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ABSTRACT Although attention-deficit/hyperactivity disorder (ADHD) is a common psychiatric disorder,
it is difficult to develop an accurate diagnostic method. Recently, studies to classify ADHD using resting-
state functional magnetic resonance (rs-fMRI) imaging data have been conducted with the development of
computing resources and machine learning techniques. Most of them use the entire brain’s regions when
training the models. As opposed to the common approach, we conducted a study to classify ADHD by
selecting essential areas for using a deep learningmodel. The experiment used rs-fMRI data from the ADHD-
200 global competition. To obtain an integrated result from the multiple sites, each region of the brain is
evaluated using ‘leave- one-site-out’ cross-validation. As a result, when we only used 15 important regions
of interest (ROIs) for training, 70.6% accuracy was obtained, significantly exceeding the existing results of
68.6% from all ROIs. Additionally, to explore the new structure based on SCCNN-RNN, we performed the
same experiment with three modified models: (1) separate channel CNN - RNN with attention (ASCRNN),
(2) separate channel dilate CNN - RNN with attention (ASDRNN), (3) separate channel CNN - slicing RNN
with attention (ASSRNN). The ASSRNNmodel provides a high accuracy of 70.46%when trained with only
13 important ROIs. These results show that using deep learning to identify the crucial parts of the brain in
diagnosing ADHD yields better results than using every area.

INDEX TERMS ADHD, deep learning, rs-fMRI, AAL116, ROI.

LIST OF ABBREVIATIONS
Abbreviations in this article are listed as follows.

Acronym Explanation
AAL Automated Anatomical Labelling atlas.
ASCRNN Separate Channel CNN - RNN with

Attention.
ASDRNN Separate Channel Dilate CNN - RNN with

Attention.
ASSRNN Separate Channel CNN - slicing RNN with

Attention.
ADHD Attention-Deficit/Hyperactivity Disorder.
BHBU Bradley/Brown University.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

BiLSTM Bidirectional Long Short-Term Memory.
BOLD Blood-oxygen-level-dependent.
CNN Convolutional Neural Network.
DNN Deep Neural Network.
FC Functional Connectivity.
HC Healthy Control.
KKI Kennedy Krieger Institute.
LOSO Leave-One-Site-Out.
LSTM Long Short-Term Memory.
MRI Magnetic Resonance Imaging.
NI NeuroIMAGE.
NIAK Neuroimage analysis kit.
NYU New York University.
OHSU Oregon Health Sciences University.
ReLU Rectified Linear Unit.
RNN Recurrent Neural Network.
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ROI Region of Interest.
rs-fMRI resting-state functional Magnetic Resonance

Imaging.
SCCNN Separate Channel Convolutional Neural

Network.
SCDCNN Separate Channel Dilate Convolutional

Neural Network.
SER Speech Emotion Recognition.
WUSTL Washington University at Saint Louis.

I. INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is a psychi-
atric disorder that frequently appears in children [1], [2], [3].
However, until recently, there have been no specific tests for
diagnosing ADHD [4]. To overcome this limitation, many
studies have been conducted to identify a biomarker between
healthy controls (HCs) and ADHD from medical data. For
example, functional connectivity (FC) extracted from resting-
state functional magnetic resonance imaging (rs-fMRI) data
is frequently used with machine learning methods [5], [6],
[7], [8], [9], [10], [11].

Owing to the recent exponential growth of deep neural
network (DNN) model techniques, DNN-based models have
been used to obtain the features of not only ADHD [12],
[13], [14], [15], [16] but also other diseases [17], [18]. The
deep learning models to diagnose ADHD using rs-fMRI
can be divided into two categories according to the data
characteristics. The first one is that after dividing a brain into
specific regions and extracting features from rs-fMRI data
of those regions, the deep learning model is trained by those
features [12], [13], [14].

