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ABSTRACT Since hyperspectral remote sensing images are three-dimensional data cubes with spatial and
spectral information, with many wavebands and high inter-band correlation, the number of training samples
required for classification is greatly increased. In order to achieve better classification of hyperspectral
remote sensing images with small samples, this paper proposes a hyperspectral remote sensing image
classification method based on Multi-Scale Dense Network (MSDN) with 3D Gabor filter. The method
extracts the texture features of hyperspectral remote sensing images by using 3D Gabor filter; then extracts
the spatial spectral features of hyperspectral remote sensing images at different scales in both horizontal
and vertical directions by using Multiscale Dense Network; and finally achieves the classification of
hyperspectral remote sensing images by using Softmax classifier. The introduction of 3D Gabor filter in this
method can improve the extraction effect of the features of hyperspectral remote sensing images, and at the
same time reduce the dependence of the multiscale dense network on the labeled samples in the classification
of hyperspectral remote sensing images. Experiments are conducted on three publicly available hyperspectral
remote sensing datasets, and the experimental results are comparedwith other classificationmethods to prove
that the method has better classification performance.

INDEX TERMS Hyperspectral remote sensing image classification,multiscale dense network, small sample,
three-dimensional.

I. INTRODUCTION
Each pixel in hyperspectral remote sensing image data has
hundreds of bands, and it contains spatial and spectral infor-
mation of the features, thus forming a high-dimensional data
structure. Compared with ordinary RGB images, hyperspec-
tral remote sensing images can identify the information of
land features more finely and accurately.

Early hyperspectral remote sensing image classification
methods used feature extraction combined with classifiers for
classification. Among them, Xie et al. [1] proposed the use
of orthogonal subspace projection, which projects a certain
vector of pixels onto a sub-space of signals that are orthogonal
to the undesired presence and projects the reserved signal
onto the signal of interest, resulting in a single-component
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image. Thismethod excludes undesired or interfering spectral
signals while reducing the dimensionality of the data. Support
vector machines are based on statistical learning theory and
are better able to solve practical problems such as small
samples, high dimensionality, nonlinearity and local minima.
Melgani used support vector machine (SVM) to classify
hyperspectral remote sensing images, and the experimental
results showed that the algorithm showed good performance
with very limited training samples [2]. Chen et al. [3] pro-
posed a method for classification using spatially dominant
features. This is because it is considered that large neigh-
borhood regions can cause the classifier to be considered as
having too large an input dimension and contain too much
redundancy. Therefore, in the first layer, Principal Compo-
nent Analysis (PCA) is introduced to compress the whole
image to reduce the data dimensionality to an acceptable
scale while preserving the spatial information, and then the
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compressed hyperspectral data are used for spatial feature
extraction with SAEs of different scales.

In recent years, with the development of computer technol-
ogy, people have made great breakthroughs in the research
of deep learning, which has extremely wide applications
in images and text. Deep learning networks are generally
multilayer, and feature extraction using multilayer networks
can obtain more abstract information. Yue et al. [4] intro-
duced a deep CNN model to extract spatial features with
the help of principal component analysis (PCA) and logistic
regression. Xu et al. [5] integrated HSI data and multisensor
data to improve the classification performance, where the
spectral and spatial features of HSI data were extracted by
1D CNN and 2D CNN, respectively. In addition [6], several
literatures use off-the-shelf CNN models, including AlexNet
[7], VGGNet [8], GoogleNet [9] and ResNet [10] for deep
spatial feature extraction on hyperspectral image datasets and
achieve high classification accuracy. Shen et al. [11] pro-
posed an end-to-end hybrid convolutional neural network for
hyperspectral image classification. Firstly, the 3D, 2D and 1D
convolutional modules are applied for joint feature extraction
of spatial and spectral information, respectively. Secondly,
a new 3D multi-scale feature fusion strategy is proposed to
fuse the high-level and low-level features in order to ensure
the adequacy of the features.

