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ABSTRACT There are thousands of observation satellites orbiting the earth, each of which captures massive-
scale photographs covering millions of square kilometers everyday. In practice, these aerial photos are
with high-resolution and usually contain tens to hundreds of ground objects (e.g., vehicles and rooftops).
Understanding the categories of a rich variety of high-resolution aerial photos is an indispensable technique
for many applications, such as intelligent transportation, natural disaster prediction, and smart agriculture.
In this work, we propose a cross-resolution perceptual experiences transfer framework for categorizing high-
resolution aerial photos, focusing on leveraging the perceptual features from low-resolution aerial photos to
enhance the feature selection of high-resolution ones. More specifically, we first construct gaze shifting
path to mimic human visual perception to both low-resolution and high-resolution aerial photos, wherein the
corresponding deep gaze shifting path features are engineered. Afterward, a kernel-induced feature selection
algorithm is formulated to obtain a succinct set of deep gaze shifting path features discriminative across low-
and high-resolution aerial photos. Based on the selected features, low- and high-resolution aerial photos’
labels are collaboratively utilized to train a linear classifier for categorizing high-resolution ones. Extensive
comparative studies have validated the superiority of our method.

INDEX TERMS High-resolution, human visual perception, perception experiences, feature selection.

I. INTRODUCTION

Due to the development of delivering plenty of satellites
during a single rocket, there are many earth observation
satellites launched since 1980. As we know, high-resolution
aerial photos (typical resolutions over SK x S5K) containing
ground objects with sophisticated spatial interactions are well
captured by these satellites. Semantically understanding these
ground objects as well as the inherent spatial topologies is an
important technology in lots of state-of-the-art Al systems.
As an example, we can spatially parse the distribution
of different animals and forests. Then we can intelligent
understand the trends of wildlife. Such application is
informative for keeping habitats in the sanctuaries, especially
for the endangered animals.
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In geoscience and remote sensing, searchers have designed
many visual annotation or classification models to char-
acterize aerial images with normal resolutions (typically
800 x 800 ~ 2K x 2PK). Plenty of experiments and modern
Al systems have demonstrated their superior performance
and convenience. Nevertheless, in practice, the previous
models cannot effectively encode high-resolution aerial
photos because of the following reasons:

1) Typically, there exists a rich set of multi-scale fore-
ground objects inside an high-resolution aerial photo,
as shown in Fig. 1. To calculate the semantics of
an high-resolution aerial photo, we expect a bionic
model that simulates the process of human perceiving
the foreground salient regions. Actually, building
a deep model that can simultaneously extract the
visually/semantically salient regions and engineer the
deep features for these extracted regions is non-trivial.
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FIGURE 1. Pairwise high-resolution aerial photos with their gaze shifting
paths.

2) Toward an efficient and interpretable image model for
semantic understanding, we want high quality features
shared between high- and low-resolution aerial images.
However, instead of the original feature space, the
shared discriminative features may be distributed in the
high-order feature space, which may be unexpectedly
high-dimensional. This makes the conventional feature
selection toward the high-order feature space computa-
tionally intractable.
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FIGURE 2. Categorizing aerial photos with high-resolution by leveraging
cross-resolution perceptual experiences transfer.

We design a new cross-resolution perceptual experiences
transfer framework that adopts the deeply-learned perceptual
experiences of low-resolution aerial images to facilitate
categorizing high-resolution one. An overview of our low-
resolution aerial photo categorization is presented in Fig. 2.
By utilizing a considerable quantity of high-resolution and
low-resolution aerial photos. A machine learning algorithm
is used to detect those salient regions, based on which
the gaze shifting paths are generated and the deep features
are calculated. Aiming at a concise set of discriminative
features shared between high- and low-resolution aerial
images, we explicitly map the deep gaze shifting path
features onto a high-order and kernel-induced feature space.
To inherit the perceptual knowledge of low-resolution aerial
photos, a feature selection algorithm is developed to jointly
1) minimize the marginal/conditional distribution discrep-
ancy between high-resolution and low-resolution aerial
photos, and 2) maximize the linear classification accuracy.
Based on the selected features, both labeled high-resolution
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and low-resolution aerial photos are employed to train
the classifier. This can mitigate the sample insufficiency
problem, which may cause the classifier overfitting during
high-resolution aerial photo categorization. Comparative
study with 17 image recognition models have demonstrated
the advantage of our method.

