taking into account the contextual information of the
data request.

The Advice Layer functions as the intermediary between
the blockchain interface and the underlying modules.
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It enables transaction requesters to search for and request
specific data from the Model Checking Layer. The system
facilitates the registration and updating of transaction data
and policies on both the Blockchain Aspect Layer and the
Model Checking Layer.

A. APPLYING BLOCKASP: WORKFLOW DESCRIPTION
Upon obtaining context data from the Analysis Layer, it is
then passed into two observer patterns: AOP observer A and
OOP observer B. These observer patterns are utilized to log
and save the data into log files [49]. The AOP observer traces
the states of all classes and extracts the context data during
runtime, as mentioned above. The results obtained from the
observer patterns serve as inputs for the subsequent step of
statistical model checking. In this step, the observer pattern
data is subjected to a specific rule that detects adaptive code
behavior based on the principles of AOP. AO pointcuts and
joinpoints are placed to check the state of each object. The
meaning of valid state case is that the results are identical for
each piece of original code with AOP.
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For instance, in a cryptocurrency exchange system,
BlockASP offers a crawler for accessing the data from a
cryptocurrency exchange, where all transaction information
can be publicly accessed [53]. It executes in three phases:
1) User provides a Java List of transaction block hash strings
and defines where the data will be stored in its finished
csv format. The crawler aspects pull the transaction IDs
for the given data blocks from the online exchange API,
verify uniqueness and optionally verify no hacked transac-
tion IDs are included in the pulled transactions. 2) Next,
the parser will concatenate all the transactions and poll
the exchange API for each transaction’s metadata. 3) The
pre-processor then creates a transaction entry from the
metadata of a transaction, capturing or calculating the fol-
lowing features: fraudulent = binary flag for indicating the
transaction is fraudulent or not; txid = transactionld hash;
input_transaction_size = monetary size of the cumulative
input transaction; output_transaction_size = monetary size of
the cumulative output transaction, etc.

The BlockASP system integrates transaction data into the
blockchain using the transaction aspect at the Aspect layer.
It characterizes transaction data attributes and properties at
the model checking layer, encapsulating elements such as
purpose, duration, and data sharing compensation. These
attributes are subsequently symbolized by model-checking
propositions to apply fitting modeling based on the specific
nature of the data context request. The Model Checking
layer is used to validate the data of the code upon log-
ging in aspects, which specifies the data proposition request.
The system validates context data using the Quality-of-
Service Module (QoSM). QSoM sends context requests to
the model-checking layer where the data propositions are
triggered, therefore it verifies properties and attributes for
data sharing, and if validated, the quality model selects
the appropriate technique (e.g., anonymization, obfuscation,
or differential privacy).

BlockASP’s QoSM is implemented as a paradigm for
dynamically modifying the Java application’s context data
during runtime, known as aspect weaving. Quality charac-
teristics and sub-characteristics for software products and
systems are defined in the ISO/IEC 25010 standard, on which
the quality model is based. Functionality, dependability,
usefulness, efficiency, maintainability, and portability are
prioritized throughout the code. Aspects may be used to
quantify any desirable attribute you care about. There is an
aspect-based metric that corresponds to each requirement.
Aspects are modules that include solutions to problems that
affect several areas. Pointcuts, expressions that match certain
branches in the system’s execution flow, may be defined by
an aspect. Advices are actions that are carried out at junctions
when the pointcuts are a match. The QoSM evaluates the pro-
posed checking model for changing the context data of a Java
application within runtime aspect weaving. QoSM aspect
implements the quality model in Java and Aspect]. This code
outlines a proposed quality model for a Java application that
uses AOP to dynamically weave context data during runtime.
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This aspect deals with model checking, hypothesis testing,
and context data measurement. A model checker takes a
model and a property as inputs, and outputs either a claim
that the property is true or a counterexample falsifying the
property [56], [57].

In a cryptocurrency system that leverages BlockASP, when
a request for data access is granted, the extended abstract
model checking aspect classes initiate the smart model check-
ing process. This allows the user access to both the encrypted
data and its associated metadata situated on the blockchain
aspect layer. The encrypted data and its metadata are sub-
sequently retrieved from the blockchain Aspect Layer and
decrypted in real time. This real-time processing ensures a
seamless and prompt data access experience for the user. The
data is securely transmitted back to the user via the extended
security crosscutting concern aspect, specifically targeting
the data quality model. Along with the data, any relevant
provenance and consent information is also dynamically
supplied. This comprehensive process ensures secure data
access and delivery while maintaining transparency and data
integrity within the BlockASP-based cryptocurrency system.