In these models, voxel-based feature or ROI-based feature
is used. The former is the feature obtained from a brain
divided by the same size. The latter is the feature obtained
from various methods, such as functional connectome
analysis. Those features can effectively reduce the data size
of rs-fMRI and help effectively train deep learning models.

The second one is using all rs-fMRI data to train deep
learning models [15], [16]. Even though this method uses
massive data, unlike the first case, it can be more effective
in training deep learning models than the first one.

However, we want to focus on the findings that suggest
that the differences between ADHD and HC might be found
in specific regions of interest (ROIs) [9], [19]. These studies
demonstrated that the interactions between the local area
of the brain and specific regions are more distinguishable
between ADHD and HC. We therefore naturally ask, ‘‘Is it
good to cover all brain areas in diagnosing ADHD through a
neural network model?’’ Thus, we examined how to identify
the important brain regions and how much these ROIs affect
ADHD classification.

In this study, we intend to identify a specific answer to that
question. The chosen dataset, evaluation method, and models
are as follows. We combined all data sites as the training
dataset to avoid biased results because the measurement
parameters differ for each site. Then, we evaluated and

compared the trained model using leave-one-site-out cross-
validation (LOSO) [14] using the ROIs that we used for
training. The separate channel CNN - RNN(SCCNN-RNN),
which by Zhang et al. [14] proposed, is the model architecture
for this experiment. Each model has the same number of
trainable parameters, regardless of the number of ROIs. This
means that we can control the variance of the result from the
model capacity. Therefore, we can obtain a more accurate
result related to the importance of the ROIs.

The experimental procedures were also designed to exam-
ine the existence of some critical areas in the identification
of ADHD. With the SCCNN-RNN model, we examined the
significance of the individual ROI using only one ROI feature
for model training. Then, the ROIs were ranked according
to the results. In the next step, we investigated how some of
the ranked ROIs with a significant impact on the diagnosis
of ADHD affect the classification accuracy. We discovered
that using only the high-ranked ROIs rather than the entire
ROIs is much better for classification. We also conducted
experiments on three additional new architecture models
based on SCCNN- RNN to supplement this result.

The contribution of our work can be summarized as
follows: First, we demonstrated that different ROIs contribute
differently to diagnosingADHD, according to a deep learning
experiment. This implies that one should investigate the
significance of each ROI in ADHD diagnosis. Second,
we demonstrated that in a deep learning experiment for
ADHD, a diagnostic using a limited number of ROIs can
perform better than a diagnostic using all ROIs. This indicates
that diagnosing ADHD can be challenging considering
all brain regions. Finally, we propose other deep learning
architectures based on SCCNN – RNN.

In conclusion, even with a limited number of ROIs,
the evaluation of the result demonstrated 70.6% accuracy.
In Sections III and IV, we will explain the data selection
process and a description of the experiment’s models.

II. RELATED WORKS
A. BIOMARKER SELECTION IN fMRI FOR
DISEASE DIAGNOSIS
In brain disease diagnosis, the brain’s regional features from
magnetic resonance are used importantly [20]. Among them,
fMRI is used to understand the relationship between nerve
activities in the special region of the brain and disease. Even
though it is very complicated to figure out what characteristic
is helpful to understand, there have been many efforts to
reveal the connection.

The well-known approach is voxel-based feature extrac-
tion, which divides the brain into many small regions and
obtains a characteristic in each area. Watanabe et al. [21]
diagnosed Schizophrenia by learning the graphical features
of 33 voxels. Moreover, Jin and Huang [22] used voxel-based
feature extraction to diagnose depressive disorder.

However, there is a clear limit to diagnosing a disease
using a voxel-based feature since it is obtained only by
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FIGURE 1. The overall pipeline of the proposed experiment procedure. The pipeline is divided into three parts. First, the red block is the data
preprocessing part, which extracts the ROI features of rs-fMRI data preprocessed by the NIAK pipeline using an AAL 116 template. Second, the
green block is the individual ROI evaluation part, which is used to identify the important ROIs using deep neural network models. Specifically,
in this part, we train the model with only one ROI signal among 116 ROIs and evaluate the model using ‘LOSO’. We evaluate all 116 ROIs
independently. Third, the blue block is the ranked ROI group evaluation part, which selects the ranked n number of ROIs and evaluates the model.

