
Received 8 September 2023, accepted 6 October 2023, date of publication 16 October 2023, date of current version 20 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3324718

Federated Double Deep Q-Learning-Based
Computation Offloading in Mobility-Aware
Vehicle Clusters
WENHUI YE , KE ZHENG , YUANYU WANG , AND YULIANG TANG , (Member, IEEE)
School of Informatics, Xiamen University, Xiamen 361005, China

Corresponding author: Yuliang Tang (tyl@xmu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61731012, Grant 61801409, and Grant
91638204.

ABSTRACT On the edge side of internet of vehicles (IoV), mobile edge computing (MEC) servers with
certain computational resources are deployed to provide computational service for vehicles. However, with
the generation of a series of vehicle computing intensive and delay sensitive applications such as virtual
reality (VR) navigation and vehicle-mounted games, the quality of service (QoS) for vehicle applications
cannot be guaranteed with the limited computational resources in MECs. In this article, adjacent vehicles
in IoV are converged into clusters based on topological stability. The idle computational resources of
vehicles within the cluster are integrated and scheduled uniformly to serve vehicles within the cluster with
computation task requirements. This reduces the dynamic changes in idle computational resources caused
by rapid vehicle movement, and effectively ensured reliable feedback of computing results after offloading
computing tasks. In order to reduce the task completion time, the task is decomposed into multiple subtasks
with time dependencies, which can be processed in parallel. A directed acyclic graph (DAG) is used to
characterize the task model. To further minimize latency in completing computing tasks, a federated double
deep Q network-based computation task offloading (FDTO) strategy is proposed for vehicle clusters. The
optimal computation task offloading decision is obtained based on the collaborative training and updating
of double deep Q network (DDQN). Unlike traditional machine learning algorithms that require centralized
training, federated learning (FL) allows only the training model parameters to be passed between vehicles,
which not only protects data privacy but also reduces communication overhead. Simulation results show that
the proposed strategy can effectively reduce task completion latency compared to the benchmark strategies.

INDEX TERMS Internet of Vehicles, directed acyclic graph, DDQN, federated learning.

I. INTRODUCTION
With the development of intelligent vehicles, a large number
of computing-intensive services will generate large amounts
of communication data, such as artificial intelligence [1],
augmented reality [2], and autonomous driving [3]. Lots of
data are closely related to traffic safety and traffic efficiency,
requiring lower computational processing latency and higher
communication reliability, and therefore demanding suffi-
cient computational resources for processing. How to use
limited computational resources to meet the explosive growth

The associate editor coordinating the review of this manuscript and

approving it for publication was Usama Mir .

of computational demand is one of the key issues to be studied
in the internet of vehicles (IoV), which is also investigated
in this paper. In response to the shortage of computational
resources in IoV, many studies have addressed cloud
computing as a solution to deal with computation-intensive
services [4]. Utilizing cloud computing and cloud storage
resources can greatly enhance the computing and storage
capabilities of IoV, but it also brings larger latency, higher cost
and energy consumption [5], [6]. In addition, the reliability
of long-distance communication between vehicles and the
central cloud is difficult to guarantee in the highly dynamic
environment of IoV. To overcome the various limitations
of cloud computing, mobile edge computing (MEC) has

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 114475

https://orcid.org/0000-0002-8713-8410
https://orcid.org/0000-0003-4541-6280
https://orcid.org/0000-0002-9576-6708
https://orcid.org/0000-0002-5923-9011
https://orcid.org/0000-0002-7221-6279

W. Ye et al.: Federated Double Deep Q-Learning

received a lot of attention. MEC is an extension of cloud
computing, which can effectively solve the problems of
communication latency and bandwidth limitation caused
by remote cloud computing by deploying cloud services
on the edge side of the network. Applying MEC to IoV
effectively integrates the compute and storage resources of
a large number of idle vehicle nodes as well as roadside
units (RSUs) on the edge side of the network. Compared
with cloud computing, MEC can effectively reduce com-
munication latency, cost, and energy consumption, which
greatly helps the IoV system handle computing-intensive
and latency-sensitive computation tasks [7]. Computation
task offloading where the vehicle offloads its computing
task to RSUs for processing, is one of the key technologies
for edge computing [8], [9]. Since RSUs are roadside
fixed infrastructure with limited communication range, the
communication link connection time between high-speed
vehicles and RSUs is short. This poses a challenge for
computing results to be sent back to the task vehicle.
In addition, when offloading computing tasks to RSUs for
processing, the limited computational resources of RSUs
may not be sufficient to guarantee the quality of service
(QoS) for certain latency-sensitive or computing-intensive
services [10]. Therefore, to further improve the QoS, we think
about other approaches besides taking MEC-assisted task
offloading for IoV. With the increasing computational
capacity of vehicles and the growing road traffic density
[11], lots of idle in-vehicle resources are generated in IoV.
For vehicles with relatively small speeds, the inter-vehicle
communication link connection time is relatively longer,
and by reasonably exploiting and scheduling these free
in-vehicle resources, it is possible to effectively handle
complex computing tasks, reduce task processing latency, and
improve QoS [12]. The concept of vehicle cloud computing
(VCC) was proposed in [13]. In VCC, resource vehicle
nodes with free computational resources can be used as
vehicle cloud servers to provide computation services to
task vehicle nodes that have tasks to offload. In this paper,
we assist the task offloading in IoV by integrating and
scheduling the idle computational resources of vehicles
uniformly through VCC. However, there are several chal-
lenges in using in-vehicle resources to handle computing
tasks:

1) Limited in-vehicle resources. For some computing
tasks with large computing requirements, if the com-
puting task is completely offloaded, the computing
power of a single resource node may not be enough to
support the completion of the task, so a complex task
needs to be divided into multiple subtasks.

2) Extremely unstable network topology. Vehicles are
constantly moving and the highly dynamic network
topology affects the stability of the communication
environment and computational resources.

3) Rational allocation of computational resources for
subtasks. A reasonable computation offloading policy
can offload different subtasks to different resource

nodes for parallel processing, which effectively reduces
task latency.

To solve the above problems, we propose a federated
double deep Q network-based computation task offloading
(FDTO) strategy. The main contributions of this paper are
summarized as follows:

1) A mobility-aware vehicle clustering mechanism is
proposed to reduce the impact of dynamic changes
in network topology and resources on task offloading
strategies.

2) The computing task is modeled as a directed acyclic
graph (DAG) structure, which characterizes the tem-
poral dependence of vehicle cloud subtasks. The com-
putation task offloading problem for vehicle clusters
is modeled as a mixed-integer nonlinear programming
problem to minimize task completion delay.

3) We propose an FDTO strategy to protect user data pri-
vacy, reduce communication overhead, and have lower
task completion latency compared to the benchmark
strategies.

The rest of this paper is organized as follows: Section II
provides an overview of the related work. In Section III,
we present the system model and problem formulation. The
proposed FDTO strategy is presented in detail in Section IV.
Section V discusses the simulation results and the conclusion
is made in Section VI.

II. RELATED WORK
Many existing studies have analyzed the task offloading
problem in IoV and used MEC as a solution [14], [15],
[16], [17], [18], [19]. According to the different computing
nodes, the computational task offloading scenarios can be
categorized into five scenarios: single MEC server, multiple
MEC servers, cloud-side server collaboration, multi-vehicle
collaboration, and MEC server-vehicle collaboration. In a
single MEC multi-user scenario, a two-layer optimization
framework based on deep Q network (DQN) and gradient
descent considering task latency and energy consumption
was proposed in [14]. And a joint optimal MEC server
selection and offloading algorithm were studied for a multi-
user multi-server MEC system in [15]. A comprehensive
task processing latency was used to formulate the system
utility, taking into account both transmission and computation
time. By applying the game theoretic analysis in the
framework of MEC computation and offloading, a particle
swarm optimization-based computation offloading algorithm
was proposed to minimize the time latency and cost of
task offloading [16]. Task completion latency in the task
offloading problem is also considered as an important metric
in this paper. In addition, the task offloading strategy also was
studied based on deep learning [17], [18]. A shared offloading
strategy was proposed in [17], where similar computing tasks
from different vehicles can share the computational results
of previously submitted tasks. Considering the available
vehicle resources and service migration, an asynchronous
deep reinforcement algorithm was used to find the optimal

114476 VOLUME 11, 2023

W. Ye et al.: Federated Double Deep Q-Learning

task and resource scheduling policy [18]. Considering vehicle
mobility, the impact of time-varying channels during task
transmission cannot be ignored. The impact of time-varying
channels on task offloading strategy in theMEC scenario was
considered in [19]. However, the above work mainly assumed
that the roadside is equipped with MEC servers having
sufficient computational resources, and does not apply to the
scenario where no MEC servers are deployed at the roadside.
Therefore, in order to further improve the QoS, we think
about other approaches besides taking MEC-assisted task
offloading for IoV.