Il. RELATED WORK
Dozens of image recognition models were developed to ana-
lyze aerial photos. For image-level modeling, Chalavadi et al.
[34] constructed a novel topological feature to model the
inter-region connection inside each aerial photo. And a
kernel-induced vector is calculated as the image represen-
tation for categorization. The authors [35] presented a weak
model that semantically labels high-resolution aerial photos
at image-level. The authors [36] proposed to combine the so-
called random forest and semantics-aware feature extractor
to classify each aerial photo into multiple categories.
Akar et al. [37] developed a hierarchical CNN architecture
for annotating the multiple labels of high-resolution aerial
photos describing many downtown areas. Cai and Wei [5]
proposed a cross-attention mechanism to learn the weights
of aerial image features both horizontally and vertically.
Costea et al. [39] formulated a vision transformer for
aerial image classification, wherein the long-term contextual
dependencies among regions can be intrinsically encoded.
For region-level modeling, Pan et al. [4] formulated a
novel deep neural network for discovering multi-scale salient
objects within each aerial photo. In [1], a focal loss deep
architecture is proposed that optimally discovers vehicles
from aerial images. Sameen et al. [38] developed a geo-
localization model toward aerial photos by intelligently
extracting intersections and streets. Wang et al. [8] integrated
feature enhancement and soft label assignment into an
anchor-independent object detector toward aerial images.
Yu et al. [9] proposed a deep rotation-invariant detector
that effectively estimates the angles of multi-scale objects
inside aerial images. The authors [31] proposed a parallel
deep model called mSODANet that hierarchically learns
contextual features from multi-scale and multi-FoV (field-
of-views) ground objects. Notably, different from the above
methods, our approach is bionic-inspired and accurately
mimics human gaze behavior.

lIl. OUR PROPOSED METHOD

A. DEEP GAZE SHIFTING PATH LEARNING

There are hundreds of objects and their parts in each high-
resolution aerial photo. According to the recent biological and
psychological studies [2], humans typically attend a succinct
set of visually prominent objects in their visual perception
process. When human perceiving a high-resolution image,
human vision system will perceive the foreground salient
objects beforehand, such as an aircraft and its components.
Meanwhile, the remaining backgrounds are typically kept
unhandled in practice. We have to incorporate such human
visual perceptual experience in a high-resolution aerial photo
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categorization task. Herein, a rapid object parts extraction
coupled with a novel active learning paradigm is deployed
to detect the foreground salient objects.

The well-known BING [7] operator is leveraged as the
object descriptor. By applying the BING operator, we receive
a rich set of object patches inside a high-resolution aerial
photo. Actually, humans usually attend to very few objects
within each scenery. To mimic this, we use an effective
active learning [6] to sequentially find K representative object
patches from each high-resolution aerial photo. It encodes the
following attributes: 1) high-resolution aerial photo’s spatial
features and 2) object patches’ semantic labels.

Based on the sequentially selected K object patches, each
path is constructed by connecting the K object patches (as the
pathA - B - C - D - E — F — G exemplified
in Fig. 2). The constituent object patches and their spatial
interactions simultaneously contribute to the gaze shifting
path’s appearance. Herein, given a K-sized gaze shifting path,
we represent it by matrix G = [Gy1,G2], where Gy is a
K x T-sized matrix. The T dimensions describe the CNN
feature from each image patch within a gaze shifting path.
G, represents the K x K matrix indicating node linkage.
Toward a simple yet effective feature, matrix G is row-wise
concatenated into a long feature vector u.