FIGURE 2. Comparison of ADHD-200’s rs-fMRI image samples between
HC subjects and ADHD patients preprocessed by NIAK template. The
images are cut by several z-axis coordinates. (top) HC subject’s rs-fMRI
image at NYU site. (bottom) ADHD patient’s rs-fMRI image at NYU site.

dividing the region of the brain without any medical
information. To compensate for this limitation, ROI-based
feature extraction where the region of the brain is divided
by medical information is used. Dadi et al. [23] provided
the performance of diagnosis when ROI-based features and
machine learning are applied to various diseases.

In this work, we focus on the method to select a biomarker
in ROI. Specifically, through the deep learning model,
we evaluate the ability of each ROI to diagnose ADHD.
Moreover, by using a deep learning model of ROIs, we study
the relationship between the nerve activities in the special
region of the brain and ADHD.

III. PROPOSED METHOD
A. NECESSITY OF CHECKING WHICH REGIONS OF THE
BRAIN ARE IMPORTANT TO DIAGNOSE ADHD
As mentioned, several studies have been conducted to
identify the biomarkers between HC and ADHD patients.
Recently, deep neural network-based models have been used
to study the biomarker, for which researchers used the entire
brain.

FIGURE 3. Pseudo-code of ROI rank method.

However, findings suggested that the differences between
ADHD and HC might be in specific or certain ROIs [9], [19].
Along these lines, we conducted a study to determine whether
it is beneficial to examine all brain areas in diagnosingADHD
using a neural network model.

To answer this question, we designed the experiment
shown in Fig 1, which shows the overall pipeline of the pro-
posed experiment procedure. Our experiments were designed
to determine how each ROI can be ranked and how using
high-ranked ROIs can influence ADHD diagnosis. Because
ranking each ROI is significantly difficult, we developed a
method to rank each ROI. The developed method uses the
AI model for each ROI, which is based on rs-fMRI data,
to provide a score for ADHD diagnosis (For more detail, see
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pseudo-code of ROI rank method in Fig 3). Then, as a feature
subset selection [24], we investigated how many high-ranked
ROIs can influence ADHD diagnosis. This study will enable
us to answer the question raised above. Our experiments
demonstrate that the SCCNN-RNN model using only a few
ROIs provides 70.6% accuracy, which exceeds the existing
results of 68.6% using all ROIs.

B. DATA SELECTION FOR THE EXPERIMENT
The rs-fMRI, shown in Fig 2, is a 4-dimensional structure
that contains both spatial and temporal information about the
brain. Therefore, the raw data obtained from a single subject
containmany low-dimensional (x, y, z, t) features. Thismeans
that we require many data samples to learn a meaningful
hidden feature of ADHD with a neural network. The neuro
bureau [25] provides many data samples (∼1k) that are
preprocessed using various methods (Athena, NIAK, Burner)
used in the ADHD-200 Global competition. However, using
them directly for the experiment presents some challenges.
As previously stated, this is because there are still insufficient
samples to directly use low-dimensional data for training.

Furthermore, the second reason regards the ADHD-200
Global competition dataset, which consists of several sites.
In other words, different MRI device parameters were
used to collect data from each fMRI site. The model will
produce biased results depending on the initial setting of the
measuring device if it is trained using fMRI data samples
from a particular site.

To overcome these difficulties, we attempted to use as
many data samples as possible in this study to obtain results
independent of the measuring device. We constructed a
training dataset from multiple sites together and extracted
feature vectors that are less sensitive to the unique biological
information (phenotype) and measure parameters. Handcraft
feature extraction [26], [27] was frequently used in previous
studies. However, these can vary depending on the context in
which the fMRI data are collected. Therefore, this method
is not appropriate for our situation. Therefore, we chose
automated anatomical labeling (AAL 116) [28] for feature
extraction.

