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ABSTRACT With the increasing demand for human–robot collaboration (HRC), intuitive interfaces are
essential to connect humans and robots. A promising approach is the use of mixed reality (MR) to enhance
spatial understanding through virtual and augmented reality. In this paper, we propose a novel HRC system
that extracts human handling procedures and generates concrete motion plans for the robot. The user, wearing
an MR device, interacts with virtual objects in the MR space using natural hand motions. These motions
and resulting state transitions are abstracted into a symbolic semi-order motion planner represented by the
reachability graph (RG). Using the RG, an autonomous behavior tree is generated, considering the robot’s
task environment, and the concrete motion plan is executed by the robot. This system allows the robot to take
a more flexible approach to user instructions than conventional MR-HRC systems. Moreover, this system
translates human orders into plans that are independent of a specific robot, demonstrating considerable
development potential.

INDEX TERMS Human–robot interaction, mixed reality, cyber–physical systems, motion planning, virtual
reality.

I. INTRODUCTION
Recently, there has been significant interest in human–robot
collaboration (HRC) systems, where humans and robots work
together in the same space. An essential requirement to
facilitate such collaboration is an interface that enables safe
and intuitive communication of information between humans
and robots [1].

Although the effectiveness of augmented reality (AR)
and virtual reality (VR) as human–robot interfaces in HRC
has received considerable attention [2], there are growing
expectations for human–robot interaction using mixed reality
(MR) [3], MR-HRI technology. MR combines the features of
both AR and VR, offering a unique advantage in handling
spatial information and seamlessly integrating interactive
holographic objects with the real space through spatial
computing. Compared with AR, which superimposes virtual
objects on real space, and VR, which operates in entirely
virtual or reconstructed real environments, MR provides
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users with an exceptionally immersive experience in the
actual space due to its ability to merge virtual and real
elements seamlessly [4].

In HRC, the robot requires spatial information about
the actual task space and a clear understanding of the
work environment for its operations. Traditionally, robots
find intuitively conveying their action plans to a person
challenging, and real-time operation raises safety con-
cerns. MR-HRI offers a solution by promoting natural
and intuitive interactions between humans and robots,
as both parties share a common spatial understanding, thus
enhancing their interaction capabilities [5], [6]. Utilizing
MR objects that can be freely manipulated and expressed
in MR space, unconstrained by physical laws, holds the
potential to expand functionalities and address challenges
in HRC.

In human communication, abstract instructions are fre-
quently conveyed through gestures and directive words;
these abstract instructions suggest indirectly the unspoken
intentions of the instructor rather than explicitly provide
detailed information about the subjects [7], [8]. Moreover,
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FIGURE 1. Information flow of the SMP-MRO system, which considers
three levels of space: Physical Space, Cyber-Physical Space, and Cyber
Space. Physical Space is the space where people and robots actually
exist, and it includes the work space. Cyber-Physical Space is constructed
using MR, where the work space is abstracted and the objects contained
in it are given informational meaning. Cyber Space is a complete
information space, where user actions and object states are abstracted
and exist as information.

many daily life tasks prioritize task completion itself, with
less emphasis on the specifics of task execution.

For achieving natural and fluent interaction between
human and robots while following abstract human instruc-
tions, it is desirable for robots to execute tasks in their own
efficient way based on the surrounding task environment.

In this paper, we propose Symbolic Motion Planning
based on Mixed Reality Operation (SMP-MRO) as a system
that abstracts the operating procedure of task execution
demonstrated by object manipulation in MR space into a
symbolic partial order plan. The system then reconstructs
a motion plan to reach the target state considering the
real-space conditions surrounding the robot. In contrast to
conventional MR-HRI systems, where robots are taught
directly in MR space, SMP-MRO considers the teaching
actions indicated by the instructor as viable procedures.
After abstraction using a reachability graph (RG), the system
generates and executes feasible operation plans, satisfying
physical constraints and other conditions in the operating
environment, using a behavior tree (BT).

Specifically, SMP-MRO consists of three levels: Physical
Space, Cyber-Physical Space, and Cyber Space, as illustrated
in Fig.1. In Physical Space, the user associates MR objects
with the operation target or robot and defines the MR space,
including the task environment, in Cyber-Physical Space.
Subsequently, in the MR space, the user intuitively illustrates
the action procedure, and data representing the essence of
the action intention are sent to Cyber Space. These data
correspond to state changes, such as where to place an
object in a pick-and-place task. In Cyber Space, the task
environment state and actions that cause state transitions
are represented by RG. The system generates specific robot
action execution instructions using BT and monitors states
while selecting actions accordingly.

This approach provides a useful framework for HRC sys-
tems, enabling robots to learn and recognize human operating
procedures in complex task execution. The effectiveness of
SMP-MRO is demonstrated through grasping manipulation
experiments with a mobile manipulator.