VCC serves as a new solution to provide vehicular
computational resources for task offloading. VCC enables the
sharing of resources between vehicles, which extends the pos-
sibilities of vehicle functions and services. Utilizing the idle
on-board resources of the parked vehicles, it was scheduled as
a general-purpose computing node to process the computing
tasks in [20]. A new load balancing strategy was proposed
to reduce the task latency in [21], stationary vehicles were
used as auxiliary fog computing nodes to process the task.
However, the above work mainly utilized stationary vehicle
resources, and for moving vehicles, although the VCC
system is more flexible compared to the MEC system,
it also faces new challenges. The mobility of vehicles
leads to highly dynamic network topology, rapidly changing
wireless channel states, and computational resources for
vehicle nodes with time-varying and heterogeneous nature,
which can greatly affect task computation latency. Several
existing works have researched the highly dynamic changes
in network topology during the computational task offloading
process in IoV [22], [23], [24]. Based on the multi-armed
bandit theory, an adaptive task offloading algorithm was
proposed which enhanced its applicability in the highly
dynamic environment of IoV through perceptual learning
of vehicle nodes during computational task offloading [22].
In [23], an RSU-based heuristic clustering algorithm was
proposed to improve topology stability, which recovers from
the problem of the unavailability of cluster heads by using
a weighting mechanism to select secondary cluster heads.
A clustering problemwas transformed into a cut-plot problem
in [24], aiming to improve the average survival of all clusters.
In this paper, we perform vehicle clustering by considering
the motion attributes such as speed and direction of vehicle
nodes to form a vehicle cloud, thus reducing the dynamics of
the network topology.

Deep reinforcement learning (DRL) theory has also been
widely used in the VCC task offloading problem [12],
[25], [26], [27]. A vehicular fog computing framework was
designed in [25] to encourage vehicles to share their idle
computational resources with the task vehicles and use
deep deterministic policy gradient (DDPG) and twin delayed
DDPG algorithms for task offloading. Considering the
mobility of the vehicles, task priority, and service availability
of the vehicles, the task offloading problem was formulated
as a markov decision process (MDP) to minimize the average
latency of the tasks [12]. To reduce the overall system energy

consumption along with satisfying user latency constraints,
a three-tier energy-efficient offloading scheme based on
DRL was constructed for IoV [26]. To solve the many-to-
many task offloading problem in a dynamic state vehicle
environment, [27] proposed a distributed dynamic many-
to-many task offloading framework based on the vehicle-
to-vehicle (V2V) transaction paradigm. Unlike [12], [27]
formulated the transaction process as a partially observable
MDP and employed multi-intelligent to solve the problem.
However, obtaining a DRLmodel with excellent performance
generally requires a long training time on cloud servers
based on large amounts of data, which leads to increased
task latency and decreased communication efficiency. DRL
model training based on mobile edge networks will also
generate a large number of data interactions and will bring
the problems of data privacy leakage and communication cost
waste.

Federated learning (FL) provides an effective solution to
the above problem. The core idea of FL is that each entity
uses its own data to train a model locally, and only sends
the model updates to a central server, where each computing
node communicates with each other based on its own
model, and ultimately obtains a global model through model
aggregation [28]. Federated stochastic gradient descent
(FedSGD) [29] is the fastest algorithm for model updating
in FL, but it increases the number of communications as
the distributed nodes need to upload the model parameters
once for every gradient descent they do. Federated averaging
algorithm (FedAVG) can effectively reduce the number of
communications in FL [30]. FL is widely used in many
domains for its ability to protect local data privacy well,
reduce the communication cost incurred by data interaction in
centralized learning, and obtain smarter models. For example,
an intelligent traffic flow forecasting model was proposed
in [31] by integrating a spatial-temporal graph-based deep
learning model into the devised multilevel federated learning
framework. To deploy neural network models in internet of
medical things devices, a federated learning algorithm with
minimum square quantization error was proposed [32]. The
application of FL in MEC was summarized in [33]. However,
there are fewer studies related to the application of federated
learning to vehicular edge computing, and in this paper,
we will take advantage of FL to study computation task
offloading in IoV.

Against this background, wewill fully exploit and schedule
the idle vehicle resources, and investigate the task offloading
problem in VCC by combining vehicle mobility and the
time-dependent relationship of computing tasks. To solve the
problems of traditional DRL, we propose an FDTO strategy
to protect user data privacy and reduce communication
overhead.

III. SYSTEM MODEL AND PROBLEM FORMULATION
As shown in Fig. 1, we consider a computation task
offloading scenario for vehicle clusters consisting of N

VOLUME 11, 2023 114477

W. Ye et al.: Federated Double Deep Q-Learning

FIGURE 1. Computation task offloading scenario base on vehicle cluster
in IoV.

vehicles. To ensure the stability of vehicle clusters, the same
direction of travel is used as a prerequisite for vehicles
to be classified into the same vehicle cluster. We reduce
the high dynamic of vehicle network topology by grouping
vehicle nodes with small relative motion speeds into the
same cluster, electing a cluster head that manages the vehicle
members in the cluster according to a certain criterion. The
specific vehicle clustering algorithm is given in Section IV.
Assume that all vehicles are equipped with global positioning
system (GPS) devices that know their position, speed,
and direction at any moment. Each vehicle terminal has
certain computing, storage, and communication capabilities.
Sufficient spectrum resources are assumed for intra-vehicle
cluster communication, and vehicles are connected by V2V
communication links.

Each circle in Fig. 1 is a vehicle cluster, and different
vehicle types are used to represent cluster head vehicles, task
vehicles, resource vehicles, and others. The set of vehicles on
the current road can be denoted as U = {u1, u2, . . . , uN },
the set of vehicle clusters Nvc is denoted as VC ={
VC1,V C2, . . . ,V CNvc

}
and the corresponding set of

cluster heads is denoted asCH =
{
CH1,C H2, . . . ,C HNvc

}
.

The vehicle cluster VCi containing cluster head CHi
and ωi cluster member nodes can be given as VCi ={
ui,0, ui,1, ui,2, . . . , ui,ωi

}
, where ui,0 is the cluster head node

CHi of VCi. There are several resource vehicle nodes and
task vehicle nodes in the vehicle cluster VCi, which can be
represented as Rsi =

{
rsi,1, r si,2, . . . , r si,n1

}
and Tsi ={

tsi,1, t si,2, . . . , t si,n2
}
respectively.

In each vehicle cluster, the task vehicle needs to handle
several latency-sensitive or computation-intensive tasks and
will make a computation task offloading request when its
computational capacity is insufficient. Resource vehicles in
the vehicle cluster have several free computational resources
that can provide computational services for task vehicles with
computation task offloading requirements.
For some computation-intensive tasks, if the computing

task is completely offloaded (i.e., the computing task is
considered as a whole to be processed locally or offloaded

to other computation nodes), the computing power of a single
resource node may not be sufficient to support the completion
of the task. Although the vehicle clusteringmechanism allows
highly dynamic vehicles to be divided into vehicle clusters
with relatively stable network topology, the vehicle clusters
are still in constant update, and if the computing task is
complex and requires a long task processing delay, it may
occur that the task vehicle or resource vehicle has left the
current vehicle cluster when the task processing is completed.
When the task vehicle and the resource vehicle are not within
communication range of each other, the task results cannot
be returned in time. Therefore, the computing tasks need to
be reasonably cut and offloaded to the resource vehicles for
processing to obtain the minimum processing delay of tasks.