Using the AAL 116 template, we anticipate that it will be
possible to effectively extract features from low-dimensional
fMRI data for the 116 ROIs. In summary, we chose the
dataset from the five sites (NYU, Peking, OHSU, KKI,
and NI) preprocessed by the NIAK pipeline [29] from the
Neuro Bureau ADHD-200 preprocessed Repository (For
more detail about preprocessing information, see [30].) We
then extracted high-level features using the AAL template.
These procedures enabled us to demonstrate that a specific
ROI is useful for ADHD diagnosis in general fMRI data.

C. SEPARATE CHANNEL CNN - RNN ARCHITECTURE
As previouslymentioned, we intend to identify the significant
ROIs for diagnosing ADHD and HCs. To achieve this,

FIGURE 4. Architecture of the SCCNN - RNN. After passing the SCCNN part
that extracts the bold signal of each ROI through convolution layers and
the RNN part that learns the relationship between multiple ROIs, ADHD is
determined from the output of the last step of RNN through two fully
connected layers.

we chose the SCCNN-RNN as the basemodel architecture for
the experiment because it satisfies the following two criteria.

First, the SCCNN-RNN can extract spatial and temporal
information from fMRI data. Particularly, SCCNN-RNN can
be divided into two parts, each with a different purpose. First,
the SCCNN part can extract the feature of the BOLD signal in
each ROI using 1-D CNN. Because 1-D CNN performs well
in signal processing, as shown in a recent study [31], it is used
to handle fMRI data. Second, after processing ROI signals
using a 1-D CNN, RNN can learn the dependence among
ROIs and extract features about the relationship of ROIs.

Second, the SCCNN-RNN architecture can always main-
tain the same number of learnable weights regardless of
changes in the input data dimension. For example, we trained
several models using different ROIs and compared them with
the evaluation results. If the input’s shape changes the number
of trainable parameters, the model’s learning capacity can
also be changed. This implies that we compared the influence
of the ROI with inconsistent results. Therefore, to avoid this
situation, we must control the trainable parameters.

Here, we describe the precise setting of the SCCNN-RNN
for our experiments, as shown in Fig 4. In the SCCNN
section, we stacked four layers using 1-D CNN. We used
the 4-convolution layer. Each layer’s channel number is
32, 64, 96, and 96, respectively. The stride size and the
filter size were set to 1 and 3, respectively, as common
parameters on the convolution layers. In the RNN section,
we used the Bidirectional LSTM cell [32] because it has
mechanisms whose performance has been demonstrated in
many sequence data domains, such as speech recognition [33]
and language model [34]. Additionally, we set the BiLSTM
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FIGURE 5. Differences in the proposed model architectures. (a) Separate Channel CNN - RNN with Attention (ASCRNN) (b) Separate
Channel dilate CNN - RNN with Attention (ASDRNN) (c) Separate Channel CNN - slicing RNN with Attention (ASSRNN). All models contain
the attention mechanism in common. In (a), only the attention mechanism from SCCNN - RNN structure is applied. In (b), the dilate CNN
and skip connection on the SCCNN part based on the ASCRNN is applied. In (c), the slicing BiLSTM based on the ASCRNN is applied.
(ci =

∑NR
j=1 αijhj : attention weight, hj : output in j step on the RNN, RN : number of ROIs used in training).

hidden state numbers to 128. Next, a fully connected layer
with 128 neurons was connected to the output of the last
T-step of the RNN. Finally, we applied the classification layer
with a SoftMax activation to output the two-dimensional
vectors as the probability of ADHD and HCs.

The SCCNN-RNN structure is a suitable and simple model
to learn the spatial and temporal features from the rs-fMRI
data for our experiment. However, it has an inefficient
training structure. In the next section, we expand this structure
to explore the more efficient result.

