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ABSTRACT Traffic classification has always been one of the important research directions in the field of
cyber security. Achieving rapid traffic classification and detecting unknown traffic are critical for preventing
network attacks, malicious software, transaction fraud, and other types of cyber security threats. However,
most existing models are based on large-scale data and are unable to quickly learn and recognize unknown
traffic. Some methods based on few-shot learning solve the problem of rapidly learning new types of traffic,
but they cannot detect out-of-distribution samples. Based on this, this paper proposes a few-shot trafficmulti-
classification method that supports out-of-distribution detection, named SPN. It improves the performance
by integrating twin networks into the meta-learning framework based on the idea of metric learning,
and introduces margin loss to ensure detection performance. We conduct two types of experiments, and
compare them with the relevant baseline methods. The results show that SPN has excellent performance in
implementing few-shot multi-classification and out-of-distribution detection, and performs well in intrusion
detection.

INDEX TERMS Few-shot, intrusion detection, network traffic classification, out-of-distribution, SPN.

I. INTRODUCTION
Network traffic classification has always been a focus of
both the cyber security research field and Internet Regulatory
Agency. It aims to classify and identify the traffic transmitted
over the internet according to different standards. With
the extensive application of the internet in areas such as
malicious traffic detection, network monitoring, and traffic
management, the scale of network traffic data is growing
exponentially. This includes various types of data such as
video, audio, text, and application data. According to relevant
research reports [1], as of the end of 2022, the number of
independent mobile users worldwide reached 5.4 billion, with
mobile internet users accounting for 4.4 billion. With the
surge in traffic, its changes are also accelerating, involving
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different types of protocols, encryption, obfuscation, and
hiding techniques, which lead to the diversity and complexity
of the traffic. The development of emerging internet tech-
nologies (such as 5G and IoT) brings new requirements for
traffic classification. At present, traffic classification faces the
following challenges: 1. Difficulty in obtaining large amounts
of labeled data; 2. Limited transferability and adaptability
of models in constantly emerging new data and scenarios;
3. Limited capability in identifying newly emerging unknown
types; 4. Imbalanced data categories and small inter-class
differences.

To address the aforementioned challenges, models need to
have the ability to learn, transfer, and identify unknown types
of samples under few-shot conditions. However, traditional
machine learning methods based on statistical features
and deep learning methods driven by big data struggle
with learning under few-shot conditions. Moreover, existing
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few-shot learning approaches based on transfer learning [2]
and data augmentation [3], [4] have certain limitations in
adapting to new scenarios and dealing with imbalanced data
categories, small inter-class differences and the complexity
of newly emerging unknown types. Meta-learning [5], [6]
has advantages in few-shot traffic classification, such as
strong generalization capabilities, low resource overhead,
and ease of scenario transfer [7], [8], [9], [10], but these
methods lack the ability to detect unknown new types of
data. Detection of such unknown new types of data is
termed Out-of-Distribution (OOD) detection. OOD detection
can provide early warnings and countermeasures against
unknown network threats, assist in promptly intercepting
malicious traffic, and also reduce the risks of false positives
and false negatives. Currently, most OOD detection research
is based on large-scale data conditions, and its application in
few-shot conditions (such as in the field of natural language
processing [11]) is still in its early stages, lacking relatively
mature algorithms.

Therefore, in order to overcome these problems in the field
of traffic classification mentioned above, and achieve rapid
classification and detection of new types of traffic data and
unknown types under few-shot conditions, we conducte the
following work,

We propose a deep learning framework based on meta-
learning, named SPN. This framework accomplishes rapid
classification of new types of traffic and detection of
unknown traffic simultaneously, demonstrating high perfor-
mance.

SPN deeply integrates the structure of two siamese twins
and the prototype computation module. By utilizing the
concept of metric learning, we design a novel metric that
endows the network with multi-classification capability.
Additionally, it possesses the ability to distinguish between
inter-class similar samples and the ability to quickly learn
from few samples.

The framework is designed with two novel margin losses
that reduce the distance between in-distribution(ID) samples
and their corresponding prototypes, and increase the distance
between OOD samples and ID samples. This enables the
model to achieve better OOD detection performance.

II. RELATED WORKS
In this section, we review existing works on traffic classifica-
tion, few-shot learning, and OOD detection.

A. TRAFFIC CLASSIFICATION
1) TRADITIONAL MACHINE LEARNING-BASED METHODS
These methods are based on statistical features in network
traffic, followed by the use of traditional machine learning
algorithms for classification, such as K-Nearest Neigh-
bors(KNN) [12], Support Vector Machines(SVM) [13], Ran-
dom Forest(RF) [14], eXtreme Gradient Boosting(XGBoost)
[15], etc. These methods are straightforward and easy
to understand, but the feature extraction requires manual

selection, which can’t fully capture the complex patterns
and features in network traffic. They no longer meet the
requirements for the scale of data today.