A. MOBILITY MODEL
The instantaneous position of vehicle uk at moment t is
characterized by two-dimensional coordinates L tk =

(
x tk , y

t
k

)
.

The instantaneous velocity set of vehicle nodes in the
vehicle set U is defined as V = {v1, v2, . . . , vN }. The
instantaneous distance between vehicle uk and uq is Dk,q =∥∥∥L tk − L tq∥∥∥2 , k, q ∈ N , and the angle of travel direction can

be noted as θk,q = arccos vkvq
|vk||vq|

.

The vehicle velocity distribution is expressed using the
truncated normal distribution [34], [35]:

f̂V (v) =
fV (v)∫ vmax

vmin
fV (s)ds

, (1)

where fV (v) = 1
σ
√
2π
e
−(v−µ)2

2σ2 denotes the vehicle speed

probability density function, µ is the average speed of all
vehicle nodes, and σ is the variance of all vehicle speeds,
the vehicle speed values v ∈ [vmin, vmax]. In addition,
related studies have shown that vehicle spacing follows an
exponential distribution [36], which can be written as

P
(
Dk,q > x

)
= e−λx . (2)

B. TASK MODEL
To simplify the model, the problem modeling subsection will
only discuss the computation task offloading problem within
a vehicle cluster. A vehicle cluster VCm which contains ω

vehicle cluster members (CM) can be denoted as VCm =
{u0, u1, u2, . . . , uω}, where u0 is the cluster head node CHm.
The vehicle is used as a resource vehicle when it has free
resources and will make a task offloading request and become
a task vehicle when its local computing power is insufficient
to handle the task. The resource vehicle set and the task
vehicle set of the vehicle cluster can be denoted asRs ⊆ VCm,
and Ts ⊆ VCm, respectively. According to [37], the arrival of
the vehicle uk task obeys the Poisson distribution with arrival
rate λk , i.e.,

P (Xk < x) =
∑
m<x

λmk e
−λk

m!
. (3)

114478 VOLUME 11, 2023

W. Ye et al.: Federated Double Deep Q-Learning

FIGURE 2. Time dependent subtask model represented by DAG.

Assuming that each computing task can be divided into
several subtasks with time-dependent relationships, allowing
multiple subtasks to be processed in parallel, the subtask
relationships of computing tasks are characterized by DAG,
as shown in Fig. 2.

The computation task offloading decision for a task
vehicle will be decided within each scheduling cycle, and
each scheduling cycle will process limited computing task
offloading requests in the order of the request arrival time.
The next scheduling cycle will handle the remaining requests
that cannot be handled in the current cycle.

A computing task taskk proposed by task vehicle uk ∈ Ts
in vehicle cluster VCm that needs to be offloaded at the tth
scheduling cycle can be expressed as Gk = {Tk ,Ek ,Wk} by
DAG, where Tk =

{
taskk,1, taskk,2, taskk,3, . . . , taskk,Nk

}
,

taskk,i is the i-th subtask of taskk and Nk is the number of
subtasks for Tk . Ek is the set of all edges in the directed
graphGk , Ek =

{
ek,i i′ | i, i′ ∈ (1, 2, 3, . . . ,Nk)

}
, ek,i i′ ∈ Ek

shows that there is a time dependence between taskk,i and
taskk,i′ , i.e., the processing of taskk,i′ must be done after the
completion of taskk,i.Wk is the weights set of all edges in the
directed graph Gk , Wk =

{
wk,i | i ∈ (1, 2, 3, . . . ,Nk)

}
, and

wk,i is the amount of data generated after subtask taskk,i is
processed. when i = Nk , wk,Nk represents the amount of data
calculated by task Tk .

The task vehicle node uk will make an offloading decision
for taskk based on the task size, sub-task dependencies,
available computing resources, V2V communication link
status, etc. The offloading decision is denoted as Ak ={
ak,i | i ∈ {1, 2, . . . ,Nk} , ak,i ∈ {1, . . . , ω}

}
, where ak,i = j

indicates that the subtask taskk,i of taskk is offloaded to the
resource vehicle for processing, and ak,i = k indicates that
the subtask taskk,i is processed locally in the task vehicle uk .

C. COMMUNICATION MODEL
When ek,i i′ ∈ Ek , taskk,i is a preorder node of taskk,i′ . When
taskk,i and taskk,i′ are offloaded to different vehicle nodes
uak,i and uak,i′ for processing, denote ak,i = j, ak,i′ = j′ for
convenience. Before uj′ can perform taskk,i′ , uj must provide
datewk,i to uj′ . When ek,i i′ /∈ Ek or ek,i i′ ∈ Ek but taskk,i and
taskk,i′ are assigned to the same vehicle node for processing,
there is no need for data transfer. Define wk,i i′ as the data

to be transferred after taskk,i has been completed and before
taskk,i′ will be processed, then

wk,i i′ =

{
0, if ek,i i′ /∈ Ek or ak,i = ak,i′

wk,i, if ek,i i′ ∈ Ek and ak,i ̸= ak,i′ ,
(4)

where i ∈ (1, 2, 3, . . . ,Nk).
Only the resource vehicle within the one-hop V2V com-

munication distance Rmax of the task vehicle is considered
for offloading the task. The V2V communication between
vehicles is accessed using orthogonal frequency division
multiple access. Using the instantaneous transmission rate of
the V2V communication link between resource vehicle nodes
uj and uj′ to characterize the data transmission rate, i.e.,

rjj′ = Blog2

(
1+

pjj′hjj′
N0

)
, (5)

where B is the channel transmission bandwidth of the current
V2V communication link, pjj′ is the transmit power from uj to
uj′ , hjj′ is the channel gain model between uj and uj′ , and N0 is
the noise power. So the transfer time required for subtasks
taskk,i and taskk,i′ to be assigned to resource vehicles uj and
uj′ , respectively, is calculated as

t transk,i i′ =
wk,i i′

rjj′
. (6)

Denoting Nk = m, Nk + 1 = m′. When ak,m′ = k , the
transmission time required to return computation task results
of task vehicle uk is calculated as

t transk,m′ =
wk,m m′

rak,mak,m′
, (7)

where wk,m m′ is the amount of data returned from the
calculation. When the last subtask taskk,m is calculated
locally, there is no requirement for result return, when taskk,m
is offloaded to other resource vehicles for calculation, the data
size returned from the calculation is wk,m, i.e.,

wk,m m′ =

{
0, if ak,m = k
wk,m, if ak,m ̸= k.

(8)

D. COMPUTATION MODEL
We define that subtasks can be processed locally or
offloaded to other resource vehicles within the vehicle cluster.
Assuming that the CPU cycles required to compute subtask
taskk,i are ck,i cycles, the set of CPU cycles required for taskk
is Ck =

{
ck,1, ck,2, . . . ck,m

}
. When the CPU frequency of

locally available computational resources of task vehicle uk
is fk , the computational latency of taskk,i in local computation
is expressed as

t
compk,i
k =

ck,i
fk

. (9)

Denote the number of unprocessed computing tasks in
the task vehicle as Nk,wait and the list of queued subtasks
as TWk =

{
taskk,q, taskk,o, . . . , taskk,z

}
. Then the waiting

VOLUME 11, 2023 114479

W. Ye et al.: Federated Double Deep Q-Learning

delay required to calculate locally in the task vehicle can be
expressed as

twaitk,ik =

∑
taskk,o∈TWk

t
compk,o
k . (10)

The currently available resources of resource vehicle uj
are denoted as fj, and uj does not necessarily allocate
all computational resources to the same offloading task.
When subtask taskk,i is offloaded to resource vehicle uj,
the computational resources allocated to taskk,i is written as
f k,ij , 0 < f k,ij ≤ fj. Then the computational latency of
taskk,i being offloaded to the resource vehicle uj is calculated
as

t
compk,i
j =

ck,i

f k,ij

. (11)

Since multiple subtasks are selecting the same resource
vehicle for processing, assume that subtask taskk,i arrives
at resource vehicle uj with Nj,wait subtasks unpro-
cessed and the list of queued subtasks is TWj ={
taskk1,i1 , taskk1,i2 , . . . , taskkξ ,iη

}
. The waiting delay

required for taskk,i to process at resource vehicle uj is
calculated as

t
waitk,i
j =

∑
taskkq,io∈TWj

t
compkq,io
j . (12)

In summary, the total task processing time tprocessk,i for
subtask taskk,i is expressed as

tprock,i = t
compk,i
j + twaitk,ij , (13)

when j = k , the subtask taskk,i is processed locally in the task
vehicle. Denote the set of computational resources allocated
to taskk as Fk =

{
f k,1ak,1 , f

k,2
ak,2 , . . . , f

k,m
ak,m

}
, and f k,1ak,1 represents

the size of computational resources available when taskk,i is
assigned to vehicle node uak,i for processing.