D. OTHER MODIFIED MODELS BASED ON THE
SCCNN - RNN ARCHITECTURE
To develop the modified models from the SCCNN - RNN
structure, we applied some concepts from the speech emotion
recognition (SER) model [35], [36], [37]. We adopted
concepts from the three different SERmodels. This is because
SER using a neural network requires a structure for obtaining
emotional information in a long sequence with a small
amount of data. These share some of our problems. Therefore,
we investigated the neural network structure to obtain features
from fMRI data and various SCCNN-RNN-based model
structures. Selecting and using a region with a high impact is
more helpful in disease identification than using all regions.

As shown in Fig 5, these three SCCNN-RNN modified
models show slight differences. However, the attention
mechanism is frequently applied. The attention mechanism

typically improves model performance if the training data
are sequential. In the SCCNN-RNN structure, the attention
mechanism only uses the last hidden state outputs from
BiLSTM as the next layer’s inputs. Therefore, learning the
significance of ROIs is structurally difficult. To overcome this
challenge, we designed the attention mechanism to focus on
the significant ROI with hidden states at all times step.

The attention mechanism has been used in several ways
recently [38], [39], [40]. In our study, we chose an attentive
attention method [14]. Particularly, to learn the correlation
between the two reference ROIs, after linear transformation
of the comparison vector with a learnable weight matrix,
mapping into a non-linear function was considered. In this
study, despite using the same method as the previous study,
there are differences. In [14], the attention was stacked after
the SCCNN part, but we stacked the SCCNN part, RNN part,
and attentive attention in that order. The attention method
was applied in this manner to consider not only relationships
between two areas but also relationships between several
areas. For example, hj of jth BiLSTM’s hidden state consists
of the forward hidden state h⃗j, containing information from
the first ROI to the jth ROI, and backward hidden state ⃗hj,
containing information from the RN th ROI to the jth ROI
in reverse order. Additionally, we learnt the correlation αij
between hi and hj using the attention layer. Therefore, all
ROIs that we chose can be considered in one step. Equations
(1), (2) and (3) describe the process. This model is called
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an ASCRNN. This attention was also applied to the two
models proposed later.

hj = Concat
(
h⃗j, ⃗hj

)
, 1 ≤ j ≤ NR. (1)

αij = attentive
(
hi,hj

)
(2)

ci =

NR∑
j=1

αijhj (3)

The next-modified model called ASDRNN focused on the
BOLD signal extraction. This model differs from the SCCNN
section. According to a previous study [16], learning with
only the relationship within a specific frame of the BOLD
signal is helpful in ADHD diagnosis. Therefore, we replaced
the 1-D CNN with a dilation 1-D CNN [41]. Additionally,
to address the gradient vanishing problem of deep neural
networks, we applied a skip connection [42] after the final
batch normalization layer. The skip connection structure
adds elements between the feature values of the previous
present layers. This provides a smooth gradient flow. So it is
called a separate channel dilate CNN (SCDCNN) with skip
connection. The detailed structure of SCDCNN is shown in
Fig 5(b) and 6. The dilate rate was set to 2 in dilation 1-D
CNN.

Fig 5(c) shows the last modified model named ASSRNN.
This model uses a segmented area as input to the RNN
rather than the entire ROI area to obtain the relationship
between partitioned regions. To achieve this, we applied
the slicing BiLSTM [37] rather than the BiLSTM in the
ASCRNN model. The slicing BiLSTM’s inputs (X (l)) are a
set of subsequences splatted from the original ROI feature
sequences (xi: ith ROI’s SCCNN output feature vector) with
a constant window size (w) and stride size (s). This can be
expected to focus on the relationship within the small number
of ROIs and prevent the gradient vanishing problem from
occurring as the RNN structure’s time step lengthens. This
process is expressed in (4), (5) and (6).

l = 1, 2, 3, . . . , ⌈
NR−w
s

+ 1⌉ (4)