2) DEEP LEARNING-BASED METHODS
These methods use deep neural networks to learn feature rep-
resentations from raw network traffic data, avoiding the draw-
backs of manual feature extraction. Since around 2015, many
researchers have conducted a lot of researches and attempts
in this area. The used models include Convolutional Neural
Networks(CNN), Restricted Boltzmann Machines(RBM),
Long Short-Term Memory networks(LSTM), and so on.
Andresini et al. [16] proposed a model named CLAIRE.
The model derives a two-dimensional image representa-
tion of network flows by performing a combination of
nearest neighbor search and clustering processes, and then
uses a convolutional neural network to train the model.
Aldwairi et al. [17] proposed an RBM-based method. RBM
can be trained without prior information, automatically
discovering latent features in the data, and achieving network
traffic intrusion detection. References [18], [19], and [20]
proposed using combined features constructed by combined
methods to improve the accuracy of network intrusion
detection. These features include statistical features, spatial
features extracted by CNN, and temporal features extracted
by Recurrent Neural Networks. Although these methods have
their advantages in traffic classification tasks, they all require
large amounts of labeled data for training, and they also have
high label dependencies and computational complexities.
This makes it challenging for them to meet the demands of
new scenarios or tasks.

B. FEW-SHOT LEARNING
Few-shot learning aims to perform classification or learning
tasks using a few labeled samples. The model needs to
learn from just a few or dozens of labeled samples and
be able to generalize to new classes that have no or few
labeled samples. Few-shot learning is widely used in image
classification, and the proposed models include Siamese
Networks(SiameseNet) [21], MatchingNet [22], and Pro-
toNet [23]. Unlike SiameseNet, which calculate the similarity
between any two images, ProtoNet map each category of
images to a prototype, and then classifying images based on
the distribution generated by their distances to the prototypes.
Xu et al. [24] were the first to apply meta-learning to
network intrusion detection. They took raw traffic bytes as
input and achieved few-shot traffic classification by training
on meta-tasks. Meta-learning models can quickly adjust
through a small amount of new data to adapt to the new
situation. It has advantages in quick learning and adaptation
to new tasks and scenarios, such as strong generalization
ability, low resource overhead, and easy scene transfer.
Yang et al. [25] proposed an improved traffic classification
model, FS-IDS, which improved the model’s performance in
few-shot classification by integrating raw traffic and traffic
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statistical features. However, FS-IDS is only applicable for
detecting specific malicious samples and is unable to detect
unknown attacks. Shi et al. [26] first introduced the Learned
to Forget(L2F) mechanism into the Model Agnostic Meta
Learning(MAML) [27]. L2F can dynamically control task
conflicts during MAML initialization, thus improving the
model’s convergence speed. Iliyasu et al. [28] proposed
a discriminative representation learning method based on
supervised auto-encoders to solve the few-shot problem in
network intrusion detection. This method requires a large
number of malicious samples as training support, and it
has a high computational cost. Li et al. [29] proposed an
adversarial unsupervised domain-adaptive regularization and
an improved Cascade R-CNN to more effectively detect
Internet of Things(IoT) attacks. This method improves the
model’s accuracy and robustness, enabling the detection of
new attack samples. But, it requires a significant amount of
computational resources and time to train the model, and it
is susceptible to the influence of noisy data. Shirekar and
Jamali-Rad in [30] proposed Class-Cognizant Contrastive
Learning (C3LR), a method that introduces class-level cogni-
tion and considers class-level global structure by modifying
contrastive loss, thereby improving the performance of few-
shot classification. Nonetheless, the performance of this
method is highly dependent on the quality and effectiveness
of the pre-training phase. For different datasets and tasks,
various pre-training strategies and parameter settings are
required, resulting in poor transferability of the model.
Yang et al. [31] proposed a Multi-task Representation
Enhanced Meta-learning model(MetaMRE) to solve the
multi-classification task of encrypted traffic. MetaMRE
enhances traffic representation differences through the flow
discrepancy enhancement module, enabling it to handle
version updates and cross-domain issues in encrypted traffic
classification well. The aforementioned methods all achieve
decent results on few-shot multi-classification tasks, but they
are only confined to ID sample classification, and cannot
detect OOD samples.

C. OOD DETECTION
Unlike few-shot learning that typically relies on a small
amount of labeled data, ‘‘OOD detection’’ is a technique
used to determine whether a model has encountered types of
data that it has not seen during the training process. In real-
time scenarios, OOD detection is of significant importance.
For example, in the field of network security, new types
of attacks or anomalous behavior may not be included in
the model’s training data, but they need to be immediately
identified and addressed. In this case, the model needs to
be able to recognize data distributions that are different
from the training data or unseen classes during training,
in order to avoid making erroneous predictions on these
samples. Hendrycks and Gimpel in [32] proposed a method
of Maximum Softmax Probability (MSP), which utilizes
the probabilities from the softmax distribution to detect

TABLE 1. Notation.

samples that are misclassified or fall outside the distribution
range in the neural network. DeVries and Taylor in [33]
added a ‘‘confidence estimation branch’’ to the prediction
model and predicted whether the current sample is an OOD
sample through the confidence indicator output by the model.
Chen et al. [34] proposed the ALOE method to solve
the impact of adversarial samples. This method makes the
model more robust to input disturbances by introducing an
adversarial loss function during training. Wei et al. [35]
proposed a very concise and effective LogitNorm loss, which
solves the overfitting of the neural network while improving
the model’s correction ability. These methods have proven to
be promising for OOD detection on large-scale data setting,
but they are difficult to apply to scenarios with few-shot
datasets.

