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ABSTRACT The increasing demand for cellular communication channels calls for multichannel solutions.
Using one antenna for each channel results in a high density of antennas at the compact cellular station
front, which generates inter-channel interference. This may result in distractive interference and significant
losses at the output and input of the channels. To overcome these drawbacks, we propose a technology that
combines several channels into a single antenna. We implemented a frequency-tuned, multi-channel phase
control system with a phase shifter connected to each channel, with low insertion loss and low return loss.
The phase shifter is composed of an ultra-wideband coupler and a computer-controlled capacitor. To obtain
low insertion loss of the phase shifter, typically 1.5 dB, we designed a planar tandem hybrid coupler for the
desired frequency range. We used a capacitor bank of varactor diodes for frequency tuning. The capacitance
of these diodes was controlled by the applied reverse bias voltage generated by a D/A converter. The control
computer received the digital input to the converter through a serial communication line. The channels were
simultaneously phase matched to minimize channel losses. We performed an extensive theoretical analysis
of a multi-channel frequency combiner. Based on the simulation results, a three-channel multi-coupler was
implemented. The high performance of the system was demonstrated experimentally.

INDEX TERMS Cellular communication, directional couplers, impedance matching, insertion loss, multi-
channel antenna, phase shifters, wideband.

I. INTRODUCTION
The advance of cellular communication requires increased
communication channels per device or base station. Increas-
ing the number of channels while allocating a separate
antenna to every channel increases the device’s volume,
consuming precious volume. Moreover, a large number of
antennas can lead to destructive interference between them.

One approach for reducing the number of antennas is com-
bining several channels into one. However, without proper
phase matching, this configuration may result in distractive
interference and significant loss at the outputs and inputs of
the channels. Several approaches are available for handling
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matching problems, such as Triplexer [1], [2] or Combiner /
Splitter [3], [4]. However, these solutions have drawbacks,
such as being limited to fixed frequencies (Triplexer) or inher-
ent high insertion loss (∼6 dB in a three-channel combiner).

Multi-channel phase control systems for the UHF andVHF
bands were developed to obtain a frequency-tuned, low inser-
tion loss and low return loss matching unit [5], [6], [7]. These
systems allow simultaneous transmission and reception of
several channels through a single antenna, thereby reducing
the number of antennas. We developed a high-performance
phase shifter for the VHF band to reduce total system losses
using High-Temperature Superconducting (HTSC) technol-
ogy. A three-channel multi-coupler system was implemented
with HTSC components [8], [9], [10]. To achieve phase
matching, it is necessary to incorporate in the phase shifter
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FIGURE 1. Multi-channel phase control system.

FIGURE 2. Phase shifter with a hybrid 90◦ coupler.

a specific capacitance adapted to the frequency combination
of operation [11]. To that end, the system included switched
capacitor banks [12], which enabled the user to change
the frequency combination dynamically during operation.
However, this technique increases insertion loss due to the
switching elements’ parasitic reactance and ohmic losses.
This effect becomes much more significant at the higher
frequencies of the cellular band [13].

To overcome the insertion loss problems, we introduced
several technological improvements. We designed and imple-
mented a state-of-the-art planar tandem hybrid coupler [14]
for the desired frequency range. We replaced the switching
capacitor bank with computer-controlled varactor diodes.

Additionally, we performed an extensive theoretical inves-
tigation of a multi-channel frequency combiner, presented in
Section II. Based on the simulation results, a three-channel
multi-coupler was implemented. The system’s performance
was measured, and the results are presented in Section III.

II. MULTI-CHANNEL SYSTEM DESIGN
A. SYSTEM CONFIGURATION
A schematic design of a multi-channel phase control system
is shown in Fig. 1. It was designed for the frequency range of
0.8 GHz to 2.4 GHz.

By using varactor diodes instead of a switching capacitor
bank for frequency selection, the estimated value of the inser-
tion loss of the phase shifter is reduced from 3 dB to about
1.5 dB. In addition, we geared for S11 lower than −15 dB.

The proper way to comply with these specifications is to
design the phase shifter with a hybrid 90◦ coupler (Fig. 2).