Although deep learning networks have gained significant
advantages in the field of hyperspectral remote sensing image
classification, however, they still suffer from the problem that
fine features are often lost or even disappeared in large quan-
tities during the depth transfer process. In order to improve
deep learning networks and enhance their classification capa-
bilities, the concept of multiscale began to emerge. Zhaokui
Li et al. [12] proposed a new deep multilayer fusion dense
network (MFDN) to improve the performance of HSI clas-
sification. The proposed MFDN extracts both spatial and
spectral features based on different sample input sizes, which
can extract rich spectral and spatially relevant information.
Spatial features are extracted from low-dimensional 3-D HSI
data by 2-D convolution, 2-D dense block and mean. Sec-
ond, excellent hyperspectral classification performance is
achieved by directly extracting spectral features from the raw
3-D HSI data through 3-D convolution, 3-D dense blocks,
and averaging pooling layers. Zhang et al. [13] applied
multiscale dense networks to hyperspectral remote sensing
image classification, making full use of the information of
different scales in the network structure and combining the
scale information of the whole network to achieve feature
extraction in two dimensions and generate feature maps of
low, medium and high levels based on the first layer of the
network. Multiscale dense networks have been widely used
in the field of hyperspectral remote sensing image classifi-
cation because they are well suited for hyperspectral remote
sensing image characteristics. Xu et al. [14] designed a HSI
multiscale spectral spatial CNN based on a novel image
classification framework. The network is able to integrate
multiple receptive field fusion features with different levels

of multi-scale spatial features to improve the classification
ability. Fırat et al. [15] proposed amethod inwhich theHybrid
3D/2D Complete Inception module and the Hybrid 3D/2D
CNN method are used together has been proposed to solve
the HRSIs classification problem. In the proposed method,
multi-level feature extraction is performed by using multiple
convolution layers with the Inception module. This improves
the performance of the network. Ari et al. [16] proposed
a method consisting of a combination of multipath Hybrid
CNN and a Squeeze and Excitation (SE) network for HSIC.
Features extracted with different kernel sizes in the multipath
method are used together to extract richer feature information
from HSI in this proposed method (PM).

Although the multiscale dense network has shown excel-
lent results in the field of hyperspectral remote sensing image
classification, it also has disadvantages, such as strong depen-
dence on labeled samples and slow running speed because the
network structure is too complicated. And the 3DGabor filter
can extract some internal information such as the edges of
the image, the direction and size of the image texture, etc.
Applying the Gabor filter to hyperspectral remote sensing
image classification can further extract the spatial features of
the image and reduce the dependence of the network model
on the samples [17].

Therefore, this paper proposes a multiscale dense net-
work based on 3D Gabor filter for hyperspectral remote
sensing image classification. The combination of the two
can extract more accurate features of hyperspectral remote
sensing images: the 3D Gabor filter can extract the spatial
features of hyperspectral remote sensing images, while the
multi-scale dense network can extract the frequency features
of hyperspectral remote sensing images. The combination of
the two can obtain more comprehensive and accurate hyper-
spectral remote sensing image features, which makes the
recognition and classification tasks more excellent. Secondly,
it can improve the noise resistance: the three-dimensional
Gabor filter has strong noise resistance, which can reduce the
noise interference in the hyperspectral remote sensing images
and improve the accuracy of recognition and classification.
And the multi-scale dense network can improve its robust-
ness and stability against interference by suppressing noise.
Further it can reduce the feature dimensionality: as the num-
ber of hyperspectral remote sensing image bands increases,
the feature dimensionality also increases, which puts more
pressure on the computation and storage. Multi-scale dense
networks combined with 3D Gabor filters can extract more
accurate features and help optimize features, thus reducing
feature dimensionality, improving computational efficiency
and accuracy, and also increasing image processing speed.
Traditional hyperspectral remote sensing image process-
ing methods consume a lot of time and resources, while
multi-scale dense networks combined with 3D Gabor filters
can reduce redundant calculations and improve processing
speed and efficiency.

The rest of the paper is organized as follows. In Section II,
the structure of the multiscale dense network mentioned in
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the article, the basic principles of the 3D Gabor filter, the 3D
Gabor filter bank designed in the article and the experimental
evaluation metrics are described. In Section III, experiments
on three publicly available hyperspectral remote sensing
image datasets are described and compared with other meth-
ods to verify the effectiveness of the method proposed in the
article. Section IV gives the conclusion of the paper.

II. MATERIALS AND METHODS
A. STRUCTURE OF MULTI-SCALE DENSE NETWORKS
Multiscale dense networks (MSDN) are improved deep learn-
ing networks that can extract features at different scales.
Features in hyperspectral remote sensing images have dif-
ferent scales of spatial location relationships, and the use
of multi-scale dense networks helps to extract the location
information of these features. Also the multi-scale dense net-
work uses Dense Block to enhance the connectivity between
layers and can use Multi-Scale Dense Connection matrix for
multi-layer feature fusion. This helps to improve the expres-
siveness and robustness of the features and can eliminate
the gradient disappearance and gradient explosion problems.
In addition to this multi-scale dense network also supports
the addition of new dense blocks to the network structure in
order to achieve deeper or wider networks, which helps to
extend the structure of the network and thus apply to more
complex hyperspectral image classification problems. The
specific structure of the MSDN network is shown in Table 1,
and the spectral dimension of the hyperspectral remote sens-
ing image is downscaled using principal component analysis
before inputting into the network, and the first 30 principal
components are retained to reduce data redundancy.