II. PREVIOUS RESEARCH
A. APPLICATION OF MR-HRI IN HUMAN-ROBOT
COLLABORATION
There has been significant research on HRC involving
AR/VR/MR technologies. Ostanin et al. represented a system
for interactive programming of industrial robots based on
MR [4]. They performed the work to planning the EE
geometric path for robot intuitively using MR device, and
analyzed the advantages of MR compared to AR/VR. This
research indicated the added value and potential of MR
in intuitive robot programming. Rosen et al. proposed
an Action-Oriented Semantic Map (AOSM) that combines
object manipulation behaviors and semantic information
about the environment to realize complex object manipu-
lation and navigation [9]. They performed the work where
the user teaches the robot an AOSM through MR-HMD to
plan the robot operation and navigation tasks. Then, they
confirmed that object manipulation information and semantic
maps are required for high-level action and navigation
teaching. These researches contribute to prove the superiority
of MR-HRI over conventional systems for unit-of-action
programming and teaching of robot in HRC. Compared to
these systems, the system presented in this paper allows
the autonomous robot to generate a modified motion plan
according to the peripheral condition of the robot in order to
achieve the intended original plan from the user.

On the other hand, to achieve natural and intuitive inter-
action in MR-HRC, efficient motion intent communication is
required. Rosen et al. proposed a system to visualize proposed
robot motion over the user’s real-world view of the robot
and its environment using MR-HMD [10]. They compared
and verified robot arm movement tasks with three different
interfaces: no visualization, 2D monitor, and MR. Then, the
effectiveness of the MR interface was demonstrated, with a
16% improvement in collision prediction accuracy and a 62%
decrease in task completion time compared to the 2Dmonitor.
However, the proposed system only realizes the transmission
of motion intentions from the robot to the human, and
there remain unresolved issues regarding the transmission
from the human to the robot. Maccio et al., carried out
a user study to evaluate whether visualization of dynamic
robot motion could effectively improve the human-robot
collaboration process [11]. The results of the experiment
improved the likelihood of collisions and the number of
human interventions, but not the time required to complete
the task. The reason may be that the superiority of MR
devices in HRC cannot be expressed through scripted action
plans. To solve these problems, SMP-MRO enables two-way
communication of information between humans and robots
and creates action sequences that the robots themselves
can perform to achieve the illustrated tasks. Taking this
into account allows for efficient planning and flexible
responses.

We also mention studies that demonstrate the great
development potential of MR-HRC systems. Del Merico et
al. proposed a system that focuses on spatial computing
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and egocentric sensing capabilities of MR devices to enable
intuitive and natural interactions [12]. They also argued
for the potential of the MR-HRC system through various
collaborations with robots, such as mission planning for
inspection, gesture-based control, and immersive remote
control. However, teaching robots about user behavior and
making them operate in uncertain environments can be diffi-
cult. For these issues, SMP-MRO abstracts the plan through
partial-order planning and allows the robot to interpret the
plan within its surrounding environment, providing flexibility
in the robot’s behaviors.

B. RESEARCH ON ACTION PLAN
Classical planning, exemplified by STRIPS [13], is an action
plan that assumes complete information and deterministic
state transitions. In STRIPS, action sequences are generated
based on the action set defined by the preceding state of the
action, the result of the action, and the set of initial and target
states. For TAMP (task and motion planning), which involves
planning the action sequence and generating the robot’s
movements concurrently, an action plan in a hybrid space that
combines continuous variables such as robot or object posture
with discrete variables such as grasping state is essential [14].
Garrett et al. proposed the hybrid backward-forward (HBF)
algorithm [15]. In HBF, state transitions from the initial state
to the target state are performed through a forward search
with continuous selection of possible actions at each point in
time, leading to the generation of the reachability graph (RG).
Backward search utilizes the generated RGs to efficiently
sample actions toward the target state. Furthermore, Jial
et al. proposed an extended method of cg (contact graph)
that incorporates motion relationships detected from the real
environment. [16]. This method proves highly effective for
tasks that are challenging to accomplish using traditional
planning languages, such as Planning Domain Definition
Language (PDDL) [17].

In a real environment, comprehending all the necessary
environmental information and processing uncertain data,
such as sensor recognition and action results, pose significant
challenges. Peter et al. proposed the 3T architecture, which
involves structuring three hierarchies: the deliberation layer
in the upper layer, the sequencing layer in the middle layer,
and the reactive skill layer in the lower layer. This architecture
enables optimizing different levels of thinking to handle
complex tasks effectively [18]. Matsuoka et al. adopted a
hierarchical architecture for the robot’s error recovery action
plan [19]. The recovery process involves setting a new target
based on error factor inference using Bayesian networks and
modifying and reusing part of the partial order plan.