X (l)
=


[
xNR−w+1, . . . , xNR

]
, l=⌈

NR−w
s

+1⌉[
x1+(l−1)s, . . . , xw+(l−1)s

]
, elsewhere

(5)

H (l)
= BiLSTM

(
X (l)

)
(6)

IV. EXPERIMENT AND RESULT
A. SETTINGS FOR MODEL TRAINING AND EVALUATION
To analyze the ROI selection results, all hyperparameters
required for learning were identical in our experiments.
The hyperparameter setting was based on the experimental
results. Particularly, we used the Adam optimizer [43].
A learning rate was chosen with 1e-4. Xavier initialization
[44] was used as the initialization method for all trainable
weights. Additionally, to prevent the overfitting problem,

FIGURE 6. Contrast between SCCNN and SCDCNN with skip connection
architectures.

TABLE 1. The data composition of each site that we used in our
experiments.

we used l2 regularization with a factor of 0.0005. The
leaky ReLU [45] with a 0.1 slope coefficient was chosen
as the activation function. Next, to avoid bias owing to
an imbalanced dataset corresponding to ADHD and HC,
the same number of each class (ADHD, HC) was sampled
for each mini-batch. The mini-batch size was set to 32.
We then set the binary cross-entropy for the loss function.
For the evaluation metric, LOSO accuracy [14] was chosen
for evaluating the model. LOSO is a type of cross-validation
that splits the data in each site. Because we use 5 different
sites, 5 site fold evaluation was done in one experiment.
Therefore, the dependent characteristics (parameters of the
fMRI measurement device in each site) could be avoided by
proceeding with the evaluation using the dataset from another
site not used for model training. The experiment results for
the ROIs that play an essential role in diagnosis can be
generalized. For more detail about the experiment setting, see
in GitHub site at https://github.com/byunggunkim/Finding-
Essential-Parts-in-brain

B. DETAIL OF THE DATASET COMPOSITION
For this experiment, we used rs-fMRI data samples from
the ADHD-200 competition [25]. They consist of data from
eight institutions (NYU: New York University child study
center, Peking: Peking University, OHSU: Oregon Health
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TABLE 2. The ranking of ROIs in AAL 116 template based on SCCNN-RNN model.

FIGURE 7. Accuracy according to individual ROI when we trained the
SCCNN-RNN with only one individual ROI.

Sciences University, KKI: Kennedy Krieger Institute, NI:
NeuroIMAGE, BHBU: Bradley/Brown University, and Pitt:
University of Pittsburgh, WUSTL: Washington University at
Saint Louis). BHBU, Pitt, andWUSTL are difficult to use for
supervised learning; therefore, five other sites (NYU, Peking,
OHSU, KKI, and NI) are used. Moreover, to compensate
for the lack of data, all data samples from each site were
combined and considered as a single dataset. For example,
if we use the NYU site as a test set, the other site’s
(Peking, OHSU, KKI, NI) data samples are used for training.
The overall structure of the data composition is shown
in Table 1.

FIGURE 8. The accuracy when training the SCCNN-RNN as we increase
the number of learning ROIs. (blue line) The accuracy in the learning
scenario when selecting in order of ROIs with the highest rank. (orange
line) The accuracy in the learning scenario when selecting in order of ROI
with the lowest rank.

C. SELECTING AN IMPORTANT REGION OF THE BRAIN
ACCORDING TO AAL 116 ROIS USING SCCNN-RNN
To determine the significance of individual ROIs for ADHD
discrimination, we evaluated the accuracy using an inde-
pendent neural network model trained with a specific ROI.
For this experiment, we used LSTM-based SCCNN-RNN
models. Fig 7 shows the diagnosis accuracy trained with a
specific ROI. The experiment’s accuracy data had a wide
range of distributions (minimum accuracy: 61.93% with
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TABLE 3. Comparison of accuracy in ADHD-200 classification models using AAL template.

