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ABSTRACT Accurate Channel State Information (CSI) is critical for maximizing the throughput of
massive Multi-Input Multi-Output (mMIMO) systems. Due to the environment dynamics and user mobility,
CSI aging is a major challenge to achieving the large throughput of mMIMO promised by theory. CSI
prediction can be used to overcome this without increasing the signaling overhead. Motivated by the
anticipated native support for Artificial Intelligence (AI) in the fifth generation and beyond cellular standards,
we propose deep learning CSI prediction solutions based on 3-Dimensional (3D) Complex Convolutional
Neural Networks (CCNN). These solutions provide improved capabilities for capturing temporal and spatial
correlations, enhancing CSI prediction performance. In particular, they utilize the angle delay decomposition
of previously observed CSI to predict the future one. In one architecture, the network, dubbed CSI
PredictionNetwork (CSI-PNet), uses small kernels with circular padding to efficiently capture the correlation
between propagation paths in the angle domain. This architecture can be further improved by the use of an
attention-like model to vary the weights and enhance prediction performance adaptively. We also propose
methods to enhance robustness to noise and time and frequency offsets. We tested these solutions using
3GPP-compatible simulations and field measurements in a commercial network. Our solutions demonstrate
stable performance and significantly outperform several benchmarks, especially at low and medium speeds.
They strike a balance between performance and architecture complexity, indicating suitability for actual
implementation.

INDEX TERMS Artificial intelligence, channel state information, CSI aging, MIMO, prediction, 6G.

I. INTRODUCTION
Massive Multi-Input Multi-Output (mMIMO) is a core
technology to improve spectral efficiency and meet the
throughput demands in fifth generation (5G) and sixth
generation (6G) mobile networks [1]. The performance of
mMIMO depends on the availability of accurate Channel
State Information (CSI), e.g., for precoding [2], [3]. Typi-
cally, channel training using dedicated pilot transmission is
needed for CSI estimation. Acquiring the CSI in mMIMO
is challenging as it comes with additional overhead and
energy costs, which usually scale with the number of User
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Equipments (UE) and/or the number of Base-Station (BS)
antenna elements. The training should be repeated frequently
when the wireless channel is time-varying, especially when
the UEs are highly mobile. Otherwise, CSI becomes outdated
due to the delay between the time of the estimate and the
actual use. The problem is aggravated in Frequency Division
Duplex (FDD) systems, where channel reciprocity does not
hold due to the large separation between the uplink and the
downlink frequencies. In such a case, the training process,
along with signal feedback, might be needed for the uplink
and the downlink, increasing the overhead and the delay.
As a result, conventional methods to acquire the CSI for
largeMIMO systems result in lowered spectral efficiency and
degradation of the overall system performance.
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CSI prediction can be used to enhance performance
and mitigate the limitation of conventional CSI acquisition
techniques. For instance, the BS or the UE may utilize
the previous channel observations to predict the future
CSI, thus reducing the impact of processing and feedback
delays. CSI prediction is one of the classical problems
in wireless communication, and analytical techniques such
as autoregression [4], [5], polynomial extrapolation [6],
prediction based on high-resolution parameters estimation
[7], [8], [9], and others have been suggested [10]. How-
ever, such analytical models inherently rely on channel
models that may not reflect the complexity of the channel
evolution.

Machine learning (ML) has recently emerged as a powerful
data-driven framework to capture complex relations between
observations and target quantities. Recent studies show that
ML can be used to enhance different aspects of wireless
communications systems [11], [12]. Thus it is envisioned that
5G-Advanced and 6G systems will provide native AI support
[13], [14]. Due to its high impact, ML-based CSI prediction
has been explored in the literature (see Sec. I-A) and is
being actively discussed in the Third Generation Partnership
Project (3GPP), the main standardization organization for
cellular systems, as one possible application of AI-aided
communication [13]. In this paper, we propose CSI prediction
solutions using deep Neural Network (NN) architectures
that efficiently utilize the physical characteristics of the
propagation channels for improved CSI prediction.

In this paper, we introduce the CSI Prediction Network
(CSI-PNet), which is based on a Complex-valued 3D
Convolutional Neural Network (3D-CCNN) architecture that
incorporates three key technologies. First, the network uses a
Complex-valued Neural Network (CvNN), i.e., utilizes com-
plex weights to jointly process the real and imaginary parts
of the CSI signal. This approach offers a more natural way to
handle complex input values than splitting/stacking the real
and imaginary components. Second, the network employs
the angle-delay channel representation of the CSI, which
can (roughly) help in sparsifying the CSI representation and
differentiating between the different propagation clusters and
paths. Third, the network utilizes a 3D-CNN with circular
padding, which facilitates a weight-sharing mechanism and
reduces the number of trainable parameters in the network
while capturing the impact of the local correlation between
paths with small kernels. Numerous earlier studies (e.g., [3],
[4], [15], [16], [17]) have confirmed that the correlation
between the different clusters diminishes as the delay and/or
angle separation increases, thus constraining the correlation
to a small region in the angle-delay domain. The circular
padding preserves the paths’ relative relations throughout the
network. As an enhancement, we introduce the Adaptive CSI-
PNet (ACSI-PNet), which uses an additional 3D-CCNN to
generate adaptive weights based on previous observations.
This mechanism can be viewed as a temporal attention
layer. Both solutions employ skip-connections to enhance
learnability and accelerate convergence.

In addition, we propose structural and preprocessing
enhancements to combat the impact of practical impairments,
such as noise, and Timing- and Frequency-Offset (TFO).
Specifically, the CSI-PNet architecture can be used as a
denoiser that boosts the Signal to Noise Ratio (SNR).
This simplifies the training process for the CSI prediction
solutions. For the TFO, a processing step is used to reduce
their impact. Finally, we study the performance of the
proposedmethods against several benchmarks, using datasets
from 3GPP-based system-level simulations as well as field
measurements. In the simulation dataset, we observed that
the CSI-PNet provides considerable gains at low and medium
speeds, where the path correlation can be significant. In the
field measurement dataset, the proposed methods outperform
all benchmarks. In this dataset, we observed that enhanced
preprocessing is especially important.

A. PRIOR WORK
1) TEMPORAL CSI PREDICTION
Feedforward NN and Recurrent NN (RNN) have been
investigated for channel prediction for a long time [18].
Early works, such as [19] and [20], consider narrow-band
single antenna systems, where [19] uses RNN and [20] uses
CvNN. A recent work, [21], compares the performance of a
Fully Connected NN (FCN)-based AI solution to the Vector
Kalman Filter (VKF) in a narrow-band system. The authors
observe that the performance of the two is comparable.