B. SYSTEM EQUATIONS
The scattering matrix of the hybrid 90◦ coupler is given by
[6]: 

b1
b2
b3
b4

 =


0 C T 0
C 0 0 T
T 0 0 C
0 T C 0

 ·


a1
a2
a3
a4

 (1)

where C and T are the coupling and transmission coefficients.
a and b are the normalized input and output wave vectors,
respectively. Using the reflection coefficient of the varactor
capacitance, given by

0c =
1/jωC − Z0
1/jωC + Z0

= e−j2 arctan(ωZ0C), (2)

the reflection coefficients relations at the ports of the coupler
can be expressed as

a2 = 0cb2 ; a3 = 0cb3 . (3)

Introducing equations (3) into (1), we obtain the scattering
matrix of the phase shifter,[

b1
b4

]
=

[
S11 S21
S21 S22

]
·

[
a1
a4

]
(4)

where:

S11 = S22 = 0c

(
C2

+ T 2
)

; S21 = 20cCT . (5)

The reflection coefficient 0ij of channel j at frequency ωi
of channel i, as seen from the junction of the system, can be
expressed as:

0ij =

〈
S11 +

S2210B
1 − S220B

〉
ij

(6)

where 0B is the out-of-band reflection coefficient of each
Band Pass Filter (BPF). 0B is typically about −1. The admit-
tance of channel j for frequency i, as seen from the junction,
can be expressed as

yij =
1 − 0ij

1 + 0ij
(7)

To eliminate inter-channel interference, we must compen-
sate the reactive component for each frequency by zeroing the
junction susceptance,

Im
{∑

j
yij + ystbi

}
=

∑
j
bij + bstbi = 0 (8)

where ystbi is the admittance of the common stub, connected
at the system junction at the frequency of channel i, and bstbi
is its susceptance part. By equating the susceptance of each
channel to zero, the junction is matched for all channels.
Assuming a three channels system, we obtain the following
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FIGURE 3. 3 DB Tandem hybrid directional coupler.

set of equations,

b12 (C2) + b13 (C3) + bstb1 = 0

b21 (C1) + b23 (C3) + bstb2 = 0

b31 (C1) + b32 (C2) + bstb3 = 0 (9)

where Ci is the capacitance of channel i of the coupler. This
equation set can be solved only numerically. The solution
provides the values for the 2 × 3 varactor capacitors, with
a capacitance in the range of 0.5 - 500 pF. Since the optional
stub is not connected in the present configuration, bstbi = 0.

C. DIRECTIONAL COUPLER
A 3 dB hybrid directional coupler was designed using the
Tandem structure [15], as shown in Fig. 3.
The Tandem structure was chosen, over the simple one,

due to its ability to achieve a high coupling factor by using
a combination of two couplers with a low coupling factor.
This property, of low coupling, improves the accuracy and
the simplicity of production of the Tandem coupler over the
simple one. To operate efficiently at the higher frequency
range of cellular communication, the two internal couplers
were designed using broad-side strip-line technology. Rather
than using micro-strips, as was done at lower frequencies,
we implemented a strip-line configuration, which allows for
a full TEM mode [16].

The internal structure of the coupler is shown in Fig. 4. It is
built from three layers of dielectric material (Rogers RT5880)
encompassing the metal port plates. The spacing between the
ground plates is B = 0.86 mm, the spacing between the port
plates is S = 0.19 mm, their width is W = 0.77 mm, and
their length is L= 7.15 mm. The technical requirements were
a bandwidth of 0.8 to 2.5 GHz, a center frequency phase of
90◦, a transfer coefficient S13 below −2 dB, and a coupling
coefficient S12 larger than −5 dB.
A significant improvement in the performance of the cou-

pler was achieved by constructing the broad-side strip line out
of 9 cascaded sections, as shown in Fig. 5. The sections differ
from each other by the horizontal offset between the coupled
lines. The resulting efficient coupler geometry, combining
a multi-section broad-side directional coupler, significantly
improves the flatness of the coupler and, consequently,
reduces power losses of the system at the edges of the
bandwidth [17].

The coupler was designed and simulated with the CST
Microwave Studio software. Simulation results of the various

FIGURE 4. Section of a broad-side strip-line coupler.

FIGURE 5. Coupler layout design.

S parameters, as a function of frequency, are shown in Fig. 6.
The two vertical lines mark the limits of the required fre-
quency range, between 0.8 and 2.5 GHz. In this range, the
transmission and coupling coefficients, S21 and S31, vary
between −4.50 and −1.92 dB.

The results of the measurements of the S parameters, per-
formed on the implemented coupler, are shown in Fig. 7.
As seen, the performance of the coupler meets the set
requirements.

