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ABSTRACT ShuffleNetV2 is a prominent player in the field of lightweight networks and has significant
implications for the development of lightweight networks and edge computing. However, it has limitations, as
its accuracy falls short compared to other larger models, and it is not friendly to datasets. It loses its advantage
for small-sized images with fewer channels. In this study, we analysed the design structure of ShuffleNetV2
and found room for improvement in its computational complexity and accuracy. To further improve its
performance, we first upgraded the ShuffleNetV2 network structure based on the lightweight network
design criteria and constructed a new network model. Second, we introduced a novel attention module
named the Adaptive Pooling Attention Module (APAM) and integrated it with the new network model,
constructing a high-performance model referred to as LA-ShuffleNet. Then, we proposed a convolution
operation acceleration strategy called Pack. Finally, we combined the two and conducted corresponding
tests on the Windows and JETSON platforms. Extensive experiments indicate that our proposed model not
only exhibits substantial improvements over the baseline model but also achieves noteworthy enhancements
on the ImageNet dataset, with a rise of 1.4% in Top-1 accuracy and 3.6% in Top-5 accuracy, coupled with
a reduction of 0.7M parameters. Moreover, its performance surpasses that of certain prevalent lightweight

networks, such as MobileNet.

INDEX TERMS Lightweight network, attention module, edge computing, ShuffleNet.

I. INTRODUCTION

After AlexNet’s [1] success in the 2012 ImageNet competi-
tion, deep neural networks caught researchers’ attention and
sparked a wave of interest in deep learning. This wave led
to the creation of excellent network models such as VGG,
GoogleNet, ResNet and others [2], [3], [4], [5], [31]. At the
same time, CNNs have continued to expand their visual
application scenarios, which include tasks such as image clas-
sification, object detection, and natural language processing.
However, to further improve accuracy, researchers have cho-
sen to expand the depth and channel quantity, leading to enor-
mous computational costs. Edge computing is a distributed
computing architecture that places computing resources and
storage resources on edge nodes close to the data source,
greatly reducing the delay and network congestion caused
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by data transmission, improving data security and privacy
protection, and supporting more application scenarios, such
as the Internet of Things, smart cities, and autonomous driv-
ing. Currently, an increasing number of real-time applications
based on CNNs are deployed on edge devices with limited
computing power, which poses new challenges for the run-
ning efficiency and actual cost of the convolutional mod-
els. Therefore, research on lightweight models has become
increasingly important.

Currently, there are two mainstream approaches to
lightweight models, structural lightweight [6], [7], [8], [9],
[10], [11], [12], [30], [32] and model compression [13],
(14], [15], [16], [17], [18], [19], [20], [25], [26], [27],
[28], [29]. The former emphasizes constructing parameter-
efficient and high-performing network models using effi-
cient convolution operations and related components, such as
MobileNet V1-V3 and ShuffleNet V1-V2 [7], [8], [9], [10],
[11], starting from the network structure itself. The latter
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dramatically reduces computational costs through knowledge
distillation [16], [17], [29], network pruning [13], [14], [15],
and other methods without significantly affecting the model
performance. Although the two differ in implementation, they
complement each other, and their effective combination can
result in unexpected benefits.

The attention module is a commonly used module in deep
learning. It was originally proposed to solve the translation
problem in natural language processing, but now it has been
widely used in image processing, speech recognition and
other fields. By introducing the attention mechanism, the neu-
ral network can selectively focus on important information,
so as to achieve better results. Combining it with the network
can achieve better performance. Currently common attention
modules include self-attention, multi-head attention [33], etc.

To address the low accuracy and unfriendliness to datasets
issues in ShuffleNet V2, this study proposes, by optimizing
its structure and making it combine with attention module,
an improved model, called LA-ShuffleNet. In the process
of enhancing the structure, we combined lightweight design
with model compression techniques by utilizing a pruning
strategy to remove modules that negatively impact the overall
performance of the model. In order to enhance the model’s
performance and effectiveness, we introduce an attention
module termed Adaptive Pooling Attention Module (APAM).
To tackle the issue of reduced model expressiveness resulting
from pruning, we enlarge the convolutional kernel. More-
over, to tackle the issue of long running times or even the
inability to run on edge computing devices during training
and testing, we propose a convolution acceleration strategy,
named Pack.