To address the related issues in the field of traffic
classification, particularly in few-shot multi-classification
and OOD detection, a few-shot traffic classification method
based on the meta-learning framework is proposed in this
paper. This method possesses the simple and efficient transfer
learning ability for new types of samples, the ability to discern
subtle features inherent and the ability to detect OOD.

III. PROBLEM DEFINITION
In this section, we introduce some concepts and definitions.
The notations used in this article are listed in Table 1.

A. META-LEARNING FRAMEWORK FOR TRAFFIC
CLASSIFICATION
Network traffic classification aims to train a classifier
to perform the classification and identification of traffic
samples. Traffic refers to the data packets or data streams
transmitted in a internet that represent specific commu-
nication sessions, and can be expressed in the form of
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D = {(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xN , yN )} where
xi ∈ RD, yi ∈ {1, 2, . . . ,M} respectively represent the
samples and their corresponding labels. The dataset is divided
into three parts, meta-training set Dtrain, meta-validation set
Dvalid and meta-testing set Dtest. The meta-learning process
consists of two stages, meta-training and meta-testing, each
of which comprises multiple episodes. Each episode contains
one or more tasks, which represent specific learning modes or
tasks and are the basic unit of meta-learning. Each task has its
own input data and corresponding targets. The meta-training
process requires constructing a task set for training and
evaluating the meta-learning model, which can be defined as
T = {Ti}Bi=1, where each task Ti is dynamically sampled from
corresponding data. Each task further divides the data into
support set DS and query set DQ, as shown in Algorithm 1.

B. OOD DETECTION
OOD samples refers to samples or data points that do not
match the distribution of the model’s training set, i.e., data
with a distribution that the model has never encountered
before. OOD detection discriminates whether a sample is
from ID. OOD detection aims to determine whether a sample
comes from the ID or not, and specifically, it can be achieved
by learning a scoring function g(x) as Equation (1),

y =

{
in, g(x) < λ

out, g(x) ⩾ λ
(1)

where y represents the predicted label of sample x. λ is the
empirical threshold, and the specific form of g(x) will be
shown in Section V-D. In practical applications, if g(x) is
greater than lambda, the x is classified as OOD; otherwise,
it is categorized within the ID classes.

IV. THE FRAMEWORK
This section elaborates on the theoretical framework of SPN
in detail, including the embedding module, prototype and
metric calculation module, and loss function, with a specific
structure shown in Figure 1. Section IV-A, IV-B, and IV-C
introduce the calculation processes and relevant details of
each module in the framework, while Section IV-D describes
the workflow of SPN.

A. EMBEDDING MODULE
We first process the traffic data into 3D images (see
Section V-B specific data processing) and divide the data
into meta-tasks. Next, we use CNN technology to extract
features and convert them into an embedding vector. In traf-
fic data, there is a problem of high similarity between
samples of different categories, which makes it difficult
to distinguish them. To capture subtle differences between
samples, we adopt the idea of siameseNet and use two twin
networks to extract features from the support and query sets
respectively. Taking one of the two siamese twins as an
example, we design a 6-layer convolutional neural network
to extract and process the sample’s feature, whose specific

structure is shown in Figure 2. The 6 layers of convolution
include two types of convolutions. The first includes a 128-
filter 2 × 2 × 2 convolution, a BatchNorm3D layer, and a
ReLU layer, which we call Conv3D Block I. The second
includes a 128-filter 2× 2× 2 convolution, a BatchNorm3D
layer, a ReLU non-linear layer, and a 128-filter 2 × 2 × 2
convolution with a stride of 2, which we call Conv3D Block
II. The first four layers use Conv3D Block I, and the last two
layers use Conv3D Block II. After 6 layers of convolution,
a feature map is obtained, which is then flattened to obtain
a feature vector hL(x). Next, the feature vector is fed into a
fully connected layer, and a sigmoid operation is performed
to obtain the embedding vector fφ(x), where fφ represents the
sample’s embedding model and φ represents the embedding
model parameters.