B. THREE-DIMENSIONAL GABOR FILTER SET
Gabor filter is a filtering method widely used in image pro-
cessing and analysis. Its basic principle is to construct a
complex filter using sine and cosine functions, which can
be used to extract image texture information in different
directions and on different scales, respectively. In hyperspec-
tral remote sensing image classification, Gabor filter is also
widely used as a preprocessing tool for feature extraction
of hyperspectral images. The Gabor filter can perform fea-
ture extraction in both direction and scale. One-dimensional
Gabor filters are mainly used to process one-dimensional
data, such as sound. Two-dimensional Gabor filters make the
most widely used filters and can be extended to meet specific
needs. In hyperspectral remote sensing image classification,
Gabor filters are usually used to extract texture information
from images by selecting different filter parameters to suit
different image features. Commonly used parameters include
the center frequency, bandwidth, orientation and phase of the
filter. Since the hyperspectral image is a three-dimensional
cubic data structure, the two-dimensional Gabor filter cannot
extract its texture feature information and spectral informa-
tion at the same time. In order to be able to extract the
texture information of the hyperspectral image while pre-

TABLE 1. Sample size of Indian Pines dataset.

serving its spectral features, it is necessary to upgrade the
two-dimensional Gabor filter to a three-dimensional Gabor
filter.

The 3D Gabor filter is a complex filter constructed using
sine and cosine functions, which can be used to extract
image texture information in different directions and on dif-
ferent scales, respectively. Specifically, the 3D Gabor filter
can be adapted to different image textures and features by
adjusting its parameters such as spatial frequency, orientation,
and bandwidth. In hyperspectral image classification, the
3D Gabor filter can extract texture features of hyperspectral
images in different directions and scales.

The three-dimensional Gabor filter is calculated as
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where x ′
= x cos θ + y sin θ, y′ = −x cos θ + y sin θ, z′ =

z denote the three-dimensional Gabor filters and G(x, y, z)
denotes the width of the spatial spectrum. The directions
of the filters are indicated by θ and ϕ. [x, y, z] denotes
the coordinates of a point of the original image data, after
rotation by angles θ and ϕ, and

(
fx , fy, fz

)
denotes the fre-

quency component in the spatial-spectral dimension [22]. The
three-dimensional Gabor filter spatial model is shown in Fig
2.
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FIGURE 1. Multi-scale dense network (MSDN) architecture.

FIGURE 2. Spatial model of three-dimensional Gabor filte.

FIGURE 3. 3D Gabor filter pre-processing flow chart.

The hyperspectral raw image data is fed into a 3D Gabor
filter, and a new 3D cube data is obtained after convolution
to take the real part. The equation is

HSItexture = HSI (x, y, z) ⊗ G (x, y, z) (2)

where HSI (x, y, z) denotes the original hyperspectral data
set, and G (x, y, z) denotes the 3D Gabor filter in a certain
direction. By adjusting the values of θ and ϕ of the filters,
a three-dimensional Gabor filter with different orientations
can be obtained, and the filters with different orientations are
combined to form a filter bank. The flowchart of 3D Gabor
filter for extracting hyperspectral remote sensing image fea-
tures is shown in Fig 3.

FIGURE 4. Network structure of MSDN hyperspectral remote sensing
image classifier based on 3D Gabor filter.

By preprocessing the original hyperspectral images with
filters of different orientations, feature information of differ-
ent scales and orientations can be obtained, and finally these
features are fused using linear superposition, and the fused
feature information is used in the multi-scale dense network,
thus avoiding deepening of the deep learning network and
realizing the optimization of the multi-scale dense network.
The multi-scale dense network classification method based
on Gabor filter can effectively improve the accuracy of clas-
sification, especially in processing hyperspectral images with
complex textures.

C. THREE-DIMENSIONAL GABOR FILTER AND
MULTI-SCALE DENSE NETWORK
The Gabor filter-based MSDN hyperspectral remote sensing
image classification method is shown in Fig 4. First, accord-
ing to the three-dimensional Gabor filter definition equation
(3).
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where x ′
= x cos θ + y sin θ, y′ = −x cos θ + y sin θ, z′ = z

can be seen by varying the 3-D Gabor filters θ and ϕ, which
can be obtained in different directions. In order to fully extract
the texture features in each direction in the hyperspectral raw
image and to take into account the reduction of the compu-
tational effort of the 3D Gabor filter, the paper is adjusted
in steps of π

4 within (0, π ) for θ and ϕ. Since the frequency
component does not change with θ when ϕ is 0, it is sufficient
to take a direction at this point.