Il. RELATED WORK

A. LIGHTWEIGHT NETWORK DESIGN

To implement a lightweight design of the network structure,
there are various possible implementations, such as using
low-dimensional filters (such as 1 x 1) to reduce the weight
parameters, which has been widely used in SqueezeNet [6]
and greatly reduces the number of parameters. Group convo-
lution is an important method in current lightweight network
design [10], [11]. ShuffleNet V1 [10] uses group convolution
instead of 1 x 1 convolution and proposes channel shuffling to
improve the information interaction between channels, while
ShuffleNet V2 [11] introduces channel splitting and adjusts
the position of channel shuffling based on ShuffleNet V1,
achieving a better performance. Deep convolution computes
feature values instead of raw values, reducing the compu-
tational costs. MobileNet V1 [7] designs a model suitable
for mobile devices using deep convolutions. ResNet [4] and
MobileNet V2 [8] solve the problem of increased compu-
tational cost caused by channel expansion through bottle-
neck modules. Xception [12] improves deep convolutions
by performing pointwise convolutions first. MobileNet V3
[9] introduces NAS (network architecture search) and SE
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(squeeze-and-excitation) attention mechanisms, that demon-
strate excellent performance and speed.

B. MODEL COMPRESSION

Model compression is another mainstream approach in
lightweight network design, that plays an important role in
reducing the size of pretrained models. Pruning [13], [14],
[15] reduces the model size and computational cost by remov-
ing redundant channels and connections. Knowledge distil-
lation [16], [17] involves training a large neural network
and a small neural network together, transferring knowledge
from the “teacher network™ to the ‘“‘student network™ to
reduce the generation of redundant information. Model quan-
tization [18], [19] converts floating-point calculations into
low-bit fixed-point calculations, effectively reducing param-
eter quantity and memory consumption. Attention Transfer
[20] significantly improves the performance of the “student
network™ by imitating the attention map of the powerful
“teacher network”.

C. ATTENTION MODULE

As a widely adopted technique in current research, the atten-
tion module is based on the fundamental concept of dividing
input data into two segments: one consisting of essential
information that requires attention, and the other compris-
ing non-essential information that does not warrant atten-
tion. Transformer [33], as a novel neural network model,
has achieved remarkable success in various tasks by replac-
ing traditional convolutional and recurrent structures with
self-attention mechanism. The Non-local Neural Networks
model [34] employs non-local operations to enable interac-
tions among global features. Meanwhile, the Convolutional
Block Attention Module (CBAM) [35] utilizes an attention
module consisting of two branches, channel attention and
spatial attention, to capture both global and local information.
The Squeeze-and-Excitation Networks (SENet) [36] model
introduces squeeze and excitation operations to learn the
importance of each channel.

D. ACCELERATION OF CONVOLUTION OPERATIONS

The traditional convolution calculation involves sliding a
window over the input feature map and performing dot
products, which consumes a significant amount of time and
resources on data addressing and reading operations. This
phenomenon facilitates the emergence of fast convolutional
networks. Low-rank decomposition [21] specifies the con-
volution kernel matrix by merging dimensions and imposing
low-rank constraints, resulting in a reduction in storage space.
FFT [22] uses related convolution kernels to quickly compute
linear convolutions of finite-length sequences, but its com-
putational complexity is high and it increases the memory
bandwidth requirements, so it is not widely used. Winograd
[23] and FFT [22] are both linear transformations, but the
former transforms to a real field without complex multipli-
cation, making it more suitable for small-kernel convolution.
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FIGURE 1. Original network structures and our proposed network structure.

TABLE 1. Resource per layer in MobileNets.

