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ABSTRACT A handshake operation can mitigate workload imbalance and interference between twin
transporters in a material handling system. Terminal operators in a rail-based automated container terminal
can employ the handshake operation to twin overhead shuttle cranes (OSs) under maritime demand uncer-
tainty. Since a handshake location is critical to collaboration performance, terminal operators often rely on
simulation experiments with a manual iterative design to determine optimal handshake locations. However,
the simulation optimization is still challenging when a simulation execution is computationally expensive.
This study proposes a Bayesian optimization-based approach to expedite the decision-making process. The
approach infers the conditional outcomes of a simulation and actively searches optimal handshake locations.
Our optimization results show that the proposed approach maximizes the collaborations between the twin
OSs within fewer simulation runs. This study also provides extensive simulation analysis of the handshake
locations. The experiments indicate that a handshake location has a significant influence on the required
space for handshake operations and the workloads of the twin OSs.

INDEX TERMS Container terminal, handshake operation, simulation, simulation optimization.

I. INTRODUCTION
In response to growing transportation volume, material
handling systems such as warehouses and container termi-
nals have adopted twin transporter systems [3], [4], [5].
Collaboration between transporters, i.e., workers, vehicles,
and cranes, in these systems is critical to performance since
it can mitigate interference and workload imbalance [6].
However, improper collaboration design can lead to perfor-
mance degradation due to significantly increased blocking
and congestion between twin transporters. In the container
terminal industry, terminal operators have sought an efficient
design of collaborative operations for upcoming maritime
transportation demands [7], [8].
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Container terminals function as a multimodal interface
between the seaside for vessel berthing and the landside
for container storing [9], [10]. The bottleneck in terminal
operations has shifted from the seaside to the landside with
the development of seaside equipment and their technolo-
gies [11]. A terminal’s global competitiveness depends on
shortening the lengthy turnaround times required by mega-
vessels. Lee et al. [1] investigated a novel rail-based auto-
mated container terminal (RACT) to shorten the turnaround
times of mega-vessels and achieve low-carbon sustainable
development in the container terminal industry. Fig. 1 shows
the schematic layout of a RACT.

The landside in the RACT comprises multiple overhead
rails to store and transport containers. Twin overhead shuttle
cranes (OSs) hanging from each overhead rail transport con-
tainers between flatcars and external trucks (ETs). The OSs
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FIGURE 1. Schematic layout of a RACT [1].

cannot pass over each other, so interference between them
inevitably occurs due to time-variant port operations. To mit-
igate interference, the terminal operators in the RACT can use
a handshake operation to divide a task into two subtasks with
shorter travel distances based on handshake locations. The
workload is the time required to complete all tasks. Since a
handshake location is critical to collaboration performance,
the terminal operators aim to optimize the locations within a
limited planning time.

Terminal operators have widely relied on simulation-based
decision-making to enhance container terminal performance,
which shows a black-box function from complex and uncer-
tain operations [12], [13], [14]. One practical simulation
optimization approach for handshake locations is a manual
iterative method. In addition, many studies perform exhaus-
tive simulation runs to identify optimal handshake locations
for strategic yard operations, i.e., yard crane scheduling and
storage space allocation, in container terminals [3], [7], [15].
However, due to the computational expense of a single run
of a high-fidelity and large-scale simulation, it can be chal-
lenging to provide optimal locations within a limited planning
time.

As operational unreliability may lead to significant
changes in original plans and high adaptation costs to mar-
itime demand uncertainty, operational reliability has become
a critical factor in the container terminal industry [16]. When
a terminal operator establishes operational planning for yard
operations, the operator can consider demand uncertainty to
achieve handshake locations with improved reliability. This
study addresses a scenario-based approach to optimize the
handshake locations. The approach accounts for an uncertain
parameter as a finite set of deterministic scenarios based on
their probabilities [17]. Since the scenario-based approach
requires a corresponding increase in simulation time to the
number of scenarios, we focus on the acceleration of the
simulation optimization.

This study makes the following contributions: (1) we
introduce a scenario-based handshake location determination
model (SHLD) based on mixed-integer programming (MIP)
and present a discrete-event simulation model to describe the
collaborative activities between twin OSs; (2) we propose a

Bayesian optimization-based decision-making for handshake
locations under maritime demand uncertainty and perform a
comprehensive simulation analysis of handshake locations on
the collaborative operations between twin OSs.

The remainder of this paper is organized as follows:
Section II reviews the literature and associated challenges.
Section III discusses the handshake operations in the twin
OS system and the SHLD. Section IV proposes our simu-
lation optimization approach for determining the handshake
locations under demand uncertainty. Section V provides the
simulation experiments and the results. Section VI concludes
with suggestions for future research.

