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ABSTRACT Software-defined networking (SDN) has been recognized for its potential in network pro-
gramming and centralized control. However, this advancement brings forth critical security vulnerabilities.
It is essential to understand that vulnerabilities, by their inherent nature, may lead to potential attacks
if not addressed timely and appropriately. In this paper, we introduce a novel multi-modal deep transfer
learning (MMDTL) framework tailored for effective attack detection in SDN environments that helps us to
investigate a diverse spectrum of attack types. MMDTL framework comprehensively incorporates diverse
data modalities - encompassing network traffic patterns, system logs, and user behavior analytic. A pivotal
feature of this framework is its transfer learning approach, which enables the assimilation of insights from
pre-trained models that subsequently increases the detection performance of attacks. We rigorously analyze
the proposed framework with experiments on the intrusion detection evaluation dataset (CIC-IDS2017).
Analyses results show the superiority of our framework with a detection accuracy 99.97%.Thus, MMDTL
framework has a significant potential to support security in SDNs.

INDEX TERMS Attack detection, CICIDS2017, data analysis, transfer learning, network programming,

software-defined network.

I. INTRODUCTION

The Software-Defined Networking (SDN) has emerged as a
transformative solution for enhancing network management
and adaptability owing to its centralized control and innova-
tive programmability. These very attributes, however, render
SDNss susceptible to a diverse array of cyber attacks [1].

An attack, which can be described as any deliberate
endeavor to gain unauthorized access or create disruption
within a system or network, poses a significant threat in the
context of SDNs. Such networks, due to their control over
traffic flow, are attractive targets for attackers. An adversary
with control over an SDN controller could cause severe
disruption or even control the entire network [2]. Traditional
network security solutions, such as firewalls, are not effective
in detecting and preventing many attacks in SDNs. This
is because these solutions are designed for traditional
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networks, which do not have the centralized control and
programmability of SDNs [3].

In recent years, machine learning and deep learning have
arisen as compelling approaches for attack detection in SDNs.
They offer a sophisticated toolset that can surpass traditional
security measures, delivering robust protection against mul-
tifaceted attacks [3]. Yet, despite their potential, challenges
remain in leveraging these techniques to their full capacity.
This study introduces a Multi-Modal Deep Transfer Learning
(MMDTL) framework tailored for real-time attack detection
in SDNs. By integrating multiple data modalities, such as
network traffic data, flow data, and packet header data,
the framework achieves enhanced detection performance.
The innovative use of pre-trained models serves to expedite
training, bolstering the framework’s efficiency and general
applicability.

We contend that the introduction of this proposed frame-
work represents a substantial advancement in strengthening
the security infrastructure of SDNs. Capable of detecting
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an extensive range of attacks, its real-time responsiveness is
crucial for containment and prevention. This study, therefore,
not only advances our understanding of network security but
also promises a tangible impact in safeguarding SDN’s against
an ever-evolving attack landscape. This study proposes
an MMDTL to address these limitations and improve the
security of SDNs.

Current deep learning techniques for attack detection
in SDNs have achieved significant progress [4]; however,
they face challenges in handling diverse data modalities
and capitalizing on existing knowledge from other domains
or pre-trained models. This research aims to develop an
MMDTL that effectively detects the attacks in real-time
within SDNs. The specific objectives are:

Leverage multiple data modalities for attack detection,
such as network traffic data, system logs, and user behavior
data, to capture a more comprehensive understanding of
potential attacks. Employ transfer learning to improve the
performance of deep learning models by utilizing pre-existing
knowledge from other domains or pre-trained models, thus
reducing training time and enhancing detection capabilities
[5]. Evaluate the performance of the proposed framework
against state-of-the-art methods in terms of accuracy, effi-
ciency, and scalability.

This research makes the following key contributions:

1) Proposes a novel MMDTL framework for enhanced
attack detection in SDNs by integrating diverse data
modalities.

2) Demonstrates significant improvements in attack
detection accuracy through the application of transfer
learning techniques.

3) Provides comprehensive performance evaluation on
real-world datasets, achieving 99.99% test accuracy,
and outperforming state-of-the-art methods.

4) Presents detailed analysis quantifying the impact of
each modality on the framework’s detection capabili-
ties.

5) Investigates a diverse spectrum of attack types, offering

a holistic approach to attack identification in SDNs,
further enriching the robustness of the proposed
MMDTL framework.
Ultimately, this paper introduces an innovative
MMDTL framework for SDN attack detection that
integrates multi-modal learning and transfer learning
to deliver exceptional accuracy and performance.
Rigorous experimentation proves the framework’s
effectiveness over existing techniques.

The rest of the paper is organized as follows: Section II
presents related work on deep learning techniques for attack
in SDNs, multi-modal learning, and transfer learning in
cybersecurity in SDNs. Section III describes the proposed
MMDTL. Section IV outlines the experimental setup, includ-
ing dataset description, data pre-processing, and evaluation
metrics, as well as presents and discusses the results and
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performance of the proposed framework. Finally, Section V
concludes the paper and provides future research directions.

