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ABSTRACT Phased Array Antenna (PAA) technology plays an important role in fields such as radar, 5G and
satellite or any application which requires wide bandwidth and high gain. However, achieving such design
is a difficult and complex task that requires an accurate calculation and combination of results obtained
for varying phase and amplitude of each unit and coupling effects between these elements of the PAA
structure is a task that can only be obtained using full wave EM simulation tools. This comes at the price of
a significant increase for the computational cost of the design process which is a well-known drawback of
forward EM modeling of microwave stages most especially in case of repetitive analysis’s such as yield
analyses or optimization tasks. Data-driven surrogate models have emerged as a powerful and versatile
solution that bridges the gap between computationally expensive simulations and rapid, reliable prediction
models suitable for deployment in applications such as optimization and/or yield analyses. Herein, for having
a high-performance broadband PAA for millimeter band in a computationally efficient manner, artificial
intelligence based surrogate model assisted optimization approach is deployed. A series of state-of-the-art
surrogate modeling algorithms are deployed to create a surrogate model of the studied PAA design for the
prediction of radiation pattern characteristic with respect to the input phase values of each array element. As a
result, a drastic reduction in computational time of almost 90% for the optimization of three PAA designs
is achieved. Thus, the proposed approach offers promising avenues for further exploration in computational
electromagnetics, most especially in simulation expensive problems with complex designs.

INDEX TERMS Artificial intelligence, data driven modelling, surrogate modelling, optimization, phased
array antenna.

I. INTRODUCTION
Phased Array Antenna (PAA) technology plays an important
role in the field of antenna technologies. While the PAA
technology is constantly improving, it is also used extensively
in applications such as radar, 5G and satellite [1], [2], [3],
[4], [5], [6], [7]. In particular, phased array antenna designs
that provide wide bandwidth and high gain in the millimeter
band have many fields of study. For example, air, aircraft and
defence radars, Ka band satellite communications, 5G radio
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link communications, etc. [8], [9], [10], [11], [12], [13], [14].
Satellite communication technology in the millimeter band
has a lower cost of satellite service purchase and a higher
data rate, especially compared to other frequencies [15], [16],
[17]. Therefore, the Ka band comes to the fore, especially in
the field of satellite communication. PAA designs are usually
performed on the PCB in different antenna types such as
patch, bow tie, Vivaldi, etc. [18], [19], [20], [21], [22]. One of
the most important factors in choosing patch antennas is that
they can be used with parasitic structures. Thus, unit antenna
cells with high bandwidth and efficiency can be formed. This
is especially advantageous in providing broadband and high
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gain, which is usually specified as whether in millimetric
bands [23], [24], [25].

While designing the PAA, the goal is to design an antenna
that provides broadband and high efficiency that can be used
for a wide range of applications in the millimeter band.
However, having such a design is a difficult and complex task.
Accurate calculation and combination of results obtained for
varying phase and amplitude of each unit and coupling effects
between these elements of the PAA structure is a task that
can only be obtained using full wave EM simulation tools.
This comes at the price of a significant increase for the com-
putational cost of the design process which is a well-known
drawback of forward EMmodeling of microwave stages [26].

In the field of computational-science and engineering, with
the increasing complexity and high dimensionality of engi-
neering problems, the need for having efficient and highly
accurate modeling approaches have become a topic that
being persuaded by many researchers [27]. As it mentioned
before, traditional simulation-based models such as full wave
EM simulators often require high computational resources
(RAM, CPU power etc.) and simulation time which creates
a significant challenge for time sensitive, decision making
process requires repetitive analysis’s such as yield analyses
or optimization tasks [28]. An efficient solution method for
this challenge is data-driven surrogate modeling. Data-driven
surrogate models have emerged as a powerful and versa-
tile solution that bridges the gap between computationally
expensive simulations and rapid, reliable prediction models
suitable for deployment in applications such as optimiza-
tion and/or yield analyses [29], [30]. Surrogate models, also
known as metamodels are approximate representations of the
underlying systems, providing valuable insights into their
behavior while significantly reducing the computational bur-
den. By leveraging data obtained from a limited number of
simulations or experiments, these models facilitate the explo-
ration of vast design spaces and enable efficient optimization,
uncertainty quantification, and sensitivity analysis. Thus, it is
a significantly more efficient method to perform optimization
management over data driven surrogate models most espe-
cially models based on artificial intelligence (AI) algorithms
such as artificial neural networks [31], [32], [33], [34], [35],
[36], [37], [38], [39] or deep learning algorithms [40], [41],
[42], [43], [44], [45], [46], [47], [48], instead of EM solvers.
The data-driven surrogate model is used by many researchers
for many applications such as parameter tuning [49], [50],
statistical analysis [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53]
and multi objective design [54], [55], [56], [57], [58]. Some
examples from the literature, for the application of AI based
surrogate models are polynomial regression [59], Kriging
interpolation [60], radial basis functions [61], support vector
regression [62], and polynomial chaos expansion [63], [64],
[65], [66], one of the commonly used techniques is artificial
neural networks (ANNs) [31].