II. LITERATURE REVIEW
Previous studies have investigated the collaborative oper-
ations of multiple cranes with predetermined handshake
locations. Briskorn et al. [18], who developed a scheduling
algorithm for twin cranes that could not pass each other,
showed that handshake operations synchronized yard crane
operations by mitigating the interference between cranes.
Carlo andMartínez-Acevedo [19] identified the effectiveness
of the priority rules for twin cranes in yard operations and
developed a branch-and-bound algorithm to optimize the
rules. Overlapping twin cranes triggered cooperative opera-
tions with a predetermined handshake location in the middle
of the yard block. This approach dynamically created new
branches during interference and minimized the makespan
of tasks with less computational time. Chen et al. [20],
who proposed an integrated scheduling model to synchronize
automated guided vehicles and yard cranes with a hand-
shake location along the crane pathway, confirmed that the
proposed model obtained near-optimal solutions close to
the optimal vehicle travel time. Zey et al. [3] suggested a
branch-and-bound algorithm for optimal twin-crane schedul-
ing with a dedicated handshake location. The proposed
algorithm accounted for the precedence constraints in hand-
shake operations. Zey et al. [3] also performed a simulation
analysis of the handshake location on the makespan for
all tasks. Han et al. [7] proposed an MIP model and a
genetic algorithm to minimize the makespan of all containers
with handshake operations. The experimental results indi-
cated that the proposed algorithm provided efficient solutions
with a fixed handshake location, preliminarily determined
by exhaustive simulation experiments. They also suggested
a prompt optimization of the handshake location for future
research. Chu et al. [21] suggested an MIP model and heuris-
tic approaches for a triple yard crane scheduling problem in
two adjacent container blocks considering variant container
handling time. Lee et al. [22] proposed a genetic algorithm
incorporating non-interference constraints for a multiple
quay crane scheduling problem. The experimental results
indicated that the proposed approach yielded near-optimal
solutions for both three and four quay crane cases.

Several studies have discussed optimization problems
under realistic uncertainties in container terminals. Zhen [23]
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proposed a scenario-based stochastic approach for optimal
yard template planning under demand uncertainty in the
global maritime logistics market. Gumuskaya et al. [24]
investigated a two-stage stochastic procedure for optimizing
periodic barge planning under container arrival uncertainty.
The procedure used a decision tree to predict the uncertain
factors described in theirMIPmodel; the expected barge costs
were optimized more effectively than alternative approaches.
Wang et al. [25], who proposed a mixed-integer nonlinear
programming model with a sample-average approximation
based on dual decomposition and Lagrangian relaxation
techniques, solved the container slot allocation problem
under demand uncertainty. The experimental results indicated
that the proposed model could achieve profit growth under
demand uncertainty. Liu et al. [26] proposed a scenario-based
stochastic model and its metaheuristic method for the berth
allocation problem to satisfy the service level under fluctu-
ating vessel arrival and operation times. Xiang and Liu [27]
investigated a robust optimization model for integrated berth
allocation with quay crane assignment under fluctuating ves-
sel arrival times and container quantities. Applying K -means
clustering to separate the uncertainty set achieved a less
conservative solution. Zhen et al. [28], who developed a two-
stage decision-making model and a metaheuristic approach
to optimize the berth allocation problem under fluctuating
vessel arrival and operation times, showed that the stochas-
tic approaches outperformed deterministic approaches under
uncertainty.

Other studies have performed simulation analyses and
optimizations of container terminals, e.g., the simulation
analysis of layout designs and recharging policies for
a battery-powered vehicle-based container terminal [29].
Gharehgozli et al. [8] evaluated the effects of priority rules,
handshake locations, and scheduling heuristics on yard oper-
ations. Yıldırım et al. [30] introduced a simulation model and
an optimization method using a swarm-based artificial bee
colony optimization algorithm to solve the berth allocation
problem. He et al. [12] employed a genetic algorithm-based
simulation optimization method to optimize decision-making
for sharing internal trucks among multiple container termi-
nals. Zeng et al. [31] developed an integrated simulation
model considering the seaside and the landside of a con-
tainer terminal. They proposed anMIP model and a two-level
genetic algorithm to optimize dual-cycling operations. The
heuristic method reduced the rehandling operations of the
quay cranes. Zhou et al. [32] proposed a simulation opti-
mization approach for solving an integrated yard allocation
problem under vehicle congestion which iteratively solved
an MIP model for the yard allocation problem and evalu-
ated the time-variant vehicle traffic via simulation until the
termination criteria were met. The iterative method updated
the parameters of the MIP model and obtained efficient yard
allocation decisions. Other studies of simulation optimization
approaches accelerated simulation-based decision-making at
container terminals [33], [34], [35].