Il. MACHINE LEARNING AND SECURITY IN SDN
A. DEEP LEARNING FOR ATTACK DETECTION IN SDN
Recent research has focused on deep learning techniques for
attack detection in SDNs. Convolutional Neural Networks
(CNNs) have been widely adopted for network traffic
analysis due to their ability to learn spatial features. Reference
[6] proposed a CNN-based method for classifying malicious
URLs and demonstrated superior performance compared
to traditional machine-learning approaches. Reference [7]
employed a CNN-based intrusion detection system against
Denial-of-Service (DoS) attacks in SDNs, achieving high
detection accuracy. On the other hand, Recurrent Neural
Networks (RNNs), particularly Long Short-Term Memory
(LSTM) networks, have been used to model temporal
dependencies in system logs and network traffic data.
Reference [8] applied LSTMs for network vulnerability
analysis in industrial IoT, while [9] developed a deep
learning-based intrusion detection system for SDNs using
LSTM. Recently, a hybrid deep learning approach for
detecting DoS/Distributed DoS (DDoS) attacks in SDNs was
proposed [10]. The authors developed a model that combines
three different deep learning algorithms and achieved high
accuracy rates on two datasets. Their approach demonstrates
the potential of using deep learning for network security and
protecting SDNs from DoS/DDoS attacks. As SDNs become
more prevalent, developing effective intrusion detection
systems like the one proposed will be critical [10]. This
hybrid deep learning method provides a promising new
direction for detecting attacks in SDNs.

However, these studies mainly focus on single data
modalities and overlook the potential benefits of combining
different data sources and transfer learning.

B. MULTI-MODAL LEARNING IN CYBERSECURITY
Multi-modal learning has been employed to improve the
performance of machine learning models in various cyber-
security applications. Reference [11] explored the use of
multi-modal learning for intrusion detection by combining
network traffic data with system logs, resulting in improved
detection rates compared to single-modal approaches. Ref-
erence [12] proposed a multi-modal approach for malware
classification that leverages both static and dynamic analysis,
achieving higher classification accuracy than individual
modalities. While these studies demonstrate the effectiveness
of multi-modal learning, the integration of transfer learning
in multi-modal learning for SDN security remains largely
unexplored. While the aforementioned studies illuminate the
profound merits of multi-modal learning, it is imperative to
note a discernible research gap: the confluence of transfer
learning within the paradigm of multi-modal learning,
especially in the context of SDN security, remains in its
nascent stages and warrants comprehensive exploration.
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C. TRANSFER LEARNING IN CYBERSECURITY

In contemporary machine learning, transfer learning has
emerged as a compelling technique, renowned for its ability
to augment the performance of deep learning models.
By adeptly harnessing knowledge gleaned from disparate
domains or leveraging pre-established models, transfer
learning offers a platform for rapid and efficient model con-
vergence. Within the cybersecurity arena, a groundbreaking
study by [13] showcased the potential of transfer learning
in enhancing intrusion detection mechanisms specific to
SDNs. The researchers adeptly pre-trained a CNN using an
expansive network traffic dataset, consequently observing a
superior detection performance relative to traditional, non-
transfer learning methodologies. Parallelly, the investigation
presented by [14] underlines the application of transfer
learning to the critical task of malware detection. They
achieved a commendable enhancement in performance
metrics by priming their model using weights extracted
from a meticulously pre-trained autoencoder. While the
aforementioned research endeavors have illuminated the
inherent advantages of transfer learning, it’s noteworthy to
mention a palpable research lacuna: a majority of these
studies predominantly orient around single-modal learning.
This observation accentuates the untapped promise and vast
potential inherent in the realm of multi-modal deep transfer
learning, signifying a prospective avenue for future scholarly
inquiries.

lIl. MULTI-MODAL DEEP TRANSFER LEARNING
FRAMEWORK

The proposed MMDTL aims to provide real-time attack
detection in SDNs by leveraging multiple data modalities and
transfer learning. The framework consists of several key com-
ponents, including data preprocessing and feature extraction,
feature importance, and multi-modal deep learning models.
The transfer learning model is constructed using an LSTM
architecture, and a real-time attack detection. Figure 1 depicts
the architecture of our proposed method for attack detection
in SDNs. It includes stages such as pre-processing, feature
importance analysis, feature selection, model construction,
and classification.

These stages enable the balanced representation of data,
identification of important features, construction of a tailored
model, and real-time classification of network traffic as attack
or normal. The diagram provides a visual overview of our
approach to enhanced network security in SDNs.

In order to elucidate the intricate technicalities of the
MMDTL framework, Algorithm 1 delineates a sequential
methodology. The input variables encompass multifaceted
data sources, including but not limited to network traffic
metrics, system audit logs, and user behavioral analytics.
Subsequent to a meticulous preprocessing phase, both
feature extraction and selection operations are executed to
ascertain an optimal feature subset. An indispensable facet
of the MMDTL framework is its assimilation of transfer

114130

learning techniques. This is effectuated by capitalizing on
pre-trained LSTM models for parameter initialization, thus
facilitating the transmission of domain-specific knowledge to
augment the learning paradigm. The quintessential MMDTL
model amalgamates the various data modalities through
specialized LSTM strata and subsequent concatenation.
An exhaustive training and evaluation phase ensues post
which the model is either operationalized for real-time
intrusion detection and counteraction- contingent upon it
meeting predefined performance criteria-or subjected to
retraining using refined parameters. Such a systematic
decomposition offers scholars a profound comprehen-
sion, and potentially a template, of the MMDTL strat-
egy for bolstering security within SDN infrastructures.

Algorithm 1

: Input: X, L, U

: Output: Attack detection and classification
: Preprocess X, L, U:

Handle missing values —

X — X,'j ifX,:/' is finite
7] =1, if X = 00, —00, or NaN

AWy =

Normalize features — Xscared = 5

5

6:  Balance classes — undersampling

7. Extract features from X, L, U

8 Analyze feature importance — y = >/ wihi(x)

0 S 0i-D0i—Y)
VEE—2 03

: Remove correlated features — r =

10: Define MMDTL model:

11:  Inputlayers - X,L, U

122 LSTM layers - X, L, U

13:  Concatenate LSTM outputs

14 Dense layers

15:  Output layer

16: Transfer learning — load pretrained LSTMs
17: Train MMDTL

18: Evaluate model on test data

19: Deploy model for attack detection

In this section, we introduce MMDTL, which combines
the power of both multi-modal learning and transfer learning
for attack detection in SDNs. The model architecture, imple-
mented using TensorFlow and Keras, leverages pre-trained
models and fine-tuning techniques to achieve superior
performance. Figure 2 below illustrates the visualization of
the proposed method.