Recently, there has been a growing trend of applying BTs,
commonly used in game AI, to the field of robotics. BTs are
utilized for state monitoring and action selection, offering
advantages over finite state machines (FSM), particularly
its high modularity. French et al. demonstrated the appli-
cation of BT in achieving high-difficulty robotic learning

from demonstration (LfD) tasks, using it as an alternative
representation for complex tasks [20]. Their study introduces
the BT-Expresso algorithm, which generates a decision
tree using CART (classification and regression tree) from
illustrations and then converts the generated decision tree
into a BT. Colledanchise et al. proposed an algorithm for the
automatic generation and updating of BT based on planning
algorithms, enabling robot control in dynamic environments
[21]. The modularity of BT improves the adaptability of the
plan to errors and changes in the environment. Moreover,
Colledanchise et al. presented the planning and action using
behavior tree (PA-BT) algorithm for the automatic generation
of BT [22]. PA-BT expands BT by sampling actions from a
template, considering target constraints.

Yang et al. addressed the challenge of operating BT in
environments with only partial observation by proposing
adjoint sensing and action (ASA), a model that enables
the acquisition of expected environmental information. ASA
ensures that the operating environment of PA-BT must be
completely observable [23]. In ASA, automatic generation
and updating of BT are achieved through ASA-BT, an exten-
sion of conventional BT, by treating planning problems of
robot behavior and sensing as a partially observable Markov
decision process (POMDP).

BT can divide the robot’s movement and represent it as a
continuous sequence of actions. Leveraging this feature, Han
et al. enabled the recording of semantic actions by making the
robot act based on BT [24], [25].

As demonstrated above, the BT has been used as an execu-
tion procedure generated based on abstracted strategic-level
action plan such as RG and methods have been proposed
to provide flexibility in the robot’s action plan based on
the current situation. However, there have been no instances
of autonomously generating a flexible action plan for a
robot from a person’s illustrative behavior. To address this
issue, this study proposes SMP-MRO, which autonomously
generates RG based on a user’s illustrative behavior in
MR space, achieved through MR-HRI. Subsequently, the
robot generates and executes an action plan based on its
own physical situation using BT. SMP-MRO combines the
advantages of the MR-HRI in the HRC system mentioned
earlier and the feasibility of a newHRC system that integrates
robot action planning using RG and BT.

III. SYSTEM CONFIGURATION OF SYMBOLIC MOTION
PLANNING BASED ON MIXED REALITY OPERATION
(SMP-MRO)
A. ILLUSTRATIVE BEHAVIOR IN A MIXED REALITY SPACE
In this study, the MR space is created using Microsoft
HoloLens2 as the MR-HMD. The MR system was developed
based on the OpenXR standard, utilizing Unity and MRTK
(Mixed Reality Toolkit). The user engages in intuitive
illustrative actions by manipulating the MR object with
hand motions. Additionally, other representations using MR
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objects can be employed to convey the robot’s behavioral
intentions to the user.

B. REPRESENTATION OF PARTIAL ORDER PLAN IN
REACHABILITY GRAPH
RG is a generation and representation of all reachable
state transitions from the initial state to the goal state; it
is presented as a partial order plan based on illustrative
actions in MR space. When the operation procedure becomes
complex, the number of reachable state transition candidates
increases exponentially. To address this issue, constraints are
taken into account based on the contents of the plan, such as
task details, user intent, and physical conditions. This process
helps determine whether certain candidates are reachable,
narrowing down the options. Following that, a route search
using the A* algorithm is performed on the RG, with weights
assigned according to the task’s specific requirements, such
as success rate for tasks requiring precision movements,
or movement distance and execution time for tasks achievable
with rough motions. The search result is then utilized as the
fundamental motion plan for the robot.

C. ROBOT TASK EXECUTION USING BEHAVIOR TREE
Action selection and error recovery processes use PA-BT to
enable the robot to execute its action plan within its own
surrounding environment in accordance with RG. The states
and actions in RG are expressed in a way that is independent
of any specific robot, resulting in a highly abstract plan.
Hence, the robot needs to compare its potential actions with
the surrounding environment and adapt the RG interpretation
accordingly. The RG is deployed by acquiring actions capable
of performing the necessary state transitions from the action
template prepared in advance for each robot.

The RG/BT component operates on a robot operating
system (ROS), and the robots operating in this system must
be compatible with ROS. Additionally, the MR component is
connected to the ROS framework through ROS#.

IV. COMPONENTS OF SYMBOLIC MOTION PLANNING
BASED ON MIXED REALITY OPERATION (SMP-MRO)
A. DEFINING THE PLANNING ENVIRONMENT IN THE
MIXED REALITY LAYER
1) DEFINITION OF MR SPACE BY LINKING MR-OBJECTS TO
REAL OBJECTS
The coordinate system of a robot is typically right-handed.
However, in the HoloLens2 process, on the specification
of development tools, both the user and robot are assumed
to be in a left-handed coordinate system only in MR
layer, as shown in Fig.2. In the current task, initial
positions uPr1 ,

uPr2 , · · · ,
uPrn and

uPo1 ,
uPo2 , · · · ,

uPom of
robots r and o in the user’s world coordinate system
are set for the robot r = {r1, r2, · · · , rn} and objects (bot-
tles) o = {o1, o2, · · · , om} in the execution environment.
The robot’s homogeneous transformation matrix for the
world coordinate system, based on uPrn , is calculated

FIGURE 2. Relationship between the coordinate systems of the user, the
robot, and each of the objects in the workspace. If the coordinate system
orientation and state of each object in the user coordinate system and
those in the robot coordinate system differ, the user and robot
perceptions of the objects will not match, and therefore coordinate
transformation is necessary.

as shown in (1).