B. CROSS-RESOLUTION PERCEPTUAL EXPERIENCES
TRANSFER

Theoretically, the extracted deep gaze shifting path features
are usually distributed in the high-dimensional high-order
feature space. Comparatively, the number of labeled high-
resolution aerial photos is relatively small. This inevitably
causes the dimensionality curse and will in turn hurt
high-resolution aerial photo categorization. To handle this
problem, a cross-resolution perceptual experiences transfer
framework is formulated to select a succinct set of highly
discriminative features shared between high-resolution and
low-resolution aerial photos. Thereby, the selected features
from high-resolution and low-resolution aerial photos can
be collaboratively utilized to train the categorization model.
In a word, cross-resolution perceptual experiences transfer
can simultaneously reduce the feature dimensionality and
increase the training sample number, based on which the
dimensionality curse can be mitigated substantially.

1) FEATURE MAPPING BY APPROXIMATING POLYNOMIAL
KERNEL
The polynomial kernel can be mathematically represented as:

o, v) = (ruT—i-/c)Q, (1)

where Q denotes the degree. Such kernel is comprised of
features whose monomial’s degree is smaller than Q. This can
be further represented as:

q .
0@ = [Ch k0| ugi=1.0 @)

where e € {1,--- ,K (K 4+ T)}? enumerates the entire
selections of g-dimensional coordinates in u, and
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K(K + T) is the dimensionality of deep gaze shifting path
feature. By leveraging the multinomial theorem, (2) can be
reorganized into:

o @) =U2 {0, e, kaimy (W) 3)

_ 2
= Cxximtg
candidate features for feature selection, where operator q
counts the combinations of selecting j features from i

features.

For degree Q, there are a total of S

2) OBJECTIVE FUNCTION OF FEATURE SELECTION
By leveraging the above explicit feature map, deep gaze
shifting path feature engineered from high-resolution
and low-resolution a%rial photos can be repres%nted by
{(o ) € BS) )" and {(p ) € BS) -2 respec-
tively, where MH and M" count the high-resolution and
low-resolution aerial photos respectively. rff and I denote
the category labels of the high-resolution and low-resolution
aerial photos respectively. Herein, a novel feature selection
algorithm is proposed to select features discriminative to both
high-resolution and low-resolution aerial photos.

We denote the high-resolution aerial photos as {ufl , rf" €

H
{1,.--.-,B} } . where uf{ denotes the K(K + T)-
i=

dimensional deep gaze shifting path feature and r{" the

H
corresponding category label. We denote U# = {u;,rF }?:1
as deep gaze shifting path feature from the entire high-
resolution aerial photos and the labels. Let p (UH¥) and
p(U) be the marginal distributions of U¥ and UL. The
objective of our feature selection is to select an optimal

H
feature set that predicts labels {rf }Ail using the input

. . . M .
high-resolution aerial photos {uf’}.” ~under assumptions

Pt (uf) #pt(ul) and ¢ (u¥) # ¢"(u").

It is reasonable to assume that there exists a binary
indicator s € {0, 1}5, such that p ((p (uH) ® s) =p
(¢ (ul) ©s) and p (¢ (1) ®s) =p (¢ (') ©'s), where
® denotes the inner product of pairwise matrices. Our
target is to learn the indicator s. Since we practically
have insufficient high-resolution aerial photos, s cannot be
effectively learned due to the overfitting problem. In this way,
we propose to learn binary indicator s and a linear classifier
H jointly, in order to satisfy the following three criteria: 1)
the distance between the marginal distribution p (¢ (uH ) ®s)
and p(¢ (ul) @s) is sufficiently small, 2) ¢ (u) © s and
@ (uL) ® s preserve the discriminative dimensions of deep
gaze shifting path features @(UH) and ¢ (UL), based on
whichp (rf | ¢ (uff ©s)) = p( rt|p(ul ®s)), and 3) the
learned classifier C (uf) D (¢ (uff) ® s)H can optimally
categorize the training low-resolution aerial photos ¢ (ul).
These criteria can be mathematically represented as follows:

1) Marginal distribution discrepancy minimization: Given

the polynomial-kernel-based feature mapping ¢ (u)
induced by (3), we aim to minimize the marginal
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distribution discrepancy by feature selection. This can
be formulated as:

. 1 H
1:161Sn771(s) = HW ZuHEUH @ (u ) @s

1 L 2
_quLeuLw(u )®s P

NG

where ”’”12«“ denotes the squared Frobenius norm, the binary
indicator’s domain is represented by S = {s|s €
{0, 1), Islo <A, and A is the maximum number of
selected features.