In this research endeavor, we propose an advanced
methodology for constructing an Intrusion Detection System
(IDS) specialized for SDN. Our approach incorporates the
powerful concept of multi-modal transfer learning, a tech-
nique that leverages knowledge gained from one domain
to enhance learning and performance in related domains.
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FIGURE 1. Proposed MMDTL.

Specifically, we adeptly combine information from various
modalities, where each modality represents unique data
sources, to bolster the overall effectiveness of our IDS.

At the heart of our model construction lies the careful
definition of input shapes for each modality, denoted as:
“input shape modall” and “input shape modal2.” These
shapes correspond to distinctive sets of network traffic feature
data, thoughtfully derived from the esteemed Intrusion
Detection Evaluation Dataset (CIC-IDS2017). Creating input
layers (input modall and input modal2) for each modality
follows, as these layers serve as crucial gateways for data
entry during the subsequent model training phase.

To effectively capture temporal characteristics intrinsic to
network traffic patterns, we deploy individual LSTM models
tailored for each modality (modall LSTM and modal2
LSTM). LSTMs, specialized recurrent neural network layers,
are well-suited for handling sequential data. Thoughtful
reshaping of input data ensures seamless compatibility with
the unique requirements of the LSTM layer. The essence
of our multi-modal approach unfolds during the strategic
combination of information from diverse modalities. After
processing data from each modality through their respective
LSTM layers, we seamlessly concatenate the resulting
outputs. This fusion fosters a synergistic relationship between
modalities, empowering the model to discern intricate
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interactions and correlations arising from network features
derived from multiple sources.

To uncover intricate relationships among amalgamated
features, we introduce additional dense layers, equipped with
the Rectified Linear Unit (ReLU) activation function. These
layers act as feature extractors, discerning high-level pat-
terns and representations. Addressing overfitting concerns,
we carefully employ dropout regularization during training,
effectively enhancing the model’s generalization capabilities.

In the final stage, our model navigates through the last
dense layer, endowed with the softmax activation function.
This layer yields model predictions, skillfully refined into
class probabilities. Each class signifies distinct network
intrusion or normal behavior types, empowering our IDS to
classify network traffic patterns effectively. Prior to com-
mencing model training, meticulous compilation becomes
imperative. We enlist the Adam optimizer for iterative
parameter adjustments and deploy categorical cross-entropy
loss for robust multi-class classification tasks.

Throughout the training, continuous monitoring of the
model’s performance is facilitated using the accuracy metric.
To augment comprehensibility, we visually encapsulate the
comprehensive model architecture through the plot model
function, which furnishes an illustrative graphical represen-
tation. Additionally, a concise summary unveils intricate
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mnput_1 mput: | [(None, 70)] nput_2 mput: | [(None, 70)]
InputLayer | output: | [(None, 70)] InputLayer | output: | [(None, 70)]
reshape | input: (None, 70) reshape 1 | input: (None, 70)
Reshape | output: | (None, 70, 1) Reshape | output: | (None, 70, 1)
Istm mput: | (None, 70, 1) Istm_1 | input: | (None, 70, 1)
LSTM | output: (None, 64) LSTM | output: (None, 64)
concatenate | input: | [(None, 64), (None, 64)]

Concatenate | output: (None, 128)
dense | input: | (None, 128)
Dense | output: | (None, 128)
Y
dropout | input: | (None, 128)
Dropout | output: | (None, 128)
dense 1 | input: | (None, 128)
Dense | output: | (None, 15)

FIGURE 2. Overview of the MMDTL architecture.

layer details, shapes, and the number of trainable parameters,
facilitating lucid navigation for researchers.
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To address overfitting, we utilize a range of methods,
including dropout layers, regularization, early stopping,
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data augmentation, ensemble learning, and cross-validation.
These strategies work in concert to bolster our model’s
capacity for generalization, averting the pitfall of excessively
tailoring the model to the training data and thereby enhancing
its performance on new, unseen data.

In our model, real-time detection assumes a pivotal
role by swiftly identifying and categorizing attacks. This
functionality empowers us to respond promptly to potential
threats, ensuring constant monitoring and fortifying security
within SDN environments.

In conclusion, our innovative code exemplifies a robust
framework for designing an IDS tailored for SDN, harnessing
the prowess of multi-modal transfer learning, LSTM layers,
and feature extraction techniques.

Through harmonious data fusion, our IDS emerges as a
formidable and resilient solution, adeptly poised to safeguard
SDN environments.

IV. ANALYSIS OF MMDTL

This section details the implementation and evaluation of the
proposed framework. The experimental setup is described,
including dataset acquisition and preprocessing, model archi-
tectures, training methodology, and performance metrics. The
key results from systematically evaluating the framework
are then presented and analyzed. Multiple experiments
thoroughly assessed the framework under various conditions
and benchmarked it against state-of-the-art approaches. The
findings demonstrate the efficacy of the proposed framework,
with results highlighting significant improvements in accu-
racy and efficiency over current methods. Through rigorous
testing on datasets, the viability and performance gains of the
framework are empirically validated.

A. EXPERIMENTAL SETUP

In this section, we describe the experimental setup used to
evaluate the performance of our proposed framework for
real-time attack detection in SDNs.