B. PROTOTYPE AND METRIC CALCULATION MODULE
Compared with many meta-learning frameworks such as
Relation Networks [36] and MatchingNet, ProtoNet have
the advantages of simple structure, strong performance, and
strong adaptability. Its core idea is to use a vector, also called
a prototype, as a representation of a class. In the support set,
the prototype corresponding to each class is the mean vector
of all embedding vectors of the samples in the corresponding
class set,

ck =
1
|Sk |

∑
(xi,yi)∈Sk

fφ(xi). (2)

ck is the prototype of the k-th class sample in the
current episode’s support set, and Sk is the set of samples
corresponding to the k-th class in the support set. Next, we use
Equation (2) to calculate the prototype of each class in the
support set of the meta-task. Based on the idea of metric
learning, we design a distance measure in a latent space
that effectively captures the differences between samples.
The distance d between the q-th sample in the query set
and the k-th prototype in the support set can be formalized
as Equation (3),

d(xq, ck ) = ReLU
(∑D′

j=1
αj

∣∣∣f (j)φ (xq)− c(j)k
∣∣∣) . (3)

f (j)φ represents the j-th component of the vector, D′ is
the dimensionality of the hidden vector, αj is a parameter
learned by the model during training, which measures the
importance of different elements in the vector for distance
calculation. After obtaining the distances between a query
example and each prototype in the support set, we calculate
the softmax probability distribution for the query vector xq as
Equation (4),

pφ(y = k | xq) =
exp

(
−d

(
fφ(xq), ck

))∑|S|
k ′=1 exp

(
−d

(
fφ(xq), ck ′

)) . (4)

S represents the set of sample types in the current episode,
d(•, •) represents the distance function between two vectors.
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FIGURE 1. The overview of SPN framework.

FIGURE 2. The structure of convolutional neural networks(one twin).

C. LOSS FUNCTION
To support OOD detection in few-shot traffic classification,
we design a margin loss function for OOD based on the
existing framework, which enables the model to perceive
OOD during training. To improve the OOD discrimination
ability of the model, the loss function considers two aspects,
the naive classification loss and the margin losses. According
to literature [23], we use negative log-likelihood as the naive
classification loss,

L1 = − log
(
pφ(y = k | xq)

)
. (5)

Besides, we use the two maximummargin losses to reduce
the distance between ID samples and their corresponding
prototype, while increase the distance between OOD sam-
ples and all prototypes. The margin losses is defined by

Equation (6)-(7),

Lin = max
(
d(xq_in, ck )− min, 0

)
. (6)

Lout = max
(
mout −min

k

(
d(xq_out , ck )

)
, 0

)
. (7)

xq_in and xq_out represent the ID samples andOOD samples
in the query set respectively. min and mout are the two margin
hyperparameters. In Equation (6), d(xq_in, ck ) represents the
distance measure between the k−th class sample in the query
set and the prototype of the k− th class in the support set. Lin
will encourage the samples from the same class to concentrate
around their corresponding prototypes, thereby reducing the
distance between samples and their prototypes within the
same class. In Equation (7), d(xq_out , ck ) represents
the distance between an OOD sample and each prototype in
the support set. The right-hand side of Equation (7) selects the
distance between the OOD sample and its nearest prototype,
and increase the distance. The final loss function can be
written as Equation (8),

L = L1 + Lin + Lout . (8)

The pseudocode for loss function computation in
training episodes is shown in Algorithm 1. Where
RandomSample(S, n1) denotes a set consisted of n1 elements
sampled randomly and uniformly from set S. Split(S, n2)
denotes an operator that splits the set S into two sets, the
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first set with n2 elements and the second one with |S| −
n2 elements. VID denotes a set of K categories extracted from
the category set of Dtrain, where K < Mtrain. DVk represents
the set of all samples in Dtrain where yi = k . Dk is a subset
extracted from DVk . DS_k and DQ_k are the support set and
query set obtained by splitting Dk , with sample sizes of NS
andNQ respectively. VOOD denotes the set of OOD categories
extracted fromDtrain.DVOOD represents the set of all samples
in which yi ∈ VOOD.DOOD is a subset extracted fromDVOOD .

Algorithm 1 Training Episode Loss Computation for SPN
Input:

Meta training set Dtrain = {(xi, yi)}
Ntrain
i=1 ,

where yi ∈ {j}
Mtrain
j=1 ,Mtrain > 2.

Output:
The loss L for a randomly generated training episode.

1: VID← RandomSample({j} Mtrain
j=1 ,K ).

2: For k in {1, 2, . . . , K} Do
3: Dk ← RandomSample(DVk ,NS + NQ);
4: DS_k ,DQ_k ← Split(Dk ,NS );
5: Calculate ck by using Eqn (2)
6: End For
7: VOOD← RandomSample({j}Mtrain

j=1 \VID, 1)
8: DOOD← RandomSample(DVOOD ,NOOD)
9: L← 0
10: For k in {1, 2, . . . , K} Do
11: For (xq, yq) in DQ_k Do
12: Calculate L1 and Lin by using Eqn (5)-(6);
13: L← L+ 1

KNQ
(L1 + Lin);

14: End For
15: End For
16: For (xq, yq) in DOOD Do
17: Calculate Lout by using Eqn(7) on DOOD;
18: L← L+ 1

NOOD
Lout ;

19: End For

D. THE STRUCTURE AND FLOW OF SPN
As shown in Figure 1, the overall structure of SPN consists
of two parts: the meta-training phase and the meta-testing
phase. In the meta-training phase, a certain number of classes
are first selected, and a certain number of samples are
chosen for each class to construct the meta-training set.
Then, meta-tasks are constructed in Algorithm 1. The data
of a meta-task is divided into two parts, namely the support
set and the query set. The two sets are input to the two
twins of the Siamese network respectively. After extracting
features separately, they are formed into embedding vectors.
And then, the prototypes are computed for each class in the
support set, which are serve as representations of the classes.
Subsequently, the distance metric is calculated according to
Equation (3). The distance metric is used to compute the
distance between each ID sample in the query set and its
corresponding prototypes in the support set, which is then
used to calculate the naive classification loss L1 and the

margin loss Lin. The distances between OOD samples in the
query set and each prototype are also computed to calculate
the margin loss Lout . Finally, the three losses are added
together.

In the meta-testing phase, the process of constructing the
meta-testing set is the same as that of the meta-training set,
but the selected classes are different. Then, meta-tasks are
constructed based on the meta-testing set. The data of the
meta-task is input to the model, which outputs the distances
between each sample in the query set and each prototype.
If the distance between a sample and each prototype is
greater than a certain threshold, the sample is classified as
OOD; otherwise, the probability is calculated according to
Equation (4), and the sample is classified to the corresponding
class based on the maximum probability.

V. EXPERIMENT
A. DATASETS
To verify the performance of SPN, we implement exper-
iments on three benchmark datasets, ISCX2012, CIC-
IDS2017 and USTC-TFC2016. Among them, ISCX2012
and CIC-IDS2017 are widely used standard datasets in
network security research, containing common types of
network attacks and normal traffic seen in the real world.
Malicious traffic of USTC-TFC2016 is collected from public
websites in the real world. These three datasets can represent
real-world traffic scenarios. The descriptions of the three
datasets are as follows,

• ISCX2012 is collected from real-world environments
by the Canadian Institute of Cyber Security, with a
total of seven days of traffic. Malicious traffic types
include Infiltrating the network from inside, HTTP
denial of service, DDos using an IRC botnet, and Brute
force SSH.

• CIC-IDS2017 is similar to traffic data in a real network
environment, and it is composed of normal traffic and
the latest common attack traffic. This dataset includes
5 days of network traffic, with attack types including
DoS, Heartbleed, Web attacks, Penetration, Botnet,
and DDoS.

• USTC-TFC2016 is composed of 10 types of malware
traffic and 10 types of normal software traffic [37],
in which the malware traffic is collected by CTU
researchers from the real network environment, and
the normal software traffic is collected by the traffic
simulation device IXIA BPS.

Table 2-4 lists the number of sessions in different attack
categories in the three baseline datasets.

B. DATA PREPROCESSING
In this paper, the method described in literature [24] is
adopted for feature extraction. Firstly, the raw traffic is
divided into sessions. Secondly, we take the first Z packets
of each session and the first W bytes of each packet, and
convert them into a matrix of Z ×W , where W is the square
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TABLE 2. Sample sizes of 5 categories of ISCX2012.

TABLE 3. Sample sizes of 14 categories of CIC-IDS2017.

TABLE 4. Sample sizes of 20 categories of USTC-TFC2016.

number. If the number of sessions and the length of packets
are insufficient, the zeros are added. Finally, we reshape the
matrix into a Z ×

√
W ×

√
W matrix. The details are shown

in Figure 3.

C. EVALUATION METRICS
In order to comprehensively evaluate the performance
of SPN, macro-precision(macro-P), macro-recall(macro-R),

FIGURE 3. The processing of traffic data.

marco-F1, accuracy rate(Acc), detection rate(DR) and F1
are selected as evaluation metrics, which are defined as
Equation (9)-(14),

macro− P =
1

Mtest

∑Mtest

i=1
Pi (9)

macro− R =
1

Mtest

∑Mtest

i=1
Ri (10)

macro− F1 =
1

Mtest

∑Mtest

i=1

2Pi · Ri
Pi + Ri

(11)

Acc =
1

Ntest

∑Mtest

i=1
TPi (12)

DR =
TPAtt

TPAtt + FNAtt
(13)

F1 =
2POOD · ROOD
POOD + ROOD

(14)

where Pi =
TPi

TPi+FPi
and Ri =

TPi
TPi+FNi

represent the
precision and recall of the i-th class sample respectively.
FPi denotes the number of non-i-th class samples classified
as the i-th class, FNi represents the number of i-th class
samples classified as the non-i-th class. Ntest denotes the total
number of samples in Dtest , and Mtest is the total number of
types inDtest . TPAtt represents the number of attack samples
correctly classified as attack, and FNAtt denotes the number
of attack samples incorrectly classified as legal. The macro-P,
macro-R, macro-F1, and Acc are used to evaluate the model’s
multi-classification performance. Acc and F1 are used to
measure the model’s OOD detection performance. Where
POOD and ROOD represent the accuracy and recall rate of
OOD samples respectively. Acc and DR are used to measure
the model’s performance in attack traffic detection.

D. EXPERIMENTAL SETTINGS
To comprehensively evaluate the performance of the model,
two types of experiments are designed in this paper,
traffic multi-classification with OOD detection, and intrusion
detection.
• Traffic Multi-Classification with OOD Detection.

USTC-TFC2016 and CIC-IDS2017 are selected as
benchmark datasets for the experiment. For USTC-
TFC2016, we select 10 classes for training, 5 classes for
validation, and 5 classes for testing. From the 5 classes
in the testing set, we choose one class as the OOD class.
Due to the enormous number of possible combinations
of all classes (C10

20 · C
5
10 · C

1
5 ), we randomly select

100 combinations. Each combination is experimented
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once to obtain a set of metrics, and we take the average
of the 100 sets of metrics. CIC-IDS2017 contains
14 classes, with 5 of them having sample sizes less
than 12. Due to the extremely small data size, the
statistical results of the metrics may not be reliable,
sowe select the other 9 classes as experimental data. Due
to the small number of classes, the evaluation metrics
for multi-class classification may not be sufficiently
reliable. Therefore, in the experiment, we select the three
classes with larger sample sizes (Benign, DDoS, and
PortScan) and divide each of them into corresponding
training, validation, and testing sets. Then, we select
two classes from the remaining six classes for meta-
training, two classes for meta-validation, and two classes
for meta-testing. In this way, the training, validation,
and testing sets each contain 5 classes. With this
approach, there are still a considerable number of
classes combinations (C2

6 · C
2
4 · C

1
5 ), and we perform

one experiment for each combination to obtain a set
of metrics. We take the average of the 100 sets of
metrics. We select 5 samples for each class, performing
5-shot 5-way tests. During testing stage, we select the
distance to the nearest prototype as the scoring function,
g(x) = mink (d(x, ck )). Since there is no relatively
mature algorithm for implementing multi-classification
and OOD detection simultaneously in the field of
few-shot traffic classification, we divide the experi-
mental results into two parts for comparison, 1) Com-
parison of multi-class classification performance (with
relevant multi-classification algorithms as baselines,
in Section V-E1). 2) Comparison of OOD detection
performance (with relevant OOD detection algorithms
as baselines, in Section V-E2).

• Intrusion Detection. Its purpose is to distinguish
between normal traffic and attack traffic, which is
essentially a binary classification task. Experiments are
conducted on the ISCX2012 and CIC-IDS2017 datasets.
As it is a binary classification task, the experiment aims
to verify the performance of SPN in binary classification
tasks compared with mature binary classification mod-
els. It does not involve OOD detection (This framework
does not extract data asOOD in the process of generating
meta-tasks, and does not consider marginal loss Lout ).
Since literature [24] achieved traffic intrusion detection
for the first time under the meta learning framework, the
same data processing approach is adopted in this paper.
The ISCX2012 dataset consists of 5 categories of data,
including 1 category of normal traffic and 4 categories
of attack traffic. During training, we select the normal
traffic as one category and randomly combine three
categories of attack traffic into another category, based
on which the model performed binary classification.
During testing, we select the normal traffic as one
category and the remaining attack traffic as another
category, resulting in a total of C1

4 combinations. Each
combination was evaluated to obtain a set of metrics,

TABLE 5. Comparison of multiple classification results between SPN and
baseline methods.

and we calculate the average of these metrics for 4 sets.
For CIC-IDS2017, we follow the approach described in
reference [24] and select 6 types of traffic, including
normal traffic and 5 categories of attack traffic. During
training, we randomly combine 3 categories of attack
traffic with the normal traffic to form the meta-training
set, while the remaining attack traffic and normal traffic
formed the meta-testing set. This resulted in a total
of C2

5 possible combinations. Similarly, we take the
average of all combination metrics as the final result.
In this experiment, we select Acc and DR as the
evaluation metrics for intrusion detection.

• Setting of relevant parameters. The parameters Z and
W are 16 and 256 respectively. The threshold λ is 0.6,
The dimension of embedding vector fφ(x) is 1024, min
and mout are 0.2 and 0.8 respectively.

E. EXPERIMENTAL RESULTS
This section shows the comparison of traffic multi-
classification results, OOD detection and intrusion detection.

1) RESULTS AND ANALYSIS OF TRAFFIC
MULTI-CLASSIFICATION
Table 5 shows the multi-classification performance of the
proposed method and 8 baseline methods on two datasets.
Different from the baseline methods, SPN can achieve both
few-shot multi-classification and OOD detection simulta-
neously, while the baseline methods only achieve few-shot
multi-classification.
• KNN: The performance is poor on both datasets. The

primary reason is that the network traffic data may
contain many samples with highly similar features
but belong to different classes, making it difficult
for KNN to distinguish between them. Additionally,
network traffic data usually havemultiple feature dimen-
sions. In high-dimensional spaces, distance calculations
become more complex, and the ‘‘curse of dimen-
sionality’’ may occur, leading to a decline in KNN’s
performance and significant computational overhead.
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• RF/XGBoost: These two methods exhibit strong gener-
alization capabilities and robustness against overfitting.
They can effectively capture the complex nonlinear
relationships that may exist among features in net-
work traffic data and are also proficient at handling
high-dimensional feature data. Therefore, they show
stable and promising performance across both datasets.
However, both methods require large amounts of labeled
data and manual feature extraction for training, and
are limited to classifying predefined types. They are
not adaptable to classifying new types of samples
or recognizing OOD samples, thus falling short in
meeting the requirements of real-world network traffic
classification scenarios.