Conditional distribution discrepancy minimization: Prac-
tically, the posterior probabilities ¢ (¥ |u?) and g% (r* |u)
have complicated forms. Instead, we utilize the classcondi-
tional distributions ¢ (¥ |u" = b) and ¢* (r* |u* = b). More
specifically, we first calculate the conditional distribution
distance between high-resolution and low-resolution aerial
photos labeled by b € {1, --- , B. Thereafter, we attempt to
minimize the conditional distribution discrepancy:

minyy(s) =
seS

1 H
MY ZuHEUfw (u ) ©s
2

)

F

B 1‘%15 Zugeug ¢ (uL) ©s

where Ulbq and Ui denote the high-resolution and low-
resolution aerial photos with category label b. M f and M bL
count their number respectively.

Empirical error minimization: As we mentioned, we expect
that the selected features not only minimize the distribution
difference, but also be succinctly discriminative for visual
categorization. Toward a succinct set of discriminative
features, the third criterion is to minimize the empirical error.
In our implementation, One-vs-All coding of error-correcting
output codes (ECOC) [4] is employed. The empirical error of
the high-resolution and low-resolution aerial photos will be
minimized, i.e.,

1 14
min min s,H) = — —
ninmin 1 (s, H) ZuieUHz 2

st.& €(@u) @) H—rii=1,---MY+ M- (6)

2

2

leillF + — IIH]
LIF F

By combining the above criteria, the final objective function
is given as:

minminy (s, H) =11 (5) + 12 (s) +n3(s, H),
st 6 €E(@U)OS)H—rii=1,-- MY+ ML (7)

This objective function is NP-hard due to the combinatorial
integral constraints on s. Herein, we adopt an efficient
solution as detailed in the document [40].

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. COMPARATIVE STUDY

In this experiment, we evaluate our high-resolution aerial
photo categorization by comparing its effectiveness and
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efficiency with a bunch of counterparts. We first compare
our method with deep architectures tailored for aerial photo
categorization. Then, our method is compared with multiple
state-of-the-art deep generic object/scene recognition mod-
els. The experimental data set is from [35].

In the first place, we compare our method with seven deep
categorization models [14], [15], [16], [17], [18], [19], [20]
that intrinsically encode some prior knowledge of different
aerial photo categories. We notice that the source codes of
[14], [15], [18], and [19] are publicly available. Thereby,
we conduct comparative study wherein the parameter settings
are set as default. For [16], [17], and [20], the source codes are
unavailable to our knowledge. In this way, we re-implement
them using Python by ourselves. We have tried our best to
make the reimplemented models perform similarly to the
results reported in their publications. Nowadays, many deep
generic recognition models perform impressively on catego-
rizing aerial photos. In this experiment, we first compare our
method with ten deep generic object categorization models:
the spatial pyramid pooling CNN (SPP-CNN) [33], CleanNet
[11], discriminative filter bank (DFB) [8], multi-layer CNN-
RNN (MLCRNN) [12], multi-label graph convolutional
network (MLGCN) [29], semantic-specific graph (SSG) [30]
and multilabel transformer (MLT) [31]. Furthermore, since
low-resolution aerial photo categorization can be deemed as
a sub-topic of scenery classification, we additionally compare
our method with three well-known scenery classification
models [3-41], [26], [28]. For these models, only the source
codes of [13] are unavailable. Thus we re-implement them
using C4+-.

