
Received 1 September 2023, accepted 6 October 2023, date of publication 13 October 2023, date of current version 19 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3324612

Extended-Chacha20 Stream Cipher With
Enhanced Quarter Round Function
VICTOR R. KEBANDE , (Member, IEEE)
Secure Distributed Systems (SDS), Department of Computer Science (DIDA), Blekinge Institute of Technology, 371 79 Karlsksrona, Sweden

e-mail: victor.kebande@bth.se

This work was supported by Blekinge Institute of Technology, Sweden, through Grant Funded Research.

ABSTRACT Chacha20 is a widely used stream cipher known for using permutation functions to enhance
resistance against cryptanalysis. Although the existing literature highlights its strengths, it is worth further
exploring its potential susceptibility to differential attacks. This paper proposