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ABSTRACT The recent development of object-tracking frameworks has affected the performance of
many manufacturing and industrial services such as product delivery, autonomous driving systems, security
systems, military, transportation and retailing industries, smart cities, healthcare systems, agriculture, etc.
Achieving accurate results in physical environments and conditions remains quite challenging for the actual
object-tracking. However, the process can be experimented with using simulation techniques or platforms
to evaluate and check the model’s performance under different simulation conditions and weather changes.
This paper presents one of the target tracking approaches based on the reinforcement learning technique
integrated with TensorFlow-Agent (tf-agent) to accomplish the tracking process in the Unreal Game Engine
simulation platform AirSim Blocks. The productivity of these platforms can be seen while experimenting
in virtual-reality conditions with virtual drone agents and performing fine-tuning to achieve the best or
desired performance. In this paper, the tf-agent drone learns how to track an object integration with a deep
reinforcement learning process to control the actions, states, and tracking by receiving sequential frames
from a simple Blocks environment. The tf-agent model is trained in the AirSim Blocks environment for
adaptation to the environment and existing objects in a simulation environment for further testing and
evaluation regarding the accuracy of tracking and speed. We tested and compared two approaches, DQN
and PPO trackers, and reported results in terms of stability, rewards, and numerical performance.

INDEX TERMS Object tracking, object detection, reinforcement learning, AirSim, virtual environment,
virtual simulation, tf-agent, unreal game engine.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAV) are widely utilized in
every field of manufacturing and daily service procedures [1],
where drones help to make the process easier by automat-
ing and decreasing the consumption time with safer service
activities. For example, in recent years, drones have become
a top priority for technical assistance in the agricultural field
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for the medication and fertilization processes. Additionally,
drones can observe cultivated field mapping properly [2]
with important information about any irregular changes in
the grower’s field. In most cases, it can be beneficial for
increasing the productivity of large plantations with congen-
erous growers to determine drainage patterns and wet-dry
spots of field elevation that allow more efficient watering
techniques.Moreover, there are several fields in which drones
are being applied such as surveillance and control of large
unreachable areas [3], medical purposes such as Automated
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Emergency Drones (AED) [4], search and rescue operations
[5], road traffic monitoring applications [6], weather sensing
in an urban environment application [7], emergency system
applications for firefighter processes [8], and entertainment
(photography and cinematography) [9]. Many recent innova-
tions and technologies related to UAV frameworks include
surveillance and target tracking units for several reasons,
including security maintenance, control, military assistance,
and traffic monitoring, besides manufacturing optimization
and control. The current development of innovative tech-
nologies is taking novel ideas from modeling systems such
as virtual reality environment simulators. Creating a virtual
version of the physical objects and process simulations can
provide proper service optimization and allow for free exper-
imentation with conditions for any activity.

A. IMPORTANCE AND DEVELOPMENT OF OBJECT
TRACKING WITH MACHINE LEARNING
In recent years, most of the UAV-based research community
has paid attention to improving the performance of visual
tracking techniques with several neural networks related to
network-based architectures, such as CNN [10], DNN [11],
LSTM [12], RL [13], and others. However, these research
works present training and testing results in physical environ-
ment datasets, such as image collections taken from different
cameras in public areas, and image/video sets taken by drone
cameras. These object-tracking applications work with cer-
tain object classes where the drone tracks dynamic objects in
an exact pathway and localizes objects with specific methods
as an additional task for the target-tracking framework. Still,
there are challenges while tracking moving and static objects
with apparently identical aspects to recognize which one is an
actual tracking target. Recent object-tracking research devel-
opment has begun with intensive learning with virtual reality
integration platforms [14], [15], so scientists can integrate
their technique or algorithm with a virtual reality platform to
test their proposals with various fine-tuning parameters and
conditions. It gives scholars more opportunities to explore
their methods better and more deeply in a hardware-free envi-
ronment at zero cost and optimize them as much as possible.
Additionally, there are some techniques motivated by robust
extension of integral schemes for mismatched uncertain non-
linear systems proposed to support asymptotic tracking [16].
Asymptotic tracking means ensuring that the systems’ output
tracks a desired reference trajectory over time with negli-
gible tracking error. The main goal is to design a tracking
control system that guarantees the output converges to the
reference trajectory as time approaches infinity in uncertain
environments. Another model is the output feedback adap-
tive rise control technique [17] used for uncertain nonlinear
systems to achieve accurate tracking of desired trajectories.
The term ‘‘adaptive’’ indicates that the controller parameters
are updated online based on the system’s behavior and the
tracking error. A deep Q-learning-based [18] approach has
been suggested for firefighting situations, which is obtainable

in some agent robots or drones for finding or planning paths
and navigating through fire environments. In such complex
and hazardous cases, it is required to be more careful to con-
trol the situation with concrete plans and actions for rescuing
injured or victims of the incident by coordinating situational
awareness with other rescuers, which is an urgent task. When
the framework is installed and applied to real drones or robots,
it can ensure firefighters or rescuers make the right decision
in extreme, panicky, and disorienting conditions.

B. DESCRIPTION OF THE VR-BASED WORK AND MAIN
CONTRIBUTION
Several relevant research studies that integrate virtual simula-
tion platforms with proposal algorithms have been published.
Kalidas et al. [19] presented vision-based navigation of UAVs
based simply on image data by employing deep reinforce-
ment learning to avoid stationary and movable obstacles
autonomously in discrete and continuous action space. W.
Zhao et al. [20] also proposed a perception-based hierarchi-
cal active tracking control for UAVs deploying a high-level
controller and action orders in a V-REP-based environment.
A trained PPO algorithm [21] with reward shaping for aircraft
direction to a moving destination in a three-dimensional con-
tinuous space model was suggested, with the agent-specific
target guidance in virtual state space using a novel reward
calculation. Using a PPO-based DRL algorithm [22] was sug-
gested for UAV tracking with the assistance of another UAV,
introducing the generalized distributed deep reinforcement
learning platform, which provides solutions to overcome vari-
ous problems such as tracking, controlling, and mission coor-
dination of UAVs. Moreover, M. A. B. Abdelkader et al. [23]
propose RL-based drone elevation control on a Python-Unity
integrated simulation framework to achieve a stable user
diagram protocol (UDP) with the suggested algorithm. Çetin
[24] proposes counting drones in a 3D space with several
DRL methods present to count drones with another drone in
the environment provided by an AirSim simulator.

In this study, we developed an algorithm based on tf-agent
drone tracking in a Blocks environment where the tf-agent
actively makes decisions to track the target object in the
runtime environment. The proposed method includes differ-
ent reward techniques to boost the learning, tracking, and
decision-making processes via a TF-agent-based drone in a
simulation platform. There is some computational consider-
ation for correctly applying parameter values to achieve a
higher accuracy rate, and state representation was formulated
to clear out unnecessary losses and constraints for the training
and testing processes.

The primary contributions of this paper can be summarized
as follows:

• We introduce a virtual environmental simulation-based
object-tracking algorithm model that receives input
images directly from a realistic virtual platform.

• Direct access to the network feedable source images
from the simulation environment provides the framework
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the more advantages of learning and testing when it
comes to unknown environmental conditions.

• The experiment is implemented in an AirSim-based
basic Blocks environment with a random, particular
walking person being tracked by a virtual drone agent.

• Two different methods were adopted and integrated with
the virtual simulation platform to demonstrate the per-
formance of the models.

II. RELATED WORKS
The recent development of object tracking via reinforce-
ment learning has improved by integrating it with many
target tracking techniques, which produce better performance
with decision-making in tracking procedures. Although most
visual tracking concepts based on DRL could perform better
in the case of the representation model with adopted manners
for locating the target object within a search region, the final
estimated target coordinates are ideally centered.

A. OBJECT TRACKING VIA DEEP REINFORCEMENT
LEARNING
The advancement of object tracking via reinforcement learn-
ing is a comparatively novel idea, where object localization
and tracking integration with a decision-making model [13],
[25], [26], [27], [28], [29], [30] are applied to the learning and
tracking process as well. Several studies have discovered that
combining deep and RL [31] in various settings confers many
advantages. Visual object tracking [32], localizing temporal
activity [33], identifying object classes [26], object recogni-
tion through video sequence [34], and segmentation [35] are
just a few of the computer vision problems that have used
DRL. Notably, visual object tracking via DRL framework
studies has increased in recent years, where the DRL was
associated with several techniques to robust the training and
decision-making ability while targeting object location. The
agent must estimate the target position (bounding box) in
every sequence frame in the most typical use of DRL on
visual object tracking by repeatedly selecting ultimate fitting
actions to get accurate tracking results.

Accordingly, the state representation is the fulfillment sta-
tus of the general frame states within a targeted bounding box.
In general, actions are the transformation result of the bound-
ing box while tracking that can shift, scale, and turn actions
depending on how the network learned and adapted to the
environment in training time. In DRL-based object tracking,
accuracy (precision) is emphasized as a reward value, show-
ing the difference between the targeted action bounding box
and ground truth values. In general, it is called intersection-
over-union (IoU). Reward values will change according to the
action value differencewith ground truth output, which shows
tracking accuracy.

B. VIRTUAL SIMULATION-BASED OBJECT TRACKING VIA
DEEP REINFORCEMENT LEARNING
In the last few years, most research topics have interactedwith
innovative trends in virtual simulation world environments

that allow the simulation of any action, object, or process,
enabling experimentationwith complex conditions tomanage
and optimize results. Algorithm integration with simulation
platforms makes it challenging to conduct testing and exper-
imentation while taking advantage of simulation behavior
closely related to real-world models with dynamic and inac-
tive action modes. Several simulation platforms have flexible
functionality to connect with software algorithms for exper-
imentation. The most widely used open-source platforms
currently are AirSim [14] and Unity [15], which intend to
bridge the gap between the virtual and real worlds to sup-
port the development of autonomous control and a realistic
replica of the actual world. Both platforms are advancing
their technical abilities with high intensity to positively influ-
ence the development and testing of data-driven machine
intelligence techniques such as reinforcement learning and
deep learning. W. Luo et al. suggested an active object
tracking technique [29] via deep reinforcement learning,
in which a drone agent adopted the ConvNet-LSTM func-
tion approximator for predicting the target movement using
a frame-to-action strategy. Besides, they perform additional
(ViZDoom and Unreal Engine simulation) environment aug-
mentation techniques and a customized reward function to
boost the training process to achieve better target tracking
performance. Another virtual simulation-based approach [36]
uses a monocular onboard camera via a DRLmodel to follow
the detected target object. They state that this technique is
a more accurate and cost-efficient strategy for adopting an
algorithm in a virtual environment by using multiple sensor
data points from the pre-calculated trajectory. The proposed
model combines one of the object detection models called
MobileNet [37] to get the bounding box information from
the image input of the learning process. The model includes
convergence-based exploration and exploitation for adap-
tively aligning algorithms with the network.

Moreover, J. Schulman et al. suggested a reinforcement
learning-based drone follow-me behavior object tracking
framework [38] using the Deep Q-Learning (DQN) model
to control RL agents with adaptive and flexible behavior.
In this object-tracking model, stacked image frames and the
inclusion of depth information to integrated as input frames
to the learning and testing process. The proposed model
has experimented with the different level environments with
several structural changes reasonably. Experimental output
with several specific conditions showed that the RL-based
drone following technique succeeded in its adaptive and gen-
eralizing behavior.

In our recent research, we proposed virtual simulation-
based visual object tracking via a deep reinforcement learning
algorithm [25], which the AirSim drone agent uses to track
the targeted object class in a runtime virtual simulation
environment by utilizing sequential frames directly from it.
Additionally, the suggested model has been tested with a
public dataset to evaluate the performance of recent research
outputs. The main advantage of a virtual simulation platform
is that researchers can conduct experimentation several times
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with different fine-tuning techniques at no cost until they
improve their proposal with high accuracy. Accordingly, gen-
erating new, fake, or augmented data or collecting or reusing
data from public sets to reinforce model learning and boost
localization exactness while decreasing estimation time and
human effort is unnecessary.

III. PROPOSED METHOD
In this technique, we created an algorithm implementa-
tion that includes several components of the object tracking
framework, including training and tracking, and we evaluated
it in a virtual simulation environment. The framework’s fun-
damental idea is to learn the action space using direct input
from a virtual simulation platform. Platforms allow training
the network with little effort spent actively learning and
tracking operations. However, the method must be correctly
linked with the Q-learning network model to get the required
object feature information to study the environment and aid
in making continuous action decisions in each frame of the
tracking sequence.

A. ALGORITHM BASELINE
Figure 1 shows the baseline of our proposed method illustra-
tion. Firstly, the AirSim simulation platformmust be installed
and set with the required characteristic parameters to inte-
grate the designed algorithm model. We manually insert an
object into the simulation platform with a defined walking
route around the particular location specified in the virtual
environment part of the pipeline (Figure 1). The virtual simu-
lation platform provides essential input frame sequences with
feature information, such as ordinary, segmented, and gray-
scale (negative) depth images, that could proceed through
tf-agent DRL network layers to learn and take action for target
tracking measures. We use image depth to identify object
location and targeted class while experimenting through the
network for adaptation to unknown conditions.

B. TF-AGENT-BASED DRL OBJECT TRACKING MODEL
Tracking objects on a virtual simulation platform dif-
fers from typical state-of-the-art target-tracking framework
approaches. The target object moves automatically across
the simulation platform area, occluded by obstacles such as
high walls, several different-shaped objects, etc. In this pro-
posal, a random walking pedestrian was set into a simulation
environment to create learning and tracking conditions by a
virtual AirSim drone agent. As shown in Figure 2, we inte-
grated the simulation platform with the suggested alternative
algorithm model to jointly optimize representatives by exper-
imenting in different conditions. Firstly, we request the
environment simulation platform to get the typical depth
images and the segmentation map to get the pixels with
a target. In the next step, frames will be gray-scaled and
normalized for further recognition of an object in the virtual
simulation model. After getting the pixels with the target
and creating them, bounding box points are concatenated and

transformed into network-readable values for the following
process.

1) DQN-BASED TF-AGENT
The DQN agent is suitable for any environmental condition
possessed by a discrete action space formulated deter-
ministically for simplicity and expectations over stochastic
environmental transitions. The main goal of the DQN agent
in this model is to train a policy to maximize the discounted
cumulative reward (1).

Rt0 =

∑∞
t=t0

γ t−t0rt (1)

That is also known as the return value Rt0 . In most RL-based
networks, the discount factor γ should be a constant value
highlighting the sum of converges between 0 and 1. It allows
our agent to gain better reward value results by avoiding
uncertain environment feature information and identifying
which is less relevant than a fairly confident one. The Q∗ is
to achieve an affordable reward or return value emphasized:
Q∗

: State × Action → R when the action is taken in a
given state, the return results from a constructed policy to
achieve maximized rewards (2).

π∗(s) = argmin
a

Q∗(s, a) (2)

In our virtual reality world simulation model, we will have
access to state and action space information related to the Q∗

value function to create and train the Q-network. Most of the
Q functions in the case of policy-required conditions obey
Bellman’s [39] equation (3).

Qπ (s, a) = R+ γQπ(s′, π(s′)) (3)

The difference between initial and learned values calcula-
tions following the equality equation, also known as Q-value
updating [39] or the temporal difference error (4).

δ = Qnew(s, a) = (1 − α) Q(s, a)︸ ︷︷ ︸
old value

+ α

learned value︷ ︸︸ ︷(
Rt+1 + γ max

a′
Q

(
s′, a′

))
(4)

Equation (4) above calculates the updating Q-value for the
state-action (s, a) pair at time step t. It is assumed to be equal
to a weighted sum of old and learned values, where the initial
old value would be 0 since the agent is experiencing this par-
ticular state-action pair value. The old value is multiplied by
(1 − α). α learning rate is denoted and set as α = 0.001 for
our default training network. Instead of overwriting the newly
calculated Q-value, the α learning rate is set to determine
the previously computed Q-value amount for the initial state-
action pair. To retain the recently obtained Q-value later,
we give a higher learning rate for the equal state-action match
to adopt the drone agent quickly for the computed Q-value.
However, it should be at a balanced learning rate to keep
the trade-off between the previous and new Q-values for the
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FIGURE 1. Proposed DRL-based TF-agent object tracking baseline integration with the Game Engine.

FIGURE 2. The flow chart of the DRL-based tf-agent object tracking model in Game Engine.

FIGURE 3. The process of Q-learning update.

further training process. A learned value is a reward Rt+1 that
the drone agent receives moving randomly from the starting
state point, plus discounted estimation γ of optimal future
Q-value for a new state-action match (s′,a′ n 1-time steps.
The output of the learned value multiplication by the learning
rate α is done to get the optimal policy value update. The
Q-learning process update illustration is in Figure 3.

As illustrated in Figure 3, there can be several actions
through the training or learning process where an agent
chooses the seemingly optimal actions Qπ(st,at) and
receives a reward for the agent’s performance through steps in

a virtual environment. For further learning, the agent should
choose an action from the St+1 state to continuously learn and
analyze the environment with more profound feature results.
Here, the greedy epsilon option is a straightforward strat-
egy for balancing exploration and exploitation by randomly
selecting between the two. The method, where epsilon is
the likelihood of selecting to explore or exploit, determines
whether it proceeds to explore the environment with a slight
chance. We can see the action selection with the epsilon
greedy method mathematical formulation below the equation
(5).

Action at time (t) at =

{
max
a

Qt (a) 1 − ϵ

any action (a) ϵ
(5)

The action selection method for further learning can be
detailed thoroughly when the value is 1 − ϵ, and the agent
uses exploitation to take advantage of prior knowledge, which
is a best-estimated reward; otherwise, ϵ it takes exploration to
look for new optimal options.

The value of each action must be specified for our agent
to choose the one that will result in the best reward. The
action-value estimation function (6) uses probability theory
to define these values. The predicted reward received when
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choosing an action from a list of all potential actions refer
to the ‘‘value of that action’’. So, we utilize the ‘‘sample-
average’’ approach to estimate the value of doing an action
since the agent does not know the value of choosing a partic-
ular action.

Qt (a)

=
Sum of rewards when action (a) taken before time (t)
Number of times action (a) taken before time (t)

=

∑t−1
i=1 Ri
t − 1

(6)

The agent will then select the action with the most outstand-
ing estimated value, referred to as a greedy action, once the
value Q(s′,a′) has its pick rate.

2) PPO-BASED TF-AGENT
Proximal Policy Optimization (PPO) is a straightforward pol-
icy gradient approach for RL-based optimization problems
that alternates between optimizing a ‘‘surrogate’’ objective
function using stochastic gradient ascent and sampling data
through interaction with the environment [30]. The main idea
and difference between primary and novel policy gradient
methods is that the multiple-update minibatch objective func-
tion is applied. At the same time, the standard model updates
the gradient per data sample in a single epoch.

