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ABSTRACT This study introduces a deep learning engine designed for the non-destructive automatic
detection of defects within weld beads. A 1D waveform ultrasound signal was collected using an A-scan
pulser receiver to gather defect signals from inside the weld bead. We established 5,108 training datasets
and 500 test datasets for five pass/fail labels in this study. We developed a multi-branch deep fusion
network (MBDFN) model that independently trains 1D-CNN for local pattern learning within a sequence
and 2D-CNN for spatial feature extraction and then combines them in an ensemble method, achieving a
classification accuracy of 92.2%. The resulting deep learning engine has potential applications in automatic
welding robots or welding inspection systems, allowing for rapid determination of internal defects without

compromising the integrity of the finished product.

INDEX TERMS Deep learning, quality management, welding, automatic testing.

I. INTRODUCTION

Non-destructive testing (NDT) techniques such as scan-
ning electron microscopy (SEM) and scanning helium ion
microscopy (SHIM) play an important role in inspecting sec-
ondary electron (SE) signals in semiconductor chips without
compromising the integrity of the material [1], [2], [3], [4],
[5]. Similarly, in welding applications used in automotive
and ship manufacturing, NDT plays a key role in inspecting
welded joints for defects [6], [7], [8], [9], [10]. These tests are
particularly employed to identify various defects within the
bead, such as cracks, incomplete penetration, lack of fusion
(LF), and porosity [11]. Among NDT methods applicable
to bead defect detection, magnetic testing (MT), penetration
testing (PT), radiographic testing (RT), and ultrasonic test-
ing (UT) are commonly utilized [7], [12], [13]. However,
magnetic testing is most suitable for examining magnetic
materials, penetrant testing is primarily used to observe sur-
face defects, and radiographic testing faces challenges in
detecting internal microscopic defects and localizing them
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accurately [10], [13]. In our study, the focus is on employing
ultrasonic testing to detect defects within the beads.

Ultrasonic testing utilizes a piezoelectric probe to transmit
specific-frequency ultrasonic waves, into the material’s inte-
rior [7], [15]. These waves travel in a straight line and interact
with different media, such as defects or other materials, caus-
ing reflection or refraction based on the medium’s physical
properties. Subsequently, the probe receives the reflected or
refracted ultrasonic signal and presents it as a pulse signal to
the user [7], [15]. By analyzing the shape of the received pulse
signal, the presence and type of defect can be determined,
as the signal’s shape varies according to the internal defect’s
characteristics [7], [15], [16], [17].

The ultrasonic detection methods can be classified into
one-dimensional UT and phased-array ultrasonic testing
(PAUT) based on their signaling approach [18], [19]. In one-
dimensional UT, a single sound wave with fixed angle and
frequency is transmitted and received through a probe [7].
PAUT allows transmission and reception of ultrasonic waves
in an array, enabling adjustment of angle and frequency, and
presenting the received sound waves as an image [18], [19].
This user-friendly feature allows easy defect detection and
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FIGURE 1. Photographs of internal defect samples; (a) pass, (b) porosity,
(c) crack, and (d) lack-of-fusion.

classification [7], [19], though it comes with the drawback
of high equipment cost. Conversely, UT is cost-effective but
relies on a single pulse signal for defect identification, leading
to signal distortions depending on inspection (e.g., probe-
workpiece contact, probe position, orientation) and requiring
expert-level discernment. Consequently, inspection results
might be subjective and vary based on the inspector [13], [19].

To overcome these limitations, this study aims to enhance
the classification performance of non-destructive UT as
applying deep learning algorithms and signal processing
techniques [11], [18], [19]. We propose a novel deep
learning-based UT engine that consists of UT device to
acquire a single ultrasonic signal and convolutional neural
network (CNN)-based classifier capable of distinguishing
four different types of defects within a weld bead [18], [19],
[20], [21], [22].

Il. EXPERIMENTAL DETAILS

A. SAMPLE PRODUCTION

To create an ultrasonic dataset of internal weld bead defects,
we prepared the four types of weld samples: one (‘pass’)
without defects and the other with internal defects including
pores, cracks, lack-of-fusion. The samples were produced by
a company that manufactures actual I-shaped butt CO, welds
and were designed to present the types found in the ‘standard
ultrasonic kit (FLAWTECH co., LTD.)’ used as a reference
for ultrasonic testing.