E. PROBLEM FORMULATION
To better model the task offloading problem, we first give the
following four definitions:

Subtask start time: the earliest moment when the subtask
can start execution. This means that the subtask has already
received the calculation result data of all previous subtasks.
The preorder subtask set of subtask taskk,i is denoted as
pre

(
taskk,i

)
. The start time of taskk,i can be expressed as

STk,i = max
taskk,j∈pre(taskk,i)

(
FTk,j + t transk,j i

)
. (14)

Subtask starts execution time: the moment when the
subtask actually starts to be calculated. After receiving all the
required data, subtasks may need to queue for computational
resources before starting their computation. Therefore, the
start execution time of subtask taskk,i can be expressed as

ETk,i = STk,i + t
waitk,i
ak,i . (15)

Subtask completion time: the moment when the subtask
has completed the calculation and generated the result data.
The completion time of subtask taskk,i can be expressed as

FTk,i = ETk,i + t
compk,i
ak,i . (16)

Task completion time: the moment when the task vehicle
node receives the result of the whole calculation task.
The completion time of the calculation task taskk can be
expressed as

tcomplete
k =

(
max

taskk,j∈Tk
FTk,j

)
+ t transk,mm′ . (17)

To minimize the task completion latency of taskk , it is
necessary to allocate the optimal resource vehicle and
computational resources for each subtask of taskk . Thus,
for the task vehicle uk , the optimization problem can be
formulated as

P0: min
Ak ,Fk

(
tcomplete
k

)
,

s.t. C1 : Dak,ipre(ak,i) < Rmax,

C2 : ak,i ∈ {1, . . . , ω},

C3 : 0 < f k,iak,i ≤ fak,i ,

C4 : i ∈ (1, 2, 3, . . . ,Nk) , (18)

where constraint C1 ensures that any resource vehicle
offloaded by a subtask should be within one hop of the
V2V link with the resource vehicles offloaded by its pre-
decessor subtasks. Constraint C2 indicates that the resource
vehicles offloaded by any subtask should be in the same
vehicle cluster as the task vehicle. Constraint C3 is the
computational resource allocated for the offloaded subtask,
which is non-negative and must not exceed the maximum
computational resource available from the resource vehicle.

Multiple task vehicle nodes may exist simultaneously
within a vehicle cluster, and the set of computation task
offloading requests for vehicle cluster VCm at period t
is denoted as ζ =

{
Tk , Tq, . . . , To

}
. The computation

offloading decision of each task vehicle may have an impact
on the offload of other computing tasks within the same
vehicle cluster. To comprehensively consider the interaction
of task vehicles within a vehicle cluster, we further minimize
the computational task completion latency of all vehicle
nodes within a vehicle cluster as the optimization objective,
and the computation task offloading decision optimization
problem for the vehicle cluster can be formulated as

P1: min
A,F

(
max
taskk∈ζ

tcomplete
k

)
,

s.t. C1 : Dk,ak,i < Rmax,

C2 : ak,i ∈ {1, . . . , ω},

C3 : 0 < f k,iak,i ≤ fak,i ,

C4 : i ∈ (1, 2, 3, . . . ,Nk) ,

C5 : k ∈ (1, 2, 3, . . . , ω), (19)

114480 VOLUME 11, 2023

W. Ye et al.: Federated Double Deep Q-Learning

where constraints C1, C2, and C3 have the same meaning
as (18). In the optimization problem, the variables A and F
represent the set of integers and the set of continuous real
numbers, respectively. P1 is a mixed integer nonlinear pro-
gramming problem (MINLP), which is a non-deterministic
polynomial-time (NP) problem with polynomial complexity
and is non-convex.

IV. OPTIMIZATION SOLUTION
Since MINLP is difficult to solve by traditional methods,
an FDTO strategy for vehicle clusters is put forward
to solve the optimization problem. We first describe the
mobility-based vehicle clustering mechanism, followed by
the double deep Q network (DDQN)-based single-node
computation task offloading strategy. As the traditional
centralized DDQN training process will generate a large
amount of training data interactions, an FDTO strategy for
vehicle cluster computing tasks is further presented which is
more applicable to the communication resource-constrained
vehicular network scenario. The FDTO strategy which is
based on FL and DDQN allows each distributed node to train
a local DDQN model locally using its local data, and only
interact with the central node for model parameters, which
reduces the bandwidth consumption and communication
overhead associated with training data transfer.

A. VEHICLE CLUSTERING MECHANISM
To ensure the stability of vehicle clusters, it is specified that
only vehicle nodes traveling in the same direction can be
divided into the same vehicle cluster. When the speed angle
θk,q ≤ π/4 between vehicle nodes uk and uq, it can be
regarded as traveling in the same direction, otherwise, the
traveling direction is opposite. Express the relative mobility
of uk and uq using their relative velocities, i.e.,

RV(k, q) =
∣∣vk − vq∣∣ . (20)

In the one-hop V2V communication range with Rmax as
the communication radius, the nk direct neighbor vehicles
of uk is recorded as the direct neighbor list DNLk ={
u1, u2, . . . , unk

}
, |DNLk | = nk . Then the relative mobility

of uk and its direct neighbor nodes can be expressed as

RV(k) =
1
nk

∑
uq∈DNLk

RV(k, q). (21)

According to (21), the smaller RV(k) is, the lower the
relative speed of uk and its direct neighbor nodes. In other
words, uk may have a longer communication hold time with
its neighbor nodes. It is similarly defined that the relative
distance between uk and its direct neighbor nodes is

RD(k) =
1
nk

∑
uq∈DNLk

Dk,q. (22)

Based on RV(k) and RD(k), define the cluster head factor
of uk as

M (k) = α1RV(k)+ α2RD(k)+ α3
1
nk

, (23)

where α1, α2, α3 are weighting factors, α1, α2, α3 ∈

(0, 1), α1+α2+α3 = 1. The smallerMk is, the more likely
for uk to be a cluster head. Denote the cluster head of a vehicle
cluster VCm asCHm, and there are currentlyωm vehicle nodes
in VCm, the average speed of this vehicle cluster is

vm =
1

ωm

ωm∑
k=1

|vk| . (24)

To further discuss the computation task offloading problem
of the vehicle cluster, frm is introduced to represent the
idleness of computational resources in VCm, i.e.,

frm =
Ntask (m)
Nres(m)

, (25)

where Ntask (m) and Nres(m) are the number of task vehicles
and resource vehicles in VCm, respectively. The computa-
tional resources in the vehicle cluster are relatively tight
When frm > ϵ, and frm should be kept below the threshold
value ϵ as much as possible.
For the neighbor node uk of CHm, its cluster entry factor

can be defined as

Jk,m = λ1||vk |−vm| + λ2frm, (26)

where λ1, λ2 are the influence factors of speed and the degree
of computational resource idleness, respectively, λ1, λ2 ∈