Turn =
(
R −uPrn
0 1

)
(1)

where, P = (x, y, z)T ∈ R3 represents the initial state and is
expressed in 3-dimensional coordinates, and R represents the
rotation matrix in the left-hand coordinate system of the user
coordinate system. However, in this paper, we do not acquire
information to calculate the rotation matrix as we proceed
under the assumption that the world coordinate systems of
the user and the robot are aligned in the same direction.

Using the homogeneous transformation matrix, we calcu-
late the initial position of the object to be manipulated in the
world coordinate system of each robot, as shown in (2).(rnPo

1

)
= Turn

(uPo
1

)
(2)

Through the aforementioned process, we obtain the initial
positions rnPo1 ,

rnPo2 , · · · ,
rnPom of the object in the world

coordinate system of each robot.

2) TARGET STATE SETTING BY ILLUSTRATIVE BEHAVIOR IN
MR SPACE
By manipulating the object o, the target state or transition
points, denoted as uG = {uGid

1 , uGid
2 , · · · , uGid

l } are set. Here,
G = (x, y, z)T ∈ R3 represents the target state in 3D coordi-
nates. The association between the generated target state uG
and the object’s ID: id ∈ {1, 2, · · · ,m} is established. If there
are order specifications for the operations, the constraint
condition is expressed as Gi ≤ Gj. Using the homogeneous
transformation matrix calculated when defining the MR
space, uG is transformed into the world coordinate system of
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each robot, as depicted in (3).(rnG
1

)
= Turn

(uG
1

)
(3)

Using the above process, we obtain the target state
rnGid

n = {
rnGid

1 rnG
id
2 , · · · , rnGid

l } and the constraint condition
C = {C1,C2, · · · ,Ck} of the object in the world coordinate
system of each robot.

B. ABSTRACTION AND DETERMINATION OF PLANS AT
THE REACHABILITY GRAPH LAYER
Alg.1 outlines the process of generating RG based on the
information received from the MR layer.

First, receive rnPo,rnGid , and C from the MR layer.
However, as rnPo and rnGid are defined in the left-handed
coordinate system, they need to be transformed to the robot’s
world coordinate system (right-handed coordinate system) by
multiplying them with the matrix A, as shown in (4), and (5).
The appropriate matrix A is set for each robot.

rPo = ArnPo (4)
rGid = ArnGid (5)

Generate RG from the calculated rPo and rGid , and the
received C.

1) CREATION OF CONDITION NODE
In Alg.1, the GenerateFirstNode function initially creates a
node representing the initial state of object o. The EXPAND-
NGRAPH function sequentially creates nodes representing
transitionable states from two lists: P, which contains states
of object o, andG, which contains target states. P′ is obtained
by converting P using the ChangeState function to represent
the post-transition state. Additionally, DeleteGoal is used
to remove the achieved goal states from G, resulting in a
list of unachieved goal states denoted as G′. Based on P′

and G′, RG is further extended depth-first by employing the
EXPANDGRAPH function.

Algorithm 1 Generate Reachability Graph
1: Input:
2: P← {rPo1 ,

rPo2 , · · · ,
rPom}

3: G← {rGid1 , rGid2 , · · · , rGidl }
4: constraints
5: Output:
6: RG(ReachabilityGraph)
7: RG.GenerateFirstNode(P,G)
8: function ExpandGraph(P,G)
9: for all goal ∈ G do

10: if goal not in constraints then
11: P′← ChangeState(P, goal)
12: G′← DeleteGoal(G, goal)
13: RG.GenerateNode(P′)
14: if G′ ̸= {φ} then
15: EXPANDEGRAPH(P′,G′)
16: return RG

2) SEARCHING FOR A SEQUENCE OF ACTION
A plan search is conducted by assigning arbitrary weights
to the edges of the created RG. For example, in a sorting
task, the weight can be set based on the expected travel
distance of a robot to pick and place an object, enabling a
more efficient achievement of the goal compared to blindly
following instructions. The plan resulting from the search is
represented as the goal constraint Cgoal and sent to the BT
layer.

C. MOTION PLANNING AT THE BEHAVIOR TREE LAYER
In BT, nodes are ticked at regular intervals, and the constituent
nodes are executed in a depth-first manner. The main
components of BT are the Control node, Condition node, and
Action node. The explanation of each node is as follows.

