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ABSTRACT This paper aims to present an economic decision-making model for determining the optimal
wind turbine (WT) design for different bus nodes in a Radial Distribution Network (RDN) based on the wind
potential of the studied site and grid capability. The main objective function in the optimization problem
of this study is the maximization of the Net Present Value (NPV) of wind energy incomes subject to the
WT geometrical design variables, including the rotor diameter and Tower Height; and under the RDN
constraints to maintain the power system stability. Adequate placements among the different bus nodes
for WT installation are those with the maximum NPV value. Furthermore, the intermittent characteristic
of wind energy leads to the use of an Artificial Neural Network (ANN) in wind speed forecasting for good
estimation of the generated wind energy. The effectiveness of the proposed model was validated using IEEE
9 and IEEE 33 Bus RDNs. The results demonstrate that the WT design determination is not related to the
power of the wind potential but mostly to the capability of the connected RDN.

INDEX TERMS Artificial neural network, NPV, optimization, radial distribution network, wind energy,
wind turbine.

NOMENCLATURE
ANN Artificial Neural Network.
NPV Net Present Value.
RDN Radial Distribution Network.
WT Wind Turbine.
f (z) Sigmoid function.
w Weight associated with the ANN input.
R Regression coefficient.
MSE Mean Square Error.
N The number of wind speed samples.
vmes,i The measured wind speed.
vpred,i The predicted wind speed.
vmes,i The actual mean measured wind speed.
vpred,i The actual mean predicted wind speed.
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approving it for publication was Mostafa M. Fouda .

E lt,g The yearly generated energy.
g WT technology index.
l The bus nodes location.
ρ The air density(kg/m3).
Sg The WT Rotor swept surface.
f li,h The discretized Weibull function.
k l Weibull shape parameter.
C l(m/s) Weibull scale parameter.
Cp,i,g The total efficiency of the WT technology g.
vi The wind speed of the ith class.
Dg The Rotor diameter (m) of WT technology g.
Hg Tower hub height of WT technology g.
ηgear,i,g The WT gearbox efficiency.
ηgen,i,g The WT generator efficiency.
Cpr,i,g The rotor power coefficient of the WT technol-

ogy g.
Cmax
pr,g The Rotor maximum power coefficient.
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vp,g The optimal wind speed.
χ The Wind speed operating range parameter.
vn,g The nominal Wind speed of WT.
λmax,g The maximum speed rate.
BN g The number of blades.
cd/cl The ratio between drag and lift coefficients.
ωg The angular rotation speed of the Rotor.
Nrpm,g The Rotor rotation speed (rpm).
φgear,g The gearbox efficiency factor.
φgen,g The generator efficiency factor.
Pn,g The WT nominal power.
Pp,g The WT optimal power.
Pr,i,g The Rotor power captured.
Pgear,i,g The WT gearbox generated power.
Pn,gen The WT generator nominal power.
Fs,g The factor of service of the gearbox.
α The generated WT energy losses.
E lt,g,real The real yearly generated energy.
I lt,g The Investment made in year t ($).
CNet,l
benif ,t,g The total net Wind energy generation

benefices.
C l
benif ,t,g The total benefits.

C l
OM ,t The Operation and Maintenance costs in year

t ($).
Dlt,g The annual depreciation expense ($).
T lt,g Tax levy ($).
n The WT lifetime.
r The Discount rate.
Cbenif ,l
Sal,t,g The Incomes from electrical energy sales.

Cbenif ,l
Inc,t,g The Incomes from incentives for green energy

production.
CS The purchase tariff of electricity.
CIn Sales cost due to incentives for green energy

production.
η, ξ The investment and incomes percentages

factors.
C l
T ,g The Transportation cost.

C l
AI ,g The Assembly and Installation cost.

C l
EI ,g The Electrical Interface cost.

C l
EP,g The Engineering and Permits cost.

C l
RCW ,g The Roads and Civil Work cost.

C l
F,g The Foundation cost.

C l
WT ,g The WT cost.

PlWT ,g The WT generated active power.
PlLoad The load active power.
PlLoss The power losses in the branches lines of the

radial distribution system.
Vl , Vj The Voltage magnitudes at bus l and j.
Glj The real part of admittance matrix.
Blj The imaginary part of admittance matrix.
δl , δj Voltage angles at buses l and j.
M The number of buses.

I. INTRODUCTION
The effects of climate change are increasingly harming the
planet. The earth’s temperature is growing. Fossil fuel costs
rise every day, especially after the Ukrainian-Russian crisis.
Potable water and energy crises are major problems that have
led the world to be united to fight these issues. Renewable
energy is the mean alternative source of energy that should be
used to meet electrical needs. Wind energy is the most com-
petitive source of energy studied and integrated into power
systems. The penetration of this source as a distributed gen-
erator in the distribution network of the power system poses
many challenges related to voltage stability, power losses,
and the quality of distributed power [1]. Voltage stability may
extend to the transmission system and cause a power cut in the
entire system [2]. An inappropriate size and placement may
increase system losses [3]. Furthermore, inappropriate design
of WTs may not profit from the maximum available wind
energy at the studied site and may lead to high costs. To deal
with these issues for optimal operation and maintaining the
stability of the power system, there is a necessity for a deci-
sion making model to optimally size Wind Turbines (WTs)
for different load buses in the distribution network, including
wind profile and grid constraints that present good economic
benefits.

This paper proposes an economic decision-making model
that provides an adequate design ofWT technical parameters,
including rotor diameter Dg, Tower Hub Height Hg, and its
nominal power, corresponding to the available wind potential
at the site of interest and to the distribution network technical
characteristics, with the Net Present Value (NPV) of wind
energy income maximization as an objective function. The
efficiency of wind power plant generation depends first on
good forecasting of the available wind potential. This study
first focuses on wind speed prediction with minimum errors
compared to the measured values using an Artificial Neural
Network (ANN), which helps to improve the effectiveness of
the estimated generated energy.