1) DATASET DESCRIPTION

To evaluate the effectiveness of our proposed MMDTL for
real-time attack detection in SDNs, we adopt the widely
recognized CIC-IDS2017. This dataset has been extensively
used in the field of network security and intrusion detection
research, providing a comprehensive and realistic represen-
tation of network traffic data. The CIC-IDS2017 includes
a diverse range of network traffic scenarios, encompassing
both benign and malicious activities. It consists of a large
volume of network traffic captured from a real-world network
environment, encompassing various attack types, such as
DoS, port scanning, and infiltration attempts. The dataset
incorporates different data modalities, including packet-
level information, flow-level features, and payload content.
By adopting the CIC-IDS2017, we ensure the validity and
generalizability of our experimental results. This dataset has
been meticulously labeled and annotated by domain experts,
providing ground truth information about the presence of
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attacks in the network traffic. It allows us to assess the
performance of our MMDTL in accurately detecting the
attacks in an SDN environment.

2) EXPERIMENTAL ENVIRONMENT

The experimental setup for our study encompasses a robust
and reliable computing environment provided by Google
Colab. This platform offers access to powerful hardware
resources, including Graphics Processing Units (GPUs),
which are crucial for executing deep learning experiments.
Leveraging the capabilities of Google Colab allows us to
overcome the limitations of local hardware and ensure the
efficient execution of our proposed MMDTL.

By utilizing Google Colab, we guarantee the standardiza-
tion and reproducibility of our experiments. The platform
provides a consistent software stack comprising widely
adopted deep learning frameworks such as TensorFlow
and PyTorch, along with the necessary libraries and tools
for effective data preprocessing, model training, and per-
formance evaluation. We carefully maintain the software
stack at the latest stable versions, enabling us to harness
the advancements in deep learning techniques and ensure
compatibility throughout the study.

In our experimental environment, we employ the CIC-
IDS2017 for training and evaluation purposes. This dataset,
specifically designed for intrusion detection research, encom-
passes diverse network traffic scenarios and realistic attack
patterns. By adopting the CIC-IDS2017, we ensure that our
evaluation metrics are based on real-world network data,
enhancing the validity and relevance of our results.

Google Colab’s infrastructure offers scalability and com-
putational power to handle the large-scale nature of the
CIC-IDS2017. The platform’s high-performance computing
resources, including multi-node server clusters equipped with
top-tier CPUs and GPUs, enable us to efficiently train and
evaluate our MMDTL. Leveraging this infrastructure ensures
that our experiments are conducted under optimal conditions,
facilitating accurate performance assessment and meaningful
comparisons with existing methods. Through the utilization
of Google Colab as our experimental environment, we uphold
the principles of reliability, reproducibility, and scalability in
our research.

The platform’s robust infrastructure, combined with the
carefully selected CIC-IDS2017, empowers us to conduct
comprehensive experiments and derive insightful conclusions
regarding the effectiveness of our proposed framework for
real-time attack detection in SDNs.

B. PRE-PROCESSING

1) DATA PRE-PROCESSING

In this scholarly work, we delve into the critical processes
involved in data preprocessing, which significantly enhance
the efficiency and accuracy of subsequent machine learning
models. Our initial step involves the strategic partitioning of
the dataset. We isolate the target variable, referred to as the
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‘Label’ column, from the feature variables. This separation
helps to define a clear demarcation between the predictor
variables and the outcome variable, ensuring an organized
data structure.

Subsequent to this, we ascertain that all our feature
variables are in a numerical format, specifically the ‘float64’
datatype. This is a crucial procedure because it is requisite
for the input data to be in a numerical format for the efficient
functioning of machine learning algorithms. Following the
numerical conversion, we undertake the task of dealing with
potential problematic entries in our dataset - infinite values.
To handle these, we substitute any infinite values with ‘Not a
Number’ (NaN) indicators. This is a widely accepted practice
in the field of data science as NaN values represent missing
or undefined data.

In our work, missing data points were replaced with —1 as
a placeholder value, avoiding complications with our chosen
algorithms expecting purely numeric inputs:

X = Xjj, if X is finite

/ -1, if X;; = 00, —00, or NaN
where X;; represents the ;" feature value for the i data point
in the dataset.

This gives us the flexibility to handle missing data in
several ways during data cleansing and imputation processes,
such as eliminating rows or columns containing NaNs,
or implementing data imputation methods such as mean,
median, or mode imputation.

The final preprocessing step undertaken is the normal-
ization of data using the Standard Scaler method. This
technique is used to standardize the range of independent
variables or features of data. In essence, it can substantially
decrease the influence of outliers and transform the feature
variables to a standard Gaussian distribution. This process is
well-documented to improve the performance and accuracy
of machine learning algorithms. The standard scaler can be
represented mathematically as:

X —X

Xscaled = (D
where X is the mean and o is the standard deviation. The
normalization undertaken using the standard scaler is an
important preprocessing step in our methodology.

To effectively utilize the different data modalities, and data
pre-processing steps are applied. These steps ensure that the
data is in a suitable format for the deep learning models and
that relevant features are extracted from each modality. The
pre-processing steps include data cleaning, normalization,
and balancing the data. To address class imbalances in our
dataset, we employ undersampling techniques by removing
a significant portion of the “BENIGN” records. The goal
is to create a balanced dataset with a proportion of 30% of
attacks and 70% of benign data. The algorithm used to form
this balanced dataset is as follows:
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All records with attacks are directly copied to the new
dataset. For “BENIGN”’ records, two conditions must be met
for them to be copied to the new dataset:

e The next “BENIGN” record is copied with a certain
probability, denoted as a benign probability.

e The total number of “BENIGN” records in the new
dataset must not exceed the limit of 70% of the total records.