For the above 18 compared object/scene categorization
models, we repeatedly test each model ten times and the
average accuracies are displayed in Table 1. We method
performs the best as expected. To quantify the stability of
these categorization models, we report their standard errors
simultaneously. 1) Our method outperforms the other aerial
photo categorization models remarkably due to three reasons.
First, to facilitate deep model training, our competitors
typically resize each original aerial photo to a fixed and
much smaller size (e.g. 128 x 128) for the subsequent
hierarchical feature engineering. This hurts the learning of an
low-resolution aerial photo categorization model since many
tiny but discriminative visual details will be lost. Second,
expect for our method, none of the seven counterparts can
select high quality features by leveraging discriminative
information from high-resolution aerial photos. Third, only
our method generates gaze shifting paths sequentially
capturing the semantics of low-resolution aerial photos
perceived by humans. They are further incorporated into a
CPKP-based feature selection for calculating category labels.
Comparatively, the seven counterparts only globally/locally
characterize each low-resolution aerial photo, wherein the
perceptual visual features are neglected. 2) The seven
generic object recognition algorithms perform inferiorly
than ours because of three reasons. First, these generic
recognition models generally handle medium-sized images
typically containing tens of salient objects. They can hardly
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TABLE 1. Accuracies with standard errors of the 18 categorization models (We refeat each experiment 20 times and report the average accuracies and

each bold number represents the best result).