Collaboration between neighboring transporters, i.e.,
workers, vehicles, and cranes, in various material-handling
systems is essential for balancing workloads and mitigating
interference. Hong [36] proposed a queuing-based analytical
model to estimate the interference of downstream workers
under the non-instantaneous walk times of upstream workers
in a bucket brigade order-picking system. Hong [37] also
performed a simulation analysis of worker speed, number
of workers, and working time for collaboration between
multiple workers in a bucket brigade order-picking sys-
tem. Lim [38] proposed a bucket brigade protocol for
cooperation between multiple workers in a production sys-
tem. The experimental results indicated that the protocol
reduced unproductive travel time and improved throughput
by around 7%. Fan et al. [15] developed an MIP model for
twin-crane scheduling with handshake operations consider-
ing the minimum distance between the cranes and space
for handshake operations with a fixed handshake location.
Exhaustive simulation experiments identified the effects of
different handshake locations on the makespan of all tasks.

Simulation optimization approaches have gained attention
with the emergence of high-fidelity simulations. Bayesian
optimization (BO) has been used for optimizing an expensive
black-box function based on a surrogate model estimating
an objective function over candidate solutions, and an acqui-
sition function quantifying their potentialities based on the
predicted objective function. A suitable choice of surrogate
model efficiently learned an objective function and reduced
computing resources [39]. Candelieri et al. [40] used BO
to solve scheduling problems in water distribution systems
and achieved an effective solution with limited evaluations.
Kang et al. [41] suggested an MIP model and a BO to opti-
mize the collaborative operations between twin OSs given
exact demand information. The experimental results indi-
cated that the BO was beneficial when the container terminal
had complex constraints difficult to formulate explicitly.

III. PROBLEM DEFINITION
In this section, we describe the detailed layout of our tar-
get RACT with container flows, the collaborative operations
between twin OSs, and a scenario-based handshake location
determination problem considering demand uncertainty.

A. RACT CONFIGURATIONS
Rail-based designs for enhancing throughput capacities and
ensuring accurate container handling operations in container
terminals have been discussed [42], [43]. OSs in a RACT
travel at higher speeds on rails above container storage areas
than the yard cranes used in traditional terminals. Although
rail-based designs save the wasted space on aisles, mitigate
interference between OSs and vehicles during travel [42], and
provide routing options for vehicle travel, the RACT reduces
the flexibility of OSs’ movement [43]. The RACT requires a
sophisticated control system to ensure safe operations based
on error detection and breakdown recovery from hazards
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FIGURE 2. RACT configuration with container flows.

FIGURE 3. Precedent relationship between subtasks (modified from Fibrianto et al. [2]).

within the RACT, e.g., collisions betweenOSs and equipment
breakdowns due to adverse climate conditions [44], [45].
Fig. 2 shows the RACT and its container flows, and stor-

age assignments based on interviews with industry experts.
An inbound container is unloaded from a vessel and loaded
onto an ET, and an outbound container is released from an
ET and loaded onto a vessel [46]. On the seaside (landside),
seaside (landside) OSs deliver and pick up containers to and
from flatcars (ETs). The OSs repeat four basic operations
for a task: empty travel, pick-up, loaded travel, and drop-off.
Export and unloading tasks distributed throughout the RACT
are categorized as storage tasks, and import and loading tasks
collected throughout the RACT are categorized as retrieval
tasks.

There are three stacking areas in the yard storage: SA1
for all containers, SA2 for outbound containers, and SA3
for inbound containers. IO1 and IO2 correspond to flat-
cars and IO3 and IO4 points correspond to ETs. Contain-
ers from vessels denote the unloading and loading tasks

corresponding to IO1. Transshipment containers correspond
to IO2. Containers from ETs denote the import and export
tasks corresponding to IO2, IO3, and IO4.

B. PRIORITY RULE AND HANDSHAKE OPERATIONS
Container terminals generally prioritize seaside crane oper-
ations because the crane continuously transports containers
during peak hours, whereas landside crane operations are less
frequent [18]. When the twin cranes overlap, the low-priority
crane should wait until the high-priority crane finishes its cur-
rent task. The low-priority crane moves from its destination
to yield to the high-priority crane. A handshake operation
of the RACT is to maximize the workload balance between
overlapping cranes under the priority rule.

The handshake operation separates a task into two subtasks
with shorter travel distances for each OS (See Fig. 3). For
a handshake operation, a pair of subtasks has a precedent
relationship based on the handshake location. The sub-
tasks are identified as predecessor and successor subtasks.
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FIGURE 4. Exemplary time-space diagrams without and with handshake operations.