Herein, for having a high-performance broad band PAA
for the millimeter band in a computational efficient manner,
an AI based surrogate model assisted optimization approach
is deployed via the use of EM solver-based training samples.
First, the unit antenna and PAA design were carried out by
means of a 3D EM simulation program. Then, a data set
was created for PAA in line with the phase and amplitude
information. In Section II, the novel ANN-based surrogate
modeling and optimization processes of the 2 × 2 PAA are
determined to obtain the desired combined output depend-
ing on the phase and amplitude variables. In Section III,
experimental studies on optimized PAA design are indicated.
The surrogate model is also used alongside a metaheuristic
optimization algorithm to achieve the desired PAA design.
Section IV explains the fabrication and measurement results.
Finally, general information was given about the results of the
study.

II. GENERATION ULTRA-WIDE MILLIMETRIC BAND
PHASED ARRAY ANTENNA DESIGN
While designing the PAA, it was aimed to design an antenna
that provides broadband and high antenna efficiency that
can be used for many applications in the millimeter band.
In this direction, a high-gain and very broadband antenna
design has been realized by using a traditional patch antenna
with circular polarity and a parasitic element using Rogers
4350Bmaterial. The most important design parameters while
performing the PAA design are unit and combined gain effi-
ciency and impedance compatibility of each unit elementwith
the connector, operating bandwidth in the millimeter band
and substrate selection and mechanical sensitivity. PAA was
made from circular patches on the main and parasitic PCB
with 4 outputs. Bandwidth and gain are increased thanks to
parasitic patches. It also has a 50-ohm feed line and ground
plane to get the outputs of each unit element through the
connector. There is an air gap between both patches and this
gap is optimized according to the resonance frequency of the
circular patch on the main PCB. Both the main and parasitic
PCBs were designed with RO4003 0.254mm. The steering of
the main beam in different directions is achieved by feeding
the excitation signals at the ports with different phases. Each
patch element is fed by a supply line with a quarter wave
transformer in between for impedance matching. The black
box model is in Fig. 1 (a) and the flow chart of the proposed
antenna design is given in Fig. 1 (b). First, the unit circular
polarity patch antenna design was realized. As a result of the
optimization, the main and parasitic element patch antenna
dimensions and air gap distance were determined. The result-
ing dimensions are G1 = G2 = 12, M1 = P1 = 2.8, S1 = 0.4,
S2 = 0.6, L1 = 1, L2 = 1.524, L3 = 2.25, W1 = 0.14, W2 =

0.31, W3 = 0.56, A1 = 0.735 mm. The operation frequency
of the K-band is between 26-35 GHz. The gain of the unit
antenna is about 7 dBi and the return loss is better than−6 dB
at the whole operation band. The unit antenna 3D model and
S11 result are presented in Fig. 2 (a) and Fig. 2 (b).
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FIGURE 1. (a) Black box representation, (b) Flow chart of the proposed
antenna design.

In the next stage, the PAA design by using the designed
unit antenna element is done in a 2 × 2 configuration. The
3D model of PAA is in Fig. 2 (c). The working bandwidth
was preserved as it was in the unit antenna. Here, it is worth
mentioning that the patch antenna, slot dimensions, air dis-
tance and feed line widths are the same as the unit antenna.
The return loss of each port of the PAA antenna is shown in
Fig. 2 (d). The distance from the center to center of each patch
antennas is D1 = 11 mm. The distance between the centers of
the patch antenna corresponds to about half of the wavelength
of the center frequency (30.5 GHz). PAA simulation, time
domain finite integration was applied in CST with a transient
solvent using the method. In addition, the radiation patterns
of the antenna are shown in Fig. 2(e-f) with randomly selected
values in the range of phase angles determined in the data set,
both on the azimuth and elevation axis.