Recently, there has been an increased interest in AI-based
CSI prediction in wide-band MIMO systems. For instance,
[22], [23], and [24] propose using RNNs based solutions.
Reference [25] uses CNN to identify the channel variation
patterns, then adopts an AutoregRession Model (ARM) or
RNN to predict the CSI. In [26], the authors propose a
hybrid network model that uses CNNs to extract a compact
representation of the CSI, which can be then used as an input
to RNN for CSI prediction. In [27], the authors use a deep
3D-CNN with residual connection network architecture to
predict the CSI. However, these studies, among others, track
the channel in the space-frequency domain, which does not
take full advantage of the sparsity and, more importantly,
do not utilize the reduced Doppler spread in angle-delay
domain,1 thus making the CSI prediction harder. As we
discuss in Sec. III-A, the angle-delay domain representation
is a natural representation of a multi-path environment,
inherently sparser, and ensures that the correlation of the
channel entries is reduced to the entries (paths) in the vicinity
of each other.

In a recent work, [29] addresses the problem of multi-step
CSI prediction using a transformer-based network. The
considered system model utilizes a combiner matrix based
on the strongest Discrete Fourier Transform (DFT) beams
for a Uniform Linear antenna Array (ULA) at the BS. Thus
the CSI prediction can be assumed to be in the angle domain

1Note that sparsity alone might not always be advantageous as several
popular ML models may struggle with sparse data, e.g., [28].
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of an Orthogonal Frequency Division Multiplexing (OFDM)
MIMO system. The selection of the strongest beams is based
on prior full beam sweeping and relative stationarity of the
angle of arrival/departure. However, [29] considers a narrow-
band system. In addition, transformers can be challenging to
scale, train and store. In another work, [16] proposes amethod
based on the SNR to identify the significant propagation
paths in the angle-delay domain, which are then fed to a
CvNN for a per-path prediction. However, unlike our work,
the authors use an FCN network structure to process the pre-
selected paths. Although path selection has some advantages,
such as filtering gain and restricting the learning process to
strong paths, it has several potential drawbacks. First, with
path pre-selection, the relative path information is lost at
the input of the ML model. Second, the Diffuse Multipath
Components (DMC), which carry a significant percentage
of the overall signal energy, are typically difficult to capture
with thresholding techniques [30]. Third, path identification
is also sensitive to antenna array model mismatch and the
angle-delay mapping process. Lastly, the method in [16]
depends on the accuracy and the stability of the SNR
estimates. Our proposal efficiently utilizes all the paths in the
channel while maintaining their neighborhood information.
However, it is worth mentioning that per-path prediction does
show more gains in the simulation setup at high speeds at the
possible cost of the above aspects.

Finally, different from the above works, except for [24],
we validate the performance of the proposed solution using
a field dataset. In contrast to [24], the data is collected in
a commercial network, which is typically impacted by real
world impairments, such as noise and TFO.

2) CSI PREDICTION WITH ONLINE TUNING
There are a number of recent AI solutions that focus on
enabling online weight updates. For instance, [31] proposes
a CvNN network for per-path CSI prediction and introduces
regularization when updating of the CvNN weights. In [25],
the authors propose a temporal frame structure for updating
the network. In [32], a meta-learning solution is proposed
that permits a fast fine-tuning process in new environments.
Although updating the networks ‘‘on-the-fly’’ is interesting
and might have a significant future impact, the anticipated
signaling overhead and processing load make the real-time
model update very challenging in the current and near-future
systems.2 Thus, we do not focus on this aspect, despite the
fact that the CSI-PNet is designed in a modular fashion that
can be well suited for such implementations.

3) CSI PREDICTION WITH SIDE INFORMATION
In another set of works, side information is used to
enhance the CSI prediction. For instance, [33] uses location,
temperature, weather, and CSI history to predict the CSI
values with CNN and Long Short-Term Memory (LSTM)

2In addition, the fine-tuning process requires support and maturity in the
standards, which could take time to be reached.

networks. In [34], the authors propose a multimodal learning
framework to leverage data such as user location along with
a partially observed CSI for channel prediction. While using
side information can enhance the prediction, the availability
of such information is not always guaranteed. Thus, this
paper focuses on the ‘‘classical’’ temporal CSI prediction
with observable CSI history.

4) VARIATIONS OF CSI PREDICTION
In the literature, we have observed that the ‘‘CSI prediction’’
can sometimes be used to refer to frequency extrapolation
in FDD system [35], CSI compression for CSI feedback,
or CSI spatial prediction for given antenna or locations [36].
We emphasize that the goal of this work is temporal CSI
prediction.While one can draw some similarities between the
temporal CSI prediction and other works, their goals, system
setup, and possibly the evaluation metrics are different.
Furthermore, even for temporal CSI prediction, different
papers can have different goals [37]. For instance, some
works focus on the CSI amplitude and/or statistics, e.g., [38],
or only some large-scale parameters, such as the path-loss
variations [39]. We emphasize that our goal is to predict
the small-scale fading, more precisely, the instantaneous
complex CSI.

B. CONTRIBUTION AND PAPER STRUCTURE
This work aims to address the temporal small-scale CSI
prediction in a wide-band MIMO system. The CSI prediction
is performed in the angle-delay domain. The contribution of
this work can be summarized as follows:

• We propose NN structures that can exploit the tempo-
ral and spatial correlation between propagation paths
with varying model complexities (number of trainable
parameters and Floating Points Operations Per Second
(FLOPS)).3 The designs allow the networks to capture
such relations, especially at low to medium speeds when
the impact of correlation is prominent.

• The proposed networks use 3D-CCNN and operate
on the whole CSI realization resulting in a relatively
small number of parameters while being robust to some
preprocessing or model mismatch.

• We suggest further enhancements, including using
the proposed architectures as denoiser before CSI
prediction. This can improve the robustness to noise and
simplify the training process for CSI prediction tasks.

• The performance of the solutions against several
benchmarks are studied in two datasets: a synthetic
channel model (3GPP channel model) simulation and
fieldmeasurements in a commercial network. To the best
of the authors’ knowledge, this is among the few works
that validate the AI-based temporal CSI prediction with

3Note that these are important. In practical wireless communication
systems, model storage, loading, and transfer are expected to be performed
frequently. Furthermore, upper limits on inference complexity can be set,
especially for battery-powered devices and/or multi-user systems.
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field measurements and the first to study and report the
result based on field data in a commercial network.

The remainder of the paper is as follows. After introducing
the notations, Sec. II summarizes the system model. Sec. III
discusses the motivation and the process of angle-delay trans-
formation. The section also reviews autoregression-based
CSI prediction. Next, in Sec. IV, we introduce the proposed
network structures, CSI-PNet, ACSI-PNet, and how to use the
solutions as denoisers. In Sec. V, training aspects, including
the normalization, impact of TFO, and the loss functions, are
discussed. Sec. VI summarizes the considered benchmarks
and evaluation metrics that we use in the later sections.
In Sec. VII and Sec. VIII, the simulation and field datasets
are respectively introduced along with the evaluation results.
Finally, Sec. IX provides concluding remarks.