The paper uses 13 directions of Gabor filters, of which θ

and ϕ are respectively(θ = 0, ϕ = 0), (θ = 0, ϕ =
π
4 ),

(θ =
π
4 , ϕ =

π
4 ), (θ =

π
2 , ϕ =

π
4 ), (θ =

3π
4 , ϕ =

π
4 ), (θ =
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FIGURE 5. (a) Pseudo-color plot of the Indian Pines dataset, (b)
Calibration plot of the Indian Pines dataset.
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Then, the extracted features in 13 directions are fused
using linear superposition so that a new 3D feature data
containing all feature information is generated. The new 3D
feature information data is then fed into the multi-scale dense
network model for deep feature extraction. The multi-scale
dense network uses two convolutional kernels, and the learn-
ing rate is set to 0.001. The network has three scales with 6,
12, and 6 layers of convolution on each of the three scales.
Finally, a Softmax classifier is used to classify and obtain the
classification results.

D. EVALUATION INDICATORS
The three evaluation metrics used in the paper are Overall
Accuracy (OA), Average Accuracy (AA), and Kappa coeffi-
cient.

The OA calculation formula is

OA =

∑k
i=1 P (i, i)
N

(4)

where k denotes the number of categories;N denotes the total
number of test samples; P (i, i) denotes the number of the ith
category correctly classified.

The AA calculation formula is

AA =

∑k
i=1OAi

k
(5)

where OAi denotes the total classification accuracy of class i.
The Kappa calculation formula is

Kappa =
N
∑k

i=1 P (i, i) −
∑k

i=1 P (i,)P (, i)

N 2 −
∑k

i=1 P (i,)P (, i)
(6)

where P (i,), P (, i) denote the total number of test samples in
row i and column i, respectively.

III. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL DATA SET
The Indian Pines dataset (abbreviation: IP) was imaged by
the Visual Infrared Imager (AVIRIS) in 1992 on a piece
of Indian pine in Indiana, USA, and then intercepted at a

TABLE 2. Sample size of Indian Pines dataset.

FIGURE 6. (a) Pseudo-color plot of the Pavia University dataset, (b)
Calibration plot of the Pavia University dataset.

size of 145 × 145 for labeling as a hyperspectral image
classification test purpose [18]. Imaging wavelength range
0.4-2.5µm, spectral resolution of 10µm, spatial resolution
of 20m, is in the continuous 220 band continuous imaging
of the ground, but the use of 20 cannot be water reflection
of the band, leaving 200 bands as the object of study. There
are 16 types of features in the dataset, and the samples are
unevenly distributed, and the sample distribution is shown by
Table 2. The pseudo color images and calibration maps of the
dataset are shown by Fig 5(a) and (b).

The Pavia University dataset (abbreviation: PU) was
acquired by the Airborne Optical Spectral Imager (ROSIS)
in 2003 at the University of Pavel, Italy, in the wavelength
range 0.43-0.86 µm [19]. was used for hyperspectral image
classification. The sensor has a total of 115 bands, and after
processing the data retains 103 bands, the data and size is
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TABLE 3. Sample size of Pavia University dataset.

FIGURE 7. (a) Pseudo-color plot of the Salinas dataset, (b) Calibration
plot of the Salinas dataset.

610 × 340 including 9 classes of features, and the sample
distribution is shown by Table 3. The pseudo-color images
and calibration maps of the dataset are shown by Fig 6 (a)
and (b).
The Salinas dataset was taken by the AVIRIS sensor in

Salinas Valley, California, with a dataset size of 512 ×

217 and a spatial resolution of 3.7 m [20]. It contains 224 con-
tinuous bands, and the actual bands used for training are
204 by removing 20 absorption bands. There are 16 feature
types in the study area, and the sample distribution is shown
by Table 4. The pseudo-color images and calibration maps of
the dataset are shown by Fig 7(a) and (b).

B. EXPERIMENTAL CONFIGURATION AND ANALYSIS OF
EXPERIMENTAL RESULTS
The experiments were conducted using the same hardware
platform, with Linux Ubuntu 18.04.5 LTS system as the

TABLE 4. Sample size of Salinas dataset.

TABLE 5. Classification accuracy of different methods for IP dataset (%).

operating platform and two Intel® Xeon® processor E5-
2698v 42.2GHz, 50M cache, 9.60GT/s QPI,Tuibo,HT,20C/4
0T (135W), 256GB memory capacity. NVIDIA A100 Tensor
Core GPU with up to 320GB of total GPU memory. The
PYTORCH framework was used for deep learning. 10% and
90% of the experimental data were randomly divided into
training and test groups, respectively, with epoch=200 and
learning rate lr=0.001 for the experiments.