Type Mult-Adds Parameters
Conv 1x1 94.86% 74.59%
Conv DW 3x3 3.06% 1.06%
Conv 3x3 1.19% 0.02%
Fully Connected 0.18% 24.33%

The prevalent approach typically involves utilizing Im2Col
in conjunction with GEMM [24], which entails leveraging
Im2Col to reorganize the parameter positions required for
convolution calculations, while concurrently exploiting the
multithreaded operations supported by GEMM. The combi-
nation effectively improves the cache utilization and convo-
lution speed.

lll. METHOD
A. IMPROVEMENT OF NETWORK STRUCTURE
To reduce the parameters and computational cost of the
model, ShuffleNetV2 proposes two block structures, as
shown in (a) and (b) of figure 1. The structure in (a), called the
downsampling block, is used when DWConv stride=1 and
requires channel splitting and dividing the input feature into
two parts. The structure in (b), called the regular block, is
used when DWConv stride=2 and does not require channel
splitting, instead, it performs direct computations. Following
the completion of computation for both branches, regardless
of whether it was a downsampling block or a regular block,
subsequent concatenation and channel shuffling operations
are needed.

Assuming that the left branch is Branchl and the right
branch is Branch?2, both the downsampling block and regular
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block in Branch2 of ShuffleNetV2 use DepthWise convolu-
tions with 1 x 1 convolutions before and after. Typically,
1 x 1 convolutions are used before and after a DepthWise
convolution for two purposes, first, to merge the information
between channels and compensate for the lack of informa-
tion fusion between the channels in the DepthWise convo-
lution; second, to increase or decrease dimensionality, such
as in the inverted residual module in MobileNet V2 [8].
However, using multiple 1 x 1 convolution kernels signifi-
cantly increases the computational complexity. Table 1 in the
MobileNets [7] paper shows the percentage of multiplication-
addition operations and the number of parameters for each
layer. Due to the heavy use of 1 x 1 convolution kernels,
most of the computation and parameter quantity in the entire
network is concentrated on the 1 x 1 convolution module,
affecting the network performance. In ShuffleNetV2, 1 x 1
convolutions are used before and after the DepthWise convo-
lution in the right branch, which not only imposes a heavier
computational burden, but also diminishes the interpretability
of the model. Therefore, we remove the 1 x 1 convolution after
the DepthWise convolution, as shown in the right branch of
(c) and (d) in the figurel.

Based on the data in Table 1 and the computation dis-
tribution of ShuffleNetV2, we can see that most of the
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computation is concentrated on 1 x 1 convolutions, with a
small proportion of the computations allocated to DepthWise
convolutions. Therefore, we can expand the 3 x 3 convo-
lution kernel into a 5 x 5 convolution kernel, which will
not significantly increase the computational complexity while
improving network efficiency. The specific structure is shown
in (c) and (d) of Figure 1, and we will explore this further in
subsequent experiments.

B. NEW ATTENTION MODULE

The attention module focuses attention on important parts
or features of the input data to enhance the performance
and effectiveness of the model. Based on the aforementioned
roles, we have constructed a novel attention module called
the Adaptive Pooling Attention Module (APAM). The struc-
ture of this module, as shown in figure 2(a), includes two
pooling operations (average pooling and max pooling) and
two convolutional layers. The input feature map is subjected
to average pooling and max pooling to obtain its maximum
and average values along the channel dimension, respectively.
These two results are then fused through two convolutional
layers, and finally passed through a sigmoid activation func-
tion to generate weights, which are used to weight the original
feature map and produce the attention feature map. Next,
we combine it with the new block mentioned in Section
II-A, as shown in (b) of figure 2, which involves residual
connections. After performing the Channel Split operation, it
is divided into two branches. The left branch does not undergo
any operations, while the right branch connects the attention
module to the original structure through a residual module.
The output of the original structure is then combined with the
output of the attention module. This process results in a novel
block that incorporates residual connections and attention
modules.

C. IMPROVEMENT IN THE CONVOLUTIONAL OPERATION
The Im2Col method converts convolution operations into
a matrix multiplication. From the perspective of the num-
ber of addition and multiplication operations, there is no
difference compared to traditional convolution operations.
However, after conversion into a matrix, data are stored in
contiguous memory, resulting in improved access speeds.
For large convolution kernel sizes and output feature map
channels, the Im2Col method often generates matrices with
more rows than columns. Due to the data redundancy phe-
nomenon in the computational process, there is redun-
dant information in row storage during data reading, which
affects the calculation speed, as shown in (a) and (b) of
figure 3.