Control Node: Within the Control Node, there are the
Sequence Node (→) that executes its child nodes in order and
fails itself if even one child node fails, and the Fallback Node
(?) that fails itself if all child nodes fail. When executing its
own child nodes in order, there are a Sequence Node(→) that
fails itself if even one child node fails, and a Fallback Node(?)
that fails itself if all child nodes fail exist in the Control
Node. There are also Reactive Sequence Node (r →) and
Reactive Fallback Node (r?) that redo the execution of child
nodes each time they are ticked, enabling action planning that
includes re-actions. Additionally, the Priority Fallback Node
(p?) allows plan switching during BT execution. It cancels
and switches running child nodes if there is a change in their
priority.

1) FORMULATION OF ACTION PLAN
The Configuration Space (C-Space)S is the Cartesian product
of the set of variables V1, . . . ,Vn that constitute the C-Space.
A state s = (v1, . . . , vn) ∈ S consists of values vi assigned
to each variable Vi. The constraint conditions C1, . . . ,CK

are expressed as conditional expressions involving one or
more state variables Vi, which evaluate to either True or
False. Actions a comprise a set a.con = {C1, . . . ,CK } repre-
senting means preconditions and a set a.eff = {E1, . . . ,El}
representing effects. Both a.con and a.eff are sets of
constraints. Let a.eef (s) denote the effect of an action in state
s = (v1, . . . , vn) that satisfies precondition a.con. a.eef (s)
updates the elements in state s to reflect the effect of the
action.

The planning problem is to find an action sequence
a1, . . . , am that satisfies am.eef (. . . a1s0)) ∈ Cgoal , given a
set0 of allowable actions, starting from the initial state s0 and
reaching the goal state.

2) GENERATING THE INITIAL TREE
Alg.2 represents themain loop of BT generation. To fulfill the
received Cgoal from the RG layer, SequenceNode generates a
Sequence Node that includes a Condition Node representing
the target constraint as a child node. If the node fails,
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GetFailedNode identifies the Condition Node nf that failed
in the breadth-first search.

Algorithm 2 Reactive Execution with Behavior Tree
1: T ← ∅
2: for c in Cgoal do
3: T ← SequenceNode(T , c)
4: while True do
5: do
6: r ← Tick(T )
7: while r ̸= Failure
8: nf ← GetFailedNode(T )
9: if nf is ConditionNode then
10: T ← EXPANDTREE(T , nf )

3) CREATION OF SUB TREE
The expansion of T by ExpandNode is carried out as shown
in Alg.3. First, GetAllActTemplatesFor searches for actions
from the action templates that satisfy the failed Condition
Node cf . Unlike PA-BT, all actions with the effect of
satisfying satisfying cf are generated, making the priority of
actions variable. Next, as a child node of ReactiveSequence,
a precondition Condition node ca and an Action node are
created in that order. Finally, the algorithm checks for any
constraint conflicts. When conflicts occur, it handles them by
increasing the priority of the added subtree until the conflicts
are resolved. If the subtree has the highest priority, it will be
generated above the priority of its parent.

V. FUNCTIONAL VERIFICATION THROUGH ACTUAL
EXPERIMENTS
The function of this system was verified by conducting three
patterns of operation confirmation experiments involving the
Pick-Place task.

A. DEFINITION OF STATES AND ACTIONS HANDLED BY
YOUBOT
In this experiment, the mobile manipulator youBot (KUKA)
is used as the robot to be instructed. YouBot does not
have a pre-defined map, but it constructs the map online
during operation. The origin of the world coordinate system
of the generated map aligns with the origin of the base
coordinate system when youBot is activated. The definition
of states and actions depends on the content of the task,
and for youBot, the states and actions are defined as
follows.

1) DEFINITION OF STRUCTURES AND STATE VARIABLES
The structure handled by the state variable is defined as
follows.

• Point: stores position in 3 dimensions (x, y, z):
double x, double y, double z

• Quaternion: quaternion:
double x, double y, double z, double w

• Pose: positional posture expression:
Point pos, Quaternion orientation

Algorithm 3 Behavior Tree Expansion
1: function ExpandTree(T , cf )
2: AT ← GetAllActTemplatesFor(cf )
3: if AT is ∅ then
4: T ← GetRecoveryTreeForCondition(T , cf )
5: return T
6: Trfall ← ReactiveFallbackNode(cf )
7: Tpfall ← ∅
8: for a in AT do
9: Tseq ← ∅

10: a← GetActionValuesFromCondition(a, cf )
11: for ca in a.con do
12: a← GetConditionValuesFromAction(ca, a)
13: Tseq ← ReactiveSequenceNode(Tseq, ca)
14: if ca is not satisfied then
15: Tseq ← EXPANDTREE(Tseq, ca)
16: Tseq ← ReactiveSequenceNode(Tseq, a)
17: Tpfall ← PriorityFallbackNode(Tpfall ,Tseq)
18: Trfall ← ReactiveFallbackNode(Trfall ,Tpfall )
19: T ← Replace(T , cf ,Trfall )
20: while Conflict(T ) do
21: T ← IncreasePriority(Trfall )
22: return T

• Area: expression of positional area (circular with radius
specified):
Point pos, double radius

• Object: expression of object information (uid is the id
for identification):
string uid, Pose pose

However, Pose represents the map coordinate system that
youBot has.