WT design optimization studies that provide the opti-
mal diameter and tower height have been conducted by
researchers. In [4], the best trade-off between tower hub
height and blade length, which constitutes half of the rotor
diameter, minimizing the cost of energy was studied in
low-speed areas to optimize the WT design. The results
showed that the impact of the tower hub height on reducing
the energy cost was greater than that of the rotor diameter.
Reference [5] involved a WT optimization problem at high-
altitude sites, minimizing the cost of energy to determine
the optimal WT technical parameters, including the rotor
radius, tower hub height, and rated power. Multi-objective
design optimization of WTs considering the altitude was
also proposed in [6]. The design objectives studied were
energy cost minimization and maximization of the rated
power considering the rotor radius and tower height. They
observed that when the altitude increased, the cost of energy
increased, the rated power decreased, and the best WT design
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parameters were within the design limits. In this study, the
WT-rated power was limited and maximized with respect
to wind potential variation with altitude, but there was no
evaluation of the RDN constraints. For the same objective of
cost of energy minimization, [7] predicted the optimal WT
tower hub height-to-rotor diameter ratio using an excel-based
optimization program and a testedWT database. AsWT-rated
power maximization is a popular method for WT cost reduc-
tion, the technical feasibility and economic attractiveness of
optimized up-scaling wind turbines with power capacities
of 5, 10, and 20 MW were studied in [8] using a multidisci-
plinary design optimization technique. Tower and rotor was
the design variables studied to minimize the levelized cost of
energy. Results obtained showed that these WTs were techni-
cally feasible but their costs were expensive. These studies
did not evaluate the integration of WTs in the distribution
network; instead, optimal design parameters were provided.
In addition, the economic attraction is not limited to the low
cost of energy but mostly to the NPV economic benefits of
theWT designs involved, which constitute the interests of our
research.

The remaining literature found that treating WT design
parameter optimization mainly Dg, Hg, and nominal power,
a single WT design parameter optimization constituted the
interest of some researchers, mainly tower height or rotor
diameter. The rotor diameter with controller parameters was
optimized in a co-design optimization study performed in
[9], with the objective of reducing the cost of energy under
tower loads and blade strain constraints. Their purpose was
the development of novel designs for the future generation of
turbines designed for mature markets with a power capacity
of 5 MW and a rotor diameter of 206 m. Results indicated
an increase in rotor diameter to 220 m, reducing the cost of
energy by 1.3% without affecting loads at the tower base.
This study provided an optimized rotor design with any rela-
tion to the RDN and no wind potential consideration, which
was based on a WT baseline design. The tower hub height
and nominal power were not studied with respect to rotor
diameter in the design variables. A new optimization method
was developed in [10] and applied for a small-scale WT
of 1 kW blade aerodynamic geometry design optimization
as a function of the optimal chord length and twist angle
distributions. The power coefficient was the studied objective
function, and the rotor diameter, tip-speed ratio, and nominal
wind speed were the design variables. The lift and drag aero-
dynamic coefficients were determined experimentally. The
obtained new WT design results were more significant than
those of the tested turbine, reaching a higher power output
at a lower wind speed value. In this study, the aerodynamic
geometry of a small-scale WT was optimized to enhance its
power output; however, no economic evaluation of the design
and grid connection constraint evaluation were performed.
In addition, the design provided is based on reference WT
data not suggested based on the available wind potential at
a selected site and the connected RDN constraints, which

constitute the interest of our work. Reference [11] proposed
an optimization criterion method for the optimal design of
a steel conical turbine tower considering different structural
reliabilities and uncertainties. The design variables examined
in this study were tower thickness and bolt type. Furthermore,
this method was proposed for offshore applications. In con-
trast to this study, different WT design variables were studied
in this work for onshore applications. In [12], the optimization
of awind farmwas performed by varying the tower hub height
to maximize the generated energy and reduce its cost. The
hub heights of the upper and lower bounds considered in the
optimization were 165 m and 65m, respectively. Reference
[13] determined the optimized tower hub height distributions
of two onshore wind farms by studying different optimization
scenarios that consider the power output of the wind farm
and cost variations. The optimization was performed using
Monte Carlo simulations. In both previous studies, only the
WT tower hub height design parameter was studied in the
optimization of wind farms, and there was no evaluation
of the rotor diameter and nominal power. In addition, the
connected grid characteristics of the studied wind farm were
not included in the optimization. These design parameters and
RDN constraints were considered in this study.

Optimal Wind Energy integration in the distribution Net-
work was much studied in the literature. Reference [14]
involved an economic dispatch model of an active distribu-
tion network considering the spatial-temporal correlation of
wind power output, where the active and reactive power opti-
mal dispatches were optimized simultaneously. The proposed
model proved the stability of the system voltage level, system
loss, and operational cost reduction and enhanced the system
operation efficiency. Reference [15] presented a stochastic
optimal power flow to obtain the best scheduled power from
wind farms integrated into the power system, while reducing
the total operational costs using a novel metaheuristic method
called the Aquila Optimizer. The Weibull probability distri-
bution function was used to describe the wind speed. In these
studies, optimal WT design optimization was not studied for
WTs integrated into the power system.