[0, 1] and λ1 + λ2 = 1. When Jk,m < µ, uk can join the
vehicle cluster VCm, µ is a constant. Specify that the vehicle
cluster VCm can contain up to Nmax cluster members.
The vehicle clustering mechanism can be split into two

parts, i.e., the vehicle cluster generation process and the
dynamic maintenance process of vehicle clusters, as shown
in Algorithm 1. In the initial stage, all vehicles are isolated
nodes. Taking isolated vehicle node uk as an example, the
vehicle nodes that are in the communication range of uk with
the same direction of motion are recorded in the list of direct
neighbor nodes DNLk . According to (26), each node will
compute its own M (k) and broadcast it to its direct neighbor
nodes. If the M (k) of vehicle node uk is less than the cluster
head factor of all nodes in DNLk , uk will be elected as the
cluster head, otherwise, the node with the smallest cluster
head factor M (k) in DNLk will become the cluster head.
After the cluster head election is completed, a vehicle cluster
VCm with vehicle node uh as the cluster head CHm will be
generated. ThenCHm will broadcast the cluster headmessage
to the nodes in its direct neighbor list DNLm. A vehicle node
u0 which receives the cluster head message sends a cluster
request to CHm. If u0 receives cluster head messages from
more than one cluster head node, u0 will choose the cluster
head node with the smallest cluster head factor to send the
cluster request. And CHm will calculate the cluster head
factor of each node after receiving the cluster requests from
other nodes and add them to the cluster member list (CML)
in order of the smallest to the largest cluster head factor, then
reply to the requests. If the number of members in the CML of
vehicle cluster VCm exceeds Nmax or the cluster entry factor
of u0 exceeds the thresholdµ, the cluster request of u0 may be

VOLUME 11, 2023 114481

W. Ye et al.: Federated Double Deep Q-Learning

Algorithm 1Mobility-Aware Vehicle Clustering Mechanism
Input: Maximum vehicle cluster capacity Nmax , constant µ,

vehicle set U and its information
Output: Number of vehicle clusters Nvc, vehicle cluster

VC =
{
VC1,V C2, . . . ,V CNvc

}
, set of cluster head

CH =
{
CH1,CH2, . . . ,CHNvc

}
, list of cluster members

CML =
{
CML1,C ML2, . . . ,C MLNvc

}
1: Each vehicle node inU sendsHello packets and generates

the set of DNL listsDNL = {DNL1,DNL2, . . . ,DNLN }.

2: Each vehicle node uk ∈ U calculates the angle of motion
with the nodes in DNLk and updates DNL.

3: Calculate the value of M (k) for each vehicle node
according to (26) and send it to the nodes in DNLi.

4: for uk ∈ U do
5: if exists cluster head CHm ∈ DNLm and its M (m) is

the smallest in DNLk then
6: if Nmax > ωm and Jk,m < µ then
7: Add uk to the list of vehicle cluster members

CMLm where CHm is located.
8: for uj ∈ CMLm do
9: if No periodic message from uj is received by

CHm in one cycle or ||vj |−v̄i| > ρ then
10: CHm removes uj from CMLm
11: end if
12: end for
13: else
14: Reject the application uk to join the cluster
15: end if
16: else ifM (k) is the smallest in DNLk then
17: uk is elected as cluster head CHo and send cluster

head messages to all nodes in DNLk
18: else

The uk becomes an isolated node and tries to join
other vehicle clusters

19: end if
20: end for

rejected. Isolated nodes not in a cluster on the current road are
treated as self-contained clusters, but these isolated nodeswill
keep trying to join the cluster. After the vehicle cluster VCm
is generated, to maintain the stability of the vehicle cluster
network topology, CHm needs to maintain the vehicle cluster
dynamically, until the vehicle cluster VCm is dissolved.When
CHm does not receive the periodic message from a cluster
member node u0 within a cycle or the difference between the
speed of cluster member u0 and the average speed of VCm
exceeds the set threshold value ρ, u0 will be removed from
the cluster member list.

Through the above mobility-based vehicle clustering
mechanism, the highly dynamic vehicles can be divided
into vehicle clusters with relatively stable network topology.
The clustering mechanism takes into account the location
of vehicles, travel speed, the number of members that can

be accommodated in the vehicle cluster, and the idleness of
computational resources to ensure that the communication
load of cluster head vehicle is within a tolerable range, the
vehicle cluster structure tends to be stable and the distribution
of task vehicles and resource vehicles in the cluster is
balanced.

B. DDQN-BASED SINGLE-NODE TASK OFFLOADING
STRATEGY
We solve the computation task offloading problem P1
for vehicle clusters based on FL. FL is a special kind
of distributed learning where the model training process
involves several distribution nodes and a central node. Each
task vehicle in the vehicle cluster can be considered an agent,
namely a distribution node, and the cluster head is considered
the central node. In this paper, a single-node computational
task offloading strategy based on DDQN is first given to
illustrate the model training process for distributed nodes
in FL, which is equivalent to solving the optimization
problem P0. DDQN is a common method of DRL, which
can better solve the overestimation problem in Q learning.
Compared to DQN, it is able to converge faster and better.
According to DRL theory, the computation task offloading
problem of a single node is modeled as an MDP, and the
MDP can be defined as (S,A,P (St+1 | St ,At) ,R (St ,At)),
corresponding to the state space S, action space A, state
transfer probability P and reward R (St ,At) after acting,
respectively. Based onMDP, the state space, action space, and
reward function for the computation task offloading problem
for each task vehicle node uk are defined as follows:
State Space: the state set S, of task vehicle uk . At time slot

t , the state St ∈ S of task vehicle uk can be expressed as

St = {loct , vt ,Gt ,Ct ,V NLt } , (27)

where loct , vt , Gt , Ct , VNLt represent the position, speed,
computing task, computational resource requirements, and
the list of direct neighboring vehicles within the same vehicle
cluster as uk at time slot t , respectively.
Action Space: the action set A of task vehicle uk . At time

slot t , the action At ∈ A of task vehicle uk can be expressed
as

At = {ak,i, f k,iak,i | i ∈ {1, 2, . . . ,Nk} ,

ak,i ∈ {1, . . . , ω}, 0 < f k,iak,i < fak,i
}

, (28)

where ak,i = j represents the subtask taskk,i of computational
task Tk of task vehicle uk offloaded to resource vehicle uj. for
processing, and f k,i

ak,ik,i
is the computational resources allocated

to taskk,i by uj.
Reward Function: the reward value that can be obtained

by uk based on state St performing action At . The reward
function plays a key role in the performance of DDQN and
allows the algorithm to continuously converge to the optimal
value. The reward function is inversely proportional to the

114482 VOLUME 11, 2023

W. Ye et al.: Federated Double Deep Q-Learning

computational task completion latency, given as

R (St ,At) =
1

tcompletek

. (29)

Define the discount factor γ ∈ [0, 1], long-term
cumulative discount rewards can be expressed as

Gt =
T∑
t=1

γ t−1R(t). (30)

In DRL, the behavior of the agent depends on the strategy
ϑ , which is amapping from the state space to the action space,
expressed as ϑ : S → A. For each agent, the optimization
problem P1 can be equated to finding an optimal strategy ϑ∗

to maximize the long-term cumulative return Gt . The action
value function Qϑ (s, a) is expressed as

Qϑ (s, a) = Eϑ [Gt | St = s,At = a] . (31)

DDQN consists of a target network and an evaluation
network. In each update of the Q-value, DDQN uses the
evaluation network to determine the action and combines
the identified action with the target network to estimate its
reward. During the initial phase of the algorithm, network
parameters will be generated for the target and evaluation
networks, and the evaluation network collects samples to
put in the experience playback pool by interacting with the
environment. When the experience replay pool is full, a batch
of samples will be randomly selected from the experience
replay pool for training in each iteration, and the evaluation
network will select action At based on the E-greedy strategy
and the current state St . Then the target Q-value of the target
network will be calculated as

yt = R (St ,At)

+ γQ
(
St+1, argmax

At+1
Q
(
St+1,At+1; δt

)
; δ−

)
, (32)

where δ− is the current parameter of the target network, δt

represents the parameter of the evaluation network in the tth
iteration, and argmaxAt+1 Q

(
St+1,At+1; δt

)
is the optimal

action of the next state determined by the evaluation network.
The loss function can be written as

Loss
(
δt
)
= E

[(
γ t − Q

(
St ,At ; δt

))2]
. (33)

The parameters of the model are updated by gradient
descent and the gradient which is obtained by differentiating
the loss function by δt can be calculated as

∇δtLoss
(
δt
)
= E

[
2
(
Q
(
St ,At ; δt

)
− yt

)
·∇δtQ

(
St ,At ; δt

)]
. (34)

