IEEEAccess\* Multidisciplinary : Rapid Review : Open Access Journal

Received 2 August 2023, accepted 18 August 2023, date of publication 16 October 2023, date of current version 8 November 2023. Digital Object Identifier 10.1109/ACCESS.2023.3323701

# **RESEARCH ARTICLE**

# High-Resolution Aerial Photo Categorization Model by Cross-Resolution Perceptual Experiences Transfer

## SIDA LI<sup>1</sup> AND YE LIU<sup>D2</sup>

<sup>1</sup>Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province, Jinhua Polytechnic, Jinhua 321007, China <sup>2</sup>College of Computer Sciences, Zhejiang University, Hangzhou 310058, China Corresponding author: Sida Li (20131044@jhc.edu.cn)

This work was supported by the Special Project of Center for Scientific Research and Development in Higher Education Institutes of Ministry of Education under Grant ZJXF2022174.

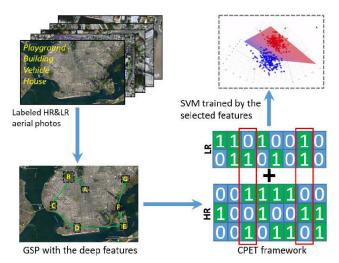
**ABSTRACT** There are thousands of observation satellites orbiting the earth, each of which captures massivescale photographs covering millions of square kilometers everyday. In practice, these aerial photos are with high-resolution and usually contain tens to hundreds of ground objects (e.g., vehicles and rooftops). Understanding the categories of a rich variety of high-resolution aerial photos is an indispensable technique for many applications, such as intelligent transportation, natural disaster prediction, and smart agriculture. In this work, we propose a cross-resolution perceptual experiences transfer framework for categorizing highresolution aerial photos, focusing on leveraging the perceptual features from low-resolution aerial photos to enhance the feature selection of high-resolution ones. More specifically, we first construct gaze shifting path to mimic human visual perception to both low-resolution and high-resolution aerial photos, wherein the corresponding deep gaze shifting path features are engineered. Afterward, a kernel-induced feature selection algorithm is formulated to obtain a succinct set of deep gaze shifting path features discriminative across lowand high-resolution aerial photos. Based on the selected features, low- and high-resolution aerial photos' labels are collaboratively utilized to train a linear classifier for categorizing high-resolution ones. Extensive comparative studies have validated the superiority of our method.

**INDEX TERMS** High-resolution, human visual perception, perception experiences, feature selection.

### I. INTRODUCTION

Due to the development of delivering plenty of satellites during a single rocket, there are many earth observation satellites launched since 1980. As we know, high-resolution aerial photos (typical resolutions over  $5K \times 5K$ ) containing ground objects with sophisticated spatial interactions are well captured by these satellites. Semantically understanding these ground objects as well as the inherent spatial topologies is an important technology in lots of state-of-the-art AI systems. As an example, we can spatially parse the distribution of different animals and forests. Then we can intelligent understand the trends of wildlife. Such application is informative for keeping habitats in the sanctuaries, especially for the endangered animals.

The associate editor coordinating the review of this manuscript and approving it for publication was Andrea F. Abate<sup>(D)</sup>.


In geoscience and remote sensing, searchers have designed many visual annotation or classification models to characterize aerial images with normal resolutions (typically  $800 \times 800 \sim 2K \times 2PK$ ). Plenty of experiments and modern AI systems have demonstrated their superior performance and convenience. Nevertheless, in practice, the previous models cannot effectively encode high-resolution aerial photos because of the following reasons:

 Typically, there exists a rich set of multi-scale foreground objects inside an high-resolution aerial photo, as shown in Fig. 1. To calculate the semantics of an high-resolution aerial photo, we expect a bionic model that simulates the process of human perceiving the foreground salient regions. Actually, building a deep model that can simultaneously extract the visually/semantically salient regions and engineer the deep features for these extracted regions is non-trivial.



**FIGURE 1.** Pairwise high-resolution aerial photos with their gaze shifting paths.

2) Toward an efficient and interpretable image model for semantic understanding, we want high quality features shared between high- and low-resolution aerial images. However, instead of the original feature space, the shared discriminative features may be distributed in the high-order feature space, which may be unexpectedly high-dimensional. This makes the conventional feature selection toward the high-order feature space computationally intractable.



**FIGURE 2.** Categorizing aerial photos with high-resolution by leveraging cross-resolution perceptual experiences transfer.

We design a new cross-resolution perceptual experiences transfer framework that adopts the deeply-learned perceptual experiences of low-resolution aerial images to facilitate categorizing high-resolution one. An overview of our lowresolution aerial photo categorization is presented in Fig. 2. By utilizing a considerable quantity of high-resolution and low-resolution aerial photos. A machine learning algorithm is used to detect those salient regions, based on which the gaze shifting paths are generated and the deep features are calculated. Aiming at a concise set of discriminative features shared between high- and low-resolution aerial images, we explicitly map the deep gaze shifting path features onto a high-order and kernel-induced feature space. To inherit the perceptual knowledge of low-resolution aerial photos, a feature selection algorithm is developed to jointly 1) minimize the marginal/conditional distribution discrepancy between high-resolution and low-resolution aerial photos, and 2) maximize the linear classification accuracy. Based on the selected features, both labeled high-resolution and low-resolution aerial photos are employed to train the classifier. This can mitigate the sample insufficiency problem, which may cause the classifier overfitting during high-resolution aerial photo categorization. Comparative study with 17 image recognition models have demonstrated the advantage of our method.

### **II. RELATED WORK**

Dozens of image recognition models were developed to analyze aerial photos. For image-level modeling, Chalavadi et al. [34] constructed a novel topological feature to model the inter-region connection inside each aerial photo. And a kernel-induced vector is calculated as the image representation for categorization. The authors [35] presented a weak model that semantically labels high-resolution aerial photos at image-level. The authors [36] proposed to combine the socalled random forest and semantics-aware feature extractor to classify each aerial photo into multiple categories. Akar et al. [37] developed a hierarchical CNN architecture for annotating the multiple labels of high-resolution aerial photos describing many downtown areas. Cai and Wei [5] proposed a cross-attention mechanism to learn the weights of aerial image features both horizontally and vertically. Costea et al. [39] formulated a vision transformer for aerial image classification, wherein the long-term contextual dependencies among regions can be intrinsically encoded.

For region-level modeling, Pan et al. [4] formulated a novel deep neural network for discovering multi-scale salient objects within each aerial photo. In [1], a focal loss deep architecture is proposed that optimally discovers vehicles from aerial images. Sameen et al. [38] developed a geolocalization model toward aerial photos by intelligently extracting intersections and streets. Wang et al. [8] integrated feature enhancement and soft label assignment into an anchor-independent object detector toward aerial images. Yu et al. [9] proposed a deep rotation-invariant detector that effectively estimates the angles of multi-scale objects inside aerial images. The authors [31] proposed a parallel deep model called mSODANet that hierarchically learns contextual features from multi-scale and multi-FoV (fieldof-views) ground objects. Notably, different from the above methods, our approach is bionic-inspired and accurately mimics human gaze behavior.

### **III. OUR PROPOSED METHOD**

#### A. DEEP GAZE SHIFTING PATH LEARNING

There are hundreds of objects and their parts in each highresolution aerial photo. According to the recent biological and psychological studies [2], humans typically attend a succinct set of visually prominent objects in their visual perception process. When human perceiving a high-resolution image, human vision system will perceive the foreground salient objects beforehand, such as an aircraft and its components. Meanwhile, the remaining backgrounds are typically kept unhandled in practice. We have to incorporate such human visual perceptual experience in a high-resolution aerial photo categorization task. Herein, a rapid object parts extraction coupled with a novel active learning paradigm is deployed to detect the foreground salient objects.

The well-known BING [7] operator is leveraged as the object descriptor. By applying the BING operator, we receive a rich set of object patches inside a high-resolution aerial photo. Actually, humans usually attend to very few objects within each scenery. To mimic this, we use an effective active learning [6] to sequentially find K representative object patches from each high-resolution aerial photo. It encodes the following attributes: 1) high-resolution aerial photo's spatial features and 2) object patches' semantic labels.

Based on the sequentially selected K object patches, each path is constructed by connecting the K object patches (as the path  $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow G$  exemplified in Fig. 2). The constituent object patches and their spatial interactions simultaneously contribute to the gaze shifting path's appearance. Herein, given a K-sized gaze shifting path, we represent it by matrix  $G = [G_1, G_2]$ , where  $G_1$  is a  $K \times T$ -sized matrix. The T dimensions describe the CNN feature from each image patch within a gaze shifting path.  $G_2$  represents the  $K \times K$  matrix indicating node linkage. Toward a simple yet effective feature, matrix G is row-wise concatenated into a long feature vector **u**.

### B. CROSS-RESOLUTION PERCEPTUAL EXPERIENCES TRANSFER

Theoretically, the extracted deep gaze shifting path features are usually distributed in the high-dimensional high-order feature space. Comparatively, the number of labeled highresolution aerial photos is relatively small. This inevitably causes the dimensionality curse and will in turn hurt high-resolution aerial photo categorization. To handle this problem, a cross-resolution perceptual experiences transfer framework is formulated to select a succinct set of highly discriminative features shared between high-resolution and low-resolution aerial photos. Thereby, the selected features from high-resolution and low-resolution aerial photos can be collaboratively utilized to train the categorization model. In a word, cross-resolution perceptual experiences transfer can simultaneously reduce the feature dimensionality and increase the training sample number, based on which the dimensionality curse can be mitigated substantially.

# 1) FEATURE MAPPING BY APPROXIMATING POLYNOMIAL KERNEL

The polynomial kernel can be mathematically represented as:

$$\varphi\left(\mathbf{u},\mathbf{v}\right) = \left(\tau\mu^{T} + \kappa\right)^{Q},\qquad(1)$$

where  $\mathbf{Q}$  denotes the degree. Such kernel is comprised of features whose monomial's degree is smaller than Q. This can be further represented as:

$$\varphi_{q,e}\left(\mathbf{u}\right) = \sqrt{C_{Q}^{q} \cdot \kappa^{Q-q} \prod_{j=1}^{q} \mathbf{u}_{e_{j}}}, i = 1, \cdots, Q, \quad (2)$$

where  $e \in \{1, \dots, K(K+T)\}^q$  enumerates the entire selections of q-dimensional coordinates in **u**, and

K(K + T) is the dimensionality of deep gaze shifting path feature. By leveraging the multinomial theorem, (2) can be reorganized into:

$$\varphi(\mathbf{u}) = \bigcup_{q=1}^{Q} \{\varphi_{q,e \in \{1,\cdots,K(K+T)\}^q}(\mathbf{u})\}, \qquad (3)$$

For degree Q, there are a total of  $S = C^Q_{K(K+T)+Q}$  candidate features for feature selection, where operator  $C^j_i$  counts the combinations of selecting j features from i features.

### 2) OBJECTIVE FUNCTION OF FEATURE SELECTION

By leveraging the above explicit feature map, deep gaze shifting path feature engineered from high-resolution and low-resolution aerial photos can be represented by  $\{(\varphi(\mathbf{u}_i) \in \mathbb{R}^S), \mathbf{r}_i^H\}_{i=1}^{M^H}$  and  $\{(\varphi(\mathbf{u}_i) \in \mathbb{R}^S), \mathbf{r}_i^L\}_{i=1}^{M^L}$  respectively, where  $M^H$  and  $M^L$  count the high-resolution and low-resolution aerial photos respectively.  $\mathbf{r}^H$  and  $\mathbf{r}^L$  denote the category labels of the high-resolution and low-resolution aerial photos respectively. Therein, a novel feature selection algorithm is proposed to select features discriminative to both high-resolution and low-resolution aerial photos.

We denote the high-resolution aerial photos as  $\left\{\mathbf{u}_{i}^{H}, r_{i}^{H} \in \right\}$ 

 $\{1, \dots, B\} \Big\}_{i=1}^{M^H}$ , where  $\mathbf{u}_i^H$  denotes the K(K + T)dimensional deep gaze shifting path feature and  $r_i^H$  the corresponding category label. We denote  $\mathbf{U}^H = \{\mathbf{u}_i, r_i^L\}_{i=1}^{M^H}$ as deep gaze shifting path feature from the entire highresolution aerial photos and the labels. Let  $p^H(\mathbf{U}^H)$  and  $p^L(\mathbf{U}^L)$  be the marginal distributions of  $\mathbf{U}^H$  and  $\mathbf{U}^L$ . The objective of our feature selection is to select an optimal feature set that predicts labels  $\{r_i^H\}_{i=1}^{M^H}$  using the input high-resolution aerial photos  $\{\mathbf{u}_i^H\}_{i=1}^{M^H}$  under assumptions  $p^H(\mathbf{u}^H) \neq p^L(\mathbf{u}^L)$  and  $q^H(\mathbf{u}^H) \neq q^L(\mathbf{u}^L)$ .