The PAA structure consists of a 2 × 2 PAA structure
and is intended to be used as a feeder antenna for many
applications such as the feeding of reflector antennas, radar
systems, and radio link systems for 5G applications. The
studied PAA is modelled in a 3D EM simulation program
(CST MWS) designed for 5G and radar applications in
millimeter band and ultra wide range as shown in Fig. 2.
Here it should be emphasized that the determination of the
optimal phase and magnitude value for this PAA is a complex
and time-consuming procedure due to the nature of 3D EM
simulators which makes the whole design process a compu-
tationally expensive design problem [28]. Thus, although it is
a multi-dimension optimization problem, it is not a feasible
or computationally efficient procedure to be solved via the

TABLE 1. Data set design variables and limits.

traditional direct full wave EM simulator assisted optimiza-
tion search protocols.

Herein, for solving this computationally expensive opti-
mization problem an artificial Intelligence base surrogate
model assisted optimization procedure is taking under con-
sideration. Application of surrogate models for the design
and optimization of high-performance microwave stages is
an efficient method that being used by many researchers for
different types of designs with promising results [56]. The
proposed surrogate model will create a mapping between the
input (input phase of each unit antenna) and the radiation
characteristic of the PAA design in Fig. 2(e) and Fig. 2(f). For
this mean in Table 1, the design variable of surrogate model
is presented. The training and validation data sets required
for creating surrogate model will be generated based on the
given lower and upper limits in Table 1. For this study the
amplitude value of each antenna feed is taken as unity. Each
unit antenna can take a total of 8 different angles between
0 and 315 degrees with 45-degree phase difference intervals.
A total of 4096 (8 × 8 × 8 × 8) training data were obtained.
Since the output of each combined data was analysed at all
theta angles and the theta angle range was taken as 1 degree,
a data set consisting of 741.376 (4096×181) lines was created
for the 26 GHz frequency. Within the scope of this study,
a data set was created for a single frequency first.

The 3D EM simulation studies were performed using the
Finite Integration Technique, the selected PAA design has a
mesh size of approximately 1,366,767 cells per wavelength&
maxmodel box edge= 20, Fraction of themaximum cell near
to model=20, using a simulation setup with following specs:
Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz, with 32 GB
of installed memory. The simulation time was around 17min-
utes. To obtain the combined pattern of the 4-element antenna
design with the desired input phase angles, the combined
results feature of the EM simulation program CST is used.
Thus, the desired phase values were given to each port in
equal amplitude (here taken as unity) and a data set was
created. Thanks to this feature of CST, the far-field results of
each combined pattern were obtained around 2 minutes for
generating the samples for data sets.

III. DATA DRIVEN SURROGATE MODEL ASSISTED
DESIGN OPTIMIZATION
As can be observed, from Fig. 2 (e-f) and antenna array
theory, with variation of phase of each unit element the
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FIGURE 2. Schematic of (a) unit antenna, (b) PAA design; S11 characteristic of (c) unit antenna, (d) PAA design;
Radiation pattern with randomly selected phase angle for (e) azimuth, (f) elevation plane.

TABLE 2. Surrogate model and their performance measures (MAE±standard deviation) for 10 different runs.

radiation pattern is changed. In this section by using the data
sets generated in the previous section a data driven surrogate

model of proposed PAA is generated via a different type of
AI algorithm. For this mean, series of traditional and state
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FIGURE 3. Radiation characteristics of (a) Case I [225◦, 135◦, 90◦, 0◦],
(b) Case II [315◦, 180◦, 0◦, 315◦], (c) Case III [30◦, 0◦,180◦, 244◦],
(d) Case IV [147◦, 0◦, 180◦, 296◦] designs; EM-simulated versus M2LP and
CNN predicted @ θ = 0◦, 26 GHz.