One OS temporarily drops a predecessor subtask at a hand-
shake location and the other OS delivers its successor subtask
from the handshake location to its destination (See Fig. 3).
Fig. 4 shows the time-space diagrams with and without hand-
shake operations. Fig. 4 (b) shows the reduced interference
and enhanced workload balance between the OSs.

This study applied the handshake operation for a task
crossing over the boundary between stacking areas because
applying the handshake operation to a task with a shorter
travel distance can decrease yard productivity owing to addi-
tional pick-up and drop-off operations. We consider two
handshake locations for unloading and loading tasks based
on Gharehgozli et al. [8]. The authors showed that using two
handshake locations significantly improved productivity by
reducing container rehandling to remove containers stacked
on a target container.

C. SCENARIO-BASED HANDSHAKE LOCATION
DETERMINATION MODEL (SHLD)
A scenario-based approach can describe demand uncertainty
as a finite set of deterministic demands. The terminal operator
can design possible scenarios with their probabilities by refer-
ring to the historical data. Consequently, the terminal operator
may obtain a reliable solution for uncertain demands. We aim
tominimize themaximumworkload of all scenarios and solve
the worst-case disturbance effect. The min-max optimization
is a common approach for robust decision-making in real-
world problems [47].

An MIP model provides a comprehensive understanding
of the optimization problem. Field operators may easily
implement mathematical models using commercial solvers,
providing the flexibility to add or remove constraints to
match the requirements of optimization problems in practice.
The SHLD estimates the workloads of the twin OSs by

multiplying the number of tasks by their central distances
between nodes. It also approximates the empty travel of the
twin OSs, given three assumptions: (1) the total number of
empty travels equals the total number of tasks; (2) the total
number of empty travels from each node equals the total
number of tasks to each node; and (3) the total number of
empty travels to each node equals the total number of tasks
from each node. Finally, the SHLD provides the optimal
handshake locations with linear constraints. We use the fol-
lowing indices, sets, parameters, and formulations:

Indices and sets:
N Set of all nodes.
A Set of stacking areas.
P Set of I/O points.
i, j Indices for all nodes.
T , t Set of task types and its index.
K , k Set of OSs and its index.
PU, u Set of unloading handshake locations and its

index.
PL, l Set of loading handshake locations and its index.
S, s Set of scenarios and its index.

Parameters
f tis Number of tasks with type t from node i in

scenario s.
URs Unloading handshake operation rate in scenario s.
LRs Loading handshake operation rate in scenario s.
tijk Processing time of OS k from node i to j.
utijku Processing time of OS k from node i to j using

unloading handshake location u.
ltijkl Processing time of OS k from node i to j using

loading handshake location l.
etijk Empty travel time of OS k from node i to j.
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Decision variables
Mmax Maximum workload of OSs of all scenarios.
Ms Maximum workload of OSs in scenario s.
xu If unloading handshake location u is used xu = 1,

otherwise xu = 0.
xl If loading handshake location l is used xl = 1,

otherwise xl = 0.
Fijks Number of non-handshake tasks of OS k from

node i to j in scenario s.
Uijkus Number of tasks of OS k from node i to j with

handshake location u in scenario s.
Lijkls Number of tasks of OS k from node i to j with

handshake location l in scenario s.
Tijks Number of tasks of OS k from node i to j for

estimating empty flows in scenario s.
Eijks Number of empty travels of OS k from node i to j.

Objective function

(SHLD)Minimize Mmax (1)

Constraints

Mmax
≥ Ms,

∀s ∈ S, (2)

Ms ≥

∑
i∈N ,j∈N

(
Fijks · tijk + Eijks · etijk

+

∑
u∈PU

Uijkus · ut ijku

+

∑
l∈PL

Lijkls · lt ijkl

)
· ps,

∀k ∈ K , ∀s ∈ S, (3)

Fijks ≥ f Uis · (1 − URs) ,

∀i ∈ {P1} , ∀j ∈ {A1} , ∀k ∈ {Ks} , ∀s ∈ S, (4)

Fijks ≥ f Lis · (1 − LRs) ,

∀i ∈ {A1} , ∀j ∈ {P1} , ∀k ∈ {Ks, ∀s ∈ S, (5)∑
j∈A,k∈K

Fijks ≥ f Iis,

∀i ∈ P, ∀s ∈ S, (6)∑
j∈P,k∈K

Fijks ≥ f Ois ,

∀i ∈ A, ∀s ∈ S, (7)

Uijkus ≥

∑
w∈N

f Uws · URs · xu,

∀i ∈ {P1} , ∀j ∈ {Bu} , ∀k ∈ {Ks} , ∀u ∈ PU , ∀s ∈ S, (8)

Uijkus ≥

∑
w∈N

f Uws · URs · xu,

∀i ∈ {Bu} , ∀j ∈ {A3} , ∀k ∈ {Kl} , ∀u ∈ PU , ∀s ∈ S, (9)