In addition to the optimal power flow in a power system
while integrating wind energy, there are researchers who
are interested in the optimal size and location of WTs in
the Radial Distribution Network (RDN). Reference [2] per-
formed a study on the power system voltage stability and
power loss reduction, evaluating different penetration lev-
els of WT active power and different power factors. Load
flow calculation was carried out using the forward-backward
sweep method, and the optimal location and size of the WT
were obtained using the Grid Search Algorithm. The volt-
ages along the tested radial system were restricted to 1 ±

0.05 pu. In [3], the Salp SwarmAlgorithmwas applied for the
optimal allocation of WT-based distributed generation units
in the distribution system, minimizing the total power and
energy losses, and improving the distribution system voltage.
They integrated three WTs in a 69 bus tested system for an
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energy loss reduction of 66%. Reference [16] developed an
optimization model for the optimal placement and sizing of
WTs, considering their reactive power capacity, wind speed,
and demand curves, with objective power losses in AC dis-
tribution network minimization. Furthermore, to address the
uncertainties in wind power generation, an ANN was used
for short-term forecasting. The maximum number of WTs
installed in the tested systems was restricted from zero to
three. In these studies, the optimal location and size for WT
installation in the distribution system corresponded to the bus
node that had the minimum power loss value. In addition,
there was no evaluation of the economic benefits of WT
installation in the RDN.

Economic analysis of the optimal WT size and location
in the RDN has been performed by some researchers. Ref-
erence [17] involved a multi-objective optimization method
for distribution network operators using a multi-objective
genetic algorithm and market-based optimal power flow to
determine the optimal number, size, and placement of WTs
among different WTs selected and candidate buses. The main
optimized objective functions were the total energy loss min-
imization and NPV associated with the WT investment over
the planning horizon maximization. A decision framework
for the optimal planning of wind power plants with tech-
nology selection in a distribution network for various bus
locations was proposed in [1]. NPV was also the objective
function to be maximized. In these studies, the optimal WT
size was selected among evaluated technologies from the
market, and the best bus locations for WTs installation were
based on the wind profile. A not commercialized WT design
is proposed in this study and the best bus location is selected
from an economic analysis.

Based on all the cited studies, we can conclude that the
optimal WT size and location in the RDN were given for
power loss reduction, NPV maximization, or both. The opti-
mal design for the WT is often based on commercialized
technologies selected from the market or based on bus loca-
tion with minimum power loss value. No study has provided
an adequate WT design based simultaneously on the wind
profile of the evaluated site and the RDN characteristics to
evaluate the economic benefits of the proposed design. This
constitutes the interest of this study and its originality is
contained in a no existing design in the market proposition.
We propose not commercialized WT technical parameters,
such as Dg, Hg, and nominal power, which are not selected
from the available WT technology datasheets in the market,
such as the performed studies mentioned before, where the
optimal design proposed among the evaluated ones was that
which presented the minimum cost of energy, low power
loss reduction, or maximum NPV. However, in this study,
these three technical parameters are determined through an
economic optimization problem resolution, which constitutes
the novelty of this work.

The present paper is a continuation of our previous study
carried out in [18]. An economic decision making model is
presented to optimal design the future WTs based on: the

available wind potential of the studied site described by the
Weibull probability density function, the RDN electrical char-
acteristics, and some other input parameters needed for the
optimization problem evaluation including: the Wind speed
operating range parameter χ , the nominal Wind speed of WT
vn,g, and the Rotor rotation speed Nrpm,g. χ is selected from
[19], vn,g and Nrpm,g are estimated to be an average values
from a study performed already in [18] of 23 existing WTs in
the market and that are most installed in onshore applications.
An economic optimization problem is studied, where the
NPV of the net incomes from wind energy generation max-
imization is the optimized objective function. Considering
grid constraints, including voltage stability and reliability of
the power system related to the optimal power flow in the
RDN, the decision-makingmodel provides the optimal size of
theWT technology (Dg,Hg, and nominal power) for different
bus nodes of the RDN. The adequate placements among all
bus nodes for the installation of the WT are those that present
the maximum NPV value.

The contributions of this paper are as follows:

• An economic decision-making model based on a con-
strained optimization problem for the optimal design
of future WTs connected to an RDN is proposed. This
model is built by first modeling the annual energy gen-
erated by the WT, then constructing the optimization
problem elements: design variables, constraints, and the
objective function. The objective function in the opti-
mization problem is the maximization of the NPV of
wind energy incomes considering: the available wind
potential and the WT geometrical design variables Dg
and Hg, and subject to the electrical RDN constraints to
maintain power system stability.

• In addition, to deal with the intermittent characteristic
of wind energy related to the variability of wind speed,
an ANN was used to predict the wind speed distribution
in Essaouira City compared to the observed data for a
time horizon of one year. This prediction conducts to
a good estimation of the generated energy by the WT,
which improve also the effectiveness of our proposed
decision making model in determining the future design
of WTs

• Using any optimization algorithm from existing algo-
rithms, the developed optimization problem can be
resolved. Technical WT parameters, including Dg, Hg,
and nominal power, were determined for the different
bus nodes in the RDN. The resulting WT design consti-
tutes the best trade-off for the economic NPV indicator.

• The effectiveness of the proposed decision-making
model was validated using the electrical parameters
of the IEEE 9 and IEEE 33 Bus RDN test systems.
A specific WT technology design is proposed for each
evaluated bus node of both the evaluated RDN systems.

The proposed economic decision-making model acts as a
support for decision makers to optimally size the WTs as
a function of wind potential at their site of interest and the
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connected RDN characteristics to avoid power system insta-
bility problems. Furthermore, it constitutes an inspiration for
other research projects in WT design optimization to come
out at the end with an applicable model in the industry.
The remainder of this paper is structured as follows. The
economic decision-making model problem formulation is
presented in Section II, the obtained results are presented and
discussed in Section III, and a final conclusion is given in
Section IV.