Pores are caused by moisture from the surrounding air or
entrapment of the surface oxide film during melting [23],
[24], and depending on the cause, they can appear as porosity,
root-pore, etc. In this study, ‘root-pore’ and ‘porosity’ were
simultaneously present in the pore sample, and data of both
defect patterns were obtained from the porous sample as
shown in Figure 1(b). The remaining data were obtained from
the corresponding samples, such as ‘pass’ / ‘crack’ / ‘lack-
of-fusion’ samples, respectively, as shown in Fig. 1(a), (c)
and (d). The weld base material was SAPH440, a carbon steel,
with a thickness of 7t (7 mm), subject to a 10% thickness
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FIGURE 2. Internal defect examples; (a) porosity, (b) crack,
(c) lack-of-fusion, and (d) root-pore.

error. We used a KC-28 carbon steel welding rod and per-
formed I-shaped butt CO, welding between the materials.
Fig. 1 displays a photograph of the manufactured sample.
The total number of samples for the four types of normal and
defective welds was 146.

In Fig. 2, we present defect samples exhibiting porosity,
cracks, lack-of-fusion, and root pores. These defects were
randomly distributed within the sample. To identify the defect
locations, we employed MT, and only the data collected at
those identified locations were used as defect data. Fig. 2(a)
displays a porous sample, where porosity is observed ran-
domly distributed inside the bead. In Fig. 2(b), we see a
cracked sample, with the identified cracks highlighted in
red through magnetic particle detection. Fig. 2(c) showcases
a lack-of-fusion sample, revealing a defect situated in the
middle of the bead. Lastly, Fig. 2(d) exhibits a root pore
sample, indicating the presence of a root pore on the back
of the bead.

B. DATA ACQUSITION

For this study, all ultrasonic signals were collected using a
SMHz-frequency 70-degree probe (KN5-70, Kyungdo Enter-
prise Co. Ltd., Republic of Korea) and a pulser-receiver
(OPBOX 2.0, Optel, Poland) capable of transmitting and
receiving ultrasonic signals from a single probe. The OPBOX
is equipped with a built-in 10-bit A/D converter, which effi-
ciently converts ultrasonic analog signals into digital data,
eliminating the need for a separate signal converter like an
oscilloscope.

The ultrasonic settings were configured as follows, taking
into account the speed of ultrasonic propagation in the weld-
ing material: velocity 3,420 m/s, pulse width 0.1 s, sampling
frequency 50 MHz, analog filters 4 - 10 MHz, gain (constant)
50 dB, and binning of 64. The OPBOX software allowed easy
ultrasound setup and signal verification.

Due to the dead zone at the beginning of the ultrasonic sig-
nal caused by the initial pulse, the probe’s frequency needed
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FIGURE 3. Schematic of ultrasonic testing.

careful consideration [7], [17]. As the weld sample in this
study was relatively thin at 7t (7 mm), a 5 MHz probe with
a short dead zone of less than 20 us was chosen. The data
before 20 s was considered as the dead zone, excluding it
from model training due to noise interference [17]. Addition-
ally, analysis revealed a peak beyond 65 us on the time axis,
requiring calculation to interpret the signal from a thickness
of several millimeters. Fig. 3 depicts a schematic diagram
illustrating the correlation between ultrasonic propagation
distance, detection angle, and defect depth during ultrasonic
testing.

To calculate the defect depth d, we use the following
equation:

d =W xcos6 (1)

where d is the defect depth and, W is the propagation distance
of the ultrasonic wave. The propagation distance of the ultra-
sonic wave W was calculated using the following equation:

W=vxt 2)

where v is the ultrasonic velocity, and t is the propagation
time. Using Eq. (1) and (2), we calculated the point on the
time axis at 65 us to have a depth of approximately 7.6 mm,
confirming the signal originates from the floor surface.