Category [14] [13] |16] [17] 18] [19] [20] SPP-CNN CleanNet
Tall building | 0.642+ 0. ()Ij 0.589£0.009 [ 0.646+0.013 | 0.606+0.014 | 0.620+£0.009 | 0.594 £0.016 | 0.633£0.015 | 0.691+0.014 0.681+£0.013
Residential 0.587+0.01 0.594+0.011 0.612+£0.017 | 0.588+0.013 | 0. 0.607+0.009 0.589+0.018 | 0.615+0.011 0.615+0.014
Intersection 0.703+0. (}14 0.715£0.012 | 0.694+0.016 | 0.685+0.014 | 0. 0.684+0.017 0.721+0. (H() 0.684+0.013 0.695+0.012
Forest 0.684+0.01 0.673x0.014 | 0.698+0.013 | 0.664£0.014 | 0.6 0.658+0.014 0.685+0.01 0.713+0.011 0.705£0.014
Sea 0.674+0.013 ? 0.647+0.015 | 0.684+0.015 | 0.633+0.013 | 0. 0.646+0.018 0.673+0.013 1 0.662+0.013 0.686+0.010
Soccer field 0.546+0.014 0.5650.016 | 0.587x0.013 | 0.577£0.016 | 0.5 0.562+0.014 0.584+0.01 0.570+0.021 0.583£0.018
Aircraft 0.732+0.012 0.704£0.014 | 0.721+0.013 | 0.695+0.015 | 0. 0.718+0.017 0.685+0. (HS 0.716+0.014 0.705+0.013
Railway 0.621+0.014 0.613£0.016 | 0.635+0.013 | 0.643+£0.015 | 0. 0.596+0.016 0.605+0.014 | 0.614+0.017 0.616+0.015
Bridge 0.547+0.016 0.56420.015 | 0.584+0.014 | 0.578+0.017 | 0.5 0.584+0.014 0.573+0.017 | 0.562+0.015 0.583+0.011
Road 0.613+0.013 1 0.624£0.012 | 0.635+0.014 | 0.615+£0.016 | 0. 0.621+0.014 0.605+0. (Hb 0.616+0.013 0.627+0.014
River 0.721+0.01 0.708+0.017 | 0.716+0.010 | 0.716+0.014 | 0. 0.699+0.013 0.702+0.01 0.709+0.016 0.715£0.019
Park 0.654+0. (}14 0.665£0.012 | 0.674+0.015 | 0.682+0.016 | 0. 0.669+0.015 0.6730. (}14 0.691+0.018 0.688+0.014
Palace 0.665+0.01 0.643£0.015 | 0.673x0.017 | 0.631+0.015 | 0. 0.647+0.014 0.651+0.011 0.637+0.013 0.619+0.012
Factory 0.624+0. (}14 0.621£0.013 | 0.616+0.012 | 0.610+£0.015 | 0. 0.612+0.012 0.608+0. (}14 0.608+0.016 0.618+0.017
Farmland 0.604+0.01 0.602+0.016 | 0.608+0.012 | 0.598+0.016 | 0. 0.614+0.013 0.592+0.01 0.609+0.018 0.611+0.16
Vehicle 0.685+0. U(]‘J 0.674+0.013 | 0.658+0.011 0.694+0.015 | 0. 0.668+0.014 0.6700. (Hb 0.684+0.014 0.671+0.014
Yacht 0.703+0.01 0.724=0.013 | 0.706+0.015 | 0.721£0.017 | 0. 0.708+0.013 0.714£0.018 | 0.716x0.016 0.713£0.014
Swim. pool 0.654+0. (}14 0.636£0.012 | 0.641+0.015 | 0.652+0.013 | 0. 0.665+0.011 0.673+0.015 | 0.631+0.013 0.636+0.018
Category DFB ML-CRNN ML-GCN SSG [13] [26] [28] Ours
Tall building 0.625+0.013 0.664+0.014 | 0.659+0.012 | 0.682+0.016 | 0.673+0.014 0.625+0.014 0.642+0.016 | 0.647+0.014 0.706+0.011
Residential 0.594+0.014 0.61420.013 | 0.618+0.012 | 0.624£0.015 | 0.613£0.014 0.576£0.015 0.597£0.016 | 0.588+0.014 0.663+0.009
Intersection 0.715+0.011 0.695+0.013 | 0.722+0.016 | 0.734+0.014 | 0.736+0.017 0.684+0.014 0.673+0.013 | 0.664+0.011 0.778+0.007
Forest 0.694+0.014 0.723£0.013 | 0.707x0.012 | 0.726x0.016 | 0.714+0.020 0.654£0.016 0.668+0.017 | 0.673£0.015 0.758+0.009
Sea 0.674+0.015 0.645+0.013 | 0.658+0.016 | 0.673+0.013 | 0.657+0.012 0.671£0.016 0.663+£0.013 | 0.675£0.014 0.697+0.010
Soccer field 0.584+0.016 0.567+0.015 [ 0.594+0.014 | 0.585+0.016 | 0.583+0.014 0.557+0.013 0.563+0.018 | 0.559+0.014 0.615+0.012
Aircraft 0.685+0.013 0.684+0.021 0.705+£0.023 | 0.722+0.015 | 0.728+0.017 0.675+0.013 0.687+0.017 | 0.693+0.018 0.761+0.007
Railway 0.624+0.014 0.632+0.015 | 0.617+0.013 | 0.606+0.017 [ 0.625+£0.015 0.607+0.014 0.611£0.016 | 0.603+0.013 0.683+0.006
Bridge 0.564+0.015 0.547+0.017 | 0.568+0.013 | 0.574+0.016 | 0.536+0.017 0.530+0.014 0.543+0.013 | 0.532+0.016 0.592+0.009
Road 0.612+0.018 0.615£0.015 | 0.604+0.016 | 0.642+0.014 | 0.633+£0.020 0.610+£0.017 0.606+0.012 | 0.615+£0.017 0.682+0.008
River 0.724£0.015 0.7142£0.014 | 0.721£0.016 | 0.718+0.017 | 0.715£0.013 0.675+0.015 0.663+0.016 | 0.684+0.018 0.761+0.008
Park 0.674+0.015 0.663£0.017 | 0.690+0.018 | 0.684+0.014 [ 0.684+0.016 0.694+0.017 0.682+0.015 | 0.683£0.014 0.709+0.007
Palace 0.624+0.011 0.631£0.023 | 0.614£0.018 | 0.621£0.019 | 0.635+0.017 0.596+0.016 0.604+0.015 | 0.609+0.014 0.685+0.010
Factory 0.614+0.015 0.608+0.016 | 0.612+0.012 | 0.607+0.017 | 0.614+0.015 0.603+0.017 0.615+£0.013 | 0.613£0.012 0.665+0.008
Farmland 0.594+0.014 0.592+0.016 | 0.587+0.013 | 0.612+0.016 | 0.617+0.014 0.585£0.013 0.597£0.012 | 0.603x£0.015 | 0.6222+0.008
Vehicle 0.654+0.016 0.685£0.016 | 0.675+0.017 | 0.646+0.014 | 0.686+0.016 0.639+0.014 0.654+0.017 | 0.673x0.016 0.709+0.008
Yacht 0.724£0.015 0.720£0.021 0.716x0.018 | 0.714+0.016 | 0.718+0.017 0.709£0.014 0.706£0.018 | 0.724+0.013 0.781+0.007
Swim. pool 0.621+0.016 0.654£0.014 | 0.643+0.017 | 0.657+0.015 | 0.626+0.014 0.607+0.013 0.614+0.013 | 0.628+0.016 0.681+0.006