For Area l, we denote p ∈ l when Point p is in the domain.
Regarding the set of variables V1, . . . ,Vn constituting

the C-Space, the state variables handled by youBot in the
Pick-Place action plan for this experiment are defined as
follows.
• Pose r : self-positioning of youBot
• string h: uid. of the grasped object. If it is not grasped,
h = None

• Object ouid : known object info
• Area luid : given position range

2) CONSTRAINTS TEMPLATE
Constraints can be True or False. youBot handles constraint
conditions as follows.
• IsObjectAt(Object o, Area l):
True for o.pose.pos ∈ l, or False otherwise

• IsRobotCloseTo(Point p, double d = 0.9):
True for r .pos ∈ l for a circular area l with position p
and radius d , or False otherwise

• IsHandFree():
True for h = None, or False otherwise

• IsGraspdObject(string uid):
True for h = uid , or False otherwise

• IsAreaFree(Area l):
True for ∀ouid .pose.pos /∈ l, or False otherwise
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3) ACTION TEMPLATE
An action template defines the actions that youBot can
perform. It consists of a precondition (con) and an
effect (eff). An action can be executed if the precondi-
tions are met. Successful execution of the action satis-
fies the constraint conditions set for the effect. In this
experiment, MoveTo, Pick, and Place are defined as
follows.

MoveTo(Area l):
con:
eff : IsRobotCloseTo(l.pos, l.radius)

Pick(Object o):
con: IsHandFree()

IsRobotCloseTo(o.pos)
eff : IsGraspdObject(o.uid)

Place(Object o, Area l):
con: IsGraspdObject(o.uid)

IsRobotCloseTo(l.pos, l.radius)
IsAreaFree(l)

eff : IsHandFree()
IsObjectAt(o, l)

B. CASE1: SIMPLE PICK-PLACE TASK
In this task, we checks to see the robot select an efficient
approach in own surrounding environment and complete the
plan without simply following the plan as indicated by the
user.

1) PLANNING IN MIXED REALITY SPACE
The Case1 experiment is performed in the environment
shown in Fig.3a. Users give natural instructions by plan-
ning for objects located close to themselves. In the
environment of Fig.3a, the user plans are following
order:

(U1) O0 ∈ P0→ O0 ∈ G0
(U2) O1 ∈ P1→ O1 ∈ G1
(U3) O2 ∈ P2→ O2 ∈ G2

After planning, the actual MR space becomes Fig.3b.

2) PROPOSED SEQUENCE OF ACTIONS BY GENERATING
REACHABILITY GRAPH
The information obtained from planning is P = {P0,P1,P2},
G = {G0,G1,G2}. An RG of Fig.4 was generated for this
information. In this RG, nodes O0 ∈ P0,O1 ∈ P1,O2 ∈ P2
were initially created to represent the initial state. When any
node is generated, the RG grows by generating new nodes
for target states that are not satisfied at that node and also
do not satisfy the constraints one by one, in depth-first order.
In this way, all reachable state transitions can be represented,
and all edges terminate at nodes that finally satisfy all target
states (O0 ∈ G0,O1 ∈ G1,O2 ∈ G2). The above generation
confirms that all reachable state transitions are represented in
the generation of RG.

3) DEPLOYMENT OF RG TO BT BY ROBOT ACTION FOR
AUTONOMOUS TASK EXECUTION
An initial tree of BT is generated for the selected sequence
of state transitions. In this experiment, an initial tree was
generated under the Sequence node with additional state
nodes in the order IsObjectAt(O2, l2), IsObjectAt(O1, l1),
IsObjectAt(O0, l0). L0, L1, and L2 represent the target regions
centered on G0, G1, and G2, respectively. When the robot
actually acts, it ticks the initial tree in sequence, but the initial
tree needs to grow because all objects are in their initial state
and do not meet the target state. As an example, the BT grown
to satisfy IsObjectAt(O2, l2) is shown in Fig.5. By performing
BT growth for these unsatisfied state and action nodes, the
robot performs the task autonomously. For IsObjectAt(O1, l1)
and IsObjectAt(O0, l0), BT grew as before.

4) CONFIRMATION OF ACTUAL OPERATION
YouBot executed the task autonomously as shown in Fig.6
through the planning in MR, RG generation, and BT growth.
In response to the user’s instruction for the following
procedure:

(U1) O0 ∈ P0→ O0 ∈ G0
(U2) O1 ∈ P1→ O1 ∈ G1
(U3) O2 ∈ P2→ O2 ∈ G2

youBot executed the operations in the following order:
(R1) O2 ∈ P2→ O2 ∈ G2
(R2) O1 ∈ P1→ O1 ∈ G1
(R3) O0 ∈ P0→ O0 ∈ G0

From this experiment, it was confirmed that this system
can select the most appropriate approach for the robot’s
surrounding environment, taking the user’s teaching into
account.