• MatchingNet: It achieves relatively excellent per-
formance on three metrics across the two datasets,
especially on USTC-TFC2016. The main reason may
be that it uses a bidirectional LSTM mechanism to fuse
the features of all samples in the support set when
processing data in meta tasks, so that each sample’s
embedding vector has a global view. At the same
time, the attention mechanism is used to make the
classification of query examples more accurate. But it
suffers from the issues of high resource consumption and
slow computation speed.

• ProtoNet: It performs poorly on both datasets. The main
reason may be that it uses a simple method of taking
the vector mean to obtain class features. This processing
method may not be able to reflect the true characteristics
of the traffic. But this method has the characteristics of
small overhead and fast computation speed.

• SiameseNet: It has poor performance on both datasets.
It uses ordinary Siamese network, while the network’s
complexity is insufficient, making it difficult to capture
all the relevant features from the input data. In addition,
the model itself is suitable for binary classification but
not suitable for multi-classification. These may be the
reason for the poor performance of the model.

• C3LR: It adopts a self-supervised pre-training mecha-
nism and introduces a new loss term, which enables the
model to obtain representations that are more effective
and generalizable, with intra-class similarity and inter-
class differences. This may be the main reason why
C3LR achieves excellent results.

• MetaMRE: It is based on the MAML framework,
introduces a flow discrepancy enhancement module
to enhance the representation difference of encrypted
traffic, and fine-tunes the parameters according to a few
number of labeled samples during the testing phase to
adapt to the current task, which makes the model have
excellent performance on both datasets.

• SPN: The proposed method achieves the best results
on the CIC-IDS2017 dataset. On the USTC-TFC2016
dataset, it performs comparably to MatchingNet overall
and outperforms other methods significantly. In terms
of feature extraction, SPN employs a uniquely designed

FIGURE 4. Acc comparison of SPN and 8 baselines on CIC-IDS2017 and
USTC-TFC2016.

3D convolutional structure called Conv3D Block, which
effectively extracts detailed features of traffic data
while considering the temporal characteristics of packets
within the session. This allows the model to obtain
effective representations of traffic data. In terms of
network structure, SPN integrates the core structures of
the ProtoNet and SiameseNet, giving it the ability of
strong discrimination and fast recognition. In addition,
SPN introduces margin loss, enabling the model to
identify OOD samples(see section V-E3 for detailed
effects). These ensure the superior performance of the
model in 3 indicators.

In addition, we also calculate another important indicator,
Acc. Figure 4 shows the comparison of Acc between SPN
and the baseline methods on two datasets. Compared with all
baseline methods based on few-shot learning, SPN achieves
the best results on CIC-IDS2017 and USTC-TFC2016,
improving by 2% and 0.01% respectively compared to the
second-best models (MetaMRE and MatchingNet). In all
methods based on large-scale data, compared with RF(the
second-best model), SPN achieves gains by 0.7% and 2.8%
on CIC-IDS2017 and USTC-TFC2016 respectively. In sum-
mary, the results show that SPN has superior performance
and stronger stability in traffic multi-classification tasks
compared to all baseline methods on different indicators
across different datasets. Since different sample sizes will
have a certain impact on the results, we evaluate the Acc
and macro-F1 indicators under different numbers, as shown
in Figure 5. As the sample size increases from 1, 3, and 5, the
values of Acc and macro-F1 gradually increase on the two
datasets, and they tend to stabilize at 10 samples.

2) OOD DETECTION RESULTS ANALYSIS
SPN can also distinguish OOD samples while implementing
few-shot multi-classification. To the best of our knowledge,
in the field of traffic classification, SPN is the first few-shot
multi-classification method that can support OOD detection.
To verify the performance of SPN in OOD detection,
we compare SPN with some OOD detection methods based
on large-scale data. The table 6 shows the experimental

VOLUME 11, 2023 114411



G. Miao et al.: SPN: A Method of Few-Shot Traffic Classification With OOD Detection

FIGURE 5. Acc and macro-F1 of different k-shots.

TABLE 6. The OOD results of the proposed method were compared with
baseline method.

results of baseline methods and SPN in OOD detection.
The result shows that SPN achieves the highest Acc on the
CIC-IDS2017 dataset, which is 8.28% higher than MSP(the
second-best model), but the F1 is relatively poor. On the
USTC-TFC2016 dataset, SPN achieves excellent Acc and F1
scores, both exceeding 98%. All baseline methods have more
than 18,000 training samples on IDS2017 and over 36,000
on USTC-TFC2016, while SPN only uses 5 labeled samples
for each class. This shows that although SPN is not the best
in some indicators, it still has excellent performance in OOD
detection.

3) INTRUSION DETECTION RESULTS ANALYSIS
Intrusion detection has mostly been based on large-scale data,
but in recent years, the development of intrusion detection
methods based on few-shot samples has gradually emerged.
In this section, we compare and analyze some intrusion
detection methods based on large-scale samples and few-shot
samples with SPN.