II. PROBLEM FORMULATION
A. WIND SPEED FORCASTING
The intermittent characteristic of wind energy generated from
WTs is related to the variability of thewind speed. In addition,
the wind power captured by the rotor of the WT is a func-
tion of the cubic wind speed. Therefore, a few wind speed
variation has a significant impact on the generated energy
estimation. Thus, the greater the effectiveness of wind speed
prediction, the greater the estimated generated energy is real.
The ANN is the method utilized in this study for hourly wind
speed forecasting, minimizing the error compared to previ-
ously measured data. This method is a subset of Artificial
Intelligence that is widely used for prediction and has proven
its effectiveness in providing good prediction results [20].
The ANN can effectively predict future stochastic variables,
such as wind speed, by imitating the human neural biological
network, which saves the entered data in its memory. ANN
tends to reduce the error between the entered and predicted
data [16].
There are two ways of making a machine learn automat-

ically using ANN: supervised and unsupervised techniques
[20]. In supervised learning, there are inputs and awaited
output data; however, there is no specific data structure for
unsupervised learning. In this study, supervised learning was
adopted to forecast the hourly wind speed in Essaouira City
for a time horizon of one year using a feed-forward neural
network model trained with the Levenberg-Marquardt back-
propagation algorithm. Hence, the ANN structure consists of
three main components: an input layer linked to the sources
of information, a hidden layer composed of several neurons,
and an output layer containing the information sent from the
ANN [21]. Note that an ANN model could contain several
hidden layers with different numbers of neurons in each of
layer.

In the feed-forward neural network every input ‘x’ is com-
bined with a weight ‘w’ and their sum is added to a parameter
called bias ‘b’ to generate a single value ‘z’ for a nonlinear
mathematical function ‘f (z)’ called ‘Sigmoid’ contained in
the bottom of each neuron in the hidden layer [16], [21].
This function is used as a nonlinear activation function in the
hidden layer, and another linear fitting function called ‘fitnet’
is used in the output layer to fit the neural network output. z
and f (z) are given as follows [21], [22].

z =

∑
wx+ b (1)

f (z) =
1

1 + e−z
(2)

Weights and bias are the main parameters in the ANN model
calculated at the training time and changed at the testing time
to reduce the error between the predicted and measured data.
Synchronization of the previous parameters was performed
using the back-propagation algorithm [21]. The regression
coefficient ‘R’ and Mean Square Error ‘MSE’ are the error
indicators used in this study to evaluate the performance of
the ANN involved in forecasting wind speed at the location
cited. An R value close to one and an MSE near zero leads to
good forecasting results. The R and MSE equations are given
by [21]:

MSE =
1
N

∑N

i=1
(vmes,i − vpred,i)

2 (3)

R =

∑N
i=1 (vmes,i − vmes,ι)(vpred,i − vpred,ι)√∑N

i=1 (vmes,i − vmes,ι)
√∑N

i=1 (vpred,i − vpred,ι)
(4)

where, N is the number of samples, vmes,i is the measured
wind speed, vpred,i is the predicted wind speed, and (vmes,i,
and vpred,i) are the actual mean value.

B. WEIBULL DISTRIBUTION
The Weibull distribution was used in this study as it provides
a good description of the wind speed distribution [18]. It is
associated with a probability density function f li , character-
ized by two mean parameters, k l and C l(m/s), named shape
and scale parameters, respectively, of location l.

f li =

(
kl

C l

)(
vi
C l

)k−1

exp
(

−
vi
C l

)k
(5)

The k l and C l parameters can be estimated using several
empirical methods such as the Lysen, standard deviation, and
Moroccan methods [23], [24]. In addition, R and MSE error
indicators were used in this case to select the most accurate
method that determines the Weibull parameters that correctly
fit the measured wind speed distribution in Essaouira. The
standard deviation was the selected method in this study,
giving the bestWeibull parameters (k l = 2.56,C l

= 8.63m/s)
that correctly describes the available measured wind speed
distribution measured at initial height H0 = 50 m of the
year 2015 in Essaouira [25], with R and MSE values equal to
1 and 0.1, respectively. This method is also used to determine
the new Weibull parameters for the achieved ANN predicted
wind speed data. The Weibull parameters calculated using
the measured and predicted data are having the same height
measurement H0 = 50 m. Standard deviation formulas for k l

and C l determination are given by the following [23], [24]:

kl =

(
σ

vaverage

)−1.086

(6)

C l
=

vaverage

0
(
1 +

1
kl

) (7)
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vaverage =
1
N

∑N

i=1
vi (8)

σ

√
1

N − 1

∑N

i=1

(
vi − vaverage

)2 (9)

where, 0 is the gamma function, vaverage and σ are the mean
and standard deviation of wind speed respectively, and N is
the number of wind speed samples.

The Weibull probability density function f li describing
the wind speeds is modified automatically with the esti-
mated WT tower heights Hg given by the present economic
decision-making model to f li,,h by extrapolating the Weibull
parameters k l and C l calculated using the ANN predicted
wind speed data at H0 = 50 m using the modified Mikhail
formulas given in [26] and [27] in order to follow the impact
of WT tower height Hg variation occurred during the res-
olution of the optimization problem on: the Wind speed
distribution, the generated energy by the WT, and whole WT
design optimization problem presented in subsection D. The
adopted formulas for extrapolation are given by the following
[26], [27]:

C l
Hg = C l

H0
(
Hg
H0

)p (10)

p = α0

 1 −
ln (C lH0

)

ln (67)

1 −
α0 ln

(
H0
hr

)
ln (67)

 (11)

k lHg = k lH0

1 −
α0 ln

(
H0
hr

)
ln(67)

1 −
α0 ln

(
Hg
hr

)
ln(67)

 (12)

α0 = (
z0
hr

)0.2 (13)

where, p is the power law exponent, hr is the reference height
equal to 10 m given by [27], α0 is the surface roughness
exponent and z0 is the surface roughness length of site, Hg is
the estimated height by the present decision support model,
H0 is the initial height of measured wind speeds H0 = 50 m,
C l
Hg

and klHg are the extrapolated Weibull parameters at the

new heightHg, and,C l
H0

and klH0
are theWeibull parameters

calculated using the ANN predicted wind speed data at H0.
The Weibull distribution function f li,,h is included in our

decision-making model proposed forWT design and location
problems, as discussed in the above paragraph and presented
in the following subsection.