ModelChecker, HypothesisTester, ContextDataMeasurer,
and CyclomaticComplexityCalculator are the four modules
defined by BlockASP. Each module includes a shorthand
and some recommendations on how to improve a certain
element of the model. For instance, the ModelChecker feature
checks whether a model satisfies a specific property of the
system by a pointcut and some recommendations. A pointcut
and recommendation are provided by the HypothesisTester
aspect for the hypothesis testing function, which verifies if
the proposed method and model modify the Java application’s
context data during runtime. The ContextDataMeasurer fea-
ture provides a pointcut and recommendation for the context
data measurement function, which compares the data’s size
before and after the recommended method and model are
applied. The cyclomatic complexity of the suggested method
and model may be decided with the help of the Cyclomat-
icComplexityCalculator feature, which provides shorthand
and some guidance for the cyclomatic complexity calculation
function.

In a cryptocurrency system, data and attributes relevant to
the system are defined in the code, including the system’s
state before and after applying the recommended strategy and
model, as well as the environments and platforms that are
compatible with the solution. The program then evaluates the
suggested procedure and model based on the criteria and met-
rics established by the QoSM. Particularly, the ModelChecker
aspect uses a pointcut and some suggestions to determine
whether a given model matches a certain system character-
istic. The model-checking process uses a formal verification
strategy to determine whether a model is suitable for a given
system. This is given a model and a property, which may
prove the property to be true or produce a counterexample
to show that it is untrue. If we use the model checking
function to verify that we can, for example, edit the Java
application’s context data during runtime aspect weaving,
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then we know that the suggested method and model will
perform as expected. Moreover, the HypothesisTester module
provides a shorthand and suggestion for the hypothesis testing
function, which checks whether the suggested approach and
model alter the runtime context data of the Java program.
The hypothesis testing function uses a module checking layer
aspect to evaluate whether there is sufficient evidence to
reject or accept a null hypothesis. A null hypothesis is a
statement that does not make any presumptions regarding the
connection between two data sets. A hypothesis testing func-
tion takes in the null hypothesis and an alternative hypothesis
and returns either a claim that the null hypothesis is true or a
claim that the alternative is true. The hypothesis testing fea-
ture may be used to determine whether the proposed approach
and model are reliable by examining their ability to meet the
challenges of experimentation and refinement.

B. BLOCKASP ARCHITECTURE: COMPONENTS
Figure 2 depicts the BlockASP components. In practical
implementations of blockchain systems, blocks possess the
capability to incorporate supplementary data and exhibit
more intricate configurations. The blockchain class plays a
pivotal role within the blockchain system, which is consisted
of a series of interconnected blocks that are responsible for
maintaining the record of transactions, and offers functional-
ities for appending blocks and verifying the integrity of the
blockchain. The keys within the map are assumed to serve as
identifiers for users or entities within the system, while the
values represent the quantity of a specific blockchain asset
held by each entity. Upon the creation of a new instance of a
blockchain, the constructor undertakes the task of initializing
both the chain and the ledger. In addition, it appends a genesis
block to the blockchain. The genesis block is the initial
block within a blockchain, functioning as the foundational
element from which the blockchain commences. The ledger
class encapsulates a ledger that tracks the value status of
the system’s blocks. The value status gets updated with each
transaction in the update() method.

Let B be the set of all blocks, T be the set of all transactions,
U be the set of all users, and L be the ledger. Blockchain =
{B1, Ba, ..., B,} that maintain a record of transactions 7. The
class offers functionalities for appending blocks and verifying
the blockchain’s integrity. Mathematically, the initialization
function.

Blockchain (B, L) < init (Genesis Block) .
addGenesisBlock(B)
< (index = 0, timestamp, prevHash = 0)

ey

The function addBlock(T) adds a new block b to the
blockchain. The new b contains a timestamp ¢, a list of
transactions 7', and the hash value h of the most recent block.
Formally, b = {t, T, h}. The function addGenesisBlock is
responsible for creating the genesis block bg, which has an
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index value of 0, a timestamp 7y, no transactions 7 = J, and
a previous hash value of ““0”’. Formally, by = {0, 19, @, “0"}.