It is reasonable to assume that there exists a binary indicator  $\mathbf{s} \in \{0, 1\}^{\mathbf{S}}$ , such that  $p(\varphi(\mathbf{u}^H) \odot \mathbf{s}) \approx p$  $(\varphi(\mathbf{u}^L) \odot \mathbf{s})$  and  $p(\varphi(\mathbf{r}^H) \odot \mathbf{s}) \approx p(\varphi(\mathbf{r}^L) \odot \mathbf{s})$ , where • denotes the inner product of pairwise matrices. Our target is to learn the indicator s. Since we practically have insufficient high-resolution aerial photos, s cannot be effectively learned due to the overfitting problem. In this way, we propose to learn binary indicator s and a linear classifier H jointly, in order to satisfy the following three criteria: 1) the distance between the marginal distribution  $p(\varphi(\mathbf{u}^H) \odot s)$ and  $p(\varphi(\mathbf{u}^L) \odot \mathbf{s})$  is sufficiently small, 2)  $\varphi(\mathbf{u}^H) \odot \mathbf{s}$  and  $\varphi(\mathbf{u}^L) \odot \mathbf{s}$  preserve the discriminative dimensions of deep gaze shifting path features  $\varphi(\mathbf{U}^H)$  and  $\varphi(\mathbf{U}^L)$ , based on which  $p(\mathbf{r}^H | \varphi(\mathbf{u}^H \odot \mathbf{s})) \approx p(\mathbf{r}^L | \varphi(\mathbf{u}^L \odot \mathbf{s}))$ , and 3) the learned classifier  $C(\mathbf{u}^H) \mathcal{D}(\varphi(\mathbf{u}^H) \odot \mathbf{s})\mathbf{H}$  can optimally categorize the training low-resolution aerial photos  $\varphi(\mathbf{u}^L)$ . These criteria can be mathematically represented as follows:

1) Marginal distribution discrepancy minimization: Given the polynomial-kernel-based feature mapping  $\varphi(\mathbf{u})$ induced by (3), we aim to minimize the marginal distribution discrepancy by feature selection. This can be formulated as:

$$\begin{split} \min_{\mathbf{s}\in\mathbf{S}}\eta_{1}(\mathbf{s}) &= \left\|\frac{1}{M^{H}}\sum_{\mathbf{u}^{H}\in\mathbf{U}^{H}}\varphi\left(\mathbf{u}^{H}\right)\odot\mathbf{s}\right.\\ &\left.-\frac{1}{M^{L}}\sum_{\mathbf{u}^{L}\in\mathbf{U}^{L}}\varphi\left(\mathbf{u}^{L}\right)\odot\mathbf{s}\right\|_{F}^{2}, \end{split}$$
(4)

where  $\|\cdot\|_{F}^{2}$  denotes the squared Frobenius norm, the binary indicator's domain is represented by  $\mathbf{S} = \{\mathbf{s} | \mathbf{s} \in \{0, 1\}^{\mathbf{S}}, \|\mathbf{s}\|_{\mathbf{0}} \leq A$ , and A is the maximum number of selected features.

Conditional distribution discrepancy minimization: Practically, the posterior probabilities  $q^H(r^H|u^H)$  and  $q^L(r^L|u^L)$ have complicated forms. Instead, we utilize the classconditional distributions  $q^H(r^H|u^H = b)$  and  $q^L(r^L|u^L = b)$ . More specifically, we first calculate the conditional distribution distance between high-resolution and low-resolution aerial photos labeled by  $b \in \{1, \dots, B.$  Thereafter, we attempt to minimize the conditional distribution discrepancy:

$$\min_{\mathbf{s}\in\mathbf{S}}\eta_{2}(\mathbf{s}) = \left\|\frac{1}{M_{b}^{H}}\sum_{\mathbf{u}^{H}\in\mathbf{U}_{b}^{H}}\varphi\left(\mathbf{u}^{H}\right)\odot\mathbf{s} - \frac{1}{M_{b}^{L}}\sum_{\mathbf{u}_{b}^{L}\in\mathbf{U}_{b}^{L}}\varphi\left(\mathbf{u}^{L}\right)\odot\mathbf{s}\right\|_{F}^{2}, \quad (5)$$

where  $\mathbf{U}_b^H$  and  $\mathbf{U}_b^L$  denote the high-resolution and low-resolution aerial photos with category label *b*.  $M_b^H$  and  $M_b^L$  count their number respectively.

Empirical error minimization: As we mentioned, we expect that the selected features not only minimize the distribution difference, but also be succinctly discriminative for visual categorization. Toward a succinct set of discriminative features, the third criterion is to minimize the empirical error. In our implementation, One-vs-All coding of error-correcting output codes (ECOC) [4] is employed. The empirical error of the high-resolution and low-resolution aerial photos will be minimized, i.e.,

$$\min_{\mathbf{s}\in\mathbf{S}}\min_{\mathbf{H}}\eta_{3}(\mathbf{s},\mathbf{H}) = \sum_{\mathbf{u}_{i}\in\mathbf{U}^{\mathbf{H}}}\frac{1}{2}\left\|\boldsymbol{\epsilon}_{i}\right\|_{F}^{2} + \frac{\boldsymbol{\psi}}{2}\left\|\mathbf{H}\right\|_{F}^{2}$$
  
s.t.  $\boldsymbol{\epsilon}_{i}\in(\boldsymbol{\varphi}\left(\mathbf{u}_{i}\right)\odot\mathbf{s})H - \mathbf{r}_{i}, i = 1,\cdots M^{\mathbf{H}} + M^{L},$  (6)

By combining the above criteria, the final objective function is given as:

$$\min_{\mathbf{s}\in\mathbf{S}}\min_{\mathbf{H}}\eta\left(\mathbf{s},\mathbf{H}\right) = \eta_{1}\left(\mathbf{s}\right) + \eta_{2}\left(\mathbf{s}\right) + \eta_{3}\left(\mathbf{s},\mathbf{H}\right),$$
  
s.t.,  $\epsilon_{i} \in \left(\varphi\left(\mathbf{u}_{i}\right)\odot\mathbf{s}\right)H - \mathbf{r}_{i}, i = 1, \cdots M^{\mathrm{H}} + M^{L},$  (7)

This objective function is NP-hard due to the combinatorial integral constraints on s. Herein, we adopt an efficient solution as detailed in the document [40].

### **IV. EXPERIMENTAL RESULTS AND ANALYSIS**

### A. COMPARATIVE STUDY

In this experiment, we evaluate our high-resolution aerial photo categorization by comparing its effectiveness and efficiency with a bunch of counterparts. We first compare our method with deep architectures tailored for aerial photo categorization. Then, our method is compared with multiple state-of-the-art deep generic object/scene recognition models. The experimental data set is from [35].

In the first place, we compare our method with seven deep categorization models [14], [15], [16], [17], [18], [19], [20] that intrinsically encode some prior knowledge of different aerial photo categories. We notice that the source codes of [14], [15], [18], and [19] are publicly available. Thereby, we conduct comparative study wherein the parameter settings are set as default. For [16], [17], and [20], the source codes are unavailable to our knowledge. In this way, we re-implement them using Python by ourselves. We have tried our best to make the reimplemented models perform similarly to the results reported in their publications. Nowadays, many deep generic recognition models perform impressively on categorizing aerial photos. In this experiment, we first compare our method with ten deep generic object categorization models: the spatial pyramid pooling CNN (SPP-CNN) [33], CleanNet [11], discriminative filter bank (DFB) [8], multi-layer CNN-RNN (MLCRNN) [12], multi-label graph convolutional network (MLGCN) [29], semantic-specific graph (SSG) [30] and multilabel transformer (MLT) [31]. Furthermore, since low-resolution aerial photo categorization can be deemed as a sub-topic of scenery classification, we additionally compare our method with three well-known scenery classification models [3-41], [26], [28]. For these models, only the source codes of [13] are unavailable. Thus we re-implement them using C++.

For the above 18 compared object/scene categorization models, we repeatedly test each model ten times and the average accuracies are displayed in Table 1. We method performs the best as expected. To quantify the stability of these categorization models, we report their standard errors simultaneously. 1) Our method outperforms the other aerial photo categorization models remarkably due to three reasons. First, to facilitate deep model training, our competitors typically resize each original aerial photo to a fixed and much smaller size (e.g.  $128 \times 128$ ) for the subsequent hierarchical feature engineering. This hurts the learning of an low-resolution aerial photo categorization model since many tiny but discriminative visual details will be lost. Second, expect for our method, none of the seven counterparts can select high quality features by leveraging discriminative information from high-resolution aerial photos. Third, only our method generates gaze shifting paths sequentially capturing the semantics of low-resolution aerial photos perceived by humans. They are further incorporated into a CPKP-based feature selection for calculating category labels. Comparatively, the seven counterparts only globally/locally characterize each low-resolution aerial photo, wherein the perceptual visual features are neglected. 2) The seven generic object recognition algorithms perform inferiorly than ours because of three reasons. First, these generic recognition models generally handle medium-sized images typically containing tens of salient objects. They can hardly