The comparison of SPN and existing methods on
ISCX2012 are shown in Table 7. From the table, we can see
that in Acc score, SPN has exceeded the EMD-based method,
RBM-based method, RFA, FC-Net, and RFP-CNN based
domain-adaptive method by 9.21%, 10.48%, 5.84%, 0.79%,
and 1.71%, respectively. Although SPN doesn’t surpass
HAST-II, TR-IDS and Flow-based deep learning method,
the three methods are all based on large-scale data setting.
The TR-IDS with the smallest data requirement reaches
over 30,000 samples, while the training samples required
by SPN are far less than these methods. SPN achieves a

TABLE 7. Comparison of experimental results between the baseline and
the proposed method on the ISCX2012 dataset.

TABLE 8. Comparison of experimental results between the baseline and
the proposed method on the CIC-IDS2017 dataset.

good performance on the DR metric, with model results
consistently above 97%. Although it is not the best, it has
also achieved good performance.

The comparison of SPN and existing methods on CIC-
IDS2017 are shown in Table 8. It shows that SPN has
achieved the best results in terms of Acc and DR. Meanwhile
SPN has surpassed the second-best models(Flow-based deep
learning method and FC-Net) by 0.77% and 0.8% on
the two indicators respectively. Especially in comparison
with methods based on few-shot, SPN has surpassed FC-
Net, RFP-CNN based domain-adaptive method, FS-IDS,
Supervised Autoencoder, MAML with L2F Method by
5.62%, 4.9%, 2.17%, 8.06%, and 5.25% on Acc, respectively.
It has surpassed FC-Net, Supervised Autoencoder by 0.45%,
10.91% on DR respectively.

From the results on the ISCX2012, it can be seen that
among all few-shot methods, SPN has achieved the best
performance on Acc, which is 0.79% higher than the second-
best few-shot model. Compared to large-scale dataset based
methods, the Acc is only 1.56% lower than the best model,
but the data required for training is far less than the best
model. The DR indicator is not the best, but it is higher
than 97%. On CIC-IDS2017, Acc and DR have exceeded all
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baseline methods, which are 0.77% and 0.45% higher than
the second-best model, respectively. In summary, on the two
evaluation metrics, SPN has shown excellent performance on
both datasets.

VI. CONCLUSION
Implementing traffic classification and intrusion detection
is of significant importance for detecting and preventing
numerous issues in the field of cyber security, such as
brute force attacks, data scraping, and transaction fraud.
The purpose of this study is to achieve rapid classification
of new types of traffic and OOD detection simultaneously
under few-shot cases using the proposed SPN framework. For
real-world network security applications, SPN’s high perfor-
mance in few-shot multi-classification and OOD detection
can simultaneously meet the needs for cost-effective training,
discovering new types of traffic, and achieving high-precision
classification. SPN is capable of classifying new attack types
based on their traffic features and can accurately distinguish
known malicious traffic. This reduces the likelihood of false
negatives in intrusion detection, thereby enhancing detection
accuracy.

Based on the idea of metric learning, this framework
effectively integrates the strong discriminative ability of
Siamese networks and the few-shot classification capability
of Prototypical networks. Additionally, the framework also
supports the detection of OOD samples. Firstly, we design
a 3D convolution for feature extraction and deeply inte-
grate the prototype computation with the Siamese network,
combining the fast classification capability of meta-learning
with the powerful discriminative ability. Secondly, ID and
OOD margin loss functions are introduced during training,
allowing the model to detect OOD samples while performing
few-shot traffic classification. Finally, this model possesses
the characteristics of low complexity and fast computation
speed. For the task of multi-class traffic classification, SPN
achieves the best results on the CIC-IDS2017 dataset in all
methods based on few-shot learning. On the USTC-TFC2016
dataset, both Acc and macro-P reaches optimal levels, while
macro-F1 and macro-R are on par with the second-best
model. For OOD sample detection, SPN reaches the optimal
Acc indicator on the CIC-IDS2017 dataset, surpassing the
second-best model by 7.27%. On the USTCTFC2016 dataset,
SPN achieves Acc and F1 scores exceeding 99% and 98%,
respectively. For intrusion detection tasks, SPN achieves the
best Acc results on the ISCX2012 dataset, surpassing the
second-best model in the few-shot methods by 0.79%. On the
CIC-IDS2017 dataset, both Acc and DR reaches optimal
results, surpassing the second-best model by 0.77% and
0.45% respectively.

In addition, in this study, the selection of an appropriate
length for traffic data relies on prior knowledge. Improving
the representation of samples or imposing more reasonable
constraints on samples in the latent space may enhance
the performance of the model. In future work, we will
explore an adaptive data trimming method and also consider

reducing the reliance on data labels through semi-supervised
or unsupervised approaches. The utilization of pre-training
and contrastive learning is a promising direction for models
to acquire more effective representations or normalizing the
vectors in the latent space and imposing angle constraints,
which will also be an area of our exploration in the future.
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