C. WIND ENERGY GENERATION MODELING
TheWTmodel is composed of three main components: rotor,
gearbox, and generator [1]. The yearly generated energy
E lt,g from WTs design technologies ‘g’ proposed by the
present decision making model for the bus nodes location
‘l’ (l=1. . . ..M) in the RDN is modeled using the following
formula [18]:

Elt,g =
1
2

[
8760

(
ρSg

∑N

i=1
f li,hCp,i,gv3i

)]
(14)

where, ρ (kg/m3) is the air density, Sg(m2) is the rotor swept
surface, f li,h is the discretized Weibull function with tower
height Hg at the studied site, Cp,i,g is the total efficiency of
the WT, and vi(m/s) is the wind speed of the ith class.

Sg =
πD2

g

4
(15)

Cp,i,g = ηgear,i,g Cpr,i,g ηgen,i,g (16)

where, Dg is the WT Rotor diameter (m), ηgear,i,g is the WT
gearbox efficiency,Cpr,i,g is theWTRotor power coefficient,
and ηgen,i,g is the WT generator efficiency.

The WT Rotor power coefficient is computed as follows
[18], (17)–(21), as shown at the bottom of the page, where,
Cmax
pr,g is the Rotor maximum power coefficient, vp,g the opti-

mal WT operation wind speed, χ is theWind speed operating
range parameter, vn,g is the nominal Wind speed of WT,
λmax,g is the maximum speed rate, BNg is the number of WT
blades, cd/cl is the ratio between drag and lift coefficients, ωg
is the angular rotation speed of the Rotor, Nrpm,g is the Rotor
rotation speed (rpm).

Cpr,i,g = Cmax
pr,g

(
exp

[
−

(ln vi − ln vp,g)
2

2(ln χ)2

])
(17)

vp,g =
vn,g

exp
[
3(ln χ)2

] (18)

Cmax
pr,g = 0.593

 λmax,g(BNg)
0.67

1.48 +

(
(BNg)

0.67
− 0.04

)
λmax,g + 0.0025(λmax,g)

2

− 0.593

[
1.92(λmax,g)

2BNg

1 + 2λmax,gBNg
.
Cd

C l

]
(19)

λmax,g =
Dgωg

2vp,g
(20)

ωg =
2πNrpm,g

60
(21)

VOLUME 11, 2023 116599



F.-A. Bourhim et al.: Optimal WT Design Based Wind Potential and RDN Characteristics

The WT gearbox efficiency is computed as follows [18]:

ηgear,i,g = 1−
[(

1−φgear,g
) ( Pn,g

4Pr,i,g
+

3
4

)]
(22)

φgear,g = 0.89(Pn,g)
0.012 (23)

Pn,g = Pp,g.exp(4.5(ln χ)2) (24)

Pp,g =
1
2

ρCmax
pr,gSg(vp,g)

3 (25)

Pr,i,g =
1
2

ρCpr,i,gSgv3i (26)

where, φgear,g is the gearbox efficiency factor, Pn,g is the WT
nominal power, Pp,g is the optimal power corresponding to
optimal wind speed vp,g, and Pri,g is the WT Rotor power
captured. As discussed in subsection A Pri,g is a function of
cubic wind speed.

The WT generator efficiency is computed as follows [18]:

ηgen,i,g = 1−
[(

1−φgen,g
) (

5(
Pgear,i,g
Pn,gen,g

)2 + 1
)

×

(
Pn,gen,g
6Pgear,i,g

)]
(27)

φgen,g = 0.87(Pn,g)
0.014 (28)

Pgear,i,g = ηgear,i,gPr,i,g (29)

Pn,gen,g = φgen,gφgear,gFs,gPn,g (30)

where, φgen,g is the generator efficiency factor, Pgear,i,g is
the gearbox generated power, Pn,gen,g is the WT generator
nominal power, and Fs,g is the factor of service of the gearbox
which take different values related to the WT regulation type
(1.75, 1.25, and 2 for pitch-constant-speed, pitch-variable-
speed, and stall-constant-speed regulations respectively).
Discounting the losses ‘α’ that occur during theWT energy

generation, the real yearly generated energy E lt,g,real from
WTs became:

Elt,g,real = Elt,g − αElt,g (31)

D. OPTIMIZATION PROBLEM MODELING
An economic optimization problem is studied in this study
to obtain the optimal WT design parameters: Dg, Hg, and
nominal power function, the wind profile of the studied
site, and under the RDN constraints. Discretized Weibull
parameters that describe the forecasted wind speed potential
using the ANN model were used in this optimization. The
main objective of this constrained optimization problem is
to maximize the economic benefits of WT-generated energy
using the NPV indicator. NPV is a sophisticated economic
indicator used to evaluate the profitability of an investment
associated with a given project, considering all future cash
flows in and out of the project at a given discount rate [18].
The higher the NPV value, the higher the profitability of the
investment, supporting investors to invest in the wind energy
field.
The optimization problem resolution permits the selec-

tion of candidate bus node locations for WT installation in

the tested RDN system based on the registered NPV. The
optimization problem consists of three main components:
objective function, design variables, and constraints, defined
below.