C. NOTATION
Let X be a matrix, x be a vector, X be a function, and C
and R be the complex and real spaces, respectively. We use
X to denote tensors with U dimensions. For U = 3, X ∈

Cn1×n2×n3 , let the ith dimension be di, then Xd3,d1,d2 refers to
reordering the dimensions such that d3 is first, followed by
d1 and d2, which we also write as Xd3 . Furthermore, let Xd3:
transform the tensor to a matrix of size n3 × (n1n2) with d3
being the first dimension and the reset dimensions are nested
d1, d2. Furthermore,X: is a vector of size n1n2n3×1 . Finally,
let Xd1,d2,d3 (d1 = i) = Xd1,d2,d3 (i) be a tensor of size n2×n3,
where the values in dimension d1 are fixed at the ith ‘‘slice’’,
i ∈ {1, . . . , n1}.

II. SYSTEM MODEL
We consider a single-cell wireless system where a BS
is equipped with a dual-polarized Uniform Planner Array
(UPA) with Nh × Nv antennas in the horizontal and the
vertical domain, respectively. The BS communicates with a
single antenna UE, i.e., Multi-Input-Single-Output (MISO),
but generalization for MIMO is also possible.

We assume an OFDM system with Ks subcarriers that are
grouped intoK (contiguous) ‘‘Resource Blocks’’ (RBs), each
of which, for simplicity, contains one pilot tone (Reference
Signal (RS)).4

We consider a discretized normalized time, and the goal is
to predict the channel at time t + 1 based on the current and
previous estimates, i.e., up to time t . The time normalization
and resolution are design parameters that may depend on the
RS periodicity and the application of the CSI prediction, e.g.,
scheduling vs. beamforming [41]. In this work, we focus on
a single-step prediction; multi-step is left for future work.
Furthermore, we do not restrict the discussion to whether the
CSI prediction is done for a downlink or an uplink, or whether
the system is a Time Division Duplex (TDD) or an FDD

4We emphasize that this is just one possible RS configuration, and the
proposed solutions can be adapted to many others with minimal or no
changes. Furthermore, when pilot sparsity is present, several techniques can
be used for initial channel reconstruction, e.g., [40].

FIGURE 1. The structure of CSI-PNet (v1). In each layer (except the last) a
3D-CCNN followed by complex tanh and a concatenation process, the
final layer has only 3D-CCNN layer for final path prediction and
adaptation. The delay dimension is captured along the channel dimension
of the CNN. Before each 3D-CCNN a circular padding can be performed.
In each of the layers, the size of the used 3D kernel (nt , nv , nh).

system. Therefore the goal is to design an ML solution for
temporal CSI prediction that can conceptually be used in
any of the above cases. For instance, for a downlink of an
FDD system, where channel reciprocity does not hold, the
BS needs to rely on the CSI feedback from UE to determine
its downlink data transmission scheme. During the downlink
training stage, the BS sends pilots to the UE, e.g., using
CSI RS (‘‘CSI-RS’’) in 5G, based on which the downlink
channel is estimated. The UE will then feed back either (i)
the estimated downlink CSI or (ii) the predicted downlink
CSI to the BS. For (i), the BS does the prediction based on
the fed-back past and present CSI, while for (ii) the UE does
the prediction. For TDD, the channel prediction can be done
either at the UE or the BS; in the former case, the UE feeds
back the predicted CSI to the BS. The prediction can also
be done at the BS side, by relying on channel reciprocity
and uplink CSI as obtained from uplink pilots, such as the
Sounding RS (SRS) in 5G.

Let G(t)
f ,p,v,h ∈ CK×2×Nv×Nh be the observed signal at time

t at all frequencies, and all antennas for the two polarizations;
we next, for brevity, drop the subscripts when they are clear
from the context. A channel predictor takes in the past
channel observations and outputs the future channel, that is

Ĝ(t+1)
= P2

(
G(t),G(t−1), . . . ,G(t−(L−1))

)
, (1)

where P2 is the channel predictor function parameterized
by 2, and L is the number of past channel observations
used for prediction. Note that the true (unknown) mapping
function P may rely on more or fewer previous channel
observations to fully identify G(t+1). The goal is to learn a
mapping functionP2 for a given hyper-parameter L such that
it closely resembles the true P .

III. PRELIMINARIES
In this section, we first motivate and discuss the transforma-
tion into the angle-delay domain for CSI prediction. Next,
we present a classical channel prediction technique based on
the ARM.
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FIGURE 2. The structure of CSI-PNet (v2). The structure is similar to
CSI-PNet (v1), except (i) the order of the dimensions of the input tensor is
modified so that the time is placed at different channels, and (ii) the skip
connection is used for a residual connection. In each of the layers, the
size of the used 3D kernel (nd , nv , nh), (iii) before the last layer the time
and delay dimensions are swapped, such that the delay domain is placed
at different channels (i.e., the last layer in (v2) matches the one in (v1)).

A. ANGLE DELAY DOMAIN REPRESENTATION
Angle delay CSI representation is a natural way to represent
the wireless propagation channel, since each Multi-Path
Component (MPC) is characterized by a distinct delay and
angle. The MPCs are usually assumed to be independent,
as per the generalization [15] of the well-known ‘‘WSSUS’’
assumption [42]. However, due to the limited system
bandwidth and angular resolution, the MPCs from different
clusters can fall within (and between) the adjacent angle
delay bins, resulting in a residual correlation between the bins
[3]. The correlation typically decreases with the increasing
difference between the respective delays and/or angles of
the MPCs. Furthermore, since the Doppler is related to the
angular characteristics at the mobile link end, the evolution
of each separate MPCs cluster may exhibit a reduced
Doppler spread, which may simplify the CSI prediction.
Thus, it is desirable to design a CSI prediction solution that
can efficiently take full advantage of the separation between
MPCs in the angle-delay domain while capturing the residual
correlation between neighbor paths.

Given the received OFDM-MISO signal in the space
(antenna) -frequency domain, we can transform it to the
angle-delay domains through DFTs. For clarity of notation,
we present that in two steps:

• Transforming G into the (discretized) delay domain, H̃,
using Inverse DFT (IDFT) (frequency to delay):

H̃τ : = FHKGf : , (2)

where τ denotes delay domain. H is the channel in the
transform domain, FX is X × X DFT matrix, and (.)H is
the Hermitian transpose.

• To transform H̃ from the spatial domain, sampled at the
vertical v × horizontal h antennas, into the discretized
elevation θ azimuth× φ domains, we apply the 2D IDFT
again for each polarization p and delay τ ,

Hτ,p,θ,φ(τ, p) = FHNvH̃τ,p,v,h(τ, p)FHNh . (3)

In the following, we again drop the subscripts. With the
angle-delay domain representation, the goal of the proposed

ML solution is to learn P2 in the following:

Ĥ(t+1)
= P2

(
H(t),H(t−1), . . . ,H(t−(L−1))

)
. (4)

B. ARM BASED CSI PREDICTION
ARM is one of the classical prediction solutions. An earlier
study, [4], observed that using ARM in the angle-delay
domain outperforms applying it in other domains. In this
paper, we use ARM as one of the benchmark solutions (see
Sec. VI). Furthermore, the ARM formulation can provide
some insights into the dynamics of ML-based prediction
solutions. Thus we summarize ARM-based CSI prediction
below.