A policy gradient technique known as the Proximal Pol-
icy Optimization (PPO) algorithm is applied to improve the
policy of a reinforcement learning agent. PPO is a set of
algorithms that includes PPO1 and PPO2. In this proposal,
we will focus on the PPO1 algorithm. The Clipped Surrogate
Goal is a drop-in substitute for the policy gradient objective
to increase training stability by restricting the policy change
at each step. To address these and other difficulties, we may
limit the amount, alter the policy, and ensure it constantly
improves. Furthermore, implementing this model helps to
integrate with a complete processing algorithm to achieve
efficient samples from input images and minimize hyperpa-
rameter tuning indicators. It achieves the same performance
improvements while avoiding complexity by optimizing the
basics of the Clipped Surrogate Objective (7).

LCLIPt (θ)= Êt

[
min(rt (θ) Ât, clip(rt (θ) , 1 − ϵ, 1 + ϵ)Ât)

]
(7)

rt (θ) Ât – identifies the same objective before, inside the
minimization; clip(rt (θ) , 1 − ϵ, 1 + ϵ)Ât – this part of
formulation is the same objective, but r(θ) is clipped between
(1 − ϵ, 1 + ϵ) ; The complete min(rt (θ) Ât, clip(rt (θ) ,

1−ϵ, 1+ϵ)Ât) – episode shows the min of the same objective
from before and the clipped one;

The main objective of clipping surrogates is a region clip-
ping process that prevents the algorithm from getting too
greedy and trying to update too much at once while training
and learning to leave the region with good samples for esti-
mation and summarizing. PPO enables us to conduct many

FIGURE 4. Probability ratio r of the surrogate function LCLIP with positive
A > 0 and negative A < 0 advantages. The red circle on each plot shows
the starting point for the optimization, i.e., r = 1. The sum of the
surrogate function LCLIP can be performed for many terms [38].

gradient ascent epochs on our data stream without triggering
harmfully massive policy modifications. Conducting these
processes helps get more out of collected or streamed data
while decreasing sample inefficiency. Moreover, the running
PPO policy uses N parallel actors that individually collect
data. The data is collected into mini-batches and then trained
for K epochs using the Clipped Surrogate Objective function.

The Clipped Surrogate Objective will affect and optimize
every action the agent takes. Updating should be stopped if
the action is better (positive) A > 0 and more probable while
taking the end of gradient steps. Otherwise, when the drone
action is directed in the wrong direction but the action is
good, it can be redirected or undone from the initial state.
In the case of lousy action (negative)A < 0 and less probable
outcomes gained from agents’ actions, an agent needs to take
short steps, or they do not need to go far steps in action space.
When it comes to the normalized level of updating, it can be
controlled in the balanced area to get the optimal probability
ratio r for agents. The illustration of the LCLIP surrogate
function probability can be seen below in a summarizing
Figure 4.

Figure 4, illustrates clipped surrogate objective functions
optimization parameters for the running learning period
with probability ratio. Effectively, this technique can be
encouraged using significant policy changes across learning
environments or input data for better probability optimization
with a model agent. PPOwith clipped object technique shows
the difference between two maintained policy networks, the
current πθ(at |st) and the last used policy πθk(at |st) applied
to collect samples. A new policy evaluation comes from
necessary sampling, which involves collecting old policy
samples to improve efficiency.

The final loss function for the PPO actor-critic style looks
below equation (8), a combination of the Clipped Surrogate
Objective function, Value Loss Function, and Entropy bonus.