In Fig. 4, the 1D-waveform of ultrasonic signals for nor-
mal and defect types is presented. Fig. 4(a) displays a 1D
waveform obtained from a pass sample, where no defect peak
is observed beyond 20 us. However, a peak signal reflected
from the back of the weld sample appears after the time
axis of approximately 65 us. Fig. 4(b) shows the waveform
from the porosity sample, revealing a peak at around 50 us
(approximately 5.8 mm depth) caused by the defect and
another peak beyond approximately 65 ws obtained from
the back of the sample. Fig. 4(c) presents the signal from
a root-pore sample, demonstrating a defect-induced peak at
about 60 s (around 7 mm deep) due to pores located at the
bottom of the sample. For cracks, Fig. 4(d) shows distributed
peaks starting at 50 us (around 5.8 mm deep), while Fig. 4(e)
illustrates a large peak attributed to lack-of-fusion around
55 us (approximately 6.4 mm deep).

Table 1 presents the organization of the collected ultra-
sound training datasets, classified by labels. Out of the
146 samples, we acquired 5,108 ultrasound 1D waveform
data from 126 samples. Approximately 80% of these data
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FIGURE 4. 1D waveform; (a) pass, (b) porosity, (c) root-pore, (d) crack,
and (e) lack-of-fusion.

(4,086) were used for training the AI model, while the
remaining 20% (1,022) formed the validation dataset. For
the test dataset, we collected 100 data points per defect from
the remaining 20 samples, resulting in a total of 500 data
points.

The different amount of data per label can be attributed to
the different features and patterns inherent in each label type.
All defect signals were verified by two experienced experts
with more than 10 years of experience in manufacturing
using welding. Lack-of-fusion was only able to obtain signals
similar to what can be seen in Figure 4(e), and was determined
to be due to the presence of only one defect pattern. Similarly,
for the pass, porosity, and root-pore labels, which do not
have significantly different defect patterns, we were able to
collect about a thousand data each. However, since cracks
can produce transverse and longitudinal cracks depending
on the direction of growth and have different shapes of 1D
waveforms [25], [26], we collected about two thousand data
for training the algorithm, which is about twice as many as
the other labels.

C. DEEP LEARNING-BASED CLASSIFIER

We developed a deep learning-based algorithm to classify the
UT signal into normal and one of the four defect patterns
present in the weld bead. External inclusions like pores or
slag along the ultrasonic path, as well as improper welding
conditions resulting in incomplete structures, can alter the
phase and magnitude of the reflected ultrasonic signal [8].
These changes manifest as peaks in the 1D UT waveform, and
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TABLE 1. UT 1D waveform dataset.

Branches for global features

Label Train Validation Test Total

Pass 0 703 176 100 979
Porosity 1 734 195 100 1,029
Crack 2 1,522 368 100 1,990
Lack-of-fusion 3 386 94 100 580
Root-pore 4 741 189 100 1,030
Total 4,086 1,022 500 5,608

their locations and shapes serve as crucial features to detect
internal defects. Therefore, we devised a deep learning-based
classifier that can simultaneously learn various temporal and
spatial features of the above-mentioned peaks, and this net-
work is called multi-branch deep fusion network (MBDFN).
It consists of a parallel network structure of 1D- or 2D con-
volution branches, named as multi-branch, and each branch
has consecutive convolution modules, named as deep fusion
network.

1D-CNN is useful for extracting temporal local fea-
tures. For example, time-varying features such as oscilla-
tions and sparkles can be extracted from one-dimensional
UT waveform data. Since the order of this kind of data
is usually important, 1D-CNN is effective at recognizing
and learning local patterns within sequences. On the other
hand, 2D-CNN has advantages in spatial feature extrac-
tion. For example, spatial information such as location and
peak spacing can be extracted from two-dimensional data,
such as a one-dimensional UT waveform converted to a
gray-scale image. Since spatial structure is important in
two-dimensional data such as images, 2D-CNN is useful for
recognizing and learning patterns from different parts of an
image [27], [28]. The detailed structure of each CNN is as
follows.