C. CASE2: PICK-PLACE TASK WITH CONSTRAINTS
In this experiment, we will verify the generation of appro-
priate RGs according to the constraints by performing a
Pick-Place task involving reordering where constraints occur.

1) PLANNING IN MIXED REALITY SPACE
TheCase2 experiment is conducted in the environment shown
in Fig.7a. The user performs a swapping action by placing
O0 and O1 in the free space O0 is placed where O1 was, and
O1 is placed where O0 was. The environment after planning
is shown in Fig.7b. The user plans in the following order:

(U1) O0 ∈ P0→ O0 ∈ G0
(U2) O1 ∈ P1→ O1 ∈ G1
(U3) O0 ∈ G0→ O0 ∈ G2
(U4) O1 ∈ G1→ O1 ∈ G3

In this task,O0 andO1 are moved twice each, so constraint
conditions are needed to represent the order of operations
according to the user’s intention. The generated constraints
to express the intention areG0 ≤ G2 andG1 ≤ G3. Addition-
ally, physical constraints are required to ensure that objects
do not exist at the placement destination during reordering,
so G0 ≤ G3 and G1 ≤ G2 are generated.
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FIGURE 3. (a) : Reconstruction of the work environment of the Case 1 experiment in MR space, as seen from the user’s perspective. The blue MR
objects are tied to objects in the real environment. (b): Target state set by the user’s illustrative behavior to the environment in (a). The blue MR object
in (b) represents the final target state of the object defined in (a), and the purple MR object represents the initial or intermediate target state of one of
the MR objects.

FIGURE 4. RG generated for the target state set in Fig.3b. Each node
represents a state in the workspace, and the arrow edges of the dotted
line represent state transitions. Additionally, the arrow edges of the
practice are the sequence of state transitions selected considering the
robot’s surrounding environment.

2) GENERATION OF REACHABILITY GRAPH CONSIDERING
CONSTRAINTS
The information obtained from planning is P = {P0,P1},
G={G0,G1,G2,G3}, C={G0≤G2,G1≤G3,G0≤G3,G1≤G2}.
RG of Fig.8 was generated for this information. In this
RG, a node representing the initial state (O0 ∈ P0,O1 ∈ P1)
was generated, and as in Case 1, it attempted to gen-
erate a node with state transitions to the unachieved
target state {G0,G1,G2,G3}. However, none of the con-
straints {G0 ≤ G2,G1 ≤ G3,G0 ≤ G3,G1 ≤ G2} are satis-
fied, so the only target state that can make a state transition
is {G0,G1}. Then, when all edges converge at the node
(O0 ∈ G0,O1 ∈ G1) representing the state of moving all
objects into the free space, RG is generated for the remaining
target states {G2,G3} because all the constraints are satisfied
at this node, and RG is completed. Finally, as in Case 1,
a sequence of state transitions is selected.

FIGURE 5. Sequence of state transitions chosen in Fig.4 is executed as
the robot grows BT in its own way. This figure shows the BT grown from
the initial tree to execute the state battle in O2 ∈ P2 → O2 ∈ G2.

FIGURE 6. Robot in action to carry out the user’s instructions. (a) :
Execution of O2 ∈ P2 → O2 ∈ G2, (b): Execution of
O1 ∈ P1 → O1 ∈ G1 and O0 ∈ P0 → O0 ∈ G0.

3) CONFIRMATION OF ACTUAL OPERATION
YouBot executed the task autonomously as shown in Fig.9
through the planning in MR, RG generation, and BT growth
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FIGURE 7. (a) : Reconstruction of the work environment of the
Case 2 experiment in MR space, as observed from the user’s perspective.
The blue MR objects are tied to objects in the real environment. (b):
Target state set by the user’s illustrative behavior to the environment in
(a). The blue MR object in (b) represents the final target state of the
object defined in (a), and the purple MR object represents the initial or
intermediate target state of one of the MR objects.

FIGURE 8. RG generated for the target state set in Fig.7b. Fewer state
transitions are actually generated compared to the state transitions
assumed from the length of the user’s movement sequence. This is
because state transitions that do not satisfy the constraint conditions
were eliminated.

process. In response to the user’s instruction for the following
procedure:

(U1) O0 ∈ P0→ O0 ∈ G0
(U2) O1 ∈ P1→ O1 ∈ G1
(U3) O0 ∈ G0→ O0 ∈ G2
(U4) O1 ∈ G1→ O1 ∈ G3

youBot executed the operations in the following order:

(R1) O1 ∈ P1→ O1 ∈ G1
(R2) O0 ∈ P0→ O0 ∈ G0
(R3) O1 ∈ G1→ O1 ∈ G3
(R4) O0 ∈ G0→ O0 ∈ G2

The formation and growth of BTs also took place in
this case as in Case 1. This experiment confirmed that
RG generation correctly enumerates only reachable state
transitions according to the constraints.