The feature information extracted from the 3D Gabor filter
with 13 different directions is linearly superimposed, and
the new feature information after fusion is input into the
multi-scale dense network to obtain the classification results.
The classification results are also compared with SVM, 3D-
CNN [21], HybirdSN [22] and MSDN, as shown in Table 5
and Fig 8.
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FIGURE 8. Classification results of IP dataset (a) labeled images, (b) SVM,
(c) 3D-CNN, (d) HybirdSN. (e)MSDN, (f)Gabor-MSDN.

As can be seen from Table 5, the method proposed in this
paper outperforms the comparison method in the IP database.
Compared with the SVM, 3D-CNN, HybirdSN and MSDN
methods, this method achieves an OA value of 99.91% with
gains of 13.39%, 1.68%, 2.44% and 0.81%, respectively.
In addition, it is worth noting that for the classes with only a
small number of training samples (Class 7 and Class 9), other
methods suffer from more serious classification errors when
faced with only a small number of training samples in the
IP. Instead, the method showed better performance on both
samples, suggesting that Gabor-MSDN was able to extract
the features of both samples more adequately.

(2) Experimental results of Pavia University dataset
The feature information extracted from the 3D Gabor filter

with 13 different directions is linearly superimposed, and
the new feature information after fusion is input into the
multi-scale dense network to obtain the classification results.
The classification results are also compared with SVM, 3D-
CNN [21], HybirdSN [22] and MSDN, as shown in Table 6
and Fig 9.

FIGURE 9. Classification results of PU dataset (a) labeled images,
(b) SVM, (c) 3D-CNN, (d) HybirdSN. (e)MSDN, (f)Gabor-MSDN.

TABLE 6. Classification accuracy of different methods for PU dataset (%).

The feature information extracted from the 3D Gabor
filter in 13 different directions is linearly superimposed,
and the new feature information after fusion is input into
the multi-scale dense network to obtain the classification
results. The classification results are also compared with
SVM, 3D-CNN, HybirdSN and MSDN, as shown in Table 7
and Fig 10.

114152 VOLUME 11, 2023



C. Zhang et al.: Gabor Filter-Based MSDN Hyperspectral Remote Sensing Image Classification Technique

FIGURE 10. Classification results of Salinas dataset (a) labeled images,
(b) SVM, (c) 3D-CNN, (d) HybirdSN. (e)MSDN, (f)Gabor-MSDN.

TABLE 7. Classification accuracy of different methods for Salinas
dataset (%).

The results on the Salinas dataset similarly show that the
classification accuracy of the Gabor-MSDN method pro-
posed in this paper lies in the first place compared to other

TABLE 8. Classification results of different models combined with Gabor
filters (%).

methods. Compared with the SVM, 3D-CNN, HybirdSN and
MSDNmethods, the method achieves an OA value of 99.96%
with gains of 7.23%, 0.11%, 0.02% and 0.08%, respectively.
Therefore, the proposed method in this paper also achieves
good classification performance on the Salinas dataset.

In order to further prove that 3D Gabor can further extract
the features of hyperspectral remote sensing images, the
proposed 3D Gabor filter bank is fused with common hyper-
spectral classification models for the experiment, and the
classification results are shown in Table 8. As can be seen
from Table 8, the classification results of IP, PU and SA
datasets after 3D Gabor filter feature extraction followed by
3D-CNN, HybirdSN network model are improved in OA,
AA and Kappa coefficients.

IV. CONCLUSION
The MSDN hyperspectral remote sensing image classifica-
tion method based on 3D Gabor filters proposed in this paper
firstly preprocesses the hyperspectral remote sensing images
by using thirteen 3DGabor filter sets with different directions
and scales, and then inputs the preprocessed data into a
multi-scale dense network with better feature extraction and
feature fusion capabilities for feature extraction. Through the
simulation results of classification of three publicly available
hyperspectral remote sensing datasets, it can be seen that
the method in this paper solves the problems of multi-scale
dense network with complex network structure and more
network parameters leading to the degradation of classifica-
tion efficiency, and with the deepening and widening of the
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network there will be gradient explosion and low classifi-
cation accuracy of small samples. Moreover, by comparing
with SVM, 3D-CNN, HybirdSN and MSDN classification
methods, it can be seen that the multi-scale dense network
with the introduction of 3D Gabor filter has higher classifica-
tion accuracy, which proves the effectiveness of the proposed
method.
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