LCLIP+VF+S
t (θ) = Êt

[
LCLIPt (θ) − c1LVFt (θ)

]
+ c2S[πθ ](st) (8)

The given equation above includes several parts that can
be complex to understand, yet it gives more priority to
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achieving more accurate results while applying them to the
experimentation process. The explained first part is a Clipped
Surrogate Objective function given in the (7) equation. In (8),
given above, c1 and c2 are coefficients of the value of the
related parameter for calculation. LVFt (θ) identifies as a

squared-error value loss: (V θ (st) − V targ
t )

2
. To ensure the

sufficient exploration of unknown and complex scenarios in
virtual environments added an entry as a bonus S [πθ ] (st) .

IV. EXPERIMENTAL RESULTS
One of the main objectives and focuses was to get the
most advantage from the simulation platform to perform
experiments in different conditions with parametric changes.
Many related researchers used several simulation platforms
to test and evaluate their algorithms in several evaluation
studies. There are different methods to get an advantage
from the realistic virtual platform. In most cases, platforms
apply for experimenting purposes only. However, it can
also be prioritized widely in learning, training, and testing.
The current development of simulation platforms like Unity,
Unreal Engine, and Cecium gives great opportunities and
advantages to process and experiment with state-of-the-art
models in multiple and impractical circumstances. One of
the prime features of the simulators is the interconnection
between programming languages (Javascript, Python, Go,
Java, Kotlin, PHP, C#, Swift, etc.) and frameworks (Angular,
jQuery, React, Ruby, and Rails, Vue, ASP.NETCore, Django,
Express, etc.). However, building or setting up this type of
architecture and framework is quite tricky, and it could only
be successful in some cases due to third-party programs’
and libraries’ conflicts and disproportionality. In this research
work, we conducted experiments with different parametric
changes and finetuning, as explained in the following chapter
sessions.

A. TRAINING RESULTS
We have trained our proposed model with a simple Bloks
environment by inserting randomly moving objects to learn
environmental space and to create a model for future testing
and evaluation purposes. We applied two types of tf-agent
models, DQN and PPO-based tf-agents, to achieve more
comparable output results with a 0.001 learning rate config-
uration.

Figure 5 above illustrates the minimum reward outputs of
the trained models in a typical Blocks environment, where
the DQN-based tf-agent and the PPO-based tf-agent model
are marked with blue and pink, respectively. The minimum
reward is the smallest value that the agent can receive as a
reward during the training process. The minimum reward is
typically negative since most problems involve a penalty for
making suboptimal decisions – the training epoch and reward
at 2000 and 50, respectively. Furthermore, the background
was set with a plot tab color in each method to show the
overall performance of the training agents. Each agent model
initially gained different rewards, whereas the DQN-based

FIGURE 5. The minimum received reward output for two training models:
DQN-based TF-AGENT and PPO-based TF-AGENT.

FIGURE 6. The received maximum reward output for two types of training
models: DQN-based TF-AGENT and PPO-based TF-AGENT.

FIGURE 7. The received average rewards outcome of training for DQN
and PPO-based TF-AGENTS.

agent performed better. Nevertheless, at the end of the train-
ing epochs, the PPO-based agent receives better results than
the DQN-based model agent. The whole training reward per-
formance illustration in Figure 6 above, set to 2000 and 50,
training epoch and reward, respectively. The maximum point
is the highest value that the agent can receive in the training
process. The maximum reward is typically a positive value
since most problems involve a reward for making optimal
decisions. The DQN-based TF-AGENT model initially gains
a higher reward value in this graph. However, the PPO-based
model performs better after 400 epochs until the end of the
training steps. Understanding the range of possible rewards
can help set the hyperparameters of the models, such as the
learning rate or the discount factor. It can also help assess the
performance of the trained agent, as the rewards obtained by

VOLUME 11, 2023 124135



K. Farkhodov et al.: Deep Reinforcement Learning Tf-Agent-Based Object Tracking

FIGURE 8. The testing reward distribution of the DQN-based TF-AGENT (a) and the PPO-based TF-AGENT (b) in 50 steps of the episode.

the agent are compared against the minimum and maximum
possible values.