Let prenign = benign probability
Let npenign = number of BENIGN™ records

Let niota = total number of records

Nbenign

If < 0.7 and random number < ppenign :

Niotal
Copy BENIGN” record to new dataset

By employing this undersampling approach, we ensure
that the resulting dataset maintains a balanced representation
of attack and benign instances, enabling more accurate and
reliable training of our MMDTL.

Through this rigorous preprocessing sequence, we address
several common issues that could arise with raw data,
ensuring it is in a suitable format for further analytical
and modeling activities. We firmly believe that these
preprocessing measures will significantly enhance the pre-
dictive performance of our machine-learning models, thereby
yielding more accurate and reliable results.

2) FEATURE IMPORTANCE
In our research, we place significant emphasis on the analysis
of feature importance in the context of attack detection in
SDNs. By carefully evaluating the relevance and impact
of different features, we gain valuable insights into the
underlying characteristics of attacks. This information allows
us to develop a more focused and efficient detection model
that can effectively identify and detect attacks in SDNs.
By considering feature importance, we not only enhance the
accuracy and performance of our system but also gain a
deeper understanding of attack patterns, enabling us to devise
targeted countermeasures and bolster the overall security of
SDNs.

We conducted an evaluation of feature importance using
the RandomForestClassifier algorithm, which can be defined
as:

y= > wihi(x) 2
i=1

where y is the predicted class, w; is the weight of each
decision tree, h;(x) is the prediction of the ith decision tree,
and n is the number of trees. This allowed us to assess the
relevance of each feature and identify those that had the most
predictive power.

Table 1 below presents the top 20 features ranked by their
importance:

These importance scores indicate the relative significance
of each feature in contributing to the classification of
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Feature Importances

Packet Length Variance
Average Packet Size

Bwd Packet Length Std
Packet Length Std

Avg Bwd Segment Size -
Bwd Packet Length Mean -
Total Length of Fwd Packets
Max Packet Length A

Bwd Packet Length Max -
Packet Length Mean -
Subflow Bwd Bytes

Subflow Fwd Bytes -

Fwd Packet Length Max
Total Length of Bwd Packets -
Fwd Header Length -

Avg Fwd Segment Size -
Bwd Header Length

Fwd Packet Length Mean -
min_seg_size_forward -

Total Fwd Packets -

T T
0.00 0.01 0.02
FIGURE 3. Feature importance of top 20 features.

TABLE 1. Top 20 features.

Rank | Feature Index | Feature Name
1 41 Packet Length Variance
2 51 Average Packet Size
3 12 Bwd Packet Length Std
4 40 Packet Length Std
5 53 Avg Bwd Segment Size
6 11 Bwd Packet Length Mean
7 38 Max Packet Length
8 61 Subflow Fwd Bytes
9 9 Bwd Packet Length Max
10 39 Packet Length Mean
11 3 Total Length of Fwd Packets
12 63 Subflow Bwd Bytes
13 5 Fwd Packet Length Max
14 4 Total Length of Bwd Packets
15 33 Fwd Header Length
16 52 Avg Fwd Segment Size
17 7 Fwd Packet Length Mean
18 34 Bwd Header Length
19 65 min_seg_size_forward
20 17 Flow IAT Max

network traffic as either benign or malicious. Higher scores
imply a stronger influence on the classification process.
By considering these important features, we gain valuable
insights into the key characteristics and patterns associ-
ated with network attacks. This knowledge can guide the
development of more accurate and effective attack detection
models, ultimately enhancing the overall security of SDNs.
Figure 3, depicts the top 20 features’ importance scores,
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T
0.03

T T T T T
0.04 0.05 0.06 0.07 0.08

Relative Importance

indicating their significance in predicting network traffic
behavior.

It highlights key features like ‘“Packet Length Variance”
and “Average Packet Size” with higher importance, while
features like “Fwd Header Length” have relatively lower
importance.

This visualization offers a concise overview of the varying
degrees of feature importance in our analysis. Figure 4,
shows the line charts depicting individual features that
offer a comprehensive analysis of their temporal behavior.
By examining the trends and patterns exhibited by each
feature over time, we can extract valuable insights about their
dynamics and characteristics.

These visualizations enable us to observe fluctuations,
anomalies, and potential interrelationships that are unique to
each feature. Such detailed analysis helps us in grasping the
significance of each feature and understanding how it influ-
ences the overall system. Through this exploration, we can
unveil hidden patterns and gain a deeper understanding of the
role that each feature plays in our research context.

3) CORRELATED FEATURES
In our analysis, we considered the presence of correlated
features in our dataset. Correlated features are variables that
show a strong linear relationship with each other. Having
highly correlated features can introduce redundancy and
potentially affect the accuracy of our analysis or models [15].
To address this issue, we performed a step called “Remove
correlated features” in our data preprocessing phase. This