FIGURE 9. Accuracy when training the other modified models (ASCRNN,
ASDRNN, ASSRNN) as the number of ROIs based on the rank order
increases.

index=77, minimum accuracy: 68.47%with index=28). This
indicates a significant result when learning with only one
ROI because it has fewer fMRI features than all other ROIs.
It can be expected that there may be a region that plays
an essential role in discriminating ADHD. The high-ranked
ROIs’ (up to 20) brain map can be seen in Fig 10. Based on
these results, we will show how learning by selecting a few
significant ROIs differs from using all ROIs, in the following
experiment.

D. ACCURACY ANALYSIS FOR ADHD DISCRIMINATION
ACCORDING TO ROI RANKING IN SCCNN-RNN
The experiment was performed to determine how the associ-
ation between significant ROIs can be understood in ADHD
discrimination. The specific progress of the experiment is as
follows. According to the ROI ranking from Section IV-C,
the regions at the top were selected sequentially, and the
number of ROI features gradually increased. Additionally, the
experiment was conducted using independent neural network
models. Furthermore, the same model (SCCNN-RNN) was
used to reduce the difference that will appear owing to the
neural networkmodel’s parameters changing as the input data
size increased.

Fig 8 shows the model’s accuracy trained with ranking
ROIs. From the blue line in Fig 8, we can observe the

following. First, high accuracy is obtained when learning by
selecting ROIs in a particular order, where the learning is
performed by selecting ROIs in the order obtained. Some
ROIs play a significant role in the diagnosis. As shown in
Fig 8, using the ROI in the top 20 results in a ranking that
achieves high accuracy. An accuracy of 70.6% was obtained
when ROI up to the 15th rank was used for training. Second,
it becomes difficult to identify areas that yield better results
than before as the ROI used for learning increases. Thismeans
that using many ROIs can be a hindrance to ADHD diagnosis.
This demonstrates how, even with very little data, selecting
the right input features can be crucial.

Fig 8 also shows the results of selecting the ROI in reverse
order, as shown by the orange line. As expected, the case of
reverse order shows the opposite result compared with the
case of high ranking. Relatively low accuracy is obtained
when using up to the 20th rank of the reverse ranks, but
the accuracy tends to increase as more ROIs are gradually
used. This implies that learning with ROIs of low importance
as determined by accuracy does not help much with the
diagnosis, but it might be helpful if the number of ROIs used
for subsequent learning increases. That is, high-rank ROIs
complement low-rank ROIs.

Our experiments demonstrate that selecting significant
ROIs is necessary for diagnosing ADHD when SC-CNN–
RNN is used as an AI model. Therefore, it is natural to ask
whether the results can be confirmed in different AI models
that are considered variants of the SCCNN – RNN.

E. ACCURACY ANALYSIS FOR ADHD DISCRIMINATION
ACCORDING TO ROI RANKING IN MODIFIED MODELS
To investigate the impact on the significance of ROI, we per-
formed experiments with other modified models (ASCRNN,
ASDRNN, and ASSRNN) mentioned in Section III-D.
A detailed description of the models can be found in the
previous section. The experiment was performed according
to the procedures described in Section IV-D. However, the
ROI used for learning only reached the 20th rank. Because
Fig 8 indicates that using 20 significant ROIs provides the
best result, we checked whether the variants of our AI model
can provide similar results.

Fig 9 and Table 3 allow us to describe the result. First,
learning with ROIs selected according to their rank should
yield better results than learning with all ROIs. Furthermore,
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FIGURE 10. Brain map of the selected region with the 20th ranked ROI in AAL 116 atlas based on SCCNN-RNN model.

TABLE 4. Each site accuracy of different SCCNN-type models with ranked
ROIs.

all models provided accuracies that are between 68% and
70% despite using fewer areas than all 116 areas. For
SCCNN-RNN and ASSRNN, the accuracies of 70.6% (15)
and 70.46% (13) were obtained, respectively, which exceeded
70% accuracy (Table 3). This result is 2% higher than the
previous result (68.6%). Second, the modified models based
on SCCNN-RNN have between 10 and 20 ROIs that provide
good accuracy (Fig 9). This is slightly different from the case
where only a few areas (for example 1-5 rank ROI) are used.
Therefore, one should use several significant ROIs.