Our 1D-CNN structure, as depicted in Fig. 5, involves a
1D convolutional layer for pattern classification using the
temporal features of significant peaks along the time axis (or
spatial axis) of the UT 1D waveform. To enhance the reliabil-
ity and efficiency of model training and prediction, as well as
to improve the model’s performance and generalization capa-
bility, we normalized the 1D UT waveforms to a range of 0 to
1. Additionally, we introduced random noise (sigma=0.03)
to further normalize the signal. The signal then underwent
sequentially repeated convolutional modules, including the
1D convolutional layer, activation layer, pooling layer, and
drop-out layer. The output passed through repeated dense
layers, and the final decision was made using the softmax
function. To address the gradient banishing issue in deeper
layers, we implemented a residual connection between the
input and output of the 1D convolution module [29]. Optimal
hyperparameters for the sequential convolution modules and
dense layers, such as the number and size of 1D convolution

114492

Raw UT ]
1D-Conv | 1D-Conv |
% Nomeliewlon | | " Module | | Module | ’I
Branches for local features
concatenate
10conv | ... | 1DConv | 7N R
[ " Modue | ! Modue | 'I "CL ﬂ Qutput
e ) t it
f 1D-Conv module
| 09-x! Branches for sub-local features
H : le)’@ il
| 10Conv | .. | 1DConv | |
X | " Module | Module |
Conv2D Activation Pooling Dropout Flatten Dense
(Leaky ReLUJ | (Max) (05)
FIGURE 5. Structure of 1D-CNN of UT waveform signal.
TABLE 2. Hyperparameters of 1D-CNN.
Hyperparameter Value
Optimizer Leaky ReLU

Learning rate [0.01 ~0.0001]

Epoch 10,000

Early stopping Yes (patient:50 epochs)

Branches Number Various (3~5)
1D Conv. module Repetition Various (7~10)
Conv. 1D Filters Various (16)

Kernel size Various ([3, 5, 7])

filters and the number of hidden layers, were obtained via grid
search under various training conditions. Table 2 presents the
hyperparameters of the 1D-CNN.

2D-CNN structure is depicted in Fig. 6. It comprises par-
allel 2D convolution modules, including a 2D convolutional
layer, activation layer, pooling layer, and drop-out layer,
similar to 1D-CNN. All modules are concatenated and fed
into repeated dense layers. The final decision is obtained
using the softmax function. Additionally, similar to the 1D
convolution module in Fig. 5, the 2D convolution module also
incorporates residual connections between its input and out-
put. To determine optimal hyperparameters for the sequential
2D convolution modules, we conducted a grid search under
various training conditions. The filter sizes in the modules
for global features were set to be larger than those for local
features, as larger filter sizes provide more global features.
Table 3 outlines the hyperparameters of the 2D-CNN.

For the final classification of UT signals, we selected
1D-CNN and 2D-CNN candidates with the highest macro-
average recall. By ensembling these candidates, we identified
the optimal structure based on the best macro-average recall.
The macro-average recall, which represents the average
detection performance (recall) per class, was considered as
a suitable performance indicator for comparing classification
performance among models.
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TABLE 3. Hyperparameters of 2D-CNN.

Hyperparameter

Value

Optimizer

Learning rate

Leaky ReLU

[0.002 ~ 0.00001]

Epoch 200
Early stopping Yes (patient:20 epochs)
Branches Number Various (3~5)
2D Conv. module Repetition Various (2~9)
Conv. 2D Filters Various (16~64)
Kernel size Various ((3x3) ~ (11x11))

To obtain the final decision, we utilized soft voting of
the logit from the combined models. Subsequently, the node
with the highest value was classified as the final class using
softmax. A visual representation of the MBDFN’s overall
configuration is referred to Fig. 7.

Ill. RESULTS AND DISCUSSION

To determine the optimal hyperparameters of the 1D- and
2D-CNN, we evaluated models with a macro-average recall
exceeding 0.87. The final classification model was cho-
sen by selecting the model combination with the highest
macro-average recall among multiple combinations.

For the hyperparameters of the 1D-CNN, after fixing the
learning rate and random seed (as per Table 2), we conducted
a grid search. The resulting model had three branches in the
CNN module, with a 1D convolutional layer and its filter size
of 10 in each branch. The kernel sizes were 7 x 7,5 x 5,
and 3 x 3 for the respective branches, with the activation
function being Leaky ReLU. Additionally, the MaxPooling
1D layer had a pool size of 2 x 2, and the dropout ratio was set
to 0.2. Table 4 displays the classification performance index
of the top five models with macro-average recall, obtained
by varying the learning rate from 0.001 to 0.00005 for the
1D-CNN with the optimal hyperparameters. The recall and
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TABLE 4. Training results of the 1D-CNN model.