Lijkls ≥

∑
w∈N

f Lws · LRs · xl,

∀i ∈ {A2} , ∀j ∈ {Bl} , ∀k ∈ {Kl} , ∀l ∈ PL, ∀s ∈ S, (10)

Lijkls ≥

∑
w∈N

f Lws · LRs · xl,

∀i ∈ {Bl} , ∀j ∈ {P1} , ∀k ∈ {Ks} , ∀l ∈ PL, ∀s ∈ S, (11)∑
u∈PU

xu = 1, (12)∑
l∈PL

xl = 1, (13)

Tijks = Fijks,

∀i, j ∈ N/{Bu,Bl}, ∀k ∈ K , ∀s ∈ S, (14)

Tijks =

∑
u∈PU

Uijkus,

∀i, j ∈ N , ∀k ∈ K , ∀s ∈ S, (15)

Tijks =

∑
l∈PL

Lijkls,

∀i, j ∈ N , ∀k ∈ K , ∀s ∈ S, (16)∑
i∈N ,j∈N

Eijks =

∑
i∈N ,j∈N

Tijks,

∀k ∈ K , ∀s ∈ S, (17)∑
j∈N

Eijks =

∑
j∈N

Tijks,

∀i ∈ N , ∀k ∈ K , ∀s ∈ S, (18)∑
i∈N

Eijks =

∑
i∈N

Tijks,

∀j ∈ N , ∀k ∈ K , ∀s ∈ S. (19)

The objective is to minimize the maximum workload of
all scenarios. Constraints (2) and (3) update the maximum
workload of the twinOSs in each scenario. Constraints (4)-(7)
update an OS’s workload for a task and constraints (8)-(11)
calculate the workloads of both for a task separated as two
subtasks (See Fig. 4). In detail, constraints (4) and (5) cal-
culate the container flows of unloading and loading tasks
without handshake operations. Constraints (6) and (7) cal-
culate the container flows of the import and export tasks.
Constraints (8) and (9) separate the unloading tasks based on
the handshake locations for workload partitioning between
the twin OSs, and constraints (10) and (11) separate the
loading tasks based on the handshake locations for work-
load partitioning between the twin OSs. Constraints (12) and
(13) update the handshake locations to avoid using biased
handshake locations which can cause workload imbalance.
Constraints (14), (15), and (16) integrate the full container
flows to estimate the empty flows. Constraint (17) ensures
that the number of empty flows equals the total number of
loaded flows, and constraints (18) and (19) ensure that the
number of loaded inbound flows equals the total number of
empty outbound flows.

IV. SIMULATION OPTIMIZATION OF THE HANDSHAKE
LOCATIONS UNDER DEMAND UNCERTAINTY
The SHLD provides an optimal solution under linear formu-
lations, but may not account for dynamic impacts such as
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blocking and congestion among twin OSs and vehicles in the
RACT. This section describes a discrete-event simulation for
the RACT and its adaptive optimization of workload balance
between twin OSs under demand uncertainty.

A. DISCRETE-EVENT SIMULATION FOR THE
COLLABORATIVE HANDSHAKE OPERATIONS
A large-scale material-handling system employs discrete-
event simulation to evaluate and optimize operational
planning. We use Siemens Tecnomatix Plant Simulation soft-
ware to build the RACT simulation by referring to [2], [43],
and [48]. The software provides basic objects to consider
inheritance and hierarchical relationships between objects.

Wemodify real data on port operations and container flows
from the Busan Port Terminal located in South Korea where
the tasks for seaside OSs were concentrated. The seaside OSs
may experience heavy workloads according to the berthing
schedule.We consider the three stacking areas (SA1, SA2 and
SA3) handshake location candidates for loading and unload-
ing tasks as described in Fig. 2. Each stacking area consists
of 37 rows.

A cyclic operation was considered, in which the load-
ing and unloading processes are sequentially performed
[49], [50]. An OS dispatching rule widely used in real
container terminals was considered, where OSs dedicatedly
initiate tasks according to the origin locations of tasks to
avoid heavy interference. We consider two assumptions in
simulationmodelling: (1) the storage capacity is sufficient for
the containers to be stacked; (2) no rehandling occurs during
yard operations. Fig. 5 shows the simplified discrete-event
modeling of the collaborative operations.

B. BAYESIAN OPTIMIZATION FOR THE HANDSHAKE
LOCATIONS
Constructing an analytical model for performance estimation
can be challenging when a system exhibits uncertain and
complicated behaviors with limited data. The BO iteratively
estimates an objective function and recommends the most
promising sample within a few observations [51]. We use
the Gaussian process (GP) and expected improvement (EI) as
a surrogate model and an acquisition function, respectively.
GP is a non-parametric, nonlinear, flexible regression model
with uncertainty quantification by inferring a stochastic pro-
cess over solution space [52], [53]. A multivariate Gaussian
distribution with mean and covariance functions represents
the stochastic process. To determine the optimal decisions,
the EI quantifies the expected improvement based on a pos-
terior distribution.