114135



IEEE Access

H. Elubeyd et al.: MMDTL Framework for Attack Detection in Software-Defined Networks

1e6 Packet Length Variance Average Packet Size

1e6 Bwd Packet Length Std 106 Packet Length Std

le6
15 i —
15— . 15 l .
l il 1.0 4
104 10 . 1.0 4 l I
0.5 4 l 054 0.5 0.5
0.0 —L ! 0.0 00 0.0
0.0 2.0 0 000 2000 3000 0 000 4000 6000 8000 [ 1000 2000 3000 4000
1e6 Avg Bwd Segment Size 1e7 1e6 de Packet Length Mean 1e6 Tota\ Length of Fwd Packets 1e6 Max Packet Length
1.5 1.5 15
. . v . l
1.0 1.0 . 104
0.54 0.5 l. 05 4 0.5
0.0+ 0.0 4 el T r r 0.0 ~. T T r T r 0.0
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 000 025 050 075 100 125 0 5000 10000 15000 20000 25000
1e6  Bwd Packet Length Max 1e6 Packet Length Mean 1e6 Subflow Bwd Bytes le7 1e6 Subflow Fwd Bytes
| ]
[ N
1.0 4 104 . .
I I 1.0 1.0
| L |
05 054 05
0.04 0.0 - 0.0 j - - r 0.0 ~. - - - - -
0 2500 5000 7500 10000 12500 15000 500 1000 1500 2000 2500 3000 0 2 4 000 025 050 075 100 125
166 Fwd Packet Length Max 156 Total Length of Bwd Packets 1e6 Fwd Header Length 1e8 166 Avg Fwd Segment Size 1e7
1.0 . 1.0 . 1.0 4 . 1.0 4 .
0.54 0.5 4 0.5 4 0.5
0.0 —«L T T T T 0.0 —~. T T T 0.0 T T T l 0.0 ~. T T T T T T
0 5000 10000 15000 20000 25000 0 2 4 6 - =2 -1 0 0 1000 2000 3000 4000 5000 6000
1e6 Bwd Header Length 1e6 Fwd Packet Length Mean  1es 1e6 min_seg_size_forward  1e10 106 Total Fwd Packets
N N
0.5 4 0.5 4 0.5 4 05
0.0 T T T T T 1 0.0 *«. T T T T T T 0.0 T T T T T l 0.0 *<. T T T T
-10 -08 -06 -0.4 -02 0.0 0 1000 2000 3000 4000 5000 6000 -5 -4 -3 -z -1 0 [ 50000 100000 150000 200000
1e9 le8

FIGURE 4. Individual feature importance.
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FIGURE 5. Visualization of initial feature relationships.

step involved identifying pairs of features with high correla-
tion and selecting only one feature from each correlated pair
to retain in our analysis. By doing so, we aimed to eliminate
redundant information and improve the independence of our
selected features. We measured correlation between features
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using Pearson’s correlation coefficient, defined as:

D1 (i = D) —

3
BN /Zl_l(y, 3>
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where x; and y; are the individual sample points indexed from
1 to n, and X and y are the mean values of each variable. Any
pairs of features with Irl > 0.5 were considered to be highly
correlated, and one feature from the pair was removed.

To visually illustrate the impact of this step, we created
two figures. The first Figure 5 displayed the initial set of
features used in our analysis, showcasing the relationships
and patterns among them.

To showcase the dataset after removing the correlated
features. In this Figure 6, we could observe the modified set
of features, where highly correlated features were removed.

By removing correlated features, we aimed to enhance the
quality and reliability of our dataset. This process allowed us
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to focus on the most informative and independent features,
enabling us to derive more accurate insights and make reliable
predictions.

4) BINARY AND MULTICLASS CLASSIFICATION

In our work, we employed two classification approaches:
binary classification and multi-class classification, to effec-
tively address the diverse nature of network traffic data in
the context of attack detection. For the binary classification
task, we combined all attack types into a single class labeled
as ““abnormal,” while considering benign traffic as the “nor-
mal” class. This approach allowed us to distinguish between
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FIGURE 8. Multi-class classification.

normal network behavior and any abnormal activities that
could potentially indicate a security attack as in Figure 7.
Furthermore, we also tackled the multi-class classification
problem by considering the different types of attacks as
distinct classes, illustrated in Figure 8. By leveraging the
unique characteristics of each attack type, our model was able
to classify network traffic into multiple categories, providing
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more detailed insights into the specific types of attacks
present.

Both classification tasks were integrated within our
MMDTL, which effectively processed and analyzed data
from various modalities, such as packet-level information
and flow-level features. By combining information from
multiple modalities, our model demonstrated improved

VOLUME 11, 2023



H. Elubeyd et al.: MMDTL Framework for Attack Detection in Software-Defined Networks

IEEE Access

Model Accuracy

1.0000 4 ——

Test
0.9995 +

0.99390

0.9985

0.9980

Accuracy

0.9975 4

0.9970 +

0.9965 -

T T T T
0.00 0.25 0.50 0.75

FIGURE 9. Accuracy over epochs.

performance in accurately detecting and classifying network
attacks.

The binary classification approach enabled us to dis-
tinguish between normal and abnormal network behavior,
offering a high-level understanding of overall security status.
On the other hand, the multi-class classification approach
provided fine-grained insights into the specific types of
attacks present, allowing for more targeted attack detection
strategies.

By adopting these two classification approaches in our
research focusing on multi-class classification according to
our dataset, we aimed to address the complexities of network
security and provide a comprehensive analysis of the network
traffic data. The results obtained from these approaches
contribute to a deeper understanding of attack detection
and classification in SDNs, ultimately enhancing network
security measures and facilitating proactive attack de.

C. EVALUATION METRICS
To evaluate the performance of our MMDTL, we adopted
the mathematical model of the confusion matrix and employ
commonly used evaluation metrics in machine learning and
network security.