D. CASE3: ROBOT AUTONOMOUS RECOVERY TO
PERFORM TASK
In this experiment, obstacles that were not defined in the
planning environment were added during task execution.
Under this condition, we check if the robot is capable
of autonomous plan execution while making a recovery
plan.

FIGURE 9. Robot in action to carry out the user’s instructions.
(a) :Execution of O1 ∈ P1 → O1 ∈ G1 and O0 ∈ P0 → O0 ∈ G0,
(b):Execution of O1 ∈ G1 → O1 ∈ G3 and O0 ∈ G0 → O0 ∈ G2.

FIGURE 10. (a) : Reconstruction of the work environment of the
Case 3 experiment in MR space, as observed from the user’s perspective.
The blue MR objects are tied to objects in the real environment. (b):
Target state set by the user’s illustrative behavior to the environment in
(a). The blue MR object in (b) represents the final target state of the
object defined in (a), and the purple MR object represents the initial or
intermediate target state of one of the MR objects.

1) PLANNING IN MIXED REALITY SPACE
The Case3 experiment is performed in the environment
shown in Fig.10a. So as to move each object, the user planed
following order:

(U1) O0 ∈ P0→ O0 ∈ G0
(U2) O1 ∈ P1→ O1 ∈ G1

The target state resulting from this planning is shown in
Fig.10b.

2) RECOVERY SUPPORT BY BEHAVIOR TREE GROWTH
The robot performs autonomous task execution by generating
RG for the information obtained from planning, selecting
a sequence of state transitions, and materializing them
into BT. In the current experiment, however, an obstacle
Oa, which did not exist when the planning environment
was defined, is placed at the location of G1 during task
execution. As in Case 1, YouBot aims to perform the task by
growing BT, but when executing IsObjectAt(O1, l1) to satisfy
O1 ∈ P1→ O1 ∈ G1, the Condition Node of IsAreaFree(l1)
is not satisfied, and the Action Node of Place(O1, l1) fails,
which forces the sub-tree to grow. Therefore, a tree was
added to check the conditions of IsObjectAt(Oa, lfree1)
to satisfy IsAreaFree(l1), as shown in Fig.11. lfree refers
to any free space that does not affect task execution.
In this case, the Condition Nodes of IsGraspedObject(O1)
and IsGraspedObject(Oa) cannot be satisfied simultaneously,
and interference of constraint conditions occurs. Hence, the
sub-tree was moved up in the order of execution until the
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FIGURE 11. BT with an additional recovery tree that removes obstructions
to place O1. The addition of the recovery tree enables flexibility while
dealing with unforeseen conditions.

FIGURE 12. Robot actually in action to carry out the user’s instructions.
(a) :Discovery of Oa and placement of O1 into lfree, (b):Oa Elimination of
Oa and rearrangement of O1.

interferencewas resolved. SinceYouBot is graspingO1 at this
stage, Place(O1, lfree2) is performed to eliminate Oa, and Oa
is recovered by placing it on lfree1.

3) CONFIRMATION OF ACTUAL OPERATION
YouBot executed the task autonomously as shown in Fig.12
through the planning in MR, RG generation, and BT
growth. As in Cases 1 and 2, RGs were generated from the
user’s illustrated plan. Additionally, in the autonomous task
execution using BT, for obstacle Oa, YouBot eliminated Oa
to free space lfree1 by placing O1 once in the free area lfree2.
Subsequently, it acted again to satisfyO1 ∈ G1. This confirms
that the robot is capable of planning its own recovery plan
and executing it autonomously, even for conditions that are
not defined in the planning environment.

VI. CONCLUSION
In this paper, we proposed a system that includes intuitive
planning by MR, abstracting the plan by RG, and searching
for optimal approaches for arbitrary indicators, such as work
time and travel distance, to enable autonomous task execution
of robots using BT, which resembles instructions from a
person to a robot. Furthermore, we conducted experiments
to verify the feasibility and effectiveness of this system. The
adaptability of the system can be achieved by constructing an
appropriate MR space for the environment and preparing an
action template suitable for the specific robot.

SMP-MRO is the system that realizes smooth and natural
communication between humans and robots. Therefore, this
system can be expected to be used in situations where
robots that can flexibly interpret and communicate human
instructions are required, such as coexistence with robots
in daily life, education, and welfare. However, there are
still major issues that need to be improved in order to put
SMP-MRO into practical use, as shown below.
In the MR layer, automating the definition of planning

environment and increasing the means of communication
with robots are important issues to reduce the load on users.
TheRG layer should allowSMP-MRO to automatically select
weights based on the task content to accommodate more
general situations. Furthermore, the system can be further
optimized by re-proposing options to the robot. The BT layer
provides more flexibility by automating the selection process
based on evaluations such as recovery plan success rate and
execution time, and deciding whether to fix a failed recovery
plan or start another recovery plan. This leads to efficient task
execution.
As mentioned above, these improvements hold great

promise for further development and sophistication of the
system, and the practical application of SMP-MRO is a future
challenge.
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