We describe the locations for unloading and loading hand-
shake operations using integer values, respectively. A smaller
value is a nearer location to the seaside.We use a naïve round-
ing method that rounds the recommended continuous points
to the nearest discrete points because the GP treats continuous
control variables [54]. We let x ∈ R2 be a two-dimensional
vector for the unloading and loading of handshake locations

FIGURE 5. Simplified discrete-event modelling of the collaborative
handshake operations.

and f (x) represent an unknown simulation output with x,
where f (x) is a GP denoted by the mean function m(x) and
covariance function k(x, x ′):

f (x) ∼ GP
(
m (x) , k

(
x, x ′

))
.

The radial basis function (RBF) the kernel function k ,
a widely used covariance function, expressed as

k
(
xi, xj

)
= θ exp

(∣∣∣∣xi − xj
∣∣∣∣2

2l2

)
+σ 2I ,

where the length scale parameter l adjusts the degree of
smoothness, the covariance amplitude parameter θ accounts
for the overall variance, and the noise term σ 2 indicates the
observation noise in the posterior distribution.

Kernel matrix K denotes the covariance of the
training set Dn = {x1:n, f1:n}, where x1:n = x1, . . . , xn
and f1:n = f (x1), . . . , f (xn), as a multivariate Gaussian
distribution. We obtain the joint distribution of f1:n
and fn+1: [

f1:n
fn+1

]
∼N

(
0,
[
K k
kT k (xn+1, xn+1)

])
,
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where

K =


k (x1, x1) · · · k (x1, xn)

...
. . .

...

k (xn, x1) · · · k (xn, xn)

+ σ 2I ,

k = [k (xn+1, x1) , k (xn+1, x2) , . . . ,k (xn+1, xn)] .

Bayesian statistics [52] were used to derive the
posterior probability distribution for xn+1, expressed
as follows:

P (f (xn+1) |D1:N ) = N
(
µ (xn+1) , σ 2 (xn+1)

)
,

µ (xn+1) = kTK−1
{y1, . . . ,yn} ,

σ 2 (xn+1) = k (xn+1, xn+1) − kTK−1k.

EI guides the most potential point, x∗

n+1, toward an opti-
mum value considering the trade-off between exploration
and exploitation of a search space [55]. Exploration aims
to search for x∗

n+1 with high uncertainty, and exploitation
guides x∗

n+1 with a high expected objective value in a posterior
distribution.

x∗

n+1 = argmaxx∈χEIn(x).

The hyperparameter γ adjusts the exploration and exploita-
tion of the search space. y+ indicates the best solution
for observations. ϕ and 8 are the probability and cumula-
tive density functions, respectively, of the standard normal
distribution, Z .

EI (x)=

{(
µ (x)−y+−γ

)
8 (Z )+σ (x) ϕ (Z ) if σ (X) > 0

0 if σ (X) = 0,

where

Zn =


µ (x) − y+ − γ

σ (x)
if σ (X) > 0

0 if σ (X) = 0
.

Fig. 6 shows the details of the proposed simulation opti-
mization approach. We randomly set the initial values of
the kernel parameters and the potential handshake locations.
We optimize them via the L-BFGS-B method. From the
preliminary experiments, we repeat the optimization as 50 for
each iteration.

V. EXPERIMENTAL RESULTS
We vary the number of scenarios, denoted as |S|. Each
scenario has 10 vessels. We set the nominal numbers of
total tasks requested from vessels (Dv) to 30, 50, and
70 for the feeder, medium, and jumbo vessels, respec-
tively. The degree of uncertainty (π) controls the degree
of demand uncertainty. We uniformly distribute the total
number of tasks for vessel v in scenario s (Dv,s) in the
interval

[
Dv · (1 − π) ,Dv · (1 + π)

]
. The detailed container

flows (f Ls , f Us , f Is, f
O
s ) in each scenario also deviate indepen-

dently and uniformly from each nominal number of tasks.
We assume the same probability for each scenario.

FIGURE 6. Flowchart of the proposed simulation optimization approach.

We run simulations using PC with Windows 10 Pro, Intel
Core i5-10400 CPU @ 2.90 GHz, and 32 GB of RAM.
We use scikit-learn Python library for modelling the GP and
optimizing the hyperparameters in the GP.