Let us denote the predictions made by our MMDTL as ypred
and the corresponding ground truth labels as ygye. We can
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define the following mathematical model to measure the
performance of our framework: Accuracy (ACC):
TP + TN

ACC = ; )
TP + 1N + FP+ FN

where TP denotes the true positives, TN denotes the true
negatives, F'P denotes the false positives, and FN denotes the
false negatives. ACC measures the overall correctness of our
predictions.
Precision:
L TP
Precision = ———, 5)
TP + FP
where TP represents the true positives and FP represents
the false positives. Precision quantifies the proportion of
correctly identified attacks among all instances classified as
attacks.
Recall:
TP
Recall = ——, (6)
TP + FN

where TP represents the true positives and FN represents the
false negatives. Recall, also known as the true positive rate,
measures the proportion of actual attacks that are correctly
identified by the model.
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F1 Score: TABLE 2. Performance metrics.
2 x (Precision x Recall)
F1 Score = — . 7) MMDTL Loss Accuracy
Precision 4 Recall Training | 0.0014 | 99.97%
The F1 score combines precision and recall into a single Test 0.00046 | 99.99%

metric, providing a balanced evaluation of the framework’s
performance.

Area Under the Receiver Operating Characteristic Curve
(AUC-ROC): The ROC curve illustrates the trade-off between
the true positive rate and the false positive rate at various
classification thresholds. AUC-ROC quantifies the overall
performance of the framework across different operating
points.

By evaluating our framework using the defined mathemati-
cal model and these evaluation metrics, we can quantitatively
measure its performance and compare it with existing
methods in the field of network security and intrusion
detection.

D. RESULT AND DISCUSSION

We present the outcomes of our experiments and provide
a comprehensive analysis of the achieved results. After
applying the maximum of 3 epochs, MMDTL demonstrates
excellent performance on both the training and test data.
In the training data, it achieved an impressive accuracy of
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99.97% and a low loss value of 0.0014, indicating its ability
to accurately classify the training samples. Similarly, on the
test data, the model achieved a high accuracy of 99,99%
and a remarkably low loss value of 0.00046, demonstrating
its effectiveness in accurately predicting the unseen test
examples as presented in Table 2.

The close alignment between the training and test results
suggests that the model has successfully generalized its
learning from the training data to make accurate predictions
on new, unseen data. This indicates that the model has not
overfitted to the training data and has captured meaningful
patterns and relationships that are applicable to the test data.

The high accuracy and low loss values achieved by our
proposed model in both the training and test data underscore
its robustness and effectiveness in classifying network traffic
data. These results highlight the potential of the MMDTL
framework in enhancing network security by accurately
detecting attacks in SDNs.
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FIGURE 11. ROC curve for network traffic classification.

These metrics indicate the effectiveness of our proposed
MMDTL in accurately classifying network traffic data.
To visualize the performance of the model during training,
we have plotted two key figures. The first figure shows the
accuracy of the model across different epochs, indicating how
well it improves over time.

The second figure represents the loss value, illustrating the
convergence and optimization of the model during training.
Figure 9 showcasing the modal accuracy over epochs
demonstrates that the model steadily improves its accuracy
as the training progresses. This indicates that our proposed
framework effectively captures the underlying patterns and
features of the data, enabling accurate classification of benign
and attack samples.

Similarly, Figure 10 depicting the loss value shows a
consistent decrease in the loss over epochs. This signifies that
the model successfully minimizes the discrepancy between
the predicted and actual labels, optimizing its performance
and enhancing its ability to make precise classifications.
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These figures collectively provide valuable insights into
the training process and validate the effectiveness of our
MMDTL approach in achieving high accuracy and low loss.
To assess the overall predictive capability of our proposed
MMDTL, we calculated the average ROC curve and AUC.

The ROC curve illustrates the trade-off between true
positive rate and false positive rate for different classi-
fication thresholds. Remarkably, our model achieved an
AUC value of 1, indicating excellent discriminatory power
and perfect separation between benign and attack network
traffic data. Figure 11 presents the average ROC curve,
visually demonstrating the outstanding performance of
our model in accurately classifying network traffic. The
curve is positioned close to the top-left corner, indicating
high sensitivity and specificity across various classification
thresholds.

These findings further validate the robustness and efficacy
of our proposed framework in network traffic classification.
It showcases our model’s ability to accurately distinguish
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FIGURE 12. Multi-class performance comparison: MMDTL vs traditional ML models.

between benign and attack data, emphasizing its relevance
and significance in enhancing network security in SDNs.

In the following sections, we will provide a comprehensive
analysis and comparison of the implications of these results,
highlighting the contributions and advancements our research
brings to the field of network security.

E. PERFORMANCE COMPARISON

In this section, we present the performance comparison of
MMDTL with traditional machine learning algorithms for
multi-class classification, including Gaussian Naive Bayes,
Decision Tree, Logistic Regression, and Gradient Boosting.
The evaluation was conducted on the same multivariate
dataset and under the same conditions to ensure fair and
consistent comparisons.

The results of the multi-class classification comparison are
summarized in Figure 12:

Our proposed MMDTL model demonstrates superior
multi-class classification performance compared to the tradi-
tional machine learning algorithms. It achieves an accuracy of
99.97% on the training dataset and 99.99% on the test dataset.

In addition to multi-class classification, we evaluated
MMDTL on binary classification tasks using the same
dataset. For binary classification, MMDTL achieved an
accuracy of 99.99% on both the training and test sets.
The binary classification results are summarized visually in
Figure 13.

This high level of accuracy highlights the versatility
of MMDTL in handling both multi-class and binary
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classification problems. The consistent results on both task
types validate the robustness of MMDTL and its ability to
generalize well across different network traffic classification
domains, whether requiring multi-label or binary predictive
modeling.