The parameters for evaluating network updates can be
expressed as

δt ← δt−1 − ξ∇δtLoss
(
δt
)
, (35)

Algorithm 2 Single-Node Computation Task Offloading
Strategy Based on DDQN
Input: Main network, target network, discount factor γ

Output: Computation task offloading strategy ϑ∗

1: Initialization: Experience Pool D, mini-batch b, master
network model Q, parameter δ, target network model Q̂,
parameter δ̂

2: Set the probability value ε in the ε-greedy policy
3: for t= 1, T do
4: Get the current state St , action space A based on the

environment
5: Randomly select action At with probability ε, or select

the current optimal action at = maxA Q∗ (St ,A; δ)
according to the model

6: Perform action At to get state St+1 and reward At+1
7: Deposit experience (St ,At ,Rt+1, St+1) into D
8: while t exceeds the maximum number of iterations or

D is full do
9: Sampling d experiences

(
Sj,Aj,Rj+1, Sj+1

)
from D

10: Calculate the target Q-value

yj =

Rj+1, Sj+1 is the final state

Rj+1 + γQ
(
Sj+1, argmaxAj+1 Q

(
Sj+1,

Aj+1; δ
)
; δ̂
)
)

, Sj+1 is not the final state

11: Perform gradient descent on the loss function and
update the main network parameters δ

12: Update the target network parameter δ̂ ← δ every
C rounds

13: Jump to step 12
14: end while
15: Training is over, jump to step 6
16: end for
17: Input the current state based on the trained model, and

output the computational task offloading policy

where ξ is the study rate. The target network parameters are
updated per C iterations according to the evaluation network
parameters, i.e.,

δ−← δt . (36)

The model training of DDQN is completed when the value
of the loss function tends to converge or reaches themaximum
number of iterations. The algorithm flow is presented in
Algorithm 2.

C. FEDERATED DDQN-BASED COMPUTATION TASK
OFFLOADING STRATEGY FOR VEHICLE CLUSTERS
To further solve the optimization problem P1, we proposed an
FDTO strategy which is based on FL and DDQN for vehicle
cluster computing tasks. FL allows multiple task vehicles
within a vehicle cluster to be trained collaboratively using

VOLUME 11, 2023 114483

W. Ye et al.: Federated Double Deep Q-Learning

FIGURE 3. FL-based task offloading architecture for vehicle clusters.

their local data, which enables each intelligence to obtain
a better model than just its own training. Figure 3 depicts
an FL-based vehicle cluster computation task offloading
architecture. This architecture is essentially a distributed
learning architecture, where each cluster head vehicle is
considered a temporary central node responsible for aggre-
gating training models and distributing aggregation results,
and task vehicle nodes in the vehicle cluster are treated
as distribution nodes responsible for training their local
models according to Algorithm 2 and uploading local model
parameters.

We use the federated averaging algorithm (FedAVG) to
update the model parameters in FL. FedAVG reduces the
number of communications in the federal stochastic gradient
descent algorithm by updating the local model parameters
through multiple local model training at each distribution
node. The model training process for FedAVG can be
described specifically as follows:

1) Model Download: In each round of communication,
the K vehicle nodes involved in FL training download
the current global model parameter ωm from the cluster
head node, where m denotes the mth round training.

2) Local Model Training: In each FL training step, each
distribution node performs E iterative updates of its
local model parameterωi

m based on its local dataset and
the downloaded model parameters, where i ∈ [1,K].
The FL parameters of the distributed node uk at the tth
iteration of the mth round training are updated as

ωk
m,t ← ωk

m,t−1 − η∇f
(
ωk
m,t−1,D

k
m,t

)
, (37)

where ωk
m,t and ωk

m,t−1 are the model parameters
that are updated by the local FL model of node uk
after the tth and (t − 1)th iterations of the local
mth round training, respectively, η represents the
learning rate, Dk

m,t is the training sample set for this

iteration of node uk , f
(
ωk
m,t−1,D

k
m,t

)
is the loss

function, ∇f
(
ωk
m,t−1,D

k
m,t

)
represents the gradient

of f
(
ωk
m,t−1,D

k
m,t

)
to ωk

m,t−1, ωk
m,0 = ωm. When

the distribution node uk has completed the mth round

Algorithm 3 The FDTO Strategy for Vehicle Clusters
Input: Distribution of vehicle nodes, Maximum number of

cluster members Nmax , constant ϵ, constant µ, mini-
batchsize b, Number of iterations E

Output: Computation task offloading strategy
1: Initialization: Execution of Algorithm 1 clusters the

vehicles based onmobility and obtains the vehicle cluster
number Nvc, the vehicle cluster set, and the cluster head
vehicle set.

2: for Each iteration do
3: for Task vehicles uk in each vehicle cluster do
4: ifTask vehicles have sufficient computing resources

to complete computing tasks then
5: uk performs its computational task locally
6: else
7: Download the current global model ωm from the

cluster head node
8: for t=1,E do
9: Update local model parameters based on local

dataset and Algorithm 2
10: ωk

m+1← ωk
m − η∇f

(
ωk
m,Dk

m
)

11: end for
12: uk uploads ωk

m+1 to the cluster head node
13: Cluster head node aggregation local model

parameters
14: ωm+1← ωm − η

∑K
k=1

nk
n ωk

m+1
15: end if
16: end for
17: end for
18: Training ends

training, its updated local model parameters can be
written as

ωk
m+1← ωk

m − η∇f
(
ωk
m,Dk

m

)
, (38)

where Dk
m,t is the set of training samples for the mth

round of the distribution node. When each node has
finished updating its local model, the model parameters
are uploaded to the cluster head node.

3) Global Model Update: The cluster head node will
aggregate the received FL parameters and then update
the global FL model, which is formulated as

ωm+1← ωm − η

K∑
k=1

nk
n

ωk
m+1, (39)

where nk is the number of training samples of the
distribution node uk , n =

∑K
k=1 nk . Keep updating

the local and global FL parameters iteratively using the
above steps until the model converges, and then the
optimal global parameters ω∗ = ω1

∗ = · · · = ωK
∗ will

be obtained.
Combining Algorithm 1 and Algorithm 2, the FDTO

strategy is presented in Algorithm 3.

114484 VOLUME 11, 2023

W. Ye et al.: Federated Double Deep Q-Learning

TABLE 1. Simulation parameters.

FIGURE 4. Algorithm convergence verification.

V. SIMULATION EVALUATION
In this section, we present simulation results to demon-
strate the performance of our proposed FDTO strategy.
The convergence of the proposed strategy is validated
in Section IV-A and the performance is evaluated in
Section IV-B.

Consider an urban two-way four-lane scenario with
a road length of 5000 meters, where the velocity and
distribution of vehicles are generated according to (1) and (2),
and the computing tasks of vehicles obey the Poisson
distribution with an arrival rate of five. The strategy
allows the task vehicle to perform the training process
distributively using its local data. The relevant impor-
tant parameters in the simulation are set as shown in
Table 1.

A. CONVERGENCE OF ALGORITHM
Convergence can be accelerated by introducing a server
(cluster head vehicle) learning rate η during the training
process. By adjusting the learning rate on the server side,
local model updates from different task vehicles can be
fused faster during the global model aggregation process.
In this paper we set the learning rate to 0.001 and the
experience pool capacity to 3000. Figure 4 shows the
relationship between the loss function and the number of
iterations of the FDTO algorithm. It can be seen that when
the number of training is greater than 200, the value of the
loss function tends to stabilize and the algorithm tends to
converge.

B. PERFORMANCE OF ALGORITHM
Figure 5 shows the relationship between the number of vehi-
cles and the end-to-end latency for different vehicle clustering
mechanisms. The minimum ID clustering mechanism and
the MOBIC clustering mechanism [38] were selected for
comparison with the mobility-based vehicle clustering mech-
anism. The minimum ID clustering mechanism only assigns
a unique ID to the vehicle based on the physical address and
selects the node with the smallest ID value as the cluster
head, while the MOBIC clustering mechanism only clusters
the vehicles based on the relative movement between two
nodes. The simulation result shows that the mobility-based
vehicle clustering mechanism proposed in this paper has
the lowest end-to-end latency with the different numbers of
vehicles.