A. COMPARATIVE RESULTS OF SIMULATION
OPTIMIZATION ALTERNATIVES
A sophisticated choice of a surrogate model can speed up the
simulation optimization. Latin hypercube sampling (LHS)
was used to obtain 1000 data points. k-fold cross-validation
(k = 50) was used to investigate the prediction accuracy of
the GP under different levels of |S| and π . Fig. 7 shows
normalized root mean squared errors (nRMSEs) based on the
increased amount of training data. The nRMSEs converged to
0.03 with 20 training data points for all uncertainty patterns.
The results indicate that the GP can accurately predict the
objective values with the different uncertainty patterns.

FIGURE 7. nRMSEs of the GP with the different levels of |S| and π .

Next, we evaluate the convergence and efficiency of sim-
ulation optimization alternatives under different levels of
|S| and π. We use a scenario-based iterated local search
algorithm (iLS) [56], [57], exhaustive search (ES) [3],
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FIGURE 8. Cumulative minimum objective values of the simulation optimization alternatives for the different levels of |S| and π .

[7], [15], and the SHLD as our performance benchmarks.
ES conducts time-intensive simulation experiments with all
candidate locations, thereby guaranteeing optimal handshake
locations whereas the SHLD requires running only one sim-
ulation. The optimality gap (%) of a simulation optimization
alternative is denoted as 100·(Target algorithm performance –
ES performance)/(ES performance).

A cumulative minimum value is used to confirm whether
a simulation optimization alternative can provide an efficient
solution within a limited number of simulation runs. Fig. 8
shows the optimization performance of the four alternatives
over incremented simulation runs. Each simulation optimiza-
tion repeats 10 times. Since both the ES and SHLD are
not adaptive approaches, there is no change in cumulative
minimum values over incremented simulation runs. Fig. 8
shows performance gaps of 14.15%, 34.69%, and 11.17% for
the SHLD, iLS, and BO, respectively, compared to the ES
within five simulation runs, and performance gaps of 14.15%,
15.30%, and 1.07%, respectively, compared to the ES within
20 runs. The results indicate that our proposed approach
yields near-optimal solutions within fewer simulation runs
than the iLS.

Under the low uncertainty degree (π = 0.1), Fig 8 (a)
and (b) show performance gaps of 14.91%, 18.79%, and
1.40%, respectively, for the SHLD, iLS, and BO compared
to the ES. Under the high uncertainty degree (π = 0.3),
Fig. 8 (c) and (d) show performance gaps of 13.38%, 11.82%,
and 0.74%, respectively, for the SHLD, iLS, and BO com-
pared to the ES. The high uncertainty increases the variations
in the objective values with |S| = 5 from the SHLD, iLS,
and BO by 37.88%, 118.88%, and 24.19%, respectively,
compared to their variations under the low uncertainty, and
also increases the variations with |S| = 15 by 25.25%, 9.27%,
and 9.71%, respectively.

Computation time (simulation run time and algorithm
execution time) is an important performance metric in sim-
ulation optimizations. Fig. 9 shows the computation time for
each alternative. The SHLD has the shortest computing time
because it only evaluates a single run, whereas the ES needs
the most computation time and is the most time-consuming.

The results also demonstrate that the number of scenarios
proportionally increases computation time.

FIGURE 9. Computation time for the simulation optimization alternatives.

The average handshake locations of ten repetitions were
used to validate the performance of the optimization alterna-
tives. The maximum number of simulation runs was set to
20 because the GP’s prediction accuracies showed reliable
convergence (See Fig. 7). The solutions from each alternative
were evaluated using 30 different maritime demands for each
uncertainty pattern. Fig. 10 shows boxplots for the worst
workloads of all scenarios with different π and |S|. The
optimality gaps of the SHLD, iLS, and BO show 13.12%,
16.81%, and 0.62% for all uncertainty patterns, and BO
reduces the variations in the objective values by 14.07% and
20.81% compared to the SHLD and iLS. The experimental
results confirm that the BO generates near-optimal solutions
and that both SHLD and iLS have relatively high optimality
gaps.

Under the low uncertainty degree, the optimality gaps of
the SHLD, iLS, and BO show 15.11%, 16.91%, and 1.17%,
and the BO decreases the variations in the objective values
by 25.40% and 21.22% compared to the SHLD and iLS.
Under the high uncertainty degree, the optimality gaps of the
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FIGURE 10. Boxplots for the worst workloads of all scenarios with the different levels of |S| and π .

SHLD, iLS, and BO show 11.13%, 16.71%, and 0.07% (See
Fig. 10 (c) and (d)), and the BO reduces the variations in
the objective values by 2.74% and 20.39% compared to the
SHLD and iLS.