The blockchain encompasses various methodologies that
contribute to the operational aspects of the blockchain. The
addGenesisBlock() function is accountable for the creation
of the genesis block as shown in Equation 1. This block pos-
sesses an index value of 0, a timestamp reflecting the current
system time, an absence of transactions, and a previous hash
value of “0” due to the absence of any preceding blocks. The
getLatestBlock() function is employed to retrieve the most
recently appended block in the blockchain. Another essential
technique is the addBlock(List<Transaction> transactions)
method. This procedure is accountable for the incorporation
of novel blocks into the blockchain. BlockASP generates a
novel block that includes a timestamp reflecting the present
moment, designated transactions, and the hash value of the
most recent block serving as previousHash. Furthermore, the
ledger is updated to accurately reflect the transactions that are
incorporated within the recently appended block. The method
updateLedger (List<Transaction> transactions), i.e., L', is
utilized to modify the ledger in accordance with the provided
transactions. In the ledger, the sender’s value is reduced and
the recipient’s value is increased by the amount involved in
each transaction. The method used to validate the integrity
of the chain is the isChainValid() method. Equation 3 process
guarantees that the computed hash of each block is equivalent
to its current hash, and that the hash of the previous block
corresponds to the hash of its preceding block. If any block
does not pass these checks, the method declares the chain as
invalid. The method consensusAlgorithmlsValid() is respon-
sible for verifying the adherence of each block within the
blockchain to the Proof of Work consensus algorithm. The
algorithm exhibits the characteristic whereby the hash value
of every block commences with the sequence “0000”. The
Proof of Work condition can be represented in Equation 4.
If any block fails to adhere to this condition, the blockchain
is considered invalid.

L' = L — SenderValue + RecipientValue )
isChainVaild

_ [ 1, if Hash(B;) = PreviousHash(Bjy1)V; 3)

0, otherwise

startsWith(Hash(B;), “0000")

=1 “)
check(Blockchain)

= H; isValid(T;), where T; is the i

transaction in the blockchain ®)

The Transaction component defines a transaction in the
blockchain, which involves a sender, recipient, and an
amount. It also has a isValid() method for validating the
transaction based on sender’s values and the transaction’s
digital signature. However, the methods getValue() and veri-
fySignature() are placeholders and need to be implemented.
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FIGURE 2. BlockASP Components.

The ContextDataLogger component acts as a publisher in an
observer pattern. It can register observers and notify them
with certain context data. The Ledger class encapsulates
a ledger that tracks the value of each transaction in the
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system. The BlockCrawler component acts as a utility to
fetch raw block data from an online source, here specifi-
cally from blockchain.info. It fetches the data based on the
provided block hashes, parses it into JSON, and stores the
transactions in a CSV file.

The ModelChecker class checks the validity of the
blockchain and the transactions within each block. It uses
a static method check(Blockchain blockchain) which takes a
blockchain object as its argument. It starts by iterating over
all the blocks in the blockchain. Within each block, it goes
through every transaction using a nested for-each loop. It then
checks the validity of each transaction by calling the isValid()
method on the transaction object. If this method returns false
for any transaction, indicating that the transaction is invalid,
the check() method will immediately return false, signifying
that the blockchain is invalid.

The ModelChecker then checks if all blocks in the
blockchain are correctly linked. It does this by comparing
the hash of each block (except for the last one) with the
previousHash attribute of the following block. If these hashes
do not match for any pair of blocks, this indicates that the
chain of blocks has been broken or tampered with. In such a
case, the check() method will return false. The ModelChecker
verifies that the consensus algorithm of the blockchain is
working correctly. This is done by calling the consensusAl-
gorithmlsValid() method on the blockchain object. If this
method returns false, the check() method will also return
false, indicating that the blockchain is not adhering to its
consensus rules.