FIGURE 5. End-to-end latency with different clustering mechanisms.

Communication and computation cost: the communication
cost of FL is mainly due to the interaction of model
parameters (or gradients) between the client and the server
during the training process. During the training process,
the cluster head vehicle needs to communicate with K
participants (task vehicles), thus its communication cost is
O(K). Each participant only needs to communicate with
the cluster head vehicle, hence its communication cost is
O(1). The cluster head vehicle computes the global model
based on the K models uploaded by the participants, each
model contains n parameters, and for each parameter, its

VOLUME 11, 2023 114485

W. Ye et al.: Federated Double Deep Q-Learning

FIGURE 6. Average task computation latency.

FIGURE 7. Average task completion latency.

average is computed, hence its time complexity is O(Kn).
Participants optimize the model based on local data, the
number of local training rounds is E , t1 denotes the time for
local model training on each device, and the communication
time complexity includes the time required for uploading
the parameters from the task vehicle to the cluster-head
vehicle and the subsequent download of the updated global
model from the cluster-head vehicle to the task vehicle,
denoted as t2, and the time complexity of updating the model
parameters by the neural network optimization algorithm,
which consists of one time of forward propagation and
back-propagation in each round, is thus O(E(t1 + t2)).
Figures 6 and 7 compare the performance of different vehicle
cluster computation task offloading strategies. To analyze
the performance of the FDTO strategy for vehicle clusters,
we selected the following three strategies for performance
comparison.

1) Centralized Q-learning-based offloading strategy for
vehicle cluster computing tasks: this strategy differs
from the proposed one in that the cluster head vehicle
collects data from all vehicles within the vehicle
cluster and performs the entire training process using
Q-learning.

2) Random offloading strategy (Random): each task
vehicle randomly selects a resource vehicle within its
one-hop V2V range for computation task offloading.

3) Greedy offloading strategy (Greedy): each task vehi-
cle chooses the resource vehicle that gives it the
shortest task completion latency for computation task
offloading.

Figure 6 shows the average computation latency of
the task versus the number of vehicles. It is observed
from Fig. 6 that as the number of vehicles increases, the
overall average computation latency of the tasks increases
as well. The reason for this is that as the vehicle density
increases, more computation task offloading requests follow
and computational resources become more strained, thus
generating more computation latency. For the same number
of vehicles, the lowest average task computation latency
is obtained with the FDTO strategy. When the number of
vehicles is 150, the FDTO strategy reduces the average
task computation latency by 36.1% and 32.3% compared to
the random offloading strategy and the greedy offloading
strategy, respectively.

Figure 7 presents the average task completion latency as
a function of the number of vehicles in the vehicle cluster.
As the number of vehicles continues to increase, the average
task completion latency tends to increase. This is because the
increase in the number of vehicles leads to an increase in
computation task offloading requests, thus generating more
computational latency, queuing latency, and communication
latency. When the number of vehicles is 150, the proposed
FDTO strategy reduces the average task completion latency
by 24.3% and 17.6% compared to the random offloading
strategy and the greedy offloading strategy, respectively.
In addition, the data results show that the magnitude of
task computation latency is much smaller than that of task
completion latency, which indicates that the communication
latency during computation offloading has a significant
impact on task completion latency. When the number of
vehicles increases from 50 to 200, the average completion
latency of the Q-learning policy grows from 1.04 times the
average completion latency of the proposed FDTO policy to
1.14 times, due to the fact that reducing data interactions
through FL can effectively reduce the communication
latency.

VI. CONCLUSION
In this paper, we propose an FDTO strategy for computation
task offloading. We cluster vehicles based on their mobility
to reduce the effect of the highly dynamic changes of the
network topology in IoV. The computing task is modeled
as a time-dependent directed graph model, and an FDTO
strategy is used to make the computation task offloading
decision to minimize the task completion latency. The
proposed strategy enables the nodes in the vehicle cluster
to directly train the local model locally without uploading
local data to the cluster head node. The cluster head node
only needs to aggregate the local model parameters to update
the global model parameters. The simulation shows that the
proposed computation task offloading strategy for vehicle
clusters has better performance in terms of average task

114486 VOLUME 11, 2023

W. Ye et al.: Federated Double Deep Q-Learning

computation latency and average task completion latency.
In the future, we will consider using heterogeneous resources
such as RSU and other edge servers to provide better
computation offloading service for IoV, and jointly consider
multiple optimization objectives such as latency and energy
consumption.

REFERENCES
[1] X. Xu, H. Li, W. Xu, Z. Liu, L. Yao, and F. Dai, ‘‘Artificial

intelligence for edge service optimization in Internet of Vehicles:
A survey,’’ Tsinghua Sci. Technol., vol. 27, no. 2, pp. 270–287,
Apr. 2022.

[2] M. R. Dey, S. Sharma, R. C. Shit, C. P. Meher, and H. K. Pati, ‘‘IoV based
real-time smart traffic monitoring system for smart cities using augmented
reality,’’ in Proc. Int. Conf. Vis. Towards Emerg. Trends Commun. Netw.
(ViTECoN), Mar. 2019, pp. 1–6.

[3] H. Zhou, W. Xu, J. Chen, and W. Wang, ‘‘Evolutionary V2X
technologies toward the Internet of Vehicles: Challenges and
opportunities,’’ Proc. IEEE, vol. 108, no. 2, pp. 308–323,
Feb. 2020.

[4] Y. Li and S. Xu, ‘‘Collaborative optimization of edge-cloud computation
offloading in Internet of Vehicles,’’ in Proc. Int. Conf. Comput. Commun.
Netw. (ICCCN), Jul. 2021, pp. 1–6.

[5] C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, ‘‘Efficient mobility-aware
task offloading for vehicular edge computing networks,’’ IEEE Access,
vol. 7, pp. 26652–26664, 2019.

[6] A. Boukerchea and R. E. De Grande, ‘‘Vehicular cloud computing:
Architectures, applications, and mobility,’’ Comput. Netw., vol. 135,
pp. 171–189, Apr. 2017.

[7] J. Lee and W. Na, ‘‘A survey on vehicular edge computing architectures,’’
Proc. 13th Int. Conf. Inf. Commun. Technol. Converg. (ICTC), Jeju Island,
South Korea, 2022, pp. 2198–2200.

[8] M. Abuelela and S. Olariu, ‘‘Taking VANET to the clouds,’’ in Proc. 8th
Int. Conf. Adv. Mobile Comput. Multimedia, Nov. 2010, pp. 6–13.

[9] Z. Ning, J. Huang, X. Wang, J. J. P. C. Rodrigues, and L. Guo,
‘‘Mobile edge computing-enabled Internet of Vehicles: Toward
energy-efficient scheduling,’’ IEEE Netw., vol. 33, no. 5, pp. 198–205,
Sep. 2019.

[10] C. Wu, X. Chen, T. Yoshinaga, Y. Ji, and Y. Zhang, ‘‘Integrating
licensed and unlicensed spectrum in the Internet of Vehicles with
mobile edge computing,’’ IEEE Netw., vol. 33, no. 4, pp. 48–53,
Jul. 2019.

[11] S. Banerjee, C. Chakraborty, and S. Chatterjee, ‘‘A survey on IoT based
traffic control and prediction mechanism,’’ in Internet of Things and
Big Data Analytics for Smart Generation (Intelligent Systems Reference
Library), vol. 154. Cham, Switzerland: Springer, 2019, pp. 53–75.

[12] J. Shi, J. Du, J. Wang, J. Wang, and J. Yuan, ‘‘Priority-aware task
offloading in vehicular fog computing based on deep reinforcement
learning,’’ IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 16067–16081,
Dec. 2020.

[13] M. Whaiduzzaman, M. Sookhak, A. Gani, and R. Buyya, ‘‘A survey on
vehicular cloud computing,’’ J. Netw. Comput. Appl., vol. 40, pp. 325–344,
Apr. 2014.

[14] J. Gao, Z. Kuang, J. Gao, and L. Zhao, ‘‘Joint offloading scheduling
and resource allocation in vehicular edge computing: A two layer
solution,’’ IEEE Trans. Veh. Technol., vol. 72, no. 3, pp. 3999–4009,
Mar. 2023.