1) OBJECTIVE FUNCTION
The objective function is the element to be optimized. In this
study, the NPV maximization of the wind energy generation
incomes is the objective function used. The adopted NPV
model is given by the following formula [18]:

NPV l
g =

∑n

t=1

CNet,l
benif ,t,g

(1 + r)t
− I lt=0,g (32)

CNet,l
benif ,t,g = C l

benif ,t,g − C l
OM ,t − T lt,g − Dlt,g (33)

where, I lt,g is the WT Investment made in year t ($), C l
benif ,t,g

is the total benefits, C l
OM ,t is the WT Operation and Main-

tenance cost in year t ($), Dlt,g is the annual depreciation
expense ($), T lt,g, is Tax levy ($), n is the WT lifetime, r is
the Discount rate, and CNet,l

benif ,t,g are the total net Wind energy
generation benefices removing all the expenses related to tax
payment, the costs of operation and maintenance of WT, and
the recovered investment (Dlt,g).
The depreciation expense Dlt,g, estimates the value of the

investment at the end of the WT lifetime. Given as fol-
lows [18]:

Dlt,g =
I lt,g
n

(34)

Tax levy T lt,g, is the tax payment associated with registered
wind energy economic revenues. Value Added Tax is the tax
system applied in this study, corresponding to the country of
the evaluated site [18].
The total net wind energy generation benefits CNet,l

benif ,t,g per
year t are measured using two different income parameters
[1], [18]: Cbenif ,l

Sal,t,g and Cbenif ,l
Inc,t,g , which are the incomes from

electrical energy sales and incentives for green energy pro-
duction, respectively. Defined as follows:

C l
benif ,t,g = Cbenif ,l

Sal,t,g + Cbenif ,l
Inc,t,g (35)

Cbenif ,l
Sal,t,g = CSE lt,g,real (36)

Cbenif ,l
Inc,t,g = CInE lt,g,real (37)

where, CS is the purchase tariff of electricity, and CIn are
Sales cost due to incentives for green energy production.
The operation andmaintenance cost of theWT is estimated

as follows [18]:

C l
OM ,t = ηI lt,g + ξCbenif ,l

Sal,t,g (38)

where, η and ξ are investment and incomes factors,
respectively.
For every optimized WT design ‘g’ at the bus location, ‘l’,

the WT technology investment cost model is composed of
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FIGURE 1. WT power variation function rotor diameter.

several costs, whose details are given in the authors previous
work [18]:

I lt,g = C l
T ,g + C l

AI ,g + C l
EI ,g + C l

EP,g

+ C l
RCW ,g + C l

F,g + C l
WT ,g (39)

where, the associated investment costs are: C l
T ,g is the WT

Transportation cost, C l
AI ,g is the WT Assembly and Installa-

tion cost, C l
EI ,g is the Electrical Interface cost, C l

EP,g is the
Engineering and Permits cost, C l

RCW ,g is the Roads and Civil
Work cost, C l

F,g is the Fondation cost, and C l
WT ,g is the WT

cost.
Note that the adopted WT cost model C l

WT ,g is the result
of the authors’ previous study [18].

2) DESIGN VARIABLES AND CONSTRAINTS
Design Variables are the input elements of the optimization
problem, which sometimes constitute a form of constraint
when they are varied between the maximum and minimum
values to obtain the optimal solution feasible at these limits
[18]. Two types of constraints were employed in this study.
The first type is related to the geometrical design variables
of WT (Dg and Hg) normally used in onshore installations,
where we studied the available technologies in the market
regarding their power capacities and their corresponding
diameters, where the WTs capacity studied was between
50 kW and 6000 kW [28]. Fig. 1 shows the obtained variation
area of the WTs power with the possible diameters.

Hence, we resulted in the following WT design constraints
with a specific variation for the rotor diameter Dg, and
the possible associated tower height, Hg, is estimated using
equation (41) [18]:

40 m ≤ Dg ≤ 200 m (40)
Dg
2

+ 15 ≤ Hg (41)

The second type is the RDN electrical constraint mod-
eled through the power flow equation (42) used in our

decision-making model to optimally design the WTs con-
nected to the RDN. The active power flow generated by the
WT is controlled while feeding the load [17], [29].

PlWT ,g − PlLoad − PlLoss = 0 (42)

With: PlWT ,g = Pn,g (43)

PlLoss = Vl
∑M

j=1
Vj
[
Glj cos

(
δl − δj

)
+ Blj sin

(
δl − δj

)]
(44)

where, PlWT ,g is the WT generated active power, PlLoad is the
load active power, PlLoss is the power loss in the branch lines
of the RDN, Vl and Vj are the voltage magnitudes at buses l
and j respectively, Glj and Blj are the real and imaginary parts
of the admittance matrix respectively of the jth row and lth
column, respectively, δl and δj are the voltage angles at buses
l and j, respectively,M is the number of buses.

In addition, the voltage magnitude in the RDN constraint
is employed as the RDN design variable, which varies within
5% of the initial value in all bus nodes.

Vl/Vj(p.u) = 1 ± 0.05 (45)

As mentioned in the first section, this study is a continuation
of our previous work [18]. The adopted decision-making
model presented in this section is described in general by
the NPV model, which includes all the WT models cited
previously, and was already verified and validated in our
previouswork [18]with an existingmodel in the literature [1].
Compatibility was found between the two models, demon-
strating the effectiveness of the model adopted in this study.
In addition, the optimization problem studied in [18]was
used in this study with new constraints, specifically the RDN
constraints presented before. This constrained optimization
problem was also verified and resolved in [18] using three
different algorithms: genetic, fmincon, and PSO, to ensure
the efficiency of the results obtained. The optimized objective
function (NPV) yielded nearly the same results; hence, the
optimization problem could be resolved using one of these
optimization algorithms. Further details are provided in [18].
The wind site characteristics described by the Weibull distri-
bution parameters (k l and C l) and the WT design variables
(Dg and Hg), in addition to the RDN design variables (Vl
and Vj), are specified for the NPV objective function model.
The NPV of the WT energy incomes is evaluated under all
the restrictions mentioned before in the optimization problem
using the optimization algorithm to determine the optimal
WT design output that maximizes the objective function. The
genetic algorithm was used to solve the optimization problem
in the following steps:

- Starting creating a random initial population containing
several individuals.