To further validate the robustness and efficacy of our
proposed MMDTL framework, we performed a direct
comparative evaluation against the state-of-the-art method
recently published by [7], utilizing identical experimental
conditions and datasets. Reference [7] previously proposed a
CNN model for attack detection. When benchmarked under
the same constraints, Our MMDTL framework achieved
superior performance over [7] model on both training and
test data, attaining over 99.97% accuracy on training data
compared to 98.14% by [7] method, while on test data our
MMDTL framework achieved 99.99% accuracy compared
to 97.99% by [7] approach, as summarized in Figure 14.
This direct comparison on an even playing field confirms the
significant performance gains and state-of-the-art results of
our proposed MMDTL, demonstrating its effectiveness for
network traffic classification.

These results highlight the effectiveness of our MMDTL
in accurately classifying network traffic data for multi-
class prediction. The comparisons validate that MMDTL
outperforms other machine learning approaches for the
complex multi-label classification task.

Let’s take a closer look at the performance of each method:

1- Random Forest: The Random Forest classifier stands
out with remarkable performance, displaying high accuracy
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and an impressive F1 Score. These results indicate its strong
overall performance in classifying the data.

2- Gaussian Naive Bayes: The Gaussian Naive Bayes
classifier, while showing some limitations, still demonstrates
acceptable accuracy. However, its F1 Score and precision are
comparatively lower, suggesting challenges in distinguishing
between different classes.

3- Decision Tree: The Decision Tree classifier exhibits
good accuracy, but its Recall and Precision scores are
relatively lower. This observation suggests that it may face
difficulties in capturing class-specific patterns effectively.

4- Logistic Regression: The Logistic Regression classifier
performs decently in terms of accuracy, but it struggles
with Recall. This indicates that the model may encounter
challenges in correctly identifying instances of certain
classes.

5- Stochastic Gradient Descent: The Stochastic Gradient
Descent classifier shows lower accuracy and Recall scores,
suggesting difficulties in identifying instances of multiple
classes accurately.

6- CNN [7]: The CNN demonstrates promising perfor-
mance with high accuracy, Recall, Precision, and F1 Score.
These results showcase the model’s ability to learn complex
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features, making it well-suited for image-based classification
tasks.

7- MMDTL (Proposed Method): Our proposed MMDTL
method truly stands out with exceptional accuracy and
outstanding Recall, Precision, and F1 Score. These impres-
sive results highlight the effectiveness of our approach in
multiclass classification. In fact, the MMDTL outperforms
all other classifiers, solidifying its potential as a robust and
reliable model for the task at hand.

Generally, the MMDTL method shows superior perfor-
mance compared to the other classifiers, demonstrating its
efficacy in addressing the multiclass classification chal-
lenge with exceptional accuracy and strong generalization
capabilities. The promising outcomes of this study warrant
further research and experimentation to explore its potential
in real-world applications and across diverse datasets. Our
proposed MMDTL model opens new avenues for enhancing
multiclass classification accuracy, and we are enthusiastic
about its potential impact in the field of machine learning.

The significant improvement in accuracy provided by
our proposed model emphasizes its capability to handle the
complexities and variations in network traffic patterns, out-
performing traditional machine learning approaches. These
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findings reinforce the value of incorporating MMDTL in the
context of network security in SDNs.

V. CONCLUSION AND FUTURE WORK

In this research, we have proposed a novel MMDTL frame-
work for real-time attack detection in SDNs. By integrating
multiple data modalities, such as network traffic data, system
logs, and user behavior data, MMDTL captures a com-
prehensive view of network behavior, leading to improved
attack identification. The incorporation of transfer learning
techniques further enhances the framework’s performance
by leveraging pre-trained knowledge from related domains,
increasing its generalization capabilities and detection
accuracy.

Our comprehensive evaluation demonstrates the superi-
ority of the MMDTL framework over existing methods,
achieving an exceptional accuracy of 99.99% on test data
and 99.97% on train data. The framework’s scalability and
efficiency make it well-suited for deployment in real-world
SDN environments with varying data volumes and complexi-
ties. Additionally, we have conducted an insightful analysis of
the contribution of each modality to the overall performance,
highlighting the benefits of leveraging multi-modal learning
for SDN security.

Overall, the contributions of this research significantly
advance the field of attack detection in SDNs. The MMDTL
framework offers a comprehensive and effective solution
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to address the challenges posed by diverse attack types,
enhancing network security. By bridging the gaps in the
literature and considering a wide range of attacks, our
research offers a more realistic and practical approach to SDN
attack detection.

While our research has made notable contributions, there
are several promising directions for future exploration and
development in the field of SDN attack detection:

1- Expand Modalities and Data Sources: Investi-
gate additional data modalities and sources to fur-
ther enrich the understanding of network behavior and
enhance attack detection capabilities. Exploration of
non-traditional data sources, such as system resource
utilization, may provide valuable insights for improved attack
identification.

2- Adaptive Transfer Learning: Explore adaptive transfer
learning approaches that dynamically adjust the knowledge
transfer process based on the evolving attack landscape. This
would enable the framework to adapt to new attack types and
scenarios, ensuring continuous efficacy in real-world SDN
environments.

3- Real-Time Implementation: Develop a practical imple-
mentation of the MMDTL framework in a real SDN
environment, considering the resource constraints and latency
requirements. Implementation challenges, such as model size
and computational overhead, need to be addressed to ensure
efficient real-time attack detection.
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4- Real-World Deployment and Validation: Deploy the
MMDTL framework in actual SDN infrastructures to validate
its performance and effectiveness in real-world scenarios.
Collaborations with industry partners and stakeholders would
be valuable in conducting large-scale trials and gathering
practical insights.

In conclusion, the proposed MMDTL framework repre-
sents a significant advancement in the field of SDN attack
detection. With further exploration of the above-mentioned
avenues, we believe that this research lays the foundation for
continued advancements in network security and contributes
to the establishment of robust and efficient attack detection
solutions for SDNs.
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