[15] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, ‘‘Joint load
balancing and offloading in vehicular edge computing and
networks,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 4377–4387,
Jun. 2019.

[16] Q. Luo, C. Li, T. H. Luan, and W. Shi, ‘‘Minimizing the delay and
cost of computation offloading for vehicular edge computing,’’
IEEE Trans. Services Comput., vol. 15, no. 5, pp. 2897–2909,
Sep. 2022.

[17] X. Peng, Z. Han, W. Xie, C. Yu, P. Zhu, and J. Xiao, ‘‘Deep
reinforcement learning for shared offloading strategy in vehicle edge
computing,’’ IEEE Syst. J., vol. 17, no. 2, pp. 2089–2100, Jun. 2023, doi:
10.1109/JSYST.2022.3190926.

[18] L. Liu, J. Feng, X. Mu, Q. Pei, D. Lan, and M. Xiao, ‘‘Asyn-
chronous deep reinforcement learning for collaborative task computing
and on-demand resource allocation in vehicular edge computing,’’
IEEE Trans. Intell. Transport. Syst., early access, Mar. 6, 2023, doi:
10.1109/TITS.2023.3249745.

[19] S. Li, S. Lin, L. Cai, W. Li, and G. Zhu, ‘‘Joint resource allocation and
computation offloadingwith time-varying fading channel in vehicular edge
computing,’’ IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3384–3398,
Mar. 2020.

[20] C. Li, S. Wang, X. Huang, X. Li, R. Yu, and F. Zhao, ‘‘Parked
vehicular computing for energy-efficient Internet of Vehicles: A contract
theoretic approach,’’ IEEE Internet Things J., vol. 6, no. 4, pp. 6079–6088,
Aug. 2019.

[21] A. J. Kadhim and J. I. Naser, ‘‘Proactive load balancing mechanism for fog
computing supported by parked vehicles in IoV-SDN,’’ China Commun.,
vol. 18, no. 2, pp. 271–289, Feb. 2021.

[22] Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, ‘‘Adaptive
learning-based task offloading for vehicular edge computing systems,’’
IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3061–3074, Apr. 2019.

[23] O. Senouci, S. Harous, and Z. Aliouat, ‘‘A new heuristic clustering
algorithm based on RSU for Internet of Vehicles,’’ Arabian J. Sci. Eng.,
vol. 44, no. 11, pp. 9735–9753, Nov. 2019.

[24] G. Liu, N. Qi, J. Chen, C. Dong, and Z. Huang, ‘‘Enhancing clustering
stability in VANET: A spectral clustering based approach,’’ China
Commun., vol. 17, no. 4, pp. 140–151, Apr. 2020.

[25] B. Hazarika, K. Singh, S. Biswas, and C.-P. Li, ‘‘DRL-based resource
allocation for computation offloading in IoV networks,’’ IEEE Trans. Ind.
Informat., vol. 18, no. 11, pp. 8027–8038, Nov. 2022.

[26] Z. Ning, P. Dong, X. Wang, L. Guo, J. J. P. C. Rodrigues, X.
Kong, J. Huang, and R. Y. K. Kwok, ‘‘Deep reinforcement learning
for intelligent Internet of Vehicles: An energy-efficient computational
offloading scheme,’’ IEEE Trans. Cognit. Commun. Netw., vol. 5, no. 4,
pp. 1060–1072, Dec. 2019.

[27] Z. Wei, B. Li, R. Zhang, X. Cheng, and L. Yang, ‘‘Dynamic many-to-many
task offloading in vehicular fog computing: Amulti-agent DRL approach,’’
in Proc. IEEE Global Commun. Conf., Riode Janeiro, Brazil, Dec. 2022,
pp. 6301–6306.

[28] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
‘‘Communication efficient learning of deep networks from decentralized
data,’’ in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), vol. 54, 2017,
pp. 1273–1282.

[29] H. B. McMahan, E. Moore, D. Ramage, and B. A. Y. Arcas, ‘‘Federated
learning of deep networks usingmodel averaging,’’ inProc. Int. Conf. Artif.
Intell. Stat. (AISTATS), Apr. 2017, vol. 54, pp. 1–10.

[30] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, and
V. Ivanov, ‘‘Towards federated learning at scale: System design,’’ in Proc.
Mach. Learn. Syst., vol. 1, 2019, pp. 374–388.

[31] L. Liu, Y. Tian, C. Chakraborty, J. Feng, Q. Pei, L. Zhen, and K. Yu,
‘‘Multilevel federated learning-based intelligent traffic flow forecasting for
transportation networkmanagement,’’ IEEETrans. Netw. ServiceManage.,
vol. 20, no. 2, pp. 1446–1458, Jun. 2023.

[32] Z. Xu, Y. Guo, C. Chakraborty, Q. Hua, S. Chen, and K. Yu, ‘‘A simple
federated learning-based scheme for security enhancement over Internet
of Medical Things,’’ IEEE J. Biomed. Health Informat., vol. 27, no. 2,
pp. 652–663, Feb. 2023.

[33] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, ‘‘Federated learning in mobile edge networks:
A comprehensive survey,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031–2063, 3rd Quart., 2020.

[34] R. P. Roess, E. S. Prassas, andW. R.McShane, Traffic Engineering, 3rd ed.
Englewood Cliffs, NJ, USA: Prentice-Hall, 2004.

[35] S. Yousefi, E. Altman, R. El-Azouzi, and M. Fathy, ‘‘Analytical model for
connectivity in vehicular ad hoc networks,’’ IEEE Trans. Veh. Technol.,
vol. 57, no. 6, pp. 3341–3356, Nov. 2008.

[36] N. Wisitpongphan, F. Bai, P. Mudalige, V. Sadekar, and O. Tonguz,
‘‘Routing in sparse vehicular ad hoc wireless networks,’’ IEEE J. Sel. Areas
Commun, vol. 25, no. 8, pp. 1538–1556, Oct. 2007.

[37] C.-C. Lin, D.-J. Deng, and C.-C. Yao, ‘‘Resource allocation in vehicular
cloud computing systems with heterogeneous vehicles and roadside units,’’
IEEE Internet Things J., vol. 5, no. 5, pp. 3692–3700, Oct. 2018.

[38] R. Sarumathi and V. Jayalakshmi, ‘‘Study of clustering schemes in mobile
ad hoc networks,’’ in Proc. 6th Int. Conf. Intell. Comput. Control Syst.
(ICICCS), Madurai, India, May 2022, pp. 694–700.

VOLUME 11, 2023 114487

http://dx.doi.org/10.1109/JSYST.2022.3190926
http://dx.doi.org/10.1109/TITS.2023.3249745

W. Ye et al.: Federated Double Deep Q-Learning

WENHUI YE received the B.S. degree from
Fuzhou University, Fuzhou, China, in 2018. She
is currently pursuing the Graduate degree with the
School of Informatics, Xiamen University, China.
Her research interests include vehicle networking
communications, 5G networks, and flying ad-hoc
networks.

KE ZHENG received the B.E. degree from the
Changsha University of Science and Technology,
Changsha, China, in 2019, and the M.S. degree
from the Department of Informatics and Commu-
nication Engineering, Xiamen University, in 2022.
Her research interests include vehicle networking
communications, NOMA, and 5G networks.

YUANYU WANG received the B.S. degree in com-
munication engineering from the Wuhan Univer-
sity of Technology, Wuhan, China, in 2017. He is
currently pursuing the Graduate degree with the
School of Informatics, Xiamen University, China.
His research interests include vehicular ad-hoc
networks, space-air-ground integrated networks,
and flying ad-hoc networks.

YULIANG TANG (Member, IEEE) received the
M.S. degree from the Beijing University of Posts
and Telecommunications, China, in 1996, and the
Ph.D. degree in informatics and communication
engineering from Xiamen University, in 2009.
He is currently a Professor with the Department
of Information and Communication Engineering.
He has published more than 90 papers in journals
and international conferences and has been granted
over 20 patents in his research areas. His research

interests include wireless communication, 5G and beyond, and vehicular
ad-hoc networks.

114488 VOLUME 11, 2023