Model number Precision Recall Fl-score  Accuracy
1 0.893 0.890 0.890 0.890
2 0.890 0.886 0.885 0.886
3 0.891 0.884 0.884 0.884
4 0.886 0.880 0.879 0.880
5 0.878 0.874 0.873 0.874

F1-score of the top five models ranged from 0.873 to 0.89,
with a mean recall of 88.2% and a standard deviation of 0.7%.

Table 5 displays the training results of 1D-CNN Model-1,
which achieved the highest macro-average recall. The
model’s performance metrics are as follows: Fl-score of
89.0%, precision of 89.3%, recall of 89.0%, and accuracy
of 89.0%.

Fig. 8 illustrates the confusion matrix of the 1D-CNN
model mentioned above, featuring five labels: pass (0), poros-
ity (1), crack (2), lack of fusion (3), and root pore (4).
According to the matrix, the classification accuracy for the
four labels (pass, porosity, lack of fusion, and root pore)
is nearly 90%. However, the accuracy for the crack label
is 75%, particularly when misclassified as porosity (18%),
which shares a similar 1D waveform. This discrepancy is
attributed to the various forms of crack generation, such as
transverse and longitudinal cracks, during the production of
internal defect samples. Additionally, ultrasonic signals are
collected differently based on the crack’s shape [25], [26].
When the crack progression direction aligns with the ultra-
sonic progression direction, the crack may be recognized as
a point, generating a waveform resembling porosity. On the
other hand, when the crack progression direction and the
ultrasonic progression direction do not align, a disconnected
progression surface, such as lack of fusion or root pore,
can generate a waveform. Although we considered different
crack types and trained with about twice as much crack data
as the other labels, we did not get good results in crack
classification. To enhance performance, it may be beneficial
to differentiate cracks into separate labels, such as transverse
and longitudinal cracks, based on their generation direction.
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TABLE 5. Results of 1D-CNN best performance model.

Precision Recall F1-score Support
Pass 0.941 0.960 0.955 100
Porosity 0.795 0.930 0.857 100
Crack 0.872 0.750 0.806 100
Lack-of-fusion 0.969 0.940 0.954 100
Root-pore 0.879 0.870 0.874 100
Accuracy 0.890 500
Macro avg 0.893 0.890 0.890 500
Weighted avg 0.893 0.890 0.890 500

After conducting a grid search with fixed learning rate and
random seed for the 2D-CNN (as per Table 3), the hyper-
parameters of the model with the best macro-average recall
performance are as follows. Similar to the 1D-CNN, the CNN
module includes three branches: each branch contains a 2D
convolutional layer with 16 filters. The kernel sizes for the
branches are 7 x 7,5 x 5, and 3 x 3, with the activation
function being Leaky ReLU. The MaxPooling 2D layer has a
pool size of 2 x 2, and the dropout ratio is 0.2.

Table 6 presents the classification performance indices of
the top five models with macro-average recall values obtained
by varying the learning rate from 0.001 to 0.00005 for the
2D-CNN with the optimal hyperparameters. All eight models
achieved macro-average recall values exceeding 87%, and
their accuracies were also above 87%.

Table 7 displays the training results of Model-1, which
exhibited the best performance among the 2D-CNNs. The
model demonstrated precision, recall, F1-score and accuracy
rates of 88.7%, 88.6%, 88.6%, and 88.6%, respectively.

Fig. 9 presents the confusion matrix of the 2D-CNN model.
According to the confusion matrix, three labels, pass (0),
porosity (1), lack of fusion (3), achieved a classification accu-
racy of over 90%. However, similar to the 1D-CNN results,
the crack (2) and root-pore (4) labels had classification accu-
racies of 79% and 82%, respectively. Additionally, cracks
were frequently misclassified by other labels.

Table 7 presents the performance of the MBDFN achieved
through the optimal combination of the 1D-CNN and
2D-CNN models. MBDFN combines the eight 1D-CNN
models and four 2D-CNN models mentioned earlier. Its
performance was confirmed to be 92.4% precision, 92.1%
F1-score, 92.2% recall, and 92.2% accuracy.