To assess the robustness and effectiveness of the proposed
approach with different RACT configurations, we carry out
comparative experiments between the iLS and BO. Under the
uncertainty pattern, π = 0.1 and |S| = 5, we vary the speed
levels of the twin OSs, symmetrically or asymmetrically:
(1) symmetric case: lower OS speed; (2) symmetric case:
higher OS speed; (3) asymmetric case: lower landside OS
speed; and (4) asymmetric case: lower seaside OS speed.
Fig. 11 reveals that the proposed approach outperforms in
the cumulative minimum objective values by 9.72%, 6.55%,
2.47%, and 17.61%, for the OS capability cases, respectively.

FIGURE 11. Cumulative minimum objective values of the iLS and BO for
the different OS capability cases.

Fig. 11 (a) and (d) indicate that the capability degradation of
the seaside OS significantly deteriorates the RACT perfor-
mance.

B. SIMULATION ANALYSIS AND MANAGERIAL INSIGHTS
Allocating storage space for handshake operations is a critical
issue in yard management. The required space for the hand-
shake operations was estimated using Little’s law; that is,
L = λ · W , where λ is the average arrival rate of subtasks,
W is the average dwell time of subtasks in the handshake
locations, and L is the required space for the handshake oper-
ations. We performed a simulation analysis with all possible
sets of handshake locations to obtainW and λ . A simulation
evaluation was performed ten times with π = 0.
Fig. 12 shows the number of slots required for loading

and unloading handshake operations with the 25 location
candidates closest to the seaside. Fig. 12 (a) shows significant
effects of the unloading handshake location on the space
required for unloading handshake operations. The unloading
handshake location closer to the landside has fewer required
slots because the landside OS retrieves the subtasks stacked
in the handshake location as soon as the bottleneck seaside
OS stores them. Fig. 12 (b) shows that the loading hand-
shake location closer to the landside required a larger space
because the bottleneck seaside OS could not quickly retrieve
the subtasks in the handshake location after the landside OS
stored them. The unloading handshake location closer to the
landside increased the idle time of the landside OS. The
landside OS utilized its idle time to transfer the subtask to
be stacked at the loading handshake location. This increased
the number of slots for the loading handshake operations and
delayed the retrievals of the subtasks stacked in the loading
handshake location owing to the workload imbalance.

Exhaustive simulations were performed to investigate the
impacts of different levels of |S| and π on handshake opera-
tions. Fig. 13 shows the different objective values with the
different uncertainty patterns. For better visualization, the
objective values with the 25 nearest location candidates to
the seaside were illustrated after confirming that the opti-
mal locations were identified close to the seaside in the
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FIGURE 12. Number of required slots for the handshake operations with the different handshake locations.

FIGURE 13. Worst workloads of all scenarios (hrs) with the different handshake locations under the different uncertainty patterns.

transshipment hub. A higher degree of uncertainty and a
larger number of scenarios increase the workload of the
bottleneck OS. The interference between the OSs signif-
icantly increased the objective values when the locations

were biased on the seaside and landside for all uncertainty
patterns. The handshake locations obtaining the near-optimal
objective values within a 3% gap differ under lesser scenarios.
The smaller number of scenarios with π = 0.1 showed the
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sparsely distributed near-optimal solutions compared to the
near-optimal solutions with the larger number of scenarios.

VI. CONCLUSION
A handshake operation aims to synchronize collaborative
operations between twin transporters in a material-handling
system. As a proactive optimization of yard management,
a container terminal pursues reliable and effective handshake
operations under maritime demand uncertainty. This study
identified an MIP to clarify the scenario-based handshake
location determination problem. A discrete-event simulation
was built to capture time-variant and complex port opera-
tions. Extensive experiments were performed to investigate
the impact of demand uncertainty on handshake operations.
The simulation results indicated that the handshake location
significantly influenced the space required for handshake
operations and demand uncertainty is a critical factor in
handshake operation for the OSs.

BO approach was also proposed to obtain efficient hand-
shake locations within a limited number of simulations.
The GP consistently identified the relationship between
handshake locations and yard productivity, and the sam-
pling schema in the BO iteratively recommended the most
promising locations by controlling the trade-off between the
exploration and exploitation of the solution space. The sim-
ulation results confirmed that the BO consistently provided
conservative handshake operations under different demand
uncertainty patterns.

We suggest the following topics for future research: (1) a
full investigation of rehandling operations and inventory
management issues on collaborative operations for reducing
congestion in RACTs; (2) an integrated optimization of the
collaborative operations of twin OSs with scheduling and
routing methods for vehicles; and (3) the investigation of the
handshake operations between three or more cranes in mate-
rial handling systems, e.g., semiconductor fabrication plants
and distribution centers. We also suggest more exploration
into autonomous error detection algorithms and breakdown
recovery procedures for safe operations in RACTs.
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