BlockASP uses tracing crosscutting concerns, i.e., TraceA-
spect, to access the blockchain’s transaction interactions
and can also serve to log the block’s transaction calls for
monitoring purposes. It monitors and enforces the compli-
ance of the block’s data using the model checking layer.
It gets executed when a transaction action takes place in a
blockchain program, which enables the program to trace the
flow of blockchain, thus finding bugs and gathering usage
statistics. This aspect could be extended to pass context
data to an observer for further processing. The BlockAspect,
AdviceAspect, and LedgerAspect encapsulate the interactions
and activities occurring in the blockchain system, select-
ing the proper properties and attributes of the transactions.
BlockASPect is the logic of the Block Analysis Layer. Its
purpose is to wrap around ’block operations’, i.e., any activ-
ity that involves a block, like registering transaction data,
setting data attributes, approving data access, and auditing
data. AdviceBlock extends a class called BlockAspect. The
aspect contains a pointcut definition called blockOperations,
which specifies a joinpoint in the program. This joinpoint
is a well-defined moment in the execution of a block’s
transaction, such as a method call or variable access. The
pointcut expression call(* Blockchain.addBlock(..)) specifies
that this pointcut will match any call to the addBlock method
of the Blockchain class. LedgerAspect contains a pointcut
definition called ledgerOperations. The pointcut expres-
sion call(* Blockchain.updateLedger(..)) specifies that this
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pointcut will match any call to the updateLedger method of
the Blockchain component. This provides a way to monitor
the operations related to the ledger in a decoupled man-
ner. It logs messages to the console before and after the
ledger update operation, serving as an auditing or tracing
tool. This aspect can be invaluable for debugging, auditing,
or for gathering runtime information without polluting the
core business logic code with these concerns. The before
advice is executed before any joinpoints matched by the
ledgerOperations pointcut, and the after advice is executed
after any joinpoints matched by the ledgerOperations point-
cut. In this case, both advice definitions print a message to the
standard output method. The role of this aspect is to provide
additional behavior to the program by executing code before
and after calls to the updateLedger method of the blockchain
class. This can be useful for logging, debugging, or other
purposes. For example, in this case, the aspect logs messages,
indicating when the ledger is being updated and when it has
been updated. This can help developers understand when
and how often this method is being called during program
execution. TransactionAspect provides logging functionality
that crosscuts the core logic of the transaction operations,
helping trace the transaction activity in the system.

Figure 3 shows the flow of BlockAspect—Block 1, for
instance, symbolizes the group of transactions in which the
blockchain system registers transaction data. This process
is handled by the BlockAspect module of the Block Anal-
ysis Layer. Upon the execution of these transactions on the
blockchain network, Block 1 is established. Block 2 signifies
the transactions where AdviceAspect sets the data attributes,
leveraging the Block Aspect Layer. Like its predecessor, this
transaction is added to the blockchain network. Block 2 is
then interlinked with Block 1, keeping the continuity and
integrity of the chain. Block 3 embodies the transactions
that involve requests for block data access, facilitated by
the Block Analysis Layer. Upon approval of the transaction
request, this transaction is incorporated into the blockchain,
resulting in the creation of Block 3, which is then linked to
Block 2. This process is handled by LedgerAspect. Block 4
is the transactions relevant to BlockAspect, such as auditing
data at LedgerAspect. These transactions are recorded on
the blockchain as QoSM. Subsequently, a link to Block 3 is
established, ensuring the blockchain’s ongoing sequence by
LedgerAspect.

QoSM consists of QMCriteria and QoS models, which
verify the system property before and after applying the
proposed approach and model. QM Criteria performs this ver-
ification by invoking the check() method on the system, which
may alter the system model or its properties according to
the proposed approach and model. Subsequently, QM Criteria
compares the system property before and after the changes to
measure the impact of the proposed approach and model. The
null hypothesis is a statistical concept that states that there is
no significant difference between the defined groups. In this
case, the null hypothesis would be that applying the proposed
approach and model does not significantly affect the context
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FIGURE 3. BlockAspect flowchart.

data. QoSM handles assessing the QoS of a system, which
can be represented as Equation 6.

It works to evaluate the system’s functionality by creating
a system model and a system property and test the system’s
reliability. Two sets of context data are produced, being the
application’s state before and after the model’s application.
This gives an estimate of the system’s efficiency. A timer
tracks the execution time of the proposed model, which is
used to assess efficiency and figure out system maintain-
ability by calculating the proposed approach and model’s
cyclomatic complexity. It is a measure of a program’s control
flow complexity, and it can assess the system’s portability by
determining the number of environments and platforms that
the proposed approach and model support.

C. COMPARING BLOCKASP TO TRADITIONAL 00
APPROACHES

When conducting a comparison between BlockASP and con-
ventional OO methodologies like Model-Driven Architecture
(MDA) [50], [51], various significant metrics are consid-
ered, as depicted in Table 1. The metrics encompassed in
this framework consist of Functionality, Reliability, Usability,
Scalability, Computational Complexity, Efficiency, Trans-
parency, Maintainability, Portability, Trust and Reputation,
and Incentive Mechanism.