Fig. 10 illustrates the confusion matrix of the MBDFN
model. Remarkably, all four labels achieved a classification
accuracy of over 90%, representing a notable improvement
compared to the individual models. Nevertheless, in the
MBDEN network, the recall for cracks (2) remained at 78%,
indicating that cracks are still frequently misclassified as
porous defects such as porosity (1) and root-pore (4).

114494

0.8
0.6
z
= r 0.4
o2
—L 0.0
predicted label
FIGURE 8. Confusion matrix of 1D-CNN model.
TABLE 6. Training results of the 2D-CNN model.
Model number Precision Recall Fl-score  Accuracy
1 0.889 0.888 0.888 0.888
2 0.890 0.886 0.886 0.886
3 0.882 0.884 0.882 0.884
4 0.881 0.882 0.880 0.882
5 0.881 0.880 0.880 0.880
TABLE 7. Results of 2D-CNN best performance model.
Precision Recall F1-score Support
Pass 0.941 0.960 0.950 100
Porosity 0.826 0.900 0.861 100
Crack 0.806 0.790 0.798 100
Lack-of-fusion 0.980 0.960 0.970 100
Root-pore 0.882 0.820 0.850 100
Accuracy 0.886 500
Macro avg 0.887 0.886 0.886 500
Weighted avg 0.887 0.886 0.886 500

Fig. 11 depicts the receiver operating characteristic (ROC)
curve of the MBDFN model. The overall area under the curve
(AUC) was 0.99, with individual AUC values for each label
being 1.00 for pass, 0.99 for porosity, 0.98 for crack, 1.00 for
lack-of-fusion, and 0.99 for root-pore.

MBDEFN were developed to provide standardized defect
detection and classification performance regardless of the
operator’s level of expertise. However, due to the structure
of MBDFN, which consists of multiple models, detecting
defects in real-time is challenging. While the inference time
of a single 1D CNN model comprising an MBDFN averages
2.5341.07 seconds with the mAP of 89%, the inference time
of an MBDEN takes about 8 seconds longer and the mAP
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TABLE 8. Results of MBDFN.
Precision Recall F1-score Support
Pass 0.980 0.990 0.985 100
Porosity 0.836 0.970 0.898 100
Crack 0.907 0.780 0.839 100
Lack-of-fusion 0.980 0.980 0.980 100
Root-pore 0.918 0.890 0.904 100
Accuracy 0.922 500
Macro avg 0.924 0.922 0.921 500
Weighted avg 0.924 0.922 0.921 500
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FIGURE 10. Confusion matrix of MBDFN model.

improves from 3.6% to 92.2%. This is mainly due to the
model loading time and iteration of the 1D and 2D CNNg,
while the inference time for unit data is expected to be within
a few milliseconds. In the future, we expect that applying
model optimization engines such as TensorRT and ONNX
will further reduce model loading time, enabling real-time
processing.
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In addition, the defect samples used in this study were pro-
duced by a company that manufactures I-shaped butt welds
using CO, welding. We asked them to produce samples with
defects that are common in real-world welding processes.
We assumed that the types of defects would be similar in other
applications or welding methods. However, the quality of the
weld can change the appearance of the ultrasonic signal. For
example, if the backside of the weld bead is not smooth, or if
the bond between the base metal and the bead is poor, multiple
ultrasonic peaks may occur on the backside, giving a different
result than the actual defect. This issue can be addressed with
additional data training, and coverage can be increased in the
future by adding data collected from different environments.

IV. CONCLUSION

In this study, we proposed a deep-learning engine for auto-
matically and non-destructively classifying defects in weld
beads from 1D UT signals. Using an A-scan pulser-receiver
and angle beam ultrasonic probe, we obtained 1D waveform
ultrasound signals, which consists of 5,108 UT signals used
for train dataset and 500 UT signals used for test dataset,
from the weld bead. For classifying UT signal to the cor-
responding labels, such as pass and four types of defects,
MBDEFN model was developed through optimal combination
of both the 1D-CNN models and 2D-CNNs. The confirmed
classification accuracy for normal and four types of internal
defects was 92.2%. We expect that the deep learning model
presented in this paper could find practical applications in
automatic welding robots or welding inspection systems to
swiftly determine the presence of defects in finished products
without the need for destructive testing.
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