This study utilizes a method called data packing (Pack) to
address the data redundancy issue in Im2Col. This method
compresses the row dimension and expands the column
dimension, as shown in figure 3. In figure 4(a), a 3 x 3
convolution kernel with 5 output channels is used as an
example to illustrate the matrix form obtained through the
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FIGURE 2. Proposed APAM attention module.

Im2Col method. Since the framework used in this study
unfolds the sliding windows into rows, the colours of each
channel correspond to the expanded rows. The 4 x 4 operation
is used in figure 4(a). Since the output channel number cannot
be divided by 8, the output channel number is 5, which is
divided by 4 with a remainder of 1. Therefore, elements
are horizontally expanded in groups of four in the column
direction, with red, green, blue, and yellow forming one
group. After integrating the first four rows of elements, the
purple elements in the fifth row are placed in the second
row of the output result, and zero padding is applied where
needed to fill in missing elements. If there is a remainder,
additional row data are supplemented below horizontally, and
zero padding is applied to fill in any missing elements. If it
can be evenly divided, the output is a one-dimensional vector
with multiple columns, effectively reducing computational
complexity.

Figures 4(b) and 4(c) illustrate the 4 x 4 and 8 x 8 Pack
operations applied to the input feature vectors. In the sequel,
we shall employ the Jetson platform to validate the soundness
of our proposed concept. Similar to the Pack operation for
convolution kernels, the Im2Col method is used to convert
input features into a matrix form. Since the convolution kernel
is unfolded row by row, the input feature needs to be expanded
column by column, as shown in figure 4(b). Then, the Pack
operation is performed. Taking figure 4(b) as an example,
the horizontal dimension of the feature matrix is divided
by 4 with a remainder of 2, so elements are horizontally
expanded in groups of four in the column direction, with
each group forming one column after repeated operations.
The last two columns of the input feature matrix are placed in
the second and third columns of the output, respectively, and
missing elements are filled with zeros. The basic process for
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FIGURE 4. Packaging strategy implementation.

figures 4(b) and 4(c) is the same, except that they use 4 or 8
as the base.

D. EFFICIENCY ANALYSIS

Section III-A mainly focuses on the improvements made
to the Branch2 block structure in ShuffleNetV2, and the
following analysis is based on the computational complexity.
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The specific process involved in Branch2 of the original Shuf-
fleNetV2 structure can be illustrated by the diagram below,
assuming that M feature maps of size Dp x Dp are used as
input. The specific process is shown in figure 5:

The total calculation amount brought by the above three
stages is:

D}« M # N+ Dj # Df N+ Df « N x K (1)
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FIGURE 5. Specific process of Branch2 in ShuffleNetv2.

FIGURE 6. Specific process of Branch2 in LA-ShuffleNet.

The specific process involved in the improved Branch? is
shown in the following figure 6. The total calculation amount
brought by the above two stages is:

D? « M # N+ D} #Df %N )

To ensure consistency in output size, it is recommended to
set the kernel size K to be equal to the input size N, and divide
both Formula (1) and Formula (2) by this value.:

D2 M % N + Df % Df % N + Df % N?
D2 %M %N+ Df % D{ N

3

Under the condition that the size of the convolution kernel
remains unchanged, the simplified formula of Formula (3) is:

D? % N?
DIZ)*M*N+D%*D§*N

1+ 4

It is obvious that Formula (4) is always greater than 1, that
is, deleting the 1 x 1 convolution operation can reduce the
calculation amounts.

In the original network structure, the size of the convolu-
tion kernel is 3 x 3, which can be substituted into Formula
(1), and Dy is 3, while in our improved network, its size is
expanded to 5 x 5, and can be substituted into Formula (2),
and Dy is 5. Then, Formula (3) can be simplified as follows:

(N —16) D?