BlockASP offers several distinct advantages over tradi-
tional OO approaches, such as MDA, by harnessing the
inherent benefits of blockchain technology. The system offers
a decentralized and tamper-resistant approach to managing
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data on the blockchain. This provides significant improve-
ments and reliability in the design, analysis, and implemen-
tation of blockchain applications. This is accomplished by
facilitating a distinct division of responsibilities, fostering
a significant level of adaptability for multiple uses, and
guaranteeing efficient scalability. BlockASP demonstrates
exceptional proficiency in managing extensive applications,
owing to its decentralized architectural framework. While all
systems exhibit similar levels of computational complexity
and cost, BlockASP stands out due to its notable transparency.
The provision of comprehensive visibility of all transactions
serves to augment the system’s trustworthiness. By har-
nessing the capabilities of blockchain technology, BlockASP
ensures the integrity, usability, and scalability of data. The
implementation of a QoSM mechanism enables transaction
owners to exercise control over the access to block data,
granting them the capability to define and enforce access
rules and conditions. The assurance of this functionality is
provided by the model checking layer. The BlockASP layer
handles capturing the provenance of every interaction and
securely storing the properties and attributes of each trans-
action. Furthermore, it documents the permissions provided
to individuals or entities seeking access to data and enables
users to actively control and withdraw these permissions in
a flexible manner. BlockASP offers a robust mechanism for
preserving the provenance and consent information of block
data. This mechanism allows for traceability and accountabil-
ity of data transactions, facilitating auditing processes and
ensuring compliance with relevant regulations.

BlockASP demonstrates a high level of portability by effec-
tively integrating with various blockchain systems, thereby
facilitating smooth data management across diverse plat-
forms. Trust and reputation can be strengthened through
the elimination of intermediaries, which in turn reduces the
potential for tampering and provides a transparent audit
trail. Furthermore, BlockASP incorporates an incentivized
mechanism that promotes the sharing of transaction data
among users, thereby cultivating a collaborative atmosphere.
In contrast, the MDA approach, despite its ability to handle
transaction data, gives rise to centralized points of failure.
The control that users possess over their transactions within
such systems is frequently constrained, resulting in concerns
regarding usability and scalability. Furthermore, the MDA
methodology exhibits a deficiency in terms of comprehensive
transparency, thereby introducing intermediaries such as data
brokers. This inclusion of intermediaries may give rise to con-
cerns regarding trust, supplementary expenses, and potential
delays in the transactional procedures.

IV. CONCLUSION AND FUTURE WORK

This work proposed an innovative blockchain model check-
ing approach utilizing aspect-oriented programming to better
handle dynamism and modularize crosscutting concerns.
The BlockASP framework was designed comprising four
layers - Analysis, Aspect, Model Checking, and Advice to
integrate AOP with blockchain model checking. The appli-
cation of BlockASP was demonstrated in a case study of a
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TABLE 1. Comparison of metrics in different BlockASP and DMA
approaches.

Metric MDA BlockASP
Functionality Medium = High
Reliability Low High
Usability Medium = High
Scalability Low High
Computational = Low High
Complexity

Efficiency Medium = Medium
Transparency Low High
Portability High High
Maintainability Low High
Trust and Medium = High
Reputation

Incentive None Present
Mechanism

cryptocurrency system, outlining the workflow from analyz-
ing context data, to statistical model checking using aspects,
to quality-of-service assessment. This showcased how Block-
ASP can enable real-time verification and monitoring of
dynamic blockchain behaviors. The superiority of BlockASP
over traditional OO approaches like MDA was validated
through comparison across metrics including functionality,
reliability, transparency etc. BlockASP leverages blockchain’s
inherent benefits like decentralization, tamper-resistance,
transparency and incentives. Thus, this research contributes
to advancing formal verification for blockchain systems by
addressing limitations of existing model checking methods.

While the present study establishes a foundational frame-
work with BlockASP, several avenues remain for further
technical refinement and practical implementation. The inte-
gration of machine learning algorithms for real-time anomaly
detection could enhance the framework’s capability to iden-
tify vulnerabilities and improve resilience. From a usability
standpoint, developing an intuitive user interface coupled
with automated toolchains would streamline the model-
checking process, making BlockASP accessible to non-expert
users. On the architectural side, extending BlockASP to be
compatible with multi-layer and sharded blockchain designs
will add versatility and scalability, thereby enabling its use in
increasingly complex systems.

In the context of platform diversity, benchmarking
BlockASP across multiple blockchain platforms, such as
Ethereum, Hyperledger, and Binance Smart Chain, would
provide valuable insights into its adaptability and efficiency.
Advanced optimizations—such as state space reduction via
abstraction or partial order reduction—should also be inves-
tigated to expedite the model-checking process.

Lastly, consolidating the theoretical aspects of BlockASP
by formalizing its algorithmic complexity and computational
overhead would lay a robust foundation for future academic
and industrial applications. By advancing in these targeted
directions, BlockASP has the potential to evolve into a univer-
sally adopted framework for secure and efficient blockchain
model verification. This confluence of aspect-oriented pro-
gramming, model verification, and blockchain technology
stands to gain substantially from these focused initiatives.
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