The difference between the simulated results to the mea-
sured results is seen in Fig. 8. The measured results agree
well with the simulations. The difference between the trans-
mission and coupling curves is small, about 0.7 dB, and is
practically insignificant. The larger difference between the
loss and isolation curves has no practical implications since
it is between 2% to 0.3%.

D. PHASE SHIFTER
The phase shifter is composed of a coupler and two varactor
banks. Fig. 9 shows the schematics of the phase shifter used
for the CST simulations.
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FIGURE 6. Simulations of coupler S parameters spectrum.

FIGURE 7. Measured S parameters spectrum of the coupler.

FIGURE 8. Difference between simulated and measured S parameters
spectrum of the coupler.

Varactors are used to determine the desired phase shift
from port 1 to port 2, which must have a span of 180◦. To find
the required capacitances, we simulated the phase as a func-
tion of frequency for several capacitance values, as shown in
Fig. 10. To obtain the entire 180◦ range, a capacitance range
of 0.5 pF to 50 pF is required.

III. SYSTEM MEASUREMENT RESULTS
To verify the theory and simulations, a system of three chan-
nels, operating at three different frequencies, was built and
tested. The configuration of the system is shown in Fig. 11.

FIGURE 9. Phase shifter schematic for CST.

FIGURE 10. Simulation of phase shift vs. frequency for several
capacitances.

FIGURE 11. System configuration.

The system frequencies were: f1 = 836MHz with a band-
width of 20MHz, f2 = 881MHzwith a bandwidth of 20MHz,
and f3 = 2140MHz with a bandwidth of 60 MHz. Each
channel comprises a signal generator, transmitting one single
CW signal into a narrow band filter that enables reception of a
single channel frequency and rejects the other two. The output
of the narrow BPF is connected to a matching unit, which is a
phase shifter with a properly corrected varactor’s capacitance
value.

The initial capacitances were determined by the numerical
solution of equation (4). However, the experimental system
has additional losses and unknown parasitic capacitance and
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FIGURE 12. Untuned system transmitted signals at antenna output
without tuning varactors.

FIGURE 13. Tuned system transmitted signals at antenna output with
tuned varactor capacitance.

inductance values, which were not included in the simu-
lations. Therefore, the various capacitances were adjusted
experimentally to their optimal values.

As a first step, the insertion loss of the system without
capacitors was measured to compare the performance of the
tuned system to the untuned one. The significant losses for
this case, due to 0 dBm transmitted signals at the inputs of the
matching units, are shown in Fig. 12. The measured insertion
loss at the various frequencies of the three channels was I.L=

−8.99 dB at 836 MHz, I.L = −10.03 dB at 881 MHz, and
I.L = −25.33 dB at 2140 MHz.

After tuning the system and finding the optimal capaci-
tance values, we obtained the spectrum of the transmitted
signals at the output of the antenna, as shown in Fig. 13.
The measured values are I.L = −1.57 dB at 836 MHz, I.L =

−1.64 dB at 881 MHz, and I.L = −1.57 dB at 2140 MHz.
As can be seen in the figure, a significant improvement in

the insertion loss was achieved, from a level of−25÷ −9 dB
to −1.5 dB only. These experimental results compare very
well with reported performance of switchable tunable BPF

[18], even though our system has a much wider frequency
range. In the system reported by Lu et al. the frequency range
is limited to 1.134 – 1.235 GHz, as compared to 0.8 – 2.4 GHz
in the present system, while their input loss is 2.0 dB.

IV. CONCLUSION
We have introduced a technology by which it is possible to
reduce the number of antennas in a multi-channel cellular
platform. The key component of the system is a dynamic
matching unit that was designed, assembled, and measured.
A three-channel system prototype was measured and showed
an improvement in the insertion loss from a level of −25 ÷

−9 dB for the untuned system to a level of only −1.5 dB for
the tuned one.

The system was tested in field experiments by a commer-
cial company. Three communication methods were tested: a
voice channel in a 3G cellular channel, a 4G channel, and
a Wi-Fi channel – which indicates a channel bandwidth of
100MHz. The measurement was done by connecting a signal
source to the antenna port and checking the signal at one
of the system’s receiving ports. All the channels operated
simultaneously with continuous, high-quality communica-
tion throughout the experiment.

We have shown that the tunable multi-coupler method is
an efficient technology for combining several transmitters,
operating at different frequencies, to a single antenna at the
cellular frequency band, transmitting various communication
methods.
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