Some models shown in Fig 9 performed better when the
entire ROIs were used than a few significant ROIs. This
occurred because of underfitting owing to a lack of ADHD
data. In the case of ASDRNN, the complexity of the model
causes this phenomenon.

To summarize, a specific part of the brain must be used
to improve the diagnosis. The simplest model (SCCNN -
RNN) produced the best accuracy. Therewas an improvement
of approximately 7% when higher-ranking ROIs were used.
Therefore, finding the ROI, which plays a significant role
in diagnosing ADHD, is necessary when using AI to treat
ADHD.

V. DISCUSSION AND LIMITATION
In this work, we wanted to check whether the deep-learning
model can find the characteristics for diagnosing ADHD.
In this work, we found that using not all but some ROIs is
more effective in diagnosing ADHD. Here, we want to add
remarks about our findings.

First, it is about ROIs, ranked by our deep learning models.
It should be emphasized that the importance of each ROI
is not evaluated by medical knowledge. Therefore, it is
meaningful to know the relationship between high-ranked

ROIs and known medical knowledge. For this purpose, let
us discuss the medical meaning of 20-high ranked ROIs. 7
ROIs among 20 rankedROIs belong to the frontal of the brain.
Those ROIs consist of 39% of the frontal region. This fact
supports the medical investigation that a relationship exists
between the Frontal lobe and ADHD. Since the frontal lobe
plays a role in concentration, the malfunction of a frontal
region may cause ADHD. Therefore, in future research,
we will provide a detailed study of the relationship between
ROIs of a frontal region and ADHD, using deep-learning
models.

The second is about the difference in the considered sites.
As shown in Table 4, the accuracy in each site differs
hugely (Standard deviation of SCCNN-RNN site accuracy in
Table 4: 4.5).
For instance, we used the Neuro Bureau ADHD-200

preprocessed repository [25], data provided for deep-learning
researchers. The data consists of various sites, each using
different parameters to obtain fMRI data.

This repository also contains fMRI data, which is pre-
processed by various methods such as (Athena, Burner,
NIAK). Therefore, even though one uses the data with the
same preprocessing method, there can be a possibility to
obtain different results because the detailed parameters in the
preprocessing method can differ [47]. Also, the data results
obtained from the different preprocessing methods can differ.

Therefore, for a precise result, one needs to investigate
the experiment using data from many different preprocessing
methods in rs-fMRI not only Athena, Burner but also
CCS [48], CPAC [49], and DPARSF [50].

VI. CONCLUSION
To diagnose ADHD, rs-fMRI data are frequently used
because they contain much information about the brain.
In this study, we demonstrated that identifying ROI that
provides important areas in the brain can help diagnose
ADHD.Moreover, it was found that using only 15 ROIs in the
ranking order can significantly improve performance (70.6%)
than using all areas for the diagnosis. This implies that
establishing appropriate criteria for the ROI’s significance
can result in an accurate diagnosis.
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However, The medical biomarker that distinguishes
between ADHD and normal is still elusive. Among many
causes, one thing is the limitation of medical data related to
ADHD. To accurately diagnose ADHD, more ADHD data
are needed. Fortunately, nowadays, an open platform like
openneuro containing large amounts of data is available (see
https://openneuro.org/ (accessed on 19 October, 2022)).

It is known that Autism spectrum disorder (ASD) may
have a close relation with ADHD [51], [52]. Therefore, it is
significant to apply our approach by selecting important
ROIs and building a deep-learning model based on the result
to diagnose Autism spectrum disorder (ASD). Also, it is
interesting to find a unified model to diagnose both ASD and
ADHD.
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