of the art algorithms Multi-layer Perceptron with single and
two hidden layers, Ensemble Learning (EL), a deep learning-
based AI network Convolutional Neural Network (CNN) and
Modified Multi-layer Perceptron (M2LP) [43] with depth
size of one and two are taken into considerations. A crucial

FIGURE 4. (a) The prototype 2 × 2 PAA; (b) measured S-parameter results;
measured radiation pattern versus surrogate models’ predictions @
26 GHz for (c) Case III [30◦, 0◦, 180◦, 244◦], (d) Case IV [147◦, 0◦, 180◦,
296◦].

design step in surrogate modeling is tuning of surrogate
model hyper-parameters [67] that can significantly affect the
prediction accuracy of models. In this work, these parame-
ters are determined via the Bayesian optimization approach
[68]. For each of the surrogate models based on a K-fold
cross validation with K=3 where the whole data is shuffled
and divided into two equal partitions is created. In Table 2,
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the Mean Absolute Error (MAE) metric is used to evaluate
generalization capabilities of these surrogates between the
predicted radiation gain values at given inputs vs. the sim-
ulated value from CST using K-fold validation. As can be
seen from Table 2, M2LP model achieves highest accuracy
and precision performance with respect to both average and
minimum obtained MAE metrics. For illustration of these
performance responses, the radiation characteristic belonging
to CST simulated results,M2LP prediction andCNN for three
design cases is presented in Fig. 3.

It is worth noting that while investigating optimization
algorithms for the purpose of optimizing microwave antenna
designs is a challenging and valuable research area, the
present study does not focus on the speed or convergence
rate of these methods. The primary objective of this study is
to introduce a computationally efficient data-driven-surrogate
modeling technique. The proposed approach is aimed at
enhancing the overall design optimization process by mini-
mizing the convergence time of the optimization algorithms
in relation to the total computational time required for the
entire process using an AI based regression approach. Here
for the studied optimization problem, the usage of any tech-
niques at least would require at least 1500-2000 function
evaluations (such as the Trust-Region algorithm or, Parti-
cle Swarm Optimization). This means that the optimization
process would requires almost 425 hours (1500 × 17 (total
number of function evaluation × average simulation time
of each antenna design in minutes)) using the direct EM
optimization approach for each and every aimed design case.
Let us assumes that the designer would requires two different
design cases, thus for these two different cases the total
required computational time using the traditional approach
would be around 1275 hours (3 × 425).
In the proposed approach although the generation of

4096 samples is a heavy computational cost, which is the
main cost in surrogate models known as initialization cost,
the total time required for creating a model would be around
136.5 hours (4096×2 [minutes]) even by using the combined
results feature of CST. However, once the surrogate model is
trained the simulation time required to predict the radiation
characteristic for the given inputs response time of surrogate
model is less than 0. 1 seconds. Thus, the prediction of
thousands of different design cases or solution candidates
would require a computational time of less than two minutes
which is less than a single simulation run of the traditional
approach in the EM simulation model. To briefly summarize
the acceleration of the design optimization process for the
studied problem, the following example can be assumed. Let
us assume that three PAA designs are aimed to achieve with
different radiation characteristics. In the case of optimiza-
tion of these designs at least 1500 function evaluations for
each design (4500 function evaluations in total) are required
for having a global local solution. In case of using tradi-
tional direct EM simulation tool approach this process would
requires approximately 1275 hours (3 × 425 [hours]), while
in case of using the proposed data-driven surrogate modeling

approach, the total required time is no more than 138 Hours
(including, the initialization cost of 136.5 hours + the time
required for training the surrogate models less than 1 hour +