5
D%*M—i—ZS*D% )

Table 2 displays the network structure of ShuffleNetV2,
and we can observe that the value of N in the “Output
channels” column is always greater than 16, indicating that
the value in Equation (5) is always greater than 1. This
indicates that removing the redundant 1 x 1 convolution
layers and enlarging the DepthWise convolution kernels can
greatly reduce the computational complexity. Therefore, our
proposed improvements can theoretically produce a positive
effect. In the next step, we will conduct relevant experiments
to further investigate this.
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IV. EXPERIMENT AND RESULTS
A. OPERATING ENVIRONMENT AND DATASETS
1) OPERATING ENVIRONMENT
In terms of the experimental devices utilized, we provide
detailed information for the Windows platform, as illustrated
in table 3.

The detailed configuration for the JESTON platform is
presented in table 4.

2) DATASETS
We leverage the ImageNet dataset to rigorously assess the
performance of our proposed model.

The ImageNet dataset [38], a pioneering benchmark in
the field of computer vision, has played a pivotal role in
advancing the development and evaluation of various image
recognition algorithms. Comprising over millions of labeled
images across thousands of categories, ImageNet provides an
extensive and diverse collection of visual data. Its widespread
adoption has enabled researchers to explore the frontiers
of deep learning, fostering innovation in object detection,
image classification, and semantic segmentation. The chal-
lenge of achieving high accuracy on the ImageNet dataset
has driven the design of intricate neural architectures, such
as convolutional neural networks (CNNs) and their vari-
ants, contributing to significant breakthroughs in the field.
As illustrated in Figure 7, due to its extensive composition of
1000 major categories, a subset of 10 classes has been chosen
for demonstration purposes in this instance.

B. EVALUATION OF THE CONVOLUTION

OPTIMIZATION METHODS

Regarding the optimization of the convolution method in
Section I1I-B, we conducted the following tests, and the
results are shown in table 5. We conducted a comparative
analysis of our proposed method against manual optimization
as well as mainstream Winograd acceleration methods. The
input size for the first three sets of data is 15 x 15, with 512
input channels, 1024 output channels, and a 3 x 3 kernel size.
It can be seen from the time used that our method achieved
better results. For the last three sets of data, we increased the
input size while reducing the input and output channels and
conducted tests accordingly. Our method also achieved good
results.

C. EVALUATION OF THE ATTENTION MODULE
In Section III-B, we introduce a novel attention mod-
ule named Adaptive Pooling Attention Module (APAM).
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TABLE 2. Network structure parameters of ShuffleNetv2.

Layer Output size KSize Stride Repeat 05x 1.(())1>1<tput channle.lssx ox
Image 224x224 3 3 3 3
Convl 112x112 3x3 2
hd;i;;ol 56x56 3x3 2 ! 24 24 24 24
Stage2 ;Si;g % ; 48 116 176 244
Stage3 i:ii: % ; 96 232 352 488
Staged ;i; f ; 192 464 704 976
Conv5 7x7 1x1 1 1 1024 1024 1024 1024
GlobalPool 1x1 7x7
FC 1000 1000 1000 1000
TABLE 3. The configuration under the windows platform. '! m m u - .
£ i G A o
Hardware Software b — - =
Intel(R) A _'E E ﬂ - E . [ 8
CPU Cg;e(:)((')l'cl\;l’)ll]- (o Windows10 s q o 9' :
o 20 CUDA Toolkit V11.1 ﬂ n ‘ E B
t V1L, ;
AG CUDI(\)T(I)\ISI.OA - ‘! m m!n .
NVIDI F ok v
I S L
EEAG =
L =

We conducted evaluations on the ImageNet dataset and
employed Grad-CAM for visual representation, with specific
results presented in Figure 8. Our experimentation involves
ten distinct image categories as test subjects, with the Grad-
CAM [37] tool employed to showcase the network’s focus.
Notably, when examining the original ShuffleNetV2 net-
work, it becomes evident that certain crucial features, such
as the Binder, Jesery, and Vase, are not adequately attended
to, as indicated by significant discrepancies in these images.
Conversely, our model, integrated with the APAM module,
exhibits improved capability to concentrate on important fea-
tures. For instance, in the case of the Binder category, our
model effectively focuses on the intrinsic characteristics of
the Binder itself while acquiring a broader range of features
and paying increased attention to significant aspects.