- Objective function evaluation at each individual of the
population created.

- Create a new population based on the individual selec-
tion of the current population with the maximum
objective function value (NPV). The selected individuals
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FIGURE 2. Optimization process flowchart.

are called parents and are used by crossover or muta-
tion operators of the ga algorithm to produce children.
Mutation involves making random changes to a single
parent; however, the crossover operator combines the
vector entries of a pair of parents. A new population was
formed with the creation of children.

- WT design parameters is generated from the new popu-
lation created

These steps are repeated to generate the best new population
that gives the most feasibleWT design solution until reaching
one stopping criteria of the algorithm such as maximum
number of iterations or time limit. The global optimization
process is shown in Fig.2.

III. RESULTS AND DISCUSSION
As mentioned before, the objective of this paper is to present
a decision making model that gives the optimal WT design
including three main technical parameters studied in this
work (Dg,Hg, and the nominal power) based on wind profile
of the studied site and under the RDN electrical charac-
teristics; in addition to select the most candidate buses for
WT installation from the evaluated RDN system. Thus, the
proposed decision-making model presented previously is val-
idated in determining the optimal WT design function wind
potential and the previously mentioned constraints using two
different RDN test system data: IEEE 9 and IEEE 33 bus
test systems [2], [30]. The results are then presented and
discussed in this section.

As discussed previously, the ANN was used to validate the
wind site profile. The hourly measured wind speed data in
Essaouira Moroccan city in 2015 at initial height H0 = 50 m
was used as the target to reach in the ANN model to test the
studied RDN systems [25]. The global measured wind speed

FIGURE 3. Simplified ANN model architecture.

FIGURE 4. Resulted ANN model structure.

data consisted of 8760 values. Part of this data is used for
training the ANN, and the rest is used to test the efficiency
of the results involved before the ANN model performs the
prediction. Calendar data, including season, month, week,
day, and hour, were used as inputs, and the anticipated output
was the wind speed. The simplified ANN architecture used in
this study is illustrated in Fig. 3. The best prediction results
were obtained with an ANN structure composed of three
hidden layers and 22 neurons in each hidden layer, as shown
in Fig. 4. In addition to a data partition in the learning phase
of 80% in the training and 20% in the testing where the
minimum errors were reached, with R and MSE values of
0.97 and 0.57, respectively, as shown in Fig. 5 and 6.

The hourly wind speed data measured and predicted by the
ANN model for the year 2015 in Essaouira City is composed
of 8760 wind speed values, as presented in Fig.7. These
forecasted wind speed values were used to find the new
Weibull function parameters kl and Cl, using the equations
discussed and presented in subsection B. This Weibull func-
tion is required for the WT energy generation estimation,
which has a direct impact on the objective function of the
WT design optimization problem, as presented previously in
Subsections C and D.

Achieved results conduct nearly to the same measured
Weibull parameters values with a k l = 2.62, C l

= 8.63 m/s,
and vaverage = 7.17 m/s, as presented in Table 1. This demon-
strates the stability of the future wind potential at the studied
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FIGURE 5. MSE error results of the ANN model.

FIGURE 6. Regression coefficient R error results of the ANN model.

FIGURE 7. Essaouira observed and predicted wind speeds.

site, leading to a real estimation of the generated wind energy.
This supports the validity of WT designs proposed by our
decision-making model in the future.

TABLE 1. Essaouira weibull parameters atH0 = 50 m.

FIGURE 8. Observed and predicted Weibull data in Essaouira city.

Using these predicted and measured Weibull parame-
ters, and by classifying the associated wind speed data into
different classes varying between 1 m/s and 29 m/s, the
Weibull probability density function presenting the wind
speed frequency was calculated and fitted to the measured
and predicted Weibull parameters. The results are shown
in Fig. 8. This figure shows the observation probability of
wind speeds and demonstrates more the stability of wind
potential in Essaouira City, where the observed and predicted
Weibull function data results are nearly the same, with small
differences at 5 m/s and 10 m/s, but generally, the average
wind speed is identical (vaverage = 7.17 m/s).
As discussed and presented in subsection A and C, a few

wind speed difference has an important impact on the gen-
erated wind energy. Hence, the Weibull parameters obtained
using the ANN predicted wind speed data are used in the rest
of the calculation in this study and extrapolated automatically
with tower heightHg values obtained by the present economic
decision-making model using the extrapolation method dis-
cussed in subsection B, to overcome its influence on the wind
speed profile.

The input parameters used in the optimization problem
study include the Weibull distribution parameters obtained
previously through the forcasted wind speed values by the
ANN model (kl = 2.62 and Cl

= 8.63 m/s), in addition
to other input parameters selected from our previous study
performed in [18] needed in this evaluation mainly: the WT
nominal wind speed vn,g = 13.2 m/s, wind speed operating
range χ = 1.7, rotor rotation speed Nrpm,g = 18.15 rpm,
drag and left ratio Cd /Cl = 1/120,, air density ρ = 1.225,
WT energy generation losses percentage α = 5%, tax
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TABLE 2. Optimal WT designs parameters for the IEEE 9 bus radial
distribution system.