discover the tiny but discriminative regions inside each low-
resolution aerial photo. Second, our method can flexibly
incorporate the prior knowledge of high-resolution aerial
photos. Contrastively, the seven generic object recognition
models cannot encode such information. Third, by lever-
aging our CPKP-based feature selection, our method can
dynamically abandon those indiscriminative regions. But
the seven generic object recognition models do not have
this function. 3) The three scene categorization models
perform unsatisfactorily on low-resolution aerial photos. This
is because they deeply and implicitly learn a descriptive set
of scene-aware semantic categories, such as “birds” and
“tables”, which infrequently appear on our low-resolution
aerial photo set. Moreover, the three categorization methods
can successfully handle sceneries captured at horizontal
view angles. But our collected low-resolution aerial photos
are captured at overhead view angles. Apparently, such
view angle gap will decrease the categorization accuracy.
To quantitively analyze the importance of cross-resolution
perceptual experiences transfer (CPET), we set the number
of low-resolution aerial photo to zero. This means that no
perceptual information from low-resolution aerial photos is
utilized. We notice that the average categorization accuracy
is reduced by 5.443%, which clearly shows the importance
of cross-resolution perceptual experiences transfer.

It is generally acknowledged that time consumption is a
key criterion reflecting the performance of a categorization
model. Herein, we report the training and testing time of
the aforementioned 18 categorization models. As shown in
Table 2, during training, only two baseline categorization
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TABLE 2. Trainimg/testing time of the 18 categorizamon monels (Exch
bold nimben represevts the best restut).

[14] [iE] 6] 7] 18] 191 [20] | SPP-CNN | CleanNet

Train 31h7m 23hTdm 52h2Im | 39h23m | 36hd3m | 46h13m | 41h32m | 26h33m | 38h22m
Test T143s 7745 18465 T56d4s | 2437s | 14635 | 1.615s 0.893s 16605
Category | DFB__| ML-CRNN | ML-GCN | SSG MLT [1K]] 1261 281 Ours

Train__| 40n23m | _25h25m 26h14m | 44h16m | 3Thi6m | 32hi4m | 35h44m | 32hi2m | 27h20m
Test T213s 10025 18755 0983s | 1436s | 1.774s | 1.983s 15465 04775

models outperform our pipeline. This is because the archi-
tectures of [29] and [33] are much simpler than ours.
Simultaneously, we observe that the per-category accuracies
of [29] and [33] are both about 5% lower than ours. For the
testing time comparison, our method can be conducted at a
much faster speed than all the baseline methods.

B. PARAMETER ANALYSIS

We evaluate high-resolution aerial photo categorization by
changing the polynomial kernel degree Q and the target
dimensionality V for cross-resolution perceptual experiences
transfer-based feature selection. We first fix V and tune Q
from one to five and report the high-resolution aerial photo
categorization accuracy. We observe that the highest accuracy
is achieved when Q 2. Meanwhile, we observe that
the candidate feature number increases to 321402081 when
Q = 5. Based on these observations, we prone to choose a
small Q in practice. Subsequently, we fix Q at Q = 2 tune
V from one to 100. Noticeably, the highest categorization
accuracy is achieved when V 15. This demonstrates
that a succinct set of high quality features is sufficiently
descriptive for distinguishing different high-resolution aerial
photo categories.

VOLUME 11, 2023



S. Li, Y. Liu: High-Resolution Aerial Photo Categorization Model by CPET

IEEE Access

V. CONCLUSION

Recognizing aerial images is an indispensable application in
remote sensing [21], [22], [23], [24], [25]. We proposed a
novel cross-resolution-enhanced high-resolution aerial photo
categorization pipeline, wherein deep perceptual features are
extracted and refined by propagating the prior knowledge
of low-resolution aerial photos into high-resolution ones.
Sufficient experiments have shown the competitiveness of our
proposed method.
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