D. EVALUATION OF NETWORK PERFORMANCE

1) TRAINING SETTINGS

According to our repeated experiments, the best configura-
tion for training is as follows:

Our model was trained for 300 epochs on the ImageNet
dataset using the stochastic gradient descent (SGD) optimizer
with a batch size of 128. We utilized cosine learning rate
decay with an initial learning rate of 0.01 and a momen-
tum parameter of 0.9 (Nesterov set to true). Weight decay
was applied to the model with a value of le-4 to improve
performance.
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FIGURE 7. Examples of images in the dataset.
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2) TEST UNDER WINDOWS PLATFORM

In table 6, we present the experimental results on the Win-
dows 10 platform, encompassing MACs, Parameters, Top-1
accuracy, and Top-5 accuracy. In comparison with the clas-
sical convolutional neural networks, namely AlexNet and
VGG, the lightweight networks exhibit superior performance
under relatively lower computational and parameter con-
straints. Notably, when compared with the ShuffleNet series,
enhancements in accuracy have been achieved. Further-
more, in contrast to the MobileNet series, improved perfor-
mance is attained with reduced computational and parameter
demands. The performance of LA-ShuffleNet surpasses that
of SqueezeNet and approaches the level of DenseNet with
lower computational requirements, yet demonstrates a dispar-
ity when contrasted with EfficientNet.

3) TEST UNDER THE JETSON PLATFORM

In table 7, we present the experimental results on the JETSON
XAVIER NX development kit environment, encompassing
MACs, Parameters, Top-1 accuracy, and Top-5 accuracy.
In comparison with the experimental outcomes on the Win-
dows 10 platform, our model continues to demonstrate out-
standing performance.
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H. Zhang et al.: LA-ShuffleNet: A Strong Convolutional Neural Network for Edge Computing Devices

IEEE Access

TABLE 4. The configuration under the JESTON platform.

Hardware Software

NVIDIA Carmel ARMv8.2
CPU (6-core )@1.4GHz(6MB L2 + oS Ubuntu 18.04

4MB L3)
RAM 8GB 128-bit LPDDR4x CUDA Toolkit V10.2
@1600 MHZ|51.2GB/ s CUDNN 8.0
GPU ] 384-core Volta Python 3.7
@1100 MHz + 48 Tensor Cores PyTorch 1.8.0

TABLE 5. The time comparison of different convolution methods.

Shape InputChannel KSize OutChannel Optimization Algorithm Time

15x15 512 3x3 1024 manual optimization 578.47ms
15%x15 512 3x3 1024 WinoGrad 334.85ms
15%15 512 3x3 1024 Im2col+Pack+Sgemm 302.45ms
56%56 64 3x3 128 manual optimization 122.64ms
56x56 64 3x3 128 WinoGrad 61.33ms
56%56 64 3x3 128 Im2col+Pack+Sgemm 57.51ms

TABLE 6. Comparison of model performances on ImageNet under Windows 10 platform.

Model MACs(M) Parameters(M) Top-1 Accuracy(%) Top-5 Accuracy(%)
LA-ShuffleNet 157 3 71.9% 91.7%
AlexNet 710 6 56.9% 79.2%
VGG19 1960 143 71.5% 90.3%
ShuffleNetV1 140 5.1 67.1% 86.9%
ShuffleNetV2 140 3.7 69.5% 88.1%
MobileNetV1 320 43 70.1% 88.9%
MobileNetV2 350 3.5 71.5% 90.2%
MobileNetV3 Small 300 2.3 66.9% 79.1%
MobileNetV3 Large 520 5.5 73.5% 90.5%
SqueezeNet 83.7 1.4 56.8% 79.8%
DenseNet 780 79.7 74.3% 91.6%
EfficientNet 39 5.2 76.1% 92.8%

TABLE 7. Comparison of model performances on ImageNet under Jeston platform.