The given average reward below refers to themean value of
the rewards received by agents during their interactions with
the environment while training using DQN and PPO-based
model algorithms. The average reward is essential for evaluat-
ing the agents’ performance during training. During training,
agents try to learn an optimal policy thatmaximizes the cumu-
lative reward obtained over time. Calculating the average
evaluation reward is done by dividing the sum of the rewards
received during all episodes by dividing it by the total number
of episodes. The estimated calculation is the average reward
the agent will receive when interacting with the environment
using the learned policy.

By evaluating the average reward received, we can see the
difference between the DQN and PPO-based model’s perfor-

mance in varied configurations. However, in some scenarios,
the average reward may not be the most suitable metric for
evaluating the agent’s performance.

B. TESTING RESULTS
We have tested our proposed DQN and PPO-based model
agents with the same environmental condition but different
unseen test episodes to explore the ability of the models and
compare their performance. As mentioned above, the DRL-
based algorithm’s performance evaluation differs from other
state-of-the-art algorithms in the case of performance met-
rics evaluations and comparison techniques. The agent-based
models’ precision can be seen or taken as a received reward
value. As mentioned earlier, the average reward obtained by
the agent during training can help create a model and apply
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thismodel to the testing process as a performancemetric. This
metric measures the agent’s ability to navigate the environ-
ment and obtain expected output tracking. The diagram below
(Figure 8) represents the DQN-based TF-AGENT model’s
output with the reward percentage received from unseen
testing scenarios. In the testing session, the received reward
percentage was set to 100 in the 50 steps respectively in
every episode. The overall received in every step marked
with a column and red line illustrates the smoothed value of
the DQN-based TF-AGENT testing results trained and tested
with standard reward in Figure 8 (a).
Figure 8 (b) shows the PPO-based TF-AGENT’s received

percentage reward testing results in the 50 steps of the
episode, along with smoothed red line output. The different
results between the DQN and PPO models received rewards
in every training step. As we can see, the testing results show
that both models give high accuracy and precise learning
performance in every testing step output with an elevated
conclusion.

V. CONCLUSION
In this research work, we have presented a DQN and PPO-
based TF-AGENT model-based object tracking framework
integrated with a simple Blocks environment to evaluate the
performance of the proposed algorithm. It has been integrated
with the simulation platform to highlight the algorithm’s
overall performance.

The simulation platform provides three types of essential
input images to experiment with and evaluate the overall
status. While testing in a virtual-reality scenario with virtual
drone agents and finetuning to reach the best or desired
results, the productivity and eligibility of these platforms are
vital. The DQN and PPO-based virtual tf-agent drones learn
how to detect and track an object inserted in this platform
by obtaining consecutive frames from a primary Blocks envi-
ronment and using a DRL network to manage the actions,
states, and tracking pipeline. Both tf-agents are trained in a
Blocks environment to adapt to the surroundings and existing
objects in a simulation condition for additional testing, track-
ing accuracy, and speed assessment. In the training process,
both models showed presentable results: minimum 49 (PPO)
and 48 (DQN) rewards in 2000 epochs; maximum 49 (DQN)
and 49 (PPO) rewards in 2000 epochs; average 49 rewards
were received for both (PPO and DQN) models. Models per-
formance contrasted 50 steps of one episode testing set, where
the PPO-based tf-agent gets its pick value reward of 97% in
step 23, DQN-based agent receives its max value of 86% in
the 17th step respectively. However, the overall performance
of the received percentage reward graph (Figure 8, a and b)
indicates that the DQN-based model sequent performs better
than the PPO-based one. Regarding stability, reward con-
tribution, and numeric graphical performance, we examined
and compared the algorithm techniques to various established
hyperparametric changes with reinforcement learning-based
network control incorporated into the simulation process.
In future work, we are going to integrate our model with

several state-of-the-art tracking techniques to improve the
performance of the target tracking framework by testing it in
more complex virtual simulation environments.
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