| Category                                                                                                                                                                                                                         | [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (15)                                                                                                                                                                                                                                                                                                                           | [16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [17]                                                                                                                                                                                                                                                                                                                           | [18]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [19]                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                               | SPP-CNN                                                                                                                                                                                                                                                                                                                                                | CleanNet                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tall building                                                                                                                                                                                                                    | $0.642 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.589 \pm 0.009$                                                                                                                                                                                                                                                                                                              | 0.646±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.606 \pm 0.014$                                                                                                                                                                                                                                                                                                              | $0.620 \pm 0.009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.594 \pm 0.016$                                                                                                                                                                                                                                                                              | 0.633±0.015                                                                                                                                                                                                                                                                                                                                      | 0.691±0.014                                                                                                                                                                                                                                                                                                                                            | 0.681±0.013                                                                                                                                                                                                                                                                                                                                                                                             |
| Residential                                                                                                                                                                                                                      | 0.587±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.594±0.011                                                                                                                                                                                                                                                                                                                    | 0.612±0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.588±0.013                                                                                                                                                                                                                                                                                                                    | 0.601±0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.607±0.009                                                                                                                                                                                                                                                                                    | 0.589±0.015                                                                                                                                                                                                                                                                                                                                      | 0.615±0.011                                                                                                                                                                                                                                                                                                                                            | 0.615±0.014                                                                                                                                                                                                                                                                                                                                                                                             |
| Intersection                                                                                                                                                                                                                     | 0.387±0.012<br>0.703±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.394\pm0.011$<br>0.715±0.012                                                                                                                                                                                                                                                                                                 | $0.694 \pm 0.017$<br>0.694 ± 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.588 \pm 0.013$<br>$0.685 \pm 0.014$                                                                                                                                                                                                                                                                                         | $0.001\pm0.018$<br>0.716±0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.684±0.017                                                                                                                                                                                                                                                                                    | 0.721±0.010                                                                                                                                                                                                                                                                                                                                      | 0.684±0.013                                                                                                                                                                                                                                                                                                                                            | $0.695 \pm 0.014$<br>0.695 \pm 0.012                                                                                                                                                                                                                                                                                                                                                                    |
| Forest                                                                                                                                                                                                                           | 0.684±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.713\pm0.012$<br>0.673±0.014                                                                                                                                                                                                                                                                                                 | 0.694±0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.664 \pm 0.014$                                                                                                                                                                                                                                                                                                              | $0.682 \pm 0.019$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.658±0.014                                                                                                                                                                                                                                                                                    | $0.721\pm0.010$<br>$0.685\pm0.012$                                                                                                                                                                                                                                                                                                               | $0.084\pm0.013$<br>$0.713\pm0.011$                                                                                                                                                                                                                                                                                                                     | $0.095\pm0.012$<br>0.705±0.014                                                                                                                                                                                                                                                                                                                                                                          |
| Sea                                                                                                                                                                                                                              | 0.684±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.647±0.014                                                                                                                                                                                                                                                                                                                    | 0.698±0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.633 \pm 0.014$                                                                                                                                                                                                                                                                                                              | 0.665±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.646±0.014                                                                                                                                                                                                                                                                                    | 0.673±0.012                                                                                                                                                                                                                                                                                                                                      | $0.713\pm0.011$<br>$0.662\pm0.013$                                                                                                                                                                                                                                                                                                                     | 0.686±0.014                                                                                                                                                                                                                                                                                                                                                                                             |
| Soccer field                                                                                                                                                                                                                     | 0.546±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.565±0.015                                                                                                                                                                                                                                                                                                                    | 0.587±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.577±0.015                                                                                                                                                                                                                                                                                                                    | 0.583±0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.562±0.014                                                                                                                                                                                                                                                                                    | 0.584±0.012                                                                                                                                                                                                                                                                                                                                      | 0.570±0.021                                                                                                                                                                                                                                                                                                                                            | 0.583±0.010                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.365\pm0.016$<br>0.704+0.014                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aircraft                                                                                                                                                                                                                         | 0.732±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                | 0.721±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.695±0.015                                                                                                                                                                                                                                                                                                                    | 0.705±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.718±0.017                                                                                                                                                                                                                                                                                    | 0.685±0.015                                                                                                                                                                                                                                                                                                                                      | 0.716±0.014                                                                                                                                                                                                                                                                                                                                            | 0.705±0.013                                                                                                                                                                                                                                                                                                                                                                                             |
| Railway                                                                                                                                                                                                                          | 0.621±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.613±0.016                                                                                                                                                                                                                                                                                                                    | 0.635±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.643±0.015                                                                                                                                                                                                                                                                                                                    | 0.607±0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.596±0.016                                                                                                                                                                                                                                                                                    | 0.605±0.014                                                                                                                                                                                                                                                                                                                                      | 0.614±0.017                                                                                                                                                                                                                                                                                                                                            | 0.616±0.015                                                                                                                                                                                                                                                                                                                                                                                             |
| Bridge                                                                                                                                                                                                                           | 0.547±0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.564±0.015                                                                                                                                                                                                                                                                                                                    | 0.584±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.578±0.017                                                                                                                                                                                                                                                                                                                    | 0.557±0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.584±0.014                                                                                                                                                                                                                                                                                    | 0.573±0.017                                                                                                                                                                                                                                                                                                                                      | 0.562±0.015                                                                                                                                                                                                                                                                                                                                            | 0.583±0.011                                                                                                                                                                                                                                                                                                                                                                                             |