4500 of function evaluations for optimization process which
is approximately less than 8 minutes [4500× 0.1 [seconds]])
in total. Thus, the overall computational cost for optimization
of three cases of studied PAA is reduced by almost 90.0%.
It is worth noting that there are alternative data-driven sur-
rogate techniques, such as inverse modeling [69] that can
be employed to achieve designs with superior performance.
Nevertheless, it is important to acknowledge that these
methodologies do have certain limitations. One such draw-
back is the restricted Design of Freedom (DOF) for problem
variables. This means that a given desired performance out-
come may have multiple potential solutions, sometimes even
dozens, resulting in non-uniqueness difficulties. Specifically,
themodel’s ability to generate distinct responsesmay be com-
promised as a result of its inability to appropriately alter the
weighting coefficients for identical inputs with varying out-
comes. As a result, the designermust eliminate or assign fixed
values to certain design variables in order to decrease the
degrees of freedom and performance of the achievable ideal
design. The direct modeling approach remains unaffected by
the aforementioned challenges related to uniqueness. How-
ever, a drawback of forward-modeling-based approaches is
the requirement for frequently time-consuming model opti-
mization in order to ascertain the ideal solution for the
desired performance outcome. However, in cases when the
forward model is computationally inexpensive, such as in this
study, the aforementioned issue has been successfully miti-
gated, resulting in a negligible cost for design optimization.
Given that each function evaluation anticipated by the model
requires less than one millisecond, it is evident that an opti-
mization process consisting of 10,000 objective function calls
would be completed in less than one minute. This duration is
equivalent to the time required for a single EM analysis of the
individual design.

IV. EXPERIMENTAL RESULTS
In this section, to demonstrate the validation and applicability
of the proposed data-driven surrogate modeling approach
experimental results of an optimally designed PAA using
M2LP is studied. In Fig. 4, the prototype PAA antenna along-
side of measured and predicted radiation characteristic of
the antenna is presented. The production and measurement
of the antenna was carried out in the NETA Elektronic Inc.
laboratory. A network analyzer was used for all measure-
ments. The Rohde-Schwarz ZNB is a two-port device that
can measure up to 40 GHz. First of all, the return losses
(S11) of the antenna were measured with a network ana-
lyzer and compared with the design results. A 4 × 50 ohm
2.92 mm K connector is used as the connector. The compara-
tive S11 results of the simulation and measurement are given
in Fig. 4 (b). For justification of the prediction accuracy of the
surrogate model compared to experimental results, for three
cases with varying input phases (these values are not included
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TABLE 3. Antenna performance comparison table.

in the generated data in Table 1) the measured, simulated and
predicted radiation characteristics are shown in Fig. 4 (c-d),
the radiation characteristic measurements were measured at
far-field distance under laboratory conditions. As it can be
observed form the results the proposed approach is not only
a computationally efficient method for design optimization
or repetitively analyses, but also has a high accuracy and
precision rates. As for a further analysis on the studied PAA
design a detailed performance comparison of the prototyped
PAA with its counterpart design in the literature are shown in
Table 3.

V. CONCLUSION
In this paper, for having a high-performance broad band
PAA for millimeter band in a computational efficient manner,
an AI based surrogate model assisted optimization approach
is deployed via the use of EM solver-based training samples.
First, PAA design was carried out by means of a 3D EM
simulation program. Then, a data set was created for each
unit antenna in line with the phase and amplitude information.
Then series of state-of-the-art surrogate modeling algorithms
are deployed to create a surrogate model of the 2 × 2 PAA
design for the prediction of radiation pattern characteristic
with respect to the input phase values of each array element.
In this work, the key achievement lies in the drastic reduc-
tion in computational time. This time saving is exemplified
by a 90.0% decrease in time for the optimization of three
PAA designs [1275 hours vs. 138 Hours]. This surrogate
modeling approach, despite the initial heavy computational
cost, demonstrated immense efficiency in design optimiza-
tion and/or repetitive analyses. Experimental results further
showcased the effectiveness and accuracy of this approach.
The comparison of the surrogate model predictions with
measured results depicted high precision rates, corroborating
the model’s capability. Moreover, comparisons with existing
literature affirmed the success of the proposed PAA design.
This study thus indicates that the integration of AI and
surrogate modelling in antenna design is a potent solution,
streamlining the design process, enhancing computational
efficiency, and ensuring high-accuracy results. This approach
offers promising avenues for further exploration in com-
putational electromagnetics most especially in simulation

expensive problems with complex designs. In feature work
authors aim to further improve the computational efficiency
of this approach based on a reduction of initialization cost
using novel sampling approaches to achieve similar surrogate
performance with smaller training data sets. In this endeavor
it is worth mentioning that reducing the number of training
data would reduce the accuracy of the model however this
reduction can be minimized with more strategically sampling
approaches that could provide more information on the prob-
lem domain even with lesser sample sizes.
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