FIGURE 9. IEEE 9 Bus radial distribution network system scheme with
adequate WT locations.

payment T lt,g = 14%,, WT life time n=20 years, Discount
rate r=8%, annual depreciation expense Dlt,g = 5% of the
investment, percentages adopted for the operation and main-
tenance cost η = 1% and ξ = 2%, the purchase tariff of
electricityCs = 0.094 $/kWh, and Sales cost due to incentives
for green energy production CIn = 0.053 $/kWh.

We assumed that the tested RDNs had the same wind char-
acteristics as the studied site (Essaouira). In addition, all buses
are candidates for WT installation from the wind potential
viewpoint, andwe propose theirWT technical characteristics,
including Dg, Hg, and nominal power (Pn,g). The obtained
WT design parameter results are presented in Tables 2 and 3.
The optimal WT design results corresponded to the pre-
dicted Weibull parameters obtained through the ANN model,
which showed the stability of the wind potential compared to
the observed one in Essaouira. The most suitable bus loca-
tions for wind energy generation were those presenting good
economic benefits presented in the IEEE 9 and 33 schemes
[2], [31] in Fig. 9 and 10.
IEEE 9 bus test system results approved its capacity

for Wind energy generation for all buses presenting good

TABLE 3. Optimal WT designs parameters for the IEEE 33 bus radial
distribution system.

economic benefits with a minimum and maximum NPV of
3.87 M$ and 18.62 M$ respectively, as describes in Fig. 11.
However, there are only a few candidate buses for WT instal-
lation in the IEEE 33 bus test system. The most candidate
buses in the IEEE 33 test system are:2, 7, 11, 19, 24, 26,
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FIGURE 10. IEEE 33 Bus radial distribution network system scheme with
adequate WT locations.

FIGURE 11. NPV results of the IEEE 9 Bus radial distribution network
system in the profitable bus locations.

FIGURE 12. NPV results of the IEEE 33 Bus radial distribution network
system in the profitable bus locations.

and 32 with an NPV of 5.95, 3.22, 2.29, 3.32, 1.85, 2.18, and
1.98 M$ respectively as described in Fig. 12.
We can remark from the IEEE 9 bus system, that we

have a good wind profile at the Essaouira site, which offers
the opportunity for a powerful WTs installation of more
than 5 MW. However, in the case of the IEEE 33 bus system,

FIGURE 13. Achieved NPV results with and without ANN prediction of the
IEEE 33 Bus radial distribution network system.

FIGURE 14. Achieved NPV results with and without ANN prediction of the
IEEE 9 Bus radial distribution network system.

the maximum capacity of the WT design involved with the
present decision support model was approximately 1 MW.
That can be explained by the grid limitations evaluated.
Each RDN has its own electrical characteristics with different
branch-line values. The IEEE 9 bus system is more power-
ful than the IEEE 33 bus system with an important active
power load demand. This explains the results of this study.
Therefore, the proposed WTs design follows the available
wind potential and grid constraints. As discussed before, the
validity of the WTs design in the future was approved by
our decision-making model, using the ANN-predicted wind
speed data described through theWeibull parameters. A com-
parison with an optimization study in the case of the initial
measured Weibull parameters utilization was realized. The
decision-making model involved the sameWT design param-
eters for the both evaluated RDNs systems with nearly the
same economic benefits value using the wind speed potential
with and without prediction, as presented in Fig. 13 and 14.
We can also observe that the use of ANN prediction results
increase slightly the economic benefits of the proposed
WTs design owing to its effective wind potential forecast,
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enhancing the generated energy, and automatically the value
of NPV is enhanced in parallel. We note that these designs are
not available or commercialized in the market, as suggested
by this study.

IV. FUTURE WORKS AND CONCLUSION
An economic decision-making model for optimal WT design
based on the wind potential of the site of interest and RDN
constraints is proposed and presented as a constrained opti-
mization problem in this paper. The technical parameters
of the WT design, including the rotor diameter Dg, Tower
Hub Height Hg, and WT nominal power, were determined
for all the studied RDN bus nodes. In this study, we pro-
pose WTs design parameters that are not available in the
market. The NPV of the economic benefit maximization of
WT-generated energy is the objective function studied in the
optimization problem. Wind speed variation has a significant
effect on theWT-generated energy. Therefore, anANNmodel
was used to effectively forecast the wind speed potential in
Essaouira City, minimizing the error compared with previ-
ouslymeasured values. The proposed decision-makingmodel
is validated and tested using the electrical characteristics of
two different RDN bus systems, namely IEEE 9 and IEEE
33 bus RDN systems. Based on the maximum value of the
resulting NPV, the most candidate bus nodes for WT instal-
lation in the tested RDN systems were selected. The results
obtained showed that all nine buses of the IEEE 9 systemwere
candidates forWT installation; however, only eight candidate
buses in the IEEE 33 system presented good NPV economic
benefits. Therefore, we can conclude that the WT design
depends more on the capacity of the connected RDN than
on the available wind potential. In addition, the ANN model
prediction results proved the stability of the future wind
potential in Essaouira City, providing nearly the sameWeibull
distribution as the measured distribution. This supports the
validity of WT designs achieved in the future. Furthermore,
the adoption of the ANN-predicted Weibull parameters in
the WT design optimization study slightly improved its NPV
value compared with the measured parameters, demonstrat-
ing the impact of a fewwind speed variations on the economic
benefits associated with the generated wind energy. The pre-
sented decision-making model supports decision-makers in
determining the optimal WT design and suitable RDN bus
locations for WT installation at the site of interest. In this
study, aerodynamic effects, material optimization, and power
loss reduction were not considered in the evaluated optimiza-
tion problem, and could be recommended for future work.
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