| Road                                                                                                                                                                                                                             | 0.613±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.624±0.012                                                                                                                                                                                                                                                                                                                    | 0.635±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.615±0.016                                                                                                                                                                                                                                                                                                                    | 0.625±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.621±0.014                                                                                                                                                                                                                                                                                    | 0.605±0.016                                                                                                                                                                                                                                                                                                                                      | 0.616±0.013                                                                                                                                                                                                                                                                                                                                            | 0.627±0.014                                                                                                                                                                                                                                                                                                                                                                                             |
| River                                                                                                                                                                                                                            | 0.721±0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.708±0.017                                                                                                                                                                                                                                                                                                                    | 0.716±0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.716 \pm 0.014$                                                                                                                                                                                                                                                                                                              | 0.726±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.699±0.013                                                                                                                                                                                                                                                                                    | 0.702±0.015                                                                                                                                                                                                                                                                                                                                      | 0.709±0.016                                                                                                                                                                                                                                                                                                                                            | 0.715±0.019                                                                                                                                                                                                                                                                                                                                                                                             |
| Park                                                                                                                                                                                                                             | 0.654±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.665±0.012                                                                                                                                                                                                                                                                                                                    | 0.674±0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.682±0.016                                                                                                                                                                                                                                                                                                                    | 0.673±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.669±0.015                                                                                                                                                                                                                                                                                    | 0.673±0.014                                                                                                                                                                                                                                                                                                                                      | 0.691±0.018                                                                                                                                                                                                                                                                                                                                            | 0.688±0.014                                                                                                                                                                                                                                                                                                                                                                                             |
| Palace                                                                                                                                                                                                                           | 0.665±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.643±0.015                                                                                                                                                                                                                                                                                                                    | 0.673±0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.631±0.015                                                                                                                                                                                                                                                                                                                    | $0.626 \pm 0.014$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.647±0.014                                                                                                                                                                                                                                                                                    | 0.651±0.011                                                                                                                                                                                                                                                                                                                                      | 0.637±0.013                                                                                                                                                                                                                                                                                                                                            | $0.619 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                       |
| Factory                                                                                                                                                                                                                          | 0.624±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.621±0.013                                                                                                                                                                                                                                                                                                                    | 0.616±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.610 \pm 0.015$                                                                                                                                                                                                                                                                                                              | 0.627±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.612±0.012                                                                                                                                                                                                                                                                                    | $0.608 \pm 0.014$                                                                                                                                                                                                                                                                                                                                | $0.608 \pm 0.016$                                                                                                                                                                                                                                                                                                                                      | $0.618 \pm 0.017$                                                                                                                                                                                                                                                                                                                                                                                       |
| Farmland                                                                                                                                                                                                                         | 0.604±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.602 \pm 0.016$                                                                                                                                                                                                                                                                                                              | 0.608±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.598±0.016                                                                                                                                                                                                                                                                                                                    | $0.584 \pm 0.014$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.614±0.013                                                                                                                                                                                                                                                                                    | 0.592±0.015                                                                                                                                                                                                                                                                                                                                      | $0.609 \pm 0.018$                                                                                                                                                                                                                                                                                                                                      | 0.611±0.16                                                                                                                                                                                                                                                                                                                                                                                              |
| Vehicle                                                                                                                                                                                                                          | 0.685±0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.674±0.013                                                                                                                                                                                                                                                                                                                    | 0.658±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.694 \pm 0.015$                                                                                                                                                                                                                                                                                                              | 0.653±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.668 \pm 0.014$                                                                                                                                                                                                                                                                              | $0.670 \pm 0.016$                                                                                                                                                                                                                                                                                                                                | 0.684±0.014                                                                                                                                                                                                                                                                                                                                            | 0.671±0.014                                                                                                                                                                                                                                                                                                                                                                                             |
| Yacht                                                                                                                                                                                                                            | 0.703±0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.724±0.013                                                                                                                                                                                                                                                                                                                    | 0.706±0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.721±0.017                                                                                                                                                                                                                                                                                                                    | 0.716±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.708±0.013                                                                                                                                                                                                                                                                                    | $0.714 \pm 0.018$                                                                                                                                                                                                                                                                                                                                | 0.716±0.016                                                                                                                                                                                                                                                                                                                                            | 0.713±0.014                                                                                                                                                                                                                                                                                                                                                                                             |
| Swim. pool                                                                                                                                                                                                                       | 0.654±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.636±0.012                                                                                                                                                                                                                                                                                                                    | 0.641±0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.652±0.013                                                                                                                                                                                                                                                                                                                    | 0.633±0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.665±0.011                                                                                                                                                                                                                                                                                    | 0.673±0.015                                                                                                                                                                                                                                                                                                                                      | 0.631±0.013                                                                                                                                                                                                                                                                                                                                            | 0.636±0.018                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                         |
| Category                                                                                                                                                                                                                         | DFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ML-CRNN                                                                                                                                                                                                                                                                                                                        | ML-GCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SSG                                                                                                                                                                                                                                                                                                                            | MLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [13]                                                                                                                                                                                                                                                                                           | [26]                                                                                                                                                                                                                                                                                                                                             | [28]                                                                                                                                                                                                                                                                                                                                                   | Ours                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tall building                                                                                                                                                                                                                    | 0.625±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.664±0.014                                                                                                                                                                                                                                                                                                                    | 0.659±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.682±0.016                                                                                                                                                                                                                                                                                                                    | 0.673±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.625±0.014                                                                                                                                                                                                                                                                                    | 0.642±0.016                                                                                                                                                                                                                                                                                                                                      | 0.647±0.014                                                                                                                                                                                                                                                                                                                                            | Ours<br>0.706±0.011                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                  | 0.625±0.013<br>0.594±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                | 0.659±0.012<br>0.618±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.682±0.016<br>0.624±0.015                                                                                                                                                                                                                                                                                                     | 0.673±0.014<br>0.613±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                | 0.642±0.016<br>0.597±0.016                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                        | 0.706±0.011<br>0.663±0.009                                                                                                                                                                                                                                                                                                                                                                              |
| Tall building                                                                                                                                                                                                                    | 0.625±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.664±0.014                                                                                                                                                                                                                                                                                                                    | 0.659±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.682±0.016                                                                                                                                                                                                                                                                                                                    | 0.673±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.625±0.014                                                                                                                                                                                                                                                                                    | 0.642±0.016                                                                                                                                                                                                                                                                                                                                      | 0.647±0.014                                                                                                                                                                                                                                                                                                                                            | 0.706±0.011                                                                                                                                                                                                                                                                                                                                                                                             |
| Tall building<br>Residential<br>Intersection<br>Forest                                                                                                                                                                           | $\begin{array}{c} 0.625 {\pm} 0.013 \\ 0.594 {\pm} 0.014 \\ 0.715 {\pm} 0.011 \\ 0.694 {\pm} 0.014 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.664±0.014<br>0.614±0.013<br>0.695±0.013<br>0.723±0.013                                                                                                                                                                                                                                                                       | 0.659±0.012<br>0.618±0.012<br>0.722±0.016<br>0.707±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.682±0.016<br>0.624±0.015<br>0.734±0.014<br>0.726±0.016                                                                                                                                                                                                                                                                       | 0.673±0.014<br>0.613±0.014<br>0.736±0.017<br>0.714±0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.625 \pm 0.014 \\ 0.576 \pm 0.015 \\ 0.684 \pm 0.014 \\ 0.654 \pm 0.016 \end{array}$                                                                                                                                                                                        | 0.642±0.016<br>0.597±0.016<br>0.673±0.013<br>0.668±0.017                                                                                                                                                                                                                                                                                         | 0.647±0.014<br>0.588±0.014<br>0.664±0.011<br>0.673±0.015                                                                                                                                                                                                                                                                                               | 0.706±0.011<br>0.663±0.009                                                                                                                                                                                                                                                                                                                                                                              |
| Tall building<br>Residential<br>Intersection                                                                                                                                                                                     | 0.625±0.013<br>0.594±0.014<br>0.715±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.664±0.014<br>0.614±0.013<br>0.695±0.013                                                                                                                                                                                                                                                                                      | 0.659±0.012<br>0.618±0.012<br>0.722±0.016<br>0.707±0.012<br>0.658±0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.682±0.016<br>0.624±0.015<br>0.734±0.014<br>0.726±0.016<br>0.673±0.013                                                                                                                                                                                                                                                        | 0.673±0.014<br>0.613±0.014<br>0.736±0.017<br>0.714±0.020<br>0.657±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.625±0.014<br>0.576±0.015<br>0.684±0.014<br>0.654±0.016<br>0.671±0.016                                                                                                                                                                                                                        | 0.642±0.016<br>0.597±0.016<br>0.673±0.013                                                                                                                                                                                                                                                                                                        | 0.647±0.014<br>0.588±0.014<br>0.664±0.011<br>0.673±0.015<br>0.675±0.014                                                                                                                                                                                                                                                                                | $\frac{0.706 \pm 0.011}{0.663 \pm 0.009} \\ 0.778 \pm 0.007$                                                                                                                                                                                                                                                                                                                                            |
| Tall building<br>Residential<br>Intersection<br>Forest                                                                                                                                                                           | $\begin{array}{c} 0.625 {\pm} 0.013 \\ 0.594 {\pm} 0.014 \\ 0.715 {\pm} 0.011 \\ 0.694 {\pm} 0.014 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.664±0.014<br>0.614±0.013<br>0.695±0.013<br>0.723±0.013                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.659 {\pm} 0.012 \\ 0.618 {\pm} 0.012 \\ 0.722 {\pm} 0.016 \\ 0.707 {\pm} 0.012 \\ 0.658 {\pm} 0.016 \\ 0.594 {\pm} 0.014 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.682 {\pm} 0.016 \\ 0.624 {\pm} 0.015 \\ 0.734 {\pm} 0.014 \\ 0.726 {\pm} 0.016 \\ 0.673 {\pm} 0.013 \\ 0.585 {\pm} 0.016 \end{array}$                                                                                                                                                                      | $\begin{array}{c} 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.736 {\pm} 0.017 \\ 0.714 {\pm} 0.020 \\ 0.657 {\pm} 0.012 \\ 0.583 {\pm} 0.014 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.625 \pm 0.014 \\ 0.576 \pm 0.015 \\ 0.684 \pm 0.014 \\ 0.654 \pm 0.016 \\ 0.671 \pm 0.016 \\ 0.557 \pm 0.013 \end{array}$                                                                                                                                                  | 0.642±0.016<br>0.597±0.016<br>0.673±0.013<br>0.668±0.017                                                                                                                                                                                                                                                                                         | 0.647±0.014<br>0.588±0.014<br>0.664±0.011<br>0.673±0.015                                                                                                                                                                                                                                                                                               | 0.706±0.011<br>0.663±0.009<br>0.778±0.007<br>0.758±0.009                                                                                                                                                                                                                                                                                                                                                |
| Tall building       Residential       Intersection       Forest       Sea                                                                                                                                                        | 0.625±0.013<br>0.594±0.014<br>0.715±0.011<br>0.694±0.014<br>0.674±0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.664±0.014<br>0.614±0.013<br>0.695±0.013<br>0.723±0.013<br>0.645±0.013                                                                                                                                                                                                                                                        | 0.659±0.012<br>0.618±0.012<br>0.722±0.016<br>0.707±0.012<br>0.658±0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.682±0.016<br>0.624±0.015<br>0.734±0.014<br>0.726±0.016<br>0.673±0.013                                                                                                                                                                                                                                                        | 0.673±0.014<br>0.613±0.014<br>0.736±0.017<br>0.714±0.020<br>0.657±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.625±0.014<br>0.576±0.015<br>0.684±0.014<br>0.654±0.016<br>0.671±0.016                                                                                                                                                                                                                        | 0.642±0.016<br>0.597±0.016<br>0.673±0.013<br>0.668±0.017<br>0.663±0.013                                                                                                                                                                                                                                                                          | 0.647±0.014<br>0.588±0.014<br>0.664±0.011<br>0.673±0.015<br>0.675±0.014                                                                                                                                                                                                                                                                                | $\begin{array}{r} 0.706 {\pm} 0.011 \\ \hline 0.663 {\pm} 0.009 \\ \hline 0.778 {\pm} 0.007 \\ \hline 0.758 {\pm} 0.009 \\ \hline 0.697 {\pm} 0.010 \end{array}$                                                                                                                                                                                                                                        |
| Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field                                                                                                                                                    | $\begin{array}{c} 0.625{\pm}0.013\\ 0.594{\pm}0.014\\ 0.715{\pm}0.011\\ 0.694{\pm}0.014\\ 0.674{\pm}0.015\\ 0.584{\pm}0.016\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.664 {\pm} 0.014 \\ 0.614 {\pm} 0.013 \\ 0.695 {\pm} 0.013 \\ 0.723 {\pm} 0.013 \\ 0.645 {\pm} 0.013 \\ 0.567 {\pm} 0.015 \end{array}$                                                                                                                                                                      | $\begin{array}{c} 0.659 {\pm} 0.012 \\ 0.618 {\pm} 0.012 \\ 0.722 {\pm} 0.016 \\ 0.707 {\pm} 0.012 \\ 0.658 {\pm} 0.016 \\ 0.594 {\pm} 0.014 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.682 {\pm} 0.016 \\ 0.624 {\pm} 0.015 \\ 0.734 {\pm} 0.014 \\ 0.726 {\pm} 0.016 \\ 0.673 {\pm} 0.013 \\ 0.585 {\pm} 0.016 \end{array}$                                                                                                                                                                      | $\begin{array}{c} 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.736 {\pm} 0.017 \\ 0.714 {\pm} 0.020 \\ 0.657 {\pm} 0.012 \\ 0.583 {\pm} 0.014 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.625 \pm 0.014 \\ 0.576 \pm 0.015 \\ 0.684 \pm 0.014 \\ 0.654 \pm 0.016 \\ 0.671 \pm 0.016 \\ 0.557 \pm 0.013 \end{array}$                                                                                                                                                  | $\begin{array}{c} 0.642 \pm 0.016 \\ 0.597 \pm 0.016 \\ 0.673 \pm 0.013 \\ 0.668 \pm 0.017 \\ 0.663 \pm 0.013 \\ 0.563 \pm 0.018 \end{array}$                                                                                                                                                                                                    | $\begin{array}{c} 0.647 \pm 0.014 \\ 0.588 \pm 0.014 \\ 0.664 \pm 0.011 \\ 0.673 \pm 0.015 \\ 0.675 \pm 0.014 \\ 0.559 \pm 0.014 \end{array}$                                                                                                                                                                                                          | $\begin{array}{c} 0.706 {\pm} 0.011 \\ 0.663 {\pm} 0.009 \\ 0.778 {\pm} 0.007 \\ 0.758 {\pm} 0.009 \\ 0.697 {\pm} 0.010 \\ 0.615 {\pm} 0.012 \end{array}$                                                                                                                                                                                                                                               |
| Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft                                                                                                                                        | $\begin{array}{c} 0.625 {\pm} 0.013 \\ 0.594 {\pm} 0.014 \\ 0.715 {\pm} 0.011 \\ 0.694 {\pm} 0.014 \\ 0.674 {\pm} 0.015 \\ 0.584 {\pm} 0.016 \\ 0.685 {\pm} 0.013 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.664 {\pm} 0.014 \\ 0.614 {\pm} 0.013 \\ 0.695 {\pm} 0.013 \\ 0.723 {\pm} 0.013 \\ 0.645 {\pm} 0.013 \\ 0.567 {\pm} 0.015 \\ 0.684 {\pm} 0.021 \end{array}$                                                                                                                                                 | $\begin{array}{c} 0.659 {\pm} 0.012 \\ 0.618 {\pm} 0.012 \\ 0.722 {\pm} 0.016 \\ 0.707 {\pm} 0.012 \\ 0.658 {\pm} 0.016 \\ 0.594 {\pm} 0.014 \\ 0.705 {\pm} 0.023 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.682 \pm 0.016 \\ 0.624 \pm 0.015 \\ 0.734 \pm 0.014 \\ 0.726 \pm 0.016 \\ 0.673 \pm 0.013 \\ 0.585 \pm 0.016 \\ 0.722 \pm 0.015 \end{array}$                                                                                                                                                               | $\begin{array}{c} 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.736 {\pm} 0.017 \\ 0.714 {\pm} 0.020 \\ 0.657 {\pm} 0.012 \\ 0.583 {\pm} 0.014 \\ 0.728 {\pm} 0.017 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.625 \pm 0.014 \\ 0.576 \pm 0.015 \\ 0.684 \pm 0.014 \\ 0.654 \pm 0.016 \\ 0.671 \pm 0.016 \\ 0.557 \pm 0.013 \\ 0.675 \pm 0.013 \end{array}$                                                                                                                               | $\begin{array}{c} 0.642 \pm 0.016 \\ 0.597 \pm 0.016 \\ 0.673 \pm 0.013 \\ 0.668 \pm 0.017 \\ 0.663 \pm 0.013 \\ 0.563 \pm 0.018 \\ 0.687 \pm 0.017 \end{array}$                                                                                                                                                                                 | $\begin{array}{c} 0.647 \pm 0.014 \\ 0.588 \pm 0.014 \\ 0.664 \pm 0.011 \\ 0.673 \pm 0.015 \\ 0.675 \pm 0.014 \\ 0.559 \pm 0.014 \\ 0.693 \pm 0.018 \end{array}$                                                                                                                                                                                       | $\begin{array}{c} 0.706 {\pm} 0.011 \\ \hline 0.663 {\pm} 0.009 \\ \hline 0.778 {\pm} 0.007 \\ \hline 0.758 {\pm} 0.009 \\ \hline 0.697 {\pm} 0.010 \\ \hline 0.615 {\pm} 0.012 \\ \hline 0.761 {\pm} 0.007 \end{array}$                                                                                                                                                                                |
| Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway                                                                                                                             | $\begin{array}{c} 0.625 {\pm} 0.013 \\ 0.594 {\pm} 0.014 \\ 0.715 {\pm} 0.011 \\ 0.694 {\pm} 0.014 \\ 0.674 {\pm} 0.015 \\ 0.584 {\pm} 0.016 \\ 0.685 {\pm} 0.013 \\ 0.624 {\pm} 0.014 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.664 {\pm} 0.014 \\ 0.614 {\pm} 0.013 \\ 0.695 {\pm} 0.013 \\ 0.723 {\pm} 0.013 \\ 0.645 {\pm} 0.013 \\ 0.567 {\pm} 0.015 \\ 0.684 {\pm} 0.021 \\ 0.632 {\pm} 0.015 \end{array}$                                                                                                                            | $\begin{array}{c} 0.659 {\pm} 0.012 \\ 0.618 {\pm} 0.012 \\ 0.722 {\pm} 0.016 \\ 0.707 {\pm} 0.012 \\ 0.658 {\pm} 0.016 \\ 0.594 {\pm} 0.014 \\ 0.705 {\pm} 0.023 \\ 0.617 {\pm} 0.013 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.682±0.016<br>0.624±0.015<br>0.734±0.014<br>0.726±0.016<br>0.673±0.013<br>0.585±0.016<br>0.722±0.015<br>0.606±0.017                                                                                                                                                                                                           | 0.673±0.014<br>0.613±0.014<br>0.736±0.017<br>0.714±0.020<br>0.657±0.012<br>0.583±0.014<br>0.728±0.017<br>0.625±0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.625 \pm 0.014 \\ 0.576 \pm 0.015 \\ 0.684 \pm 0.014 \\ 0.654 \pm 0.016 \\ 0.671 \pm 0.016 \\ 0.557 \pm 0.013 \\ 0.675 \pm 0.013 \\ 0.607 \pm 0.014 \end{array}$                                                                                                            | $\begin{array}{c} 0.642 \pm 0.016 \\ 0.597 \pm 0.016 \\ 0.673 \pm 0.013 \\ 0.668 \pm 0.017 \\ 0.663 \pm 0.013 \\ 0.563 \pm 0.018 \\ 0.687 \pm 0.017 \\ 0.611 \pm 0.016 \end{array}$                                                                                                                                                              | $\begin{array}{c} 0.647 \pm 0.014 \\ 0.588 \pm 0.014 \\ 0.664 \pm 0.011 \\ 0.673 \pm 0.015 \\ 0.675 \pm 0.014 \\ 0.559 \pm 0.014 \\ 0.693 \pm 0.018 \\ 0.603 \pm 0.013 \end{array}$                                                                                                                                                                    | $\begin{array}{c} 0.706 {\pm} 0.011 \\ 0.663 {\pm} 0.009 \\ 0.778 {\pm} 0.007 \\ 0.758 {\pm} 0.009 \\ 0.697 {\pm} 0.010 \\ 0.615 {\pm} 0.012 \\ 0.761 {\pm} 0.007 \\ 0.683 {\pm} 0.006 \end{array}$                                                                                                                                                                                                     |
| Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge                                                                                                                   | $\begin{array}{c} 0.625 {\pm} 0.013 \\ 0.594 {\pm} 0.014 \\ 0.715 {\pm} 0.011 \\ 0.694 {\pm} 0.014 \\ 0.674 {\pm} 0.015 \\ 0.584 {\pm} 0.016 \\ 0.685 {\pm} 0.013 \\ 0.624 {\pm} 0.014 \\ 0.564 {\pm} 0.015 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.664{\pm}0.014\\ 0.614{\pm}0.013\\ 0.695{\pm}0.013\\ 0.723{\pm}0.013\\ 0.567{\pm}0.013\\ 0.567{\pm}0.015\\ 0.684{\pm}0.021\\ 0.632{\pm}0.015\\ 0.547{\pm}0.017\\ \end{array}$                                                                                                                               | $\begin{array}{c} 0.659{\pm}0.012\\ 0.618{\pm}0.012\\ 0.722{\pm}0.016\\ 0.707{\pm}0.012\\ 0.658{\pm}0.016\\ 0.594{\pm}0.014\\ 0.705{\pm}0.023\\ 0.617{\pm}0.013\\ 0.568{\pm}0.013\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.682 {\pm} 0.016 \\ 0.624 {\pm} 0.015 \\ 0.734 {\pm} 0.014 \\ 0.726 {\pm} 0.016 \\ 0.673 {\pm} 0.016 \\ 0.585 {\pm} 0.016 \\ 0.722 {\pm} 0.015 \\ 0.606 {\pm} 0.017 \\ 0.574 {\pm} 0.016 \end{array}$                                                                                                       | $\begin{array}{c} 0.673{\pm}0.014\\ 0.613{\pm}0.014\\ 0.736{\pm}0.017\\ 0.714{\pm}0.020\\ 0.657{\pm}0.012\\ 0.583{\pm}0.014\\ 0.728{\pm}0.017\\ 0.625{\pm}0.015\\ 0.536{\pm}0.017\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.625\pm0.014\\ 0.576\pm0.015\\ 0.684\pm0.014\\ 0.654\pm0.016\\ 0.671\pm0.016\\ 0.557\pm0.013\\ 0.675\pm0.013\\ 0.607\pm0.014\\ 0.530\pm0.014\\ \end{array}$                                                                                                                 | $\begin{array}{c} 0.642 {\pm} 0.016 \\ 0.597 {\pm} 0.016 \\ 0.673 {\pm} 0.013 \\ 0.668 {\pm} 0.013 \\ 0.563 {\pm} 0.013 \\ 0.563 {\pm} 0.018 \\ 0.687 {\pm} 0.017 \\ 0.611 {\pm} 0.016 \\ 0.543 {\pm} 0.013 \end{array}$                                                                                                                         | $\begin{array}{c} 0.647 {\pm} 0.014 \\ 0.588 {\pm} 0.014 \\ 0.664 {\pm} 0.011 \\ 0.673 {\pm} 0.015 \\ 0.675 {\pm} 0.014 \\ 0.559 {\pm} 0.014 \\ 0.693 {\pm} 0.018 \\ 0.603 {\pm} 0.013 \\ 0.532 {\pm} 0.016 \end{array}$                                                                                                                               | $\begin{array}{c} 0.706 {\pm} 0.011 \\ 0.663 {\pm} 0.009 \\ 0.778 {\pm} 0.007 \\ 0.758 {\pm} 0.009 \\ 0.697 {\pm} 0.010 \\ 0.615 {\pm} 0.012 \\ 0.761 {\pm} 0.007 \\ 0.683 {\pm} 0.006 \\ 0.592 {\pm} 0.009 \end{array}$                                                                                                                                                                                |
| Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge<br>Road                                                                                                           | $\begin{array}{c} 0.625 {\pm} 0.013 \\ 0.594 {\pm} 0.014 \\ 0.715 {\pm} 0.011 \\ 0.694 {\pm} 0.014 \\ 0.674 {\pm} 0.015 \\ 0.584 {\pm} 0.016 \\ 0.685 {\pm} 0.013 \\ 0.624 {\pm} 0.014 \\ 0.564 {\pm} 0.014 \\ 0.564 {\pm} 0.018 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.664 {\pm} 0.014 \\ 0.614 {\pm} 0.013 \\ 0.695 {\pm} 0.013 \\ 0.723 {\pm} 0.013 \\ 0.645 {\pm} 0.013 \\ 0.567 {\pm} 0.015 \\ 0.684 {\pm} 0.021 \\ 0.632 {\pm} 0.015 \\ 0.547 {\pm} 0.017 \\ 0.615 {\pm} 0.015 \end{array}$                                                                                  | $\begin{array}{c} 0.659{\pm}0.012\\ 0.618{\pm}0.012\\ 0.702{\pm}0.016\\ 0.707{\pm}0.012\\ 0.658{\pm}0.016\\ 0.594{\pm}0.014\\ 0.705{\pm}0.023\\ 0.617{\pm}0.013\\ 0.568{\pm}0.013\\ 0.604{\pm}0.016\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.682 {\pm} 0.016 \\ 0.624 {\pm} 0.015 \\ 0.734 {\pm} 0.014 \\ 0.726 {\pm} 0.016 \\ 0.673 {\pm} 0.013 \\ 0.585 {\pm} 0.016 \\ 0.722 {\pm} 0.015 \\ 0.606 {\pm} 0.017 \\ 0.574 {\pm} 0.016 \\ 0.642 {\pm} 0.014 \end{array}$                                                                                  | $\begin{array}{c} 0.673{\pm}0.014\\ 0.613{\pm}0.014\\ 0.736{\pm}0.017\\ 0.714{\pm}0.020\\ 0.657{\pm}0.012\\ 0.583{\pm}0.014\\ 0.728{\pm}0.017\\ 0.625{\pm}0.015\\ 0.536{\pm}0.017\\ 0.633{\pm}0.020\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.625\pm0.014\\ 0.576\pm0.015\\ 0.684\pm0.016\\ 0.654\pm0.016\\ 0.671\pm0.016\\ 0.557\pm0.013\\ 0.675\pm0.013\\ 0.607\pm0.014\\ 0.530\pm0.014\\ 0.530\pm0.014\\ 0.610\pm0.017\\ \end{array}$                                                                                 | $\begin{array}{c} 0.642 {\pm} 0.016 \\ 0.597 {\pm} 0.016 \\ 0.673 {\pm} 0.013 \\ 0.668 {\pm} 0.017 \\ 0.663 {\pm} 0.013 \\ 0.563 {\pm} 0.018 \\ 0.687 {\pm} 0.017 \\ 0.611 {\pm} 0.016 \\ 0.543 {\pm} 0.013 \\ 0.606 {\pm} 0.012 \end{array}$                                                                                                    | $\begin{array}{c} 0.647\pm\!0.014\\ 0.588\pm\!0.014\\ 0.664\pm\!0.011\\ 0.673\pm\!0.015\\ 0.675\pm\!0.014\\ 0.559\pm\!0.014\\ 0.693\pm\!0.018\\ 0.603\pm\!0.013\\ 0.532\pm\!0.016\\ 0.515\pm\!0.017\\ \end{array}$                                                                                                                                     | $\begin{array}{c} 0.706 {\pm} 0.011 \\ 0.663 {\pm} 0.009 \\ 0.778 {\pm} 0.007 \\ 0.758 {\pm} 0.009 \\ 0.697 {\pm} 0.010 \\ 0.615 {\pm} 0.012 \\ 0.761 {\pm} 0.001 \\ 0.683 {\pm} 0.006 \\ 0.592 {\pm} 0.009 \\ 0.682 {\pm} 0.008 \end{array}$                                                                                                                                                           |
| Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge<br>Road<br>River                                                                                                  | $\begin{array}{c} 0.625 {\pm} 0.013 \\ 0.594 {\pm} 0.014 \\ 0.715 {\pm} 0.014 \\ 0.674 {\pm} 0.015 \\ 0.584 {\pm} 0.015 \\ 0.685 {\pm} 0.013 \\ 0.624 {\pm} 0.013 \\ 0.624 {\pm} 0.013 \\ 0.612 {\pm} 0.013 \\ 0.612 {\pm} 0.018 \\ 0.724 {\pm} 0.015 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.664 {\pm} 0.014 \\ 0.614 {\pm} 0.013 \\ 0.695 {\pm} 0.013 \\ 0.723 {\pm} 0.013 \\ 0.645 {\pm} 0.013 \\ 0.567 {\pm} 0.015 \\ 0.684 {\pm} 0.021 \\ 0.632 {\pm} 0.015 \\ 0.547 {\pm} 0.017 \\ 0.615 {\pm} 0.017 \\ 0.615 {\pm} 0.014 \\ \end{array}$                                                          | $\begin{array}{c} 0.659{\pm}0.012\\ 0.618{\pm}0.012\\ 0.722{\pm}0.016\\ 0.707{\pm}0.012\\ 0.658{\pm}0.016\\ 0.594{\pm}0.014\\ 0.705{\pm}0.023\\ 0.617{\pm}0.013\\ 0.604{\pm}0.013\\ 0.604{\pm}0.016\\ 0.721{\pm}0.016\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.682 {\pm} 0.016 \\ 0.624 {\pm} 0.015 \\ 0.734 {\pm} 0.015 \\ 0.726 {\pm} 0.016 \\ 0.673 {\pm} 0.013 \\ 0.585 {\pm} 0.016 \\ 0.722 {\pm} 0.015 \\ 0.606 {\pm} 0.017 \\ 0.574 {\pm} 0.016 \\ 0.642 {\pm} 0.014 \\ 0.718 {\pm} 0.017 \end{array}$                                                             | $\begin{array}{c} 0.673{\pm}0.014\\ 0.613{\pm}0.014\\ 0.736{\pm}0.017\\ 0.714{\pm}0.020\\ 0.657{\pm}0.012\\ 0.583{\pm}0.014\\ 0.728{\pm}0.017\\ 0.625{\pm}0.015\\ 0.536{\pm}0.017\\ 0.633{\pm}0.020\\ 0.715{\pm}0.013\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.625\pm0.014\\ 0.576\pm0.015\\ 0.684\pm0.014\\ 0.654\pm0.016\\ 0.671\pm0.016\\ 0.575\pm0.013\\ 0.607\pm0.013\\ 0.607\pm0.014\\ 0.530\pm0.014\\ 0.610\pm0.017\\ 0.675\pm0.015\\ \end{array}$                                                                                 | $\begin{array}{c} 0.642\pm0.016\\ 0.597\pm0.016\\ 0.673\pm0.013\\ 0.668\pm0.017\\ 0.663\pm0.013\\ 0.563\pm0.018\\ 0.687\pm0.018\\ 0.687\pm0.017\\ 0.611\pm0.016\\ 0.543\pm0.013\\ 0.606\pm0.012\\ 0.663\pm0.016\\ \end{array}$                                                                                                                   | $\begin{array}{c} 0.647\pm\!0.014\\ 0.588\pm\!0.014\\ 0.664\pm\!0.011\\ 0.673\pm\!0.015\\ 0.675\pm\!0.014\\ 0.559\pm\!0.014\\ 0.693\pm\!0.013\\ 0.632\pm\!0.013\\ 0.532\pm\!0.016\\ 0.615\pm\!0.017\\ 0.684\pm\!0.018\\ \end{array}$                                                                                                                   | $\begin{array}{c} 0.706 \pm 0.011 \\ 0.663 \pm 0.009 \\ 0.778 \pm 0.007 \\ 0.758 \pm 0.007 \\ 0.697 \pm 0.010 \\ 0.697 \pm 0.010 \\ 0.615 \pm 0.012 \\ 0.761 \pm 0.007 \\ 0.683 \pm 0.006 \\ 0.592 \pm 0.009 \\ 0.682 \pm 0.008 \\ 0.761 \pm 0.008 \end{array}$                                                                                                                                         |
| Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge<br>Road<br>River<br>Park                                                                                          | $\begin{array}{c} 0.625 {\pm} 0.013 \\ 0.594 {\pm} 0.014 \\ 0.715 {\pm} 0.011 \\ 0.694 {\pm} 0.014 \\ 0.674 {\pm} 0.015 \\ 0.884 {\pm} 0.016 \\ 0.685 {\pm} 0.013 \\ 0.624 {\pm} 0.014 \\ 0.564 {\pm} 0.015 \\ 0.612 {\pm} 0.015 \\ 0.674 {\pm} 0.015 \\ 0.724 {\pm} 0.015 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.664 {\pm} 0.014 \\ 0.614 {\pm} 0.013 \\ 0.695 {\pm} 0.013 \\ 0.723 {\pm} 0.013 \\ 0.645 {\pm} 0.013 \\ 0.645 {\pm} 0.013 \\ 0.664 {\pm} 0.021 \\ 0.632 {\pm} 0.015 \\ 0.634 {\pm} 0.017 \\ 0.615 {\pm} 0.017 \\ 0.615 {\pm} 0.017 \\ 0.663 {\pm} 0.017 \\ \end{array}$                                     | $\begin{array}{c} 0.659 {\pm} 0.012 \\ 0.618 {\pm} 0.012 \\ 0.722 {\pm} 0.016 \\ 0.707 {\pm} 0.012 \\ 0.658 {\pm} 0.016 \\ 0.705 {\pm} 0.023 \\ 0.617 {\pm} 0.013 \\ 0.568 {\pm} 0.013 \\ 0.604 {\pm} 0.013 \\ 0.721 {\pm} 0.016 \\ 0.721 {\pm} 0.018 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.682 {\pm} 0.016 \\ 0.624 {\pm} 0.015 \\ 0.734 {\pm} 0.014 \\ 0.726 {\pm} 0.016 \\ 0.673 {\pm} 0.013 \\ 0.585 {\pm} 0.016 \\ 0.722 {\pm} 0.015 \\ 0.606 {\pm} 0.017 \\ 0.574 {\pm} 0.016 \\ 0.642 {\pm} 0.014 \\ 0.718 {\pm} 0.017 \\ 0.684 {\pm} 0.014 \\ \end{array}$                                     | $\begin{array}{c} 0.673{\pm}0.014\\ 0.613{\pm}0.014\\ 0.736{\pm}0.017\\ 0.736{\pm}0.017\\ 0.714{\pm}0.020\\ 0.657{\pm}0.012\\ 0.728{\pm}0.012\\ 0.625{\pm}0.015\\ 0.633{\pm}0.017\\ 0.633{\pm}0.017\\ 0.633{\pm}0.013\\ 0.715{\pm}0.013\\ 0.684{\pm}0.016\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.625\pm0.014\\ 0.576\pm0.015\\ 0.684\pm0.014\\ 0.654\pm0.016\\ 0.657\pm0.013\\ 0.675\pm0.013\\ 0.675\pm0.013\\ 0.607\pm0.014\\ 0.530\pm0.014\\ 0.610\pm0.017\\ 0.675\pm0.015\\ 0.694\pm0.017\\ \end{array}$                                                                 | $\begin{array}{c} 0.642\pm 0.016\\ 0.597\pm 0.016\\ 0.673\pm 0.013\\ 0.668\pm 0.017\\ 0.663\pm 0.013\\ 0.563\pm 0.013\\ 0.687\pm 0.017\\ 0.611\pm 0.016\\ 0.543\pm 0.013\\ 0.606\pm 0.012\\ 0.663\pm 0.016\\ 0.682\pm 0.015\\ \end{array}$                                                                                                       | $\begin{array}{c} 0.647\pm\!0.014\\ 0.588\pm\!0.014\\ 0.664\pm\!0.011\\ 0.673\pm\!0.015\\ 0.675\pm\!0.014\\ 0.693\pm\!0.018\\ 0.603\pm\!0.018\\ 0.603\pm\!0.013\\ 0.532\pm\!0.016\\ 0.615\pm\!0.017\\ 0.684\pm\!0.018\\ 0.603\pm\!0.014\\ \end{array}$                                                                                                 | $\begin{array}{c} 0.706 \pm 0.011 \\ 0.663 \pm 0.009 \\ 0.778 \pm 0.007 \\ 0.778 \pm 0.007 \\ 0.697 \pm 0.010 \\ 0.697 \pm 0.010 \\ 0.615 \pm 0.012 \\ 0.761 \pm 0.007 \\ 0.683 \pm 0.006 \\ 0.592 \pm 0.009 \\ 0.682 \pm 0.008 \\ 0.761 \pm 0.008 \\ 0.709 \pm 0.007 \\ \end{array}$                                                                                                                   |
| Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge<br>Road<br>River<br>Park<br>Palace                                                                                | $\begin{array}{c} 0.625 {\pm} 0.013 \\ 0.594 {\pm} 0.014 \\ 0.715 {\pm} 0.011 \\ 0.694 {\pm} 0.014 \\ 0.674 {\pm} 0.015 \\ 0.584 {\pm} 0.013 \\ 0.624 {\pm} 0.013 \\ 0.624 {\pm} 0.014 \\ 0.564 {\pm} 0.015 \\ 0.612 {\pm} 0.018 \\ 0.724 {\pm} 0.015 \\ 0.674 {\pm} 0.015 \\ 0.624 {\pm} 0.011 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.664 {\pm} 0.014 \\ 0.614 {\pm} 0.013 \\ 0.695 {\pm} 0.013 \\ 0.723 {\pm} 0.013 \\ 0.645 {\pm} 0.013 \\ 0.567 {\pm} 0.015 \\ 0.632 {\pm} 0.015 \\ 0.632 {\pm} 0.015 \\ 0.547 {\pm} 0.017 \\ 0.615 {\pm} 0.015 \\ 0.714 {\pm} 0.014 \\ 0.633 {\pm} 0.023 \end{array}$                                        | $\begin{array}{c} 0.659{\pm}0.012\\ 0.618{\pm}0.012\\ 0.722{\pm}0.016\\ 0.707{\pm}0.012\\ 0.658{\pm}0.016\\ 0.594{\pm}0.014\\ 0.705{\pm}0.023\\ 0.617{\pm}0.013\\ 0.616{\pm}0.016\\ 0.721{\pm}0.016\\ 0.721{\pm}0.016\\ 0.690{\pm}0.018\\ 0.614{\pm}0.018\\ 0.614{\pm}0.018\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.682{\pm}0.016\\ 0.624{\pm}0.015\\ 0.724{\pm}0.015\\ 0.726{\pm}0.016\\ 0.726{\pm}0.013\\ 0.885{\pm}0.016\\ 0.722{\pm}0.015\\ 0.606{\pm}0.017\\ 0.574{\pm}0.016\\ 0.606{\pm}0.017\\ 0.574{\pm}0.014\\ 0.718{\pm}0.017\\ 0.684{\pm}0.014\\ 0.621{\pm}0.019\\ \end{array}$                                     | $\begin{array}{c} 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.73 {\pm} 0.014 \\ 0.73 {\pm} 0.017 \\ 0.714 {\pm} 0.020 \\ 0.657 {\pm} 0.012 \\ 0.83 {\pm} 0.014 \\ 0.728 {\pm} 0.017 \\ 0.625 {\pm} 0.015 \\ 0.536 {\pm} 0.017 \\ 0.633 {\pm} 0.020 \\ 0.71 {\pm} 0.013 \\ 0.684 {\pm} 0.017 \\ 0.635 {\pm} 0.017 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.625\pm0.014\\ 0.576\pm0.015\\ 0.684\pm0.016\\ 0.654\pm0.016\\ 0.657\pm0.013\\ 0.675\pm0.013\\ 0.607\pm0.013\\ 0.607\pm0.014\\ 0.530\pm0.014\\ 0.610\pm0.017\\ 0.675\pm0.015\\ 0.694\pm0.017\\ 0.596\pm0.016\\ \end{array}$                                                 | $\begin{array}{c} 0.642\pm 0.016\\ 0.597\pm 0.016\\ 0.673\pm 0.013\\ 0.668\pm 0.017\\ 0.668\pm 0.013\\ 0.563\pm 0.018\\ 0.687\pm 0.017\\ 0.611\pm 0.016\\ 0.543\pm 0.013\\ 0.606\pm 0.012\\ 0.662\pm 0.015\\ 0.602\pm 0.015\\ 0.602\pm 0.015\\ \end{array}$                                                                                      | $\begin{array}{c} 0.647{\pm}0.014\\ 0.588{\pm}0.014\\ 0.664{\pm}0.011\\ 0.664{\pm}0.015\\ 0.673{\pm}0.015\\ 0.673{\pm}0.014\\ 0.693{\pm}0.018\\ 0.559{\pm}0.014\\ 0.693{\pm}0.018\\ 0.532{\pm}0.016\\ 0.532{\pm}0.016\\ 0.615{\pm}0.017\\ 0.684{\pm}0.018\\ 0.683{\pm}0.014\\ 0.609{\pm}0.014\\ \end{array}$                                           | $\begin{array}{c} 0.706 \pm 0.011 \\ 0.663 \pm 0.009 \\ 0.778 \pm 0.007 \\ 0.758 \pm 0.007 \\ 0.697 \pm 0.010 \\ 0.615 \pm 0.010 \\ 0.615 \pm 0.010 \\ 0.633 \pm 0.006 \\ 0.592 \pm 0.009 \\ 0.682 \pm 0.009 \\ 0.682 \pm 0.008 \\ 0.761 \pm 0.008 \\ 0.709 \pm 0.007 \\ 0.683 \pm 0.010 \\ \end{array}$                                                                                                |
| Tall building       Residential       Intersection       Forest       Sea       Soccer field       Aircraft       Railway       Bridge       Road       River       Park       Palace       Factory                              | $\begin{array}{c} 0.625 {\pm} 0.013 \\ 0.594 {\pm} 0.014 \\ 0.715 {\pm} 0.011 \\ 0.694 {\pm} 0.014 \\ 0.674 {\pm} 0.015 \\ 0.884 {\pm} 0.016 \\ 0.885 {\pm} 0.013 \\ 0.624 {\pm} 0.014 \\ 0.564 {\pm} 0.014 \\ 0.612 {\pm} 0.018 \\ 0.724 {\pm} 0.015 \\ 0.674 {\pm} 0.015 \\ 0.612 {\pm} 0.011 \\ 0.614 {\pm} 0.015 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.664\pm 0.014\\ 0.614\pm 0.013\\ 0.695\pm 0.013\\ 0.723\pm 0.013\\ 0.645\pm 0.013\\ 0.567\pm 0.015\\ 0.584\pm 0.021\\ 0.632\pm 0.015\\ 0.512\pm 0.015\\ 0.714\pm 0.014\\ 0.663\pm 0.017\\ 0.631\pm 0.023\\ 0.608\pm 0.016\end{array}$                                                                       | $\begin{array}{c} 0.659 {\pm} 0.012 \\ 0.618 {\pm} 0.012 \\ 0.722 {\pm} 0.016 \\ 0.707 {\pm} 0.012 \\ 0.707 {\pm} 0.012 \\ 0.705 {\pm} 0.013 \\ 0.705 {\pm} 0.013 \\ 0.705 {\pm} 0.013 \\ 0.614 {\pm} 0.013 \\ 0.604 {\pm} 0.016 \\ 0.721 {\pm} 0.016 \\ 0.614 {\pm} 0.018 \\ 0.614 {\pm} 0.018 \\ 0.612 {\pm} 0.012 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.682{\pm}0.016\\ 0.624{\pm}0.015\\ 0.734{\pm}0.014\\ 0.726{\pm}0.016\\ 0.673{\pm}0.013\\ 0.585{\pm}0.016\\ 0.722{\pm}0.015\\ 0.506{\pm}0.017\\ 0.574{\pm}0.016\\ 0.642{\pm}0.014\\ 0.718{\pm}0.017\\ 0.684{\pm}0.014\\ 0.621{\pm}0.019\\ 0.607{\pm}0.017\end{array}$                                        | $\begin{array}{c} 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.73 {\pm} 0.017 \\ 0.73 {\pm} 0.017 \\ 0.71 {\pm} 0.012 \\ 0.583 {\pm} 0.014 \\ 0.728 {\pm} 0.015 \\ 0.354 {\pm} 0.015 \\ 0.354 {\pm} 0.015 \\ 0.633 {\pm} 0.020 \\ 0.715 {\pm} 0.013 \\ 0.633 {\pm} 0.017 \\ 0.635 {\pm} 0.017 \\ 0.635 {\pm} 0.017 \\ 0.614 {\pm} 0.015 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.625\pm0.014\\ 0.576\pm0.015\\ 0.684\pm0.014\\ 0.654\pm0.016\\ 0.657\pm0.013\\ 0.675\pm0.013\\ 0.675\pm0.013\\ 0.607\pm0.014\\ 0.510\pm0.017\\ 0.675\pm0.015\\ 0.694\pm0.017\\ 0.596\pm0.016\\ 0.603\pm0.017\\ \end{array}$                                                 | $\begin{array}{c} 0.642\pm 0.016\\ 0.597\pm 0.016\\ 0.673\pm 0.013\\ 0.668\pm 0.017\\ 0.668\pm 0.013\\ 0.563\pm 0.013\\ 0.563\pm 0.018\\ 0.687\pm 0.016\\ 0.687\pm 0.016\\ 0.606\pm 0.012\\ 0.6663\pm 0.016\\ 0.662\pm 0.015\\ 0.604\pm 0.015\\ 0.615\pm 0.013\\ \end{array}$                                                                    | $\begin{array}{c} 0.647{\pm}0.014\\ 0.588{\pm}0.014\\ 0.664{\pm}0.011\\ 0.664{\pm}0.015\\ 0.673{\pm}0.015\\ 0.673{\pm}0.014\\ 0.559{\pm}0.014\\ 0.693{\pm}0.013\\ 0.693{\pm}0.013\\ 0.632{\pm}0.013\\ 0.615{\pm}0.017\\ 0.684{\pm}0.018\\ 0.683{\pm}0.014\\ 0.609{\pm}0.014\\ 0.613{\pm}0.012\\ \end{array}$                                           | $\begin{array}{c} 0.706 \pm 0.011 \\ 0.663 \pm 0.009 \\ 0.778 \pm 0.007 \\ 0.778 \pm 0.009 \\ 0.697 \pm 0.010 \\ 0.697 \pm 0.012 \\ 0.761 \pm 0.007 \\ 0.683 \pm 0.006 \\ 0.592 \pm 0.009 \\ 0.682 \pm 0.008 \\ 0.761 \pm 0.008 \\ 0.709 \pm 0.007 \\ 0.685 \pm 0.010 \\ 0.665 \pm 0.008 \end{array}$                                                                                                   |
| Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge<br>Road<br>River<br>Park<br>Palace<br>Factory<br>Farmland                                                         | $\begin{array}{c} 0.625 {\pm} 0.013 \\ 0.594 {\pm} 0.014 \\ 0.715 {\pm} 0.011 \\ 0.694 {\pm} 0.014 \\ 0.674 {\pm} 0.015 \\ 0.884 {\pm} 0.015 \\ 0.685 {\pm} 0.013 \\ 0.624 {\pm} 0.014 \\ 0.564 {\pm} 0.013 \\ 0.612 {\pm} 0.018 \\ 0.724 {\pm} 0.015 \\ 0.674 {\pm} 0.015 \\ 0.624 {\pm} 0.015 \\ 0.624 {\pm} 0.015 \\ 0.634 {\pm} 0.015 \\ 0.614 {\pm} 0.015 \\ 0.594 {\pm} 0.014 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.664\pm 0.014\\ 0.614\pm 0.013\\ 0.695\pm 0.013\\ 0.723\pm 0.013\\ 0.645\pm 0.013\\ 0.567\pm 0.015\\ 0.584\pm 0.021\\ 0.632\pm 0.015\\ 0.547\pm 0.017\\ 0.615\pm 0.015\\ 0.714\pm 0.014\\ 0.663\pm 0.017\\ 0.631\pm 0.023\\ 0.608\pm 0.016\\ 0.592\pm 0.016\end{array}$                                     | $\begin{array}{c} 0.659 {\pm} 0.012 \\ 0.618 {\pm} 0.012 \\ 0.72 {\pm} 0.016 \\ 0.707 {\pm} 0.012 \\ 0.707 {\pm} 0.016 \\ 0.508 {\pm} 0.016 \\ 0.705 {\pm} 0.013 \\ 0.705 {\pm} 0.013 \\ 0.604 {\pm} 0.013 \\ 0.604 {\pm} 0.016 \\ 0.721 {\pm} 0.018 \\ 0.612 {\pm} 0.013 \\ 0.587 $ | $\begin{array}{c} 0.682{\pm}0.016\\ 0.624{\pm}0.015\\ 0.734{\pm}0.014\\ 0.726{\pm}0.016\\ 0.673{\pm}0.013\\ 0.782{\pm}0.016\\ 0.673{\pm}0.013\\ 0.722{\pm}0.015\\ 0.606{\pm}0.017\\ 0.574{\pm}0.016\\ 0.642{\pm}0.014\\ 0.612{\pm}0.014\\ 0.621{\pm}0.017\\ 0.664{\pm}0.017\\ 0.607{\pm}0.017\\ 0.612{\pm}0.016\end{array}$    | $\begin{array}{c} 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.736 {\pm} 0.017 \\ 0.714 {\pm} 0.020 \\ 0.657 {\pm} 0.012 \\ 0.657 {\pm} 0.012 \\ 0.728 {\pm} 0.017 \\ 0.625 {\pm} 0.015 \\ 0.336 {\pm} 0.017 \\ 0.633 {\pm} 0.020 \\ 0.715 {\pm} 0.013 \\ 0.684 {\pm} 0.016 \\ 0.635 {\pm} 0.017 \\ 0.614 {\pm} 0.015 \\ 0.617 {\pm} 0.014 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.625\pm0.014\\ 0.576\pm0.015\\ 0.684\pm0.014\\ 0.654\pm0.016\\ 0.657\pm0.013\\ 0.675\pm0.013\\ 0.675\pm0.013\\ 0.675\pm0.014\\ 0.530\pm0.014\\ 0.630\pm0.017\\ 0.675\pm0.015\\ 0.694\pm0.017\\ 0.596\pm0.016\\ 0.603\pm0.017\\ 0.585\pm0.013\\ \end{array}$                 | $\begin{array}{c} 0.642\pm 0.016\\ 0.597\pm 0.016\\ 0.673\pm 0.013\\ 0.668\pm 0.017\\ 0.668\pm 0.013\\ 0.568\pm 0.013\\ 0.563\pm 0.018\\ 0.687\pm 0.017\\ 0.611\pm 0.016\\ 0.543\pm 0.013\\ 0.663\pm 0.016\\ 0.663\pm 0.015\\ 0.663\pm 0.015\\ 0.615\pm 0.013\\ 0.615\pm 0.013\\ \end{array}$                                                    | $\begin{array}{c} 0.647 {\pm} 0.014 \\ 0.588 {\pm} 0.014 \\ 0.664 {\pm} 0.011 \\ 0.673 {\pm} 0.015 \\ 0.673 {\pm} 0.014 \\ 0.673 {\pm} 0.013 \\ 0.693 {\pm} 0.013 \\ 0.693 {\pm} 0.013 \\ 0.632 {\pm} 0.016 \\ 0.613 {\pm} 0.017 \\ 0.684 {\pm} 0.014 \\ 0.684 {\pm} 0.014 \\ 0.693 {\pm} 0.014 \\ 0.613 {\pm} 0.012 \\ 0.613 {\pm} 0.012 \end{array}$ | $\begin{array}{c} 0.706 \pm 0.011 \\ 0.663 \pm 0.009 \\ 0.778 \pm 0.007 \\ 0.778 \pm 0.007 \\ 0.758 \pm 0.009 \\ 0.697 \pm 0.010 \\ 0.615 \pm 0.012 \\ 0.761 \pm 0.007 \\ 0.683 \pm 0.006 \\ 0.592 \pm 0.008 \\ 0.792 \pm 0.008 \\ 0.709 \pm 0.007 \\ 0.685 \pm 0.010 \\ 0.665 \pm 0.008 \\ 0.622 \pm 0.008 \\ \end{array}$                                                                             |
| Tall building       Residential       Intersection       Forest       Sea       Soccer field       Aircraft       Railway       Bridge       Road       River       Park       Palace       Factory       Farmland       Vehicle | $\begin{array}{c} 0.625 {\pm} 0.013 \\ 0.594 {\pm} 0.014 \\ 0.715 {\pm} 0.011 \\ 0.694 {\pm} 0.014 \\ 0.674 {\pm} 0.015 \\ 0.884 {\pm} 0.015 \\ 0.685 {\pm} 0.013 \\ 0.624 {\pm} 0.014 \\ 0.564 {\pm} 0.015 \\ 0.612 {\pm} 0.015 \\ 0.672 {\pm} 0.015 \\ 0.674 {\pm} 0.015 \\ 0.614 {\pm} 0.015 \\ 0.594 {\pm} 0.011 \\ 0.654 {\pm} 0.014 \\ 0.554 {\pm} 0.014 \\ 0.554 {\pm} 0.014 \\ 0.554 {\pm} 0.016 \\ 0.554$ | $\begin{array}{c} 0.664\pm 0.014\\ 0.614\pm 0.013\\ 0.69\pm 0.013\\ 0.723\pm 0.013\\ 0.645\pm 0.013\\ 0.645\pm 0.015\\ 0.645\pm 0.015\\ 0.684\pm 0.021\\ 0.632\pm 0.015\\ 0.547\pm 0.017\\ 0.615\pm 0.015\\ 0.714\pm 0.014\\ 0.663\pm 0.017\\ 0.631\pm 0.023\\ 0.608\pm 0.016\\ 0.592\pm 0.016\\ 0.585\pm 0.016\\ \end{array}$ | $\begin{array}{c} 0.659 {\pm} 0.012 \\ 0.618 {\pm} 0.012 \\ 0.722 {\pm} 0.016 \\ 0.707 {\pm} 0.012 \\ 0.707 {\pm} 0.012 \\ 0.658 {\pm} 0.016 \\ 0.594 {\pm} 0.014 \\ 0.705 {\pm} 0.023 \\ 0.617 {\pm} 0.013 \\ 0.617 {\pm} 0.013 \\ 0.610 {\pm} 0.016 \\ 0.721 {\pm} 0.016 \\ 0.610 {\pm} 0.016 \\ 0.610 {\pm} 0.018 \\ 0.614 {\pm} 0.018 \\ 0.612 {\pm} 0.012 \\ 0.587 {\pm} 0.013 \\ 0.675 {\pm} 0.017 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.682 \pm 0.016\\ 0.624 \pm 0.015\\ 0.734 \pm 0.014\\ 0.726 \pm 0.016\\ 0.673 \pm 0.013\\ 0.858 \pm 0.016\\ 0.722 \pm 0.015\\ 0.606 \pm 0.017\\ 0.574 \pm 0.016\\ 0.642 \pm 0.014\\ 0.718 \pm 0.017\\ 0.684 \pm 0.014\\ 0.684 \pm 0.014\\ 0.621 \pm 0.019\\ 0.612 \pm 0.016\\ 0.646 \pm 0.014\\ \end{array}$ | $\begin{array}{c} 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.736 {\pm} 0.017 \\ 0.736 {\pm} 0.017 \\ 0.714 {\pm} 0.020 \\ 0.657 {\pm} 0.012 \\ 0.833 {\pm} 0.014 \\ 0.728 {\pm} 0.017 \\ 0.625 {\pm} 0.017 \\ 0.633 {\pm} 0.020 \\ 0.715 {\pm} 0.013 \\ 0.634 {\pm} 0.017 \\ 0.634 {\pm} 0.017 \\ 0.634 {\pm} 0.017 \\ 0.617 {\pm} 0.014 \\ 0.686 {\pm} 0.016 \\ 0.675 {\pm} 0.014 \\ 0.686 {\pm} 0.016 \\ 0.686$ | $\begin{array}{c} 0.625\pm0.014\\ 0.576\pm0.015\\ 0.684\pm0.016\\ 0.654\pm0.016\\ 0.657\pm0.013\\ 0.675\pm0.013\\ 0.675\pm0.013\\ 0.607\pm0.014\\ 0.530\pm0.014\\ 0.610\pm0.017\\ 0.675\pm0.015\\ 0.694\pm0.017\\ 0.596\pm0.016\\ 0.603\pm0.017\\ 0.585\pm0.013\\ 0.639\pm0.014\\ \end{array}$ | $\begin{array}{c} 0.642\pm 0.016\\ 0.597\pm 0.016\\ 0.673\pm 0.013\\ 0.668\pm 0.017\\ 0.668\pm 0.013\\ 0.568\pm 0.013\\ 0.568\pm 0.013\\ 0.687\pm 0.013\\ 0.611\pm 0.016\\ 0.543\pm 0.013\\ 0.606\pm 0.012\\ 0.663\pm 0.013\\ 0.682\pm 0.015\\ 0.682\pm 0.015\\ 0.654\pm 0.017\\ 0.559\pm 0.012\\ 0.559\pm 0.012\\ 0.554\pm 0.017\\ \end{array}$ | $\begin{array}{c} 0.647\pm 0.014\\ 0.588\pm 0.014\\ 0.664\pm 0.011\\ 0.673\pm 0.015\\ 0.675\pm 0.014\\ 0.673\pm 0.014\\ 0.693\pm 0.013\\ 0.603\pm 0.013\\ 0.532\pm 0.016\\ 0.615\pm 0.017\\ 0.684\pm 0.018\\ 0.683\pm 0.014\\ 0.609\pm 0.014\\ 0.603\pm 0.014\\ 0.603\pm 0.015\\ 0.673\pm 0.016\end{array}$                                            | $\begin{array}{c} 0.706 \pm 0.011 \\ 0.663 \pm 0.009 \\ 0.778 \pm 0.007 \\ 0.778 \pm 0.007 \\ 0.758 \pm 0.009 \\ 0.697 \pm 0.010 \\ 0.697 \pm 0.010 \\ 0.615 \pm 0.012 \\ 0.761 \pm 0.007 \\ 0.683 \pm 0.006 \\ 0.592 \pm 0.009 \\ 0.682 \pm 0.008 \\ 0.761 \pm 0.008 \\ 0.709 \pm 0.007 \\ 0.685 \pm 0.010 \\ 0.665 \pm 0.008 \\ 0.622 \pm 0.008 \\ 0.709 \pm 0.008 \\ 0.709 \pm 0.008 \\ \end{array}$ |

TABLE 1. Accuracies with standard errors of the 18 categorization models (We refeat each experiment 20 times and report the average accuracies and each bold number represents the best result).

discover the tiny but discriminative regions inside each lowresolution aerial photo. Second, our method can flexibly incorporate the prior knowledge of high-resolution aerial photos. Contrastively, the seven generic object recognition models cannot encode such information. Third, by leveraging our CPKP-based feature selection, our method can dynamically abandon those indiscriminative regions. But the seven generic object recognition models do not have this function. 3) The three scene categorization models perform unsatisfactorily on low-resolution aerial photos. This is because they deeply and implicitly learn a descriptive set of scene-aware semantic categories, such as "birds" and "tables", which infrequently appear on our low-resolution aerial photo set. Moreover, the three categorization methods can successfully handle sceneries captured at horizontal view angles. But our collected low-resolution aerial photos are captured at overhead view angles. Apparently, such view angle gap will decrease the categorization accuracy. To quantitively analyze the importance of cross-resolution perceptual experiences transfer (CPET), we set the number of low-resolution aerial photo to zero. This means that no perceptual information from low-resolution aerial photos is utilized. We notice that the average categorization accuracy is reduced by 5.443%, which clearly shows the importance of cross-resolution perceptual experiences transfer.

It is generally acknowledged that time consumption is a key criterion reflecting the performance of a categorization model. Herein, we report the training and testing time of the aforementioned 18 categorization models. As shown in Table 2, during training, only two baseline categorization 
 TABLE 2. Training/testing time of the 18 categorizamon monels (Exch bold nimben represevts the best restut).

|          | [14]   | 15                | 16               | [17]          | [18]          | 19           | [20]         | SPP-CNN        | CleanNet       |
|----------|--------|-------------------|------------------|---------------|---------------|--------------|--------------|----------------|----------------|
| Train    | 31h7m  | 43h14m            | 52h21m           | 39h23m        | 36h43m        | 46h13m       | 41h32m       | 26h33m         | 38h22m         |
| Test     | 1.143s | 1.774s            | 1.846s           | 1.564s        | 2.437s        | 1.463s       | 1.675s       | 0.893s         | 1.660s         |
| Category | DED    |                   |                  |               |               |              |              |                |                |
| Category | DFB    | ML-CRNN           | ML-GCN           | SSG           | MLT           | 13           | [26]         | 28             | Ours           |
| Train    | 40h23m | ML-CRNN<br>25h25m | ML-GCN<br>26h14m | SSG<br>44h16m | MLT<br>31h16m | 13<br>32h14m | 26<br>35h44m | [28]<br>32h12m | Ours<br>27h21m |

models outperform our pipeline. This is because the architectures of [29] and [33] are much simpler than ours. Simultaneously, we observe that the per-category accuracies of [29] and [33] are both about 5% lower than ours. For the testing time comparison, our method can be conducted at a much faster speed than all the baseline methods.

### **B. PARAMETER ANALYSIS**

We evaluate high-resolution aerial photo categorization by changing the polynomial kernel degree Q and the target dimensionality V for cross-resolution perceptual experiences transfer-based feature selection. We first fix V and tune Q from one to five and report the high-resolution aerial photo categorization accuracy. We observe that the highest accuracy is achieved when Q = 2. Meanwhile, we observe that the candidate feature number increases to 321402081 when Q = 5. Based on these observations, we prone to choose a small Q in practice. Subsequently, we fix Q at Q = 2 tune V from one to 100. Noticeably, the highest categorization accuracy is achieved when V = 15. This demonstrates that a succinct set of high quality features is sufficiently descriptive for distinguishing different high-resolution aerial photo categories.

### **V. CONCLUSION**

Recognizing aerial images is an indispensable application in remote sensing [21], [22], [23], [24], [25]. We proposed a novel cross-resolution-enhanced high-resolution aerial photo categorization pipeline, wherein deep perceptual features are extracted and refined by propagating the prior knowledge of low-resolution aerial photos into high-resolution ones. Sufficient experiments have shown the competitiveness of our proposed method.

#### REFERENCES

- M. Y. Yang, W. Liao, X. Li, and B. Rosenhahn, "Deep learning for vehicle detection in aerial images," in *Proc. 25th IEEE Int. Conf. Image Process.* (*ICIP*), Oct. 2018, pp. 3079–3083.
- [2] F. van Ede, S. R. Chekroud, and A. C. Nobre, "Human gaze tracks the focusing of attention within the internal space of visual working memory," *J. Vis.*, vol. 19, no. 10, p. 133b, Sep. 2019.
- [3] C. Wang, X. Bai, S. Wang, J. Zhou, and P. Ren, "Multiscale visual attention networks for object detection in VHR remote sensing images," *IEEE Geosci. Remote Sens. Lett.*, vol. 16, no. 2, pp. 310–314, Feb. 2019.
- [4] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain adaptation via transfer component analysis," *IEEE Trans. Neural Netw.*, vol. 22, no. 2, pp. 199–210, Feb. 2011.
- [5] W. Cai and Z. Wei, "Remote sensing image classification based on a crossattention mechanism and graph convolution," *IEEE Geosci. Remote Sens. Lett.*, vol. 19, pp. 1–5, 2022.
- [6] L. Zhang, C. Chen, J. Bu, D. Cai, X. He, and T. S. Huang, "Active learning based on locally linear reconstruction," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 33, no. 10, pp. 2026–2038, Oct. 2011.
- [7] M.-M. Cheng, Y. Liu, W.-Y. Lin, Z. Zhang, P. L. Rosin, and P. H. S. Torr, "Bing: Binarized normed gradients for objectness estimation at 300fps," *Comput. Vis. Media*, vol. 5, no. 1, pp. 3–20, Mar. 2019.
- [8] Y. Wang, V. I. Morariu, and L. S. Davis, "Learning a discriminative filter bank within a CNN for fine-grained recognition," in *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.*, Jun. 2018, pp. 4148–4157.
- [9] Y. Yu, X. Yang, J. Li, and X. Gao, "Object detection for aerial images with feature enhancement and soft label assignment," *IEEE Trans. Geosci. Remote Sens.*, vol. 60, 2022, Art. no. 5624216.
- [10] J. Wang, F. Li, and H. Bi, "Gaussian focal loss: Learning distribution polarized angle prediction for rotated object detection in aerial images," *IEEE Trans. Geosci. Remote Sens.*, vol. 60, 2022, Art. no. 4707013.
- [11] K.-H. Lee, X. He, L. Zhang, and L. Yang, "CleanNet: Transfer learning for scalable image classifier training with label noise," in *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.*, Jun. 2018, pp. 5447–5456.
- [12] A. Caglayan and A. B. Can, "Exploiting multi-layer features using a CNN-RNN approach for RGB-D object recognition," in *Proc. ECCV Workshops*, 2018, pp. 1–8.
- [13] G. Mesnil, S. Rifai, A. Bordes, X. Glorot, Y. Bengio, and P. Vincent, "Unsupervised learning of semantics of object detections for scene categorizations," in *Proc. PRAM*, 2015, pp. 22–41.
- [14] C. Kyrkou and T. Theocharides, "EmergencyNet: Efficient aerial image classification for drone-based emergency monitoring using atrous convolutional feature fusion," *IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.*, vol. 13, pp. 1687–1699, 2020.
- [15] C. Kyrkou and T. Theocharides, "Deep-learning-based aerial image classification for emergency response applications using unmanned aerial vehicles," in *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW)*, Jun. 2019, pp. 517–525.
- [16] Y. Hua, S. Lobry, L. Mou, D. Tuia, and X. X. Zhu, "Learning multi-label aerial image classification under label noise: A regularization approach using word embeddings," in *Proc. IEEE Int. Geosci. Remote Sens. Symp.* (*IGARSS*), Sep. 2020, pp. 525–528.
- [17] Y. Hua, L. Mou, and X. X. Zhu, "Multi-label aerial image classification using a bidirectional class-wise attention network," in *Proc. Joint Urban Remote Sens. Event (JURSE)*, May 2019, pp. 1–4.
- [18] M. D. Pritt and G. Chern, "Satellite image classification with deep learning," 2020, arXiv:2010.06497.
- [19] H. Sun, Y. Lin, Q. Zou, S. Song, J. Fang, and H. Yu, "Convolutional neural networks based remote sensing scene classification under clear and cloudy environments," in *Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops* (*ICCVW*), Oct. 2021, pp. 713–720.

- [20] S. Song, H. Yu, Z. Miao, Q. Zhang, Y. Lin, and S. Wang, "Domain adaptation for convolutional neural networks-based remote sensing scene classification," *IEEE Geosci. Remote Sens. Lett.*, vol. 16, no. 8, pp. 1324–1328, Aug. 2019.
- [21] W. Mu and B. Liu, "Voice activity detection optimized by adaptive attention span transformer," *IEEE Access*, vol. 11, pp. 31238–31243, 2023.
- [22] Z. He and Z. Xiong, "Research on pattern matching of dynamic sustainable procurement decision-making for agricultural machinery equipment parts," *IEEE Access*, vol. 11, pp. 1–17, 2023.
- [23] Y. Shimizu, "Efficiency optimization design that considers control of interior permanent magnet synchronous motors based on machine learning for automotive application," *IEEE Access*, vol. 11, pp. 41–49, 2023.
- [24] H. Zhang, C. Ma, Z. Jiang, and J. Lian, "Image caption generation using contextual information fusion with Bi-LSTM-s," *IEEE Access*, vol. 11, pp. 134–143, 2023.
- [25] V. Damminsed, W. Panup, and R. Wangkeeree, "Laplacian twin support vector machine with pinball loss for semi-supervised classification," *IEEE Access*, vol. 11, pp. 31399–31416, 2023.
- [26] Y. Li, M. Dixit, and N. Vasconcelos, "Deep scene image classification with the MFAFVNet," in *Proc. IEEE Int. Conf. Comput. Vis. (ICCV)*, Oct. 2017, pp. 5757–5765.
- [27] D. Hong, L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, and B. Zhang, "More diverse means better: Multimodal deep learning meets remotesensing imagery classification," *IEEE Trans. Geosci. Remote Sens.*, vol. 59, no. 5, pp. 4340–4354, May 2021.
- [28] Y. Li, M. Dixit, and N. Vasconcelos, "Deep scene image classification with the MFAFVNet," in *Proc. ICCV*, 2017, pp. 5746–5754.
- [29] Z.-M. Chen, X.-S. Wei, P. Wang, and Y. Guo, "Multi-label image recognition with graph convolutional networks," in *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, Jun. 2019, pp. 5172–5181.
- [30] T. Chen, M. Xu, X. Hui, H. Wu, and L. Lin, "Learning semanticspecific graph representation for multi-label image recognition," in *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, Oct. 2019, pp. 522–531.
- [31] J. Lanchantin, T. Wang, V. Ordonez, and Y. Qi, "General multi-label image classification with transformers," in *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, Jun. 2021, pp. 16473–16483.
- [32] R. Diestel, Graph Theory. Springer-Velag, 2005.
- [33] K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 37, no. 9, pp. 1904–1916, Sep. 2015.
- [34] V. Chalavadi, J. Prudviraj, R. Datla, C. S. Babu, and K. C. Mohan, "mSODANet: A network for multi-scale object detection in aerial images using hierarchical dilated convolutions," *Pattern Recognit.*, vol. 126, Jun. 2022, Art. no. 108548.
- [35] L. Zhang, Z. Pan, and L. Shao, "Semi-supervised perception augmentation for aerial photo topologies understanding," *IEEE Trans. Image Process.*, vol. 30, pp. 7803–7814, 2021.
- [36] G. Cheng, C. Ma, P. Zhou, X. Yao, and J. Han, "Scene classification of high resolution remote sensing images using convolutional neural networks," in *Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS)*, Jul. 2016, pp. 767–770.
- [37] Ö. Akar, "Mapping land use with using rotation forest algorithm from UAV images," *Eur. J. Remote Sens.*, vol. 50, no. 1, pp. 269–279, Jan. 2017.
- [38] M. I. Sameen, B. Pradhan, and O. S. Aziz, "Classification of very high resolution aerial photos using spectral-spatial convolutional neural networks," *J. Sensors*, vol. 2018, Jun. 2018, Art. no. 7195432.
- [39] D. Costea and M. Leordeanu, "Aerial image geolocalization from recognition and matching of roads and intersections," 2016, arXiv:1605.08323.
- [40] Q. Gu, Z. Li, and J. Han, "Generalized Fisher score for feature selection," in *Proc. UAI*, 2011.

**SIDA LI** is currently a Faculty Member with Jinhua Polytechnic. His research interests include machine learning, computer vision, and image processing.

**YE LIU** is currently a Professor with the College of Computer Sciences, Zhejiang University, Hangzhou, China. His research interests include visual modeling and image processing.