In ARM, for p ∈ {1, 2}, τ ∈ {1, . . . ,K }, θ ∈ {1, . . . ,Nv},
φ ∈ {1, . . . ,Nh}, the predicted CSI at time t + 1, based on P
previous observations, is:

Ĥ(t+1)(τ, p, θ, φ) =

P∑
l=1

α
(l)∗
τ,p,θ,φĤ(t−l+1)(τ, p, θ, φ), (5)

where α
(l)∗
p,τ,θ,φ is the regression parameter for given

p, τ, θ, φ, and (.)∗ is the conjugate. Defining α =

[α(1)τ,p,θ,φ, . . . , α
(P)
τ,p,θ,φ]

⊤, the parameters can be calculated
using

α =
(
R + βI

)−1r, (6)

where R is the P × P correlation matrix between the P
observations

{
Ĥ(t)(τ, p, θ, φ), . . . , Ĥ(t−P+1)(τ, p, θ, φ)

}
, I is

the identity matrix, β is a coefficient that is typically set based
on the noise variance, and r is the cross-correlation vector
between the P observations and Ĥ(t+1)(τ, p, θ, φ). Note that
the latter is not known; in Sec. VII, we use P = L − 1 and
introduce a delay to calculate R and r.

IV. PROPOSED SOLUTIONS
A. CSI-PNet
The data input, output, and structure of two variants of the
proposed CSI-PNet are displayed in Fig. 1 and Fig. 2, we refer
to them as CSI-PNet (v1) and CSI-PNet (v2), respectively.
In the rest of the paper, when we refer to both designs, we use
‘‘CSI-PNet’’. In general, the operations and conclusions are
valid to both variants unless otherwise stated.

The input tensors are first split into the two polarization,
i.e.,Hτ,p,θ,φ(p = 1) andHτ,p,θ,φ(p = 2) ∈ CK×Nv×Nh , then L
tensors for a given polarization (after proper pre-processing,
see Sec. V) are fed into the CSI-PNet. Before we discuss the
details of the two variants, we start by explaining the core
building block of the networks.

1) CCNN
The main building block of the proposed DL model is a
3D-CCNN layer. While CvNNs may be natural for treating
wireless channels, they have received far less attention in the
general ML literature than real NNs. The CCNN consists of
pairs of real-valued CNNs; we demonstrate that relation with
a simple single layer 2D CNN, with one input channel of size
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FIGURE 3. CCNN consists of two CNNs, one that represents the real
weights CNNR and the other represents the imaginary weights CNN I .

Nh × Nv and using one kernel of size nh × nv. Then a CNN
convolution operation can be described by:

oi = w⊤qi,

where oi is a scalar output at the ith convolution step, qi is
a vector of size nhnv × 1 with values corresponding to the
input of the ‘‘image’’ that is covered by the kernel in the ith

convolution operation, and w is a flattened kernel weight of
size nhnv × 1. The CCNN generalizes the above such that
w = wR + jwI and qi = qiR + jqiI , where subscripts R and
I are, respectively, used to identify the real and imaginary
components, and j =

√
−1. Then, we have

oi = oiR + joiI = wHqi

= wH
R q

i
R + wH

I q
i
I + j(wH

R q
i
I − wH

I q
i
R).

It is straightforward to see that we can describe the CCNN as
shown in Fig. 3.

2) CSI-PNet (v1)
In this structure, the delay domain is carried over different
‘‘channels’’ (in CNN terminology). The time domain (of size
L) and the angle domains (of size Nv and Nh) form the
3D complex tensor. The output for the given polarization
is the predicted Ĥ(t+1)

τ,p,θ,φ(p). The other polarization is
processed similarly, where we use weight sharing for the two
polarizations, and thus the training and the inference use the
same network weights; note that the inference can possibly
be done in parallel with an identical network.

The structure of CSI-PNet is as follows. For the first
five layers, each 3D-CCNN is followed by a tanh activation
function, applied, separately, to the real and the imaginary
components, which we refer to as Complex tanh (Ctanh).
This is followed by a concatenation block. The input to the
network is {H(t−L+1)(p), . . . ,H(t)(p)}. The first 3D-CCNN
uses a 3D kernel of size (nt , nv, nh), the nt = L, i.e.,
matching the observed CSI in the buffer, while the nv and
nh are hyper-parameters that can be selected based on the
anticipated correlation of the paths in the angle domain, their
impact to be discussed in Sec. VII-B.
Let the output of the nth layer be On. Throughout the

network, the dimensions of the delay domain and the angle

FIGURE 4. Example of the circular padding of size one for a 4 × 4 angle
domain. After padding and convolution, the output value for each path
(at the center of the kernel) considers neighboring paths.

domain are maintained. This is achieved in the delay domain
and the angle domain, respectively, by maintaining the
number of channels and a proper choice of padding size.
Given the circular nature of the angle domain (the DFT beam
basis), we propose using circular padding. This is illustrated
in Fig. 4: with circular padding, the per path prediction
uses the neighbor paths within ⌊

nv
2 ⌋ and ⌊

nh
2 ⌋ in vertical

and horizontal dimensions, respectively, where ⌊.⌋ refer to
flooring operation. Thus the correlation between adjacent
bins is utilized. CSI-PNet parameters and input-output sizes
are summarized in Tab. 2. In the table, B denotes the batch
size. Note that due to the concatenation process, the size On
grows in the time domain.

Finally, while not discussed in detail in the paper, we point
out the modular property of the CSI-PNet. The skip connec-
tions that carry the input throughout the network help speed
up the convergence during training and improve parallelism,
wheremany corresponding values can be evaluated in parallel
(applies mainly for (v1)). In addition, the last layer is
designed such that it may be fine-tuned (in a transfer learning
fashion) to adapt to different channel properties. For that, the
layer is designed to be lightweight (based on CNN structure)
and takes as input the extracted features from previous layers
as well as the raw CSI. However, this is not studied further in
this paper.

3) CSI-PNet (v2)
In general, the structure of the second variant of CSI-PNet is
similar to the CSI-PNet (v1) except (i) the delay and the time
at the input are swapped, where the time domain is carried
over different channels, and the delay and the angle domains
form 3D tensors. The 3D kernel in each 2D-CCNN has size
(nd , nv, nh), where nd is the filter size in the delay domain.
(ii) The concatenation steps are replaced with residual steps,
where the output of the previous layer, n− 1, is added to the
output of layer n (after the activation). (iii) Before the last
layer, a transpose operation is used to swap the delay and time
domains such that the last layer matches the one in (v1). Fig. 2
shows an illustration of CSI-PNet (v2). This design provides a
reduced complexity while preserving most of the gains, as we
will explain later.
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TABLE 1. Parameters of the CSI-PNet (v1).

TABLE 2. Parameters of the CSI-PNet (v2).

FIGURE 5. The ACSI-PNet architecture, consisting of an architecture
similar to CSI-PNet plus an AN (Adaptive Weight Generation Network).
The red dashed blocks are used for CSI-PNet (v1) only.

B. ACSI-PNet (ADAPTIVE CSI-PNet)
The CSI-PNet, as described above, relies on fixed weights
similar to other AI-based CSI prediction solutions. However,
similar to ARM, the coefficients can be designed to be
adaptive to channel realizations.5 Specifically, the relative
importance of different paths in the L CSI realizations and
their contribution to future CSI can vary widely. To address
this challenge, we introduce an Adaptive weight generation
Network (AN) into the CSI-PNet architecture. Using the
ML terminology, the network provides the ‘‘attention’’
mechanism that allows the model to judiciously focus on
and weigh the features and paths. However, different from
the conventional attention weights that usually take values in
[0, 1], the adaptive weights here can take values in [−1, 1],
as we explain below.

5Note that in ARM the coefficients are function of the second order
statistics, which vary over long time intervals (multiple stationarity times)
[43].

The ACSI-PNet structure is shown in Fig. 5. Let the
complex valued input tensor to the AN, On∗ , be the output of
a CSI-PNet layer n∗, which consists of the transformed time
domain features (along with the concatenated input in (v1)).
Note that in CSI-PNet (v1), the size of the input depends on
the position of the AN: While the output of each CSI-PNet
layer is fixed, the size of On grows due to the concatenation
process. In Sec. VII, we use six layers for CSI-PNet, and the
AN is positioned after the fifth layer, i.e., n∗

= 5.
AN is a multi-layered network. The first layer is a simple

transpose operation if CSIP-Net (v1) is used, where the delay
and the time are swapped. The number of channels is equal
to the depth of the last layer. Then, a layer similar to the
ones in CSI-PNet is used with a filter of size (nτ , n′

v, n
′
h) =

(7, 5, 5) with a circular padding of size (3, 2, 2). After Ctanh,
to convert the output to real values, the power values are
calculated, where the squares of the real and imaginary
components are added. Next, the network uses two 3D-
CNN layers with tanh activation, with kernels of size three
and one, respectively. A transpose operation is then used to
swap the delay and time dimensions (for CSI-PNet (v1)).
The ACSI-PNet parameters in the evaluation sections are
summarized in Tab. 3. Note that throughout the network, the
output and input have equal sizes. However, the output is a
real-valued tensor.
The output of the network is used for element wise product.

Let A, be the output of the AN and O′
n∗ be the input to the

n∗
+ 1 CSI-PNet layer, then

R{O′
n∗} = R{On∗} ⊙ A, and I{O′

n∗} = I{On∗} ⊙ A,

where ⊙ is the element wise product, and the operators
R{.} and I{.} extract the real and imaginary components
of the tensor, respectively. Here the same weights are used
for the real and imaginary components. Note that different
from the conventional attention, due to the tanh activation, the
output of the AN takes values in [−1, 1], which we observed
to give better performance than Softmax or non-negative
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FIGURE 6. The overall flow with a denoiser. CSI-PNet or ACSI-PNet can be
used as denoiser and/or for CSI prediction. With some abuse of notation,
the output of the denoiser is added to the input buffer of the CSI
predictor.

Sigmoid activation functions. In general, to develop this
network, several other designs have been tested, e.g., the
location of the input and output of AN in the CSI-PNet, the
normalization of the power calculation, the type of activation
functions, and whether the output of AN is different for the
real and imaginary parts. However, when evaluated on the
synthetic data, these variations showed marginal or no gains
compared to the proposed version.

C. DENOISER
The above networks are proposed for CSI prediction, where
the output CSI is at a future time instant. However, this
prediction can be impacted severely by noise on the measured
CSI. While it is possible to train the network for CSI
prediction as well as handling the impact of noise, this
could complicate and prolong the training process, and
could deteriorate the overall performance. In this subsection,
we propose using a ACSI-PNet architecture as a denoiser,
where the output is H(t). See Fig. 6 for the overall flow
when a denoiser is added. Different from the actual predictor,
we can set the buffer of the denoiser, LD, to be smaller than
L (i.e., LD < L). This is motivated by the fact that one
way to reduce the impact of noise can be with simple short-
term smoothing. In Sec. VII, we use LD = 3, so that the
buffer takes the current CSI and two previously observed CSI
values. Finally, we point out that other techniques to improve
the channel estimation, e.g., [44] and [45] can be used as well.
The comparison between these techniques is out of the scope
of the paper.

V. PREPROCESSING, TRAINING AND LOSS FUNCTION
In this section, we discuss the training aspects of the models,
including preprocessing and the loss function. As will be
elaborated in Sec. VII, we use channel traces from several
users drops. Let Q denote the number of channel realizations
per UE (i.e., per trace). Thenwe constructQ−L short channel
sequence segments for the uth UE, that is

Du =

{(
H(s−(L−1)), . . . ,H(s−1),H(s)

; H(s+1)
)Q−1

s=L

}
, (7)

where, for each ‘‘point’’ inDu, the first L channel tensors are
the input of the network, and the last channel tensor is used as
desired output, i.e., training target. Then, the dataset D is the

collection from all UEs, i.e.,D = {D1,D2, . . .} .As typically
done, to enhance the training and learning process, the dataset
is normalized. In this work, we normalize the input sequence
and the target output with the root mean square of the power
of the input sequence Vs, where,

Vs =

√√√√ 1
LKNvNh

L−1∑
l=0

∥∥H(s−l)
∥∥2 . (8)

The ∥ · ∥
2 operator for a tensor X is used here to denote the

l2-norm square of X:. Note that calculating Vs requires only
the knowledge of the input values.

A. TFO (TIME AND FREQUENCY OFFSET)
In commercial field operations, UEs will have TFO with
respect to the BS due to imperfect synchronization. Thus,
field data are typically impacted by random TFO, and thus in
reality the received signal (at a given frequency, polarization,
and vertical and horizontal antenna indices) can be written as
follows6:

G̃(t)(f , p, v, h) = G(t)(f , p, v, h)ej(ψi−2π f τi), (9)

whereψi is a randomphase offset that is uniformly distributed
in [0, 2π ), τi = cTs, with c being a random timing offset
uniformly distributed in [−cmax , cmax] and Ts =

1
W , where

cmax is a real number that depends on several factors including
the clock,W is the bandwidth of the system. To combat that,
we can employ one of the TFO correction techniques, e.g.,
[46] and [47]. Here, we use a simple preprocessing step that
reduces the TFO impact.

The importance of such a preprocessing step is evident
from the field data evaluation section (Sec. VIII). The
solution is based on a grid search that maximizes the
correlation between the received signals at t − 1 and t .

ψi
∗, τi

∗
= argmax

ψi,τi
∥G̃(t−1)

⊙
˜̃G(t)H

∥
2,

where ˜̃G(t)(f , p, v, h) = G̃(t)(f , p, v, h)ej(−ψi+2π f τi). Once
ψi

∗, τi
∗ are identified, the TFO can be eliminated from t .

The process is carried on for the sequences of interest. This
procedure also resembles the correlation step between pilot
symbols which is commonly used for TFO tracking [46].
Note that other techniques can be used as well for initial TFO
estimate and tracking.

B. TRAINING AND THE LOSS FUNCTION
To learn the channel predictor, P2, we pose our learning
problem as a supervised regression problem. We choose the
normalized mean square error (NMSE) as the training loss
function. Note that although typically, the mean square error
(MSE) is used in such a problem, we noticed NMSE shows
better convergence in a number of cases while training. For

6This a slight deviation from the notation of the received signal in Sec. II.
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TABLE 3. Parameters of the AN in ACSI-PNet.

each predicted channel sample, the loss function is defined as

L
(
H(s+1), Ĥ(s+1)

)
=

∥∥H(s+1)
− Ĥ(s+1)

∥∥2∥∥H(s+1)
∥∥2 . (10)

Thus the objective is to find a set of model parameters that
minimize the loss averaged over the whole dataset, which can
be expressed as min2

1
N

∑N
s=1 L

(
H(s), Ĥ(s)

)
, where N is the

size of the dataset, the details of which will be given in the
next section, and 2 is the vector of model parameters to be
optimized. Finally, for simplicity, we use Adam optimizer,
since the combination of CCNN and Ctanh can still be viewed
as a particular combination of a real CNN as illustrated in
Fig. 3. Other training parameters are listed in Tab. 4. We used
windowed learning rate drop (see Tab. 4) and early stoppage
based on the validation loss to combat overfitting and speed
up the training process. The validation loss is calculated using
the training cost function. During the training, we save the
model with the smallest validation loss, which we later use
when evaluating the performance of the models over the test
data. To train the models, we used an Nvidia GPU, model
Quadro RTX 6000.

VI. BENCHMARK SOLUTIONS AND EVALUATION METRIC
A. THE BENCHMARKS
To assess the relative performance of the proposed methods,
in this paper, we consider the following benchmarks.

• The CSI prediction network in [27] (3D-CNN with
residual connection), we refer to it as 3DCNN. As per
[27], the model is trained with MSE loss function.

• The CvNN with adaptive significant path selection [16],
we refer to it as CvNN. As per [16], the model is trained
with Mean Absolute Error (MAE) loss function.

• A model we here refer to as LSTM+FCN, consists of
one LSTM layer that is applied separately to the two
polarizations, followed by a FCN. The FCN is applied
to the concatenation of the two polarizations. The input
to the network is the transformed angle-delay domain
signal and is trained using NMSE loss function. This
is a variation of RNN-based solutions such as in [24]
and other works discussed in Sec. I-A. We introduced
such variation as we observed that LSTM plus FCN
structure shows better performance than pure RNN or

LSTM networks. However, this comes at the cost of
increased number of network parameters.

• The ARM presented in Sec. III-B. As indicated, we use
P = L − 1 for fair causal implementation. The statistics
in (6) are calculated based on running average.

• Sample and Hold (SH): Using Ĥ(s+1)
= H(s) is a

simple solution that is used in practice for slowly varying
channels.

In addition to the fact that these benchmarks include some
of the state-of-the-art ML-based solutions, we chose them
to capture three main aspects: (1) the impact of real-valued
3D-CNN network structures (with [27]), (2) the impact
the complex path based prediction (with [16]), (3) the
performance against RNNs, which are usually suitable for
sequential data (with LSTM) and have been used extensively
for CSI prediction (see Sec. I-A). Here we also use SH as a
relative benchmark since it (i) reflects the speed of channel
variation and (ii) is the default choice in practice.

Finally, in Tab. 5, we present the number of parameters and
FLOPS used for every model. In the evaluation sections, for
CSI-PNet we use nv = nh = k ∈ {1, 3}, i.e., we use equal
angular filter values for the vertical and the horizontal array
dimensions. For CSI-PNet (v2) we use nd = 3. Note that
our implementations of CvNN and 3DCNN are based on the
reported structures in the papers, i.e., no further optimization
was made. For ‘‘Denoiser + ACSI-PNet’’, we use CSI-PNet
(v1), the Denoiser part uses LD = 3, while for the other part
(ACSI-PNet for the CSI prediction), we use L = 8. We here
choose LD and L such that the total number of used CSI
samples at any time is equal to 10. The number of CSI-PNet
layers for both parts (the denoiser and the predictor) is six,
and this can be optimized further, especially for the denoiser,
but that is omitted for brevity.

The CSI-PNet with any of the considered k values requires
a relatively small number of parameters and FLOPS for
both (v1) and (v2); (v2) uses a much smaller number of
parameters and requires almost half of the number of FLOPS.
It is worth noting that incorporating AN into the model,
i.e., using ACSI-PNet, has a greater impact on the number
of FLOPS than on the number of parameters. The addition
of a denoiser with the above buffer size results in a slight
increase in the number of parameters compared to ACSI-
PNet alone. Nevertheless, when compared to the benchmarks,
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TABLE 4. Hyper-parameters for model training.

the proposed solutions have a smaller number of parameters
and FLOPS. For instance, the CvNN uses 30 times as many
parameters; the number of FLOPS depends on the number of
significant paths, which in turn depends on the environment
and the SNR; in our studies in Sec. VIII we have noticed that
it can easily exceed 1000Million FLOPS. In general, these
designs could indicate the possible utilization of the proposed
models at either BS or UE side.

B. THE EVALUATION METRIC
Since two of the benchmarks are trained using different
metrics (see Sec. VI), which are different from the metric
we use (NMSE), and following the 3GPP recommendations,
we consider an evaluation metric based on the cosine
similarity. This quantity is useful for, e.g., beamforming,
as a common phase rotation does not impact the correlation
and the beamforming. In this paper, we use an equivalent
metric that signifies the variations in the correlation values.
In particular, let

ρ(H(s), Ĥ(s)) =
∥H(s)H

: Ĥ(s)
: ∥

∥H(s)
: ∥∥Ĥ(s)

: ∥

, (11)

be the correlation value. We define and use the ‘‘effective’’
SNR (eSNR) metric:

eSNR(H(s), Ĥ(s)) = 10 log10(1/(1 − ρ(H(s), Ĥ(s)))). (12)

VII. EVALUATION WITH SIMULATION DATASET
A. CHANNEL MODEL AND DATASET
In this section, we describe the adopted channel model, the
dataset, and the training parameters used in our simulations.

We consider a MISO-OFDM system where the BS is
equipped with a dual-polarized UPA with Nh = Nv = 4.
For the purpose of CSI prediction, we assume that K = 48
RBs over W = 10 MHz channel bandwidth are available,
i.e., representing 180 kHz spacing between the utilized pilot
subcarriers. The channel coefficients are generated by a
system-level simulator that follows the 3GPP Urban Macro
(UMa) channel model. The carrier frequency is 2.3 GHz.
Only non-line-of-sight (NLOS) scenarios are considered. 260
UEs are dropped randomly in a cell with 1 km radius. About
60 UEs are used for testing. In addition, 10% of the UEs in
the training dataset are dedicated to validation (for the early
stoppage and model selection).

The UE speed, the total duration of a trace, the pilot
periodicity, and the SNR vary depending on the scenario

TABLE 5. Number of trainable parameters and FLOPS.

discussed. However, for most parts, the pilot periodicity is
assumed to be 10 ms and 5 sec traces per UE, and each is
generated with three different levels of UE mobility, low,
medium, and high, respectively, denoting 3, 10, 30 kmph.
Also, unless explicitly mentioned, in all the simulations,
20 dB SNR is maintained.

In this study, for brevity, we restrict the reported results to
L = 10. For this data, absence of TFO was assumed, and thus
only normalization is used as per Sec. V.

B. SIMULATION RESULTS
We start with scenarios similar to [16]. Fig. 7 shows the
Cumulative Distribution Function (CDF) of the eSNR gains
to SH for 5 kmph and 20 ms CSI pilot periodicity and
30 kmphwith 4ms pilot periodicity. In these studies, we focus
on CSI-PNet (v1) and (v2) with kernel sizes k = 3 and k = 1,
and ACSI-PNet with k = 1 as well as the benchmarks.
In general, while all the networks show gains over SH,

all three proposed networks, along with CvNN, outperform
the other benchmarks. For both speeds, the proposed
networks show comparable performance to CvNN, with
slight advantages at the higher percentile at the lower speed,
but CSI-PNet (v1) shows small loss at low percentiles for both
kernel sizes of CSI-PNet.

1) VARYING SPEED WITH FIXED PERIODICITY
To understand and emphasize the capabilities of CSI-PNet to
capture the residual correlation, we here vary the speed and
CSI pilot periodicity.

Considering a CSI pilot periodicity at 10 ms, we use low
speed in Fig. 8 and medium and high speeds in Fig. 9.
In Fig. 8, the proposed networks outperform the CvNN.
Furthermore, CSI-PNet (v1) and (v2) with k = 3 outperform
the ones with k = 1. We conjecture that this can be attributed
to the added capability to capture the residual correlation with
k = 3. Using an adaptive weight in ACSI-PNet, provides a
small but visible gain in this case. In comparison between (v1)
and (v2), we notice that (v1) shows a small gain over (v2).

In general, we also see that not all AI solutions outperform
a simple SH. For instance, while the 3DCNN results in good
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FIGURE 7. The CDF of the eSNR gain over SH for different speeds: (a) 5 kmph with 20 ms,
(b) 30 kmph with 4 ms.

FIGURE 8. The CDF of the eSNR gain over SH for 3 kmph with 10 ms.

eSNR values (not shown), it still falls short of SH which,
at this low speed, does well. The two other benchmarks show
some gains compared to SH. The reason for this is that for AI
solutions, there is a statistical learning aspect that depends
on the training process, training set size, the capability of the
model, etc., [48].

Next, in Fig. 9 we consider higher speeds for the same CSI
pilot periodicity. For medium (10 kmph) speed, Fig. 9-(a),
the performance is similar to the 5 kmph case, where we
observe some gains for the proposed networks over CvNN,
and that all AI solutions outperform the SH. However,
as the speed increases, as shown in Fig. 9-(b), we observe
increased losses versus SH for some AI techniques due to
the inherent difficulty of predicting CSI accurately at higher
speeds. Interestingly, we also note a visible advantage for
CvNN over the other AI techniques and a reduction in the

performance gap between the proposed architectures and the
ARM approach. One possible explanation for the improved
performance of CvNN lies in its simplified CSI prediction
problem, which focuses on learning the prediction per path
and prioritizes significant paths that usually suffer low noise.
Overall, the gains of CvNN should be considered in light of
the limitations discussed earlier in Sec. I-A. In comparison,
between the (v1) and (v2) networks, networks based on (v2)
show more resilience to speed than (v1). For (v2), k = 3 still
provides some gain over k = 1, and all (v2) networks have
about 1.6 ∼ 1.9 dB loss to CvNN, while (v1) networks have
larger loss at the 50th percentile (1.9 ∼ 3 dB).

2) MIXED SPEEDS TRAINING AND SPEED MISMATCH
Next, considering the impact of high speed on learning,
we explore training on mixed speeds for the same CSI pilot
periodicity. In particular, we train the networks on UE speeds
that are randomly generated in the range [2.5,50] kmph and
then test on a medium speed (10 kmph). The results are
presented in Fig. 10. Again, due to the presence of high
speeds, we notice an enhanced gain for CvNN (compare to
Fig. 9-(a)). Furthermore, the performance gains of ACSI-
PNet (both (v1) and (v2)) can be attributed to the design
flexibility through the attention capabilities. The discussion
above regarding k = 1 and k = 3 is also valid for this
case.

In Tab. 6, we studied the impact of training on one high
speed and testing on lower speeds for 10 ms pilot periodicity.
The table also shows the case when the training and testing
are equal. We observe that the proposed solutions show
good performance when training with UE medium speed
(10 kmph) and tested on low UE speed (3 kmph). However,
they struggle when trained on higher UE speed and tested on
UE lower speed. This supports the above observation.

Note that in this study, we focused on training on ‘‘high’’
speed and testing on a lower speed since (i) The mobility
speed defines the maximum Doppler. Thus it is possible to
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FIGURE 9. The CDF of the eSNR gain over SH for (a) 10 kmph (b) 30 kmph, both at 10 ms.

TABLE 6. CSI prediction performance, eSNR [dB] with speed mismatch.

FIGURE 10. The impact of mixed speed on the performance. CDF of the
eSNR gain over SH. Networks trained mixed speeds [2.5, 50] kmph and
test on medium speed.

have paths for the same UE observing up to the maximum
Doppler. (ii) Generalization to higher speed can possibly be
achieved with some variations on the prediction setup, but
that is out of the scope of the current paper.

FIGURE 11. The impact of noise on scenario of Fig. 10. CDF of the eSNR
gain over SH. Networks trained mixed speeds [2.5, 50] kmph and 20 dB
SNR. The denoiser is trained on mixed speeds and mixed SNR values.

3) IMPACT OF NOISE WITH MIXED SPEED TRAINING
To investigate the impact of noise on the performance of our
networks, we use the scenario of the previous sub-section.
However, for this case, we evaluate the networks in the low
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TABLE 7. CSI prediction performance for CSI-PNet (v1, k=1), with noisy
input and output. Training and testing speed = 10 kmph.

SNR regime (SNR in [0,15] dB). The results are presented in
Fig. 11. It should be noted that in this scenario, the SH itself
is also affected by the presence of noise, making it difficult to
draw a direct comparison between the results of Fig. 10 and
Fig. 11. Nonetheless, analyzing the relative performance of
the tested AI solutions can still provide meaningful insights.
In Fig. 11, the gains of all the AI solutions are reduced,
including our proposed solutions. Losses are observed for up
to the 70th percentile for LSTM and 3DCNN benchmarks.
Regarding our proposed networks, CSI-PNet (v1) with k =

3 shows the worst performance among the variants, and other
(v1) networks exhibit similar performance to ARM; however,
(v2) shows again some resilience to noise, especially the
ACSI-PNet that also shrinks the gap to CvNN. One factor
that helps CvNN’s ability to preserve some of its gains in this
study can be attributed to the SNR filtering that is integrated
into the path selection process.

Utilizing a denoiser architecture in combination with
ACSI-PNet (v1) leads to further improvements in the
network’s performance compared to CvNN. Note that using
the denoiser is introduced to simplify the training process.
As a comparison, we also train the ACSI-PNet network
over various noise realizations. Specifically, in this case,
for ‘‘Denoiser + ACSI-PNet’’, we trained the denoiser on
mixed speed and mixed SNR values, and the CSI prediction
(with ACSI-PNet) was trained on fixed SNR value. In the
other case, we trained the ACSI-PNet for CSI prediction and
over different SNR values. Typically, ACSI-PNet has a larger
number of parameters and requires a longer time to train.
Adding the noise dimension can prolong the training process.
For instance, a simple augmentation of the dataset with noise
realization over different SNR values will extend the training
time by the dataset augmentation order. Nonetheless, as seen
in Fig. 11, both approaches are promising, indicating that
they, depending on the available resources, can be viable
options.

Finally, we point out that in all the presented results, the
target output signal is assumed to be noiseless.We have tested
several cases when the output itself is noisy (during training).
A few examples are shown in Tab. 7. The training and testing
are done at the same speed (10 kmph). We observed that the
small noise does not significantly impact the result, except for
a small increase in the standard deviation.

C. THE IMPACT OF THE LENGTH OF THE OBSERVATION
WINDOW
In this study, we investigate the impact of the observation
length L for the different models. The results are shown

FIGURE 12. The two locations for the LOS and NLOS measurements.

in Tab. 8. The proposed models, especially the (v1) based
networks, show superior performance across the observation
lengths with the capability of using all the observations. This
is not the case for all AI models, where some have slight
degradation with the increase in the observation window.
This might be attributed to the training convergence issue,
although we have tried to train these models using different
random seeds.

VIII. EVALUATION WITH FIELD MEASUREMENTS
For a realistic evaluation of the CSI prediction, we test the
proposed method on field measurements. The measurement
setup is presented in subsection VIII-A, and in subsec-
tion VIII-B we present the results. Note that unless otherwise
stated, all parameters and preprocessing that were discussed
in earlier sections apply.

A. MEASUREMENT SETUP
The data was collected in a commercial network in Suwon-si,
South Korea in mixed outdoor channel conditions with both
LOS and NLOS, see Fig. 12. The LOS data were collected
near a soccer field where the BS is visible; however, since
the area is surrounded by foliage, certain areas have partially
obstructed LOS. The NLOS data were collected near a fire
station in a typical urban environment. The BS antenna array,
the channel bandwidth, and the number of used RBs are
similar to Sec. VII-B. The CSI pilot periodicity is 10 ms.
In total 22 traces were collected with two users. For each
trace, the user was instructed to walk slowly or fast for about
10 s from a random starting location and orientation within
the highlighted areas in Fig. 12. One user used a Samsung
Galaxy J5, while the other used Samsung Galaxy Note9.
We chose these two terminals since their clocks have different
accuracies. In general, the estimated SNR in all the traces was
above 18 dB.

In our study, we use 14 traces for training, four
traces for validation, and four for testing, i.e., a split of
(63.3%, 18.1%, 18.1%), respectively. The traces used for
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TABLE 8. CSI prediction performance, eSNR [dB] with different observation lengths (L).

TABLE 9. CSI prediction performance, eSNR [dB], based on the field measurement data.

testing are three from the J5 terminal with one low-speed LOS
and one LOS and one NLOS with high walking speeds and
one from the Note9 with NLOS high walking speeds.

B. RESULTS AND DISCUSSION
Table 9 shows the eSNR for several solutions. Results are
given for two scenarios where the TFO is corrected or
uncorrected. When no TFO correction is applied, we see very
poor results for all CSI prediction solutions. Note that some
solutions did not converge, marked by ‘‘*’’. Application of
the TFO correction results in a significant improvement in
the eSNR. We notice that the proposed networks outperform
other benchmarks. For instance, the CvNN shows poor
performance. This could be attributed to the path selection
process and the per-path prediction structure, as we discussed
in Sec. I-A, some of the challenges for this method may
be attributed to the need for SNR estimation, the loss of
the residual path correlation at the input of the prediction
model, and the sensitivity to the angle domain transformation.
In addition, the DMCs are usually difficult to capture.

Note that for this section, we used eSNR as a metric to
present the results to highlight the impact of TFO on the
SH. For SH, the eSNR did not change significantly with
TFO. The reason comes from the fact the eSNR is based
on the correlation metric, which is robust to phase rotation.
However, that is not the case for the discussed CSI prediction
solutions that use the previous observations to learn the
mapping, and random phase offset can disturb the process.

IX. CONCLUSION
This paper proposes enhancements to AI-based CSI pre-
diction using new deep-learning architectures. In particular,
we propose CSI-PNet (with two different design variants)
and ACSI-PNet. The solutions are based on 3D-CCNN (3D
complex valued CNNs). The networks have the capabilities to
capture the spatial and temporal correlation that show gains
especially at low and medium speeds.

To evaluate the performance of the new methods, we con-
sider two datasets. One is a synthetic dataset using an
outdoor UMa 3GPP channel model. The other is based on
measurements in a commercial network. In the latter, the
correction of TFO (Time and Frequency Offset) plays a
major role in the performance. Overall, the results show the
advantage of the proposed solutions.

In future work, several enhancements to the network can
be investigated, e.g., efficient methods to handle sparsity in
the angle and the delay domains and further optimization
of the network size, e.g., via compression network. The AN
in ACSI-PNet can be implemented with an RNN that can
adaptively track the possible long-term temporal correlation.
Studying distributed implementation (in the UE and BS) or
delayed feedback is another interesting research direction.
The combination of temporal CSI prediction and feedback
compression, or frequency domain extrapolation, are also
interesting research directions.
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