Model MACs(M) Parameters(M) Top-1 Accuracy(%) Top-5 Accuracy(%)
LA-ShuffleNet 157 3 71.5% 91.2%
AlexNet 710 6 56.8% 78.5%
VGG19 1960 143 71.5% 90%
ShuffleNetV1 140 5.1 66.9% 85.7%
ShuffleNetV2 140 3.7 69.1% 87.6%
MobileNetV1 320 4.3 70% 88.8%
MobileNetV2 350 3.5 71.3% 90.1%
MobileNetV3 Small 300 2.3 66.9% 78.7%
MobileNetV3 Large 520 5.5 73.2% 90.1%
SqueezeNet 83.7 1.4 56.5% 79.5%
DenseNet 780 79.7 73.9% 91%
EfficientNet 39 52 76% 92.3%

E. ABLATION STUDY

The incorporation of lightweight and attention modules
holds significant importance in the architecture of LA-
ShuffleNet, as they directly contribute to the overall per-
formance and efficiency of the network. To gain deeper
insights into the influence of these modules, we conducted
a comparative analysis, examining their performance across
three distinct network bandwidths: 0.5x, 1.0x, and 1.5x,
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both with and without the presence of these two condi-
tions. Table 8 presents the pertinent models deployed in the
assessment.

The test results of the four models mentioned above on
ImageNet are shown in figure 9. After making the network
lighter, the Top-1 accuracy is lower than that of the original
network. With the introduction of attention mechanism, the
accuracy has been improved to some extent, but it is still not
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FIGURE 8. Heat map generated by Grad-CAM tool.

as good as L4, the LA-ShuffleNet designed by combining
lightweight and attention mechanism.

In conclusion, only by combining lightweight design with
attention module, the network can achieve optimal perfor-
mance. Using a single module alone cannot achieve the
desired effect. Additionally, our proposed LA-ShuffleNet
has achieved excellent performance across different network
widths.

V. DISCUSSION

Based on the results reported in the “EVALUATION OF
NETWORK PERFORMANCE” section and the relevant
data from Tables 6 and 7, our study strongly exhibits
the remarkable reliability and stability of the proposed
LA-ShuffleNet. This performance makes it a suitable alter-
native for deployment on multiple terminal devices running
different operating systems. The experimental findings indis-
putably suggest that the proposed network model outperforms
the standard and well-established AlexNet under identical
testing settings. This finding not only verifies the superiority
of our model but also emphasizes its potential uses in edge
computing situations.

It is worth noting that LA-ShuffleNet maintains its out-
standing performance when compared to VGG19, even while
considerably reducing computational costs. Furthermore, it
outperforms current mainstream lightweight networks, such
as the ShuffleNet series and the MobileNet series. However,
it is vital to recognize that some performance gap still per-
sists when compared to EfficientNet. This provides valuable
directions for future research and improvement.
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TABLE 8. Four models used for ablation experiments.

Model Lighter design Attention module
L1 NO NO
L2 YES NO
L3 NO YES
L4 YES YES
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FIGURE 9. Performance of four models on ImageNet.

Our study’s conclusions are further strengthened by
the findings in the ablation study section. The model
LA-ShuffleNet exhibits exceptional performance on both the
Windows 10 platform and the JETSON XAVIER NX devel-
opment kit when utilized with convolutional optimization
methods and attention modules. This placed LA-ShuffleNet
at the forefront of edge computing devices, creating a solid
foundation for practical implementation.

Nevertheless, despite comparable results on both plat-
forms, it is worth noting that there is a significant differ-
ence in actual training time. Specifically, training on the
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JETSON platform takes 1.5 to 2 times longer than on the
Windows 10 platform. This discrepancy is mostly related to
the restricted computational capabilities of mobile devices
and the associated increase in overall runtime. This difference
provides useful information for resource planning and time
budgeting in actual applications to ensure optimal perfor-
mance and efficiency on different platforms. Future study
should further examine techniques to optimize training on
mobile devices, minimize training time, and enhance compu-
tational efficiency to satisfy the expanding demands of edge
computing.

VI. CONCLUSION

In this study, we introduce LA-ShuffleNet, a more efficient
model built on ShuffleNetV2 with an enhanced internal
structure. Our results reveal that LA-ShuffleNet outperforms
the ShuffleNet series and other popular lightweight net-
works in terms of both accuracy and efficiency. Moreover,
LA-ShuffleNet is compatible with numerous platforms,
including mobile devices. Our findings offer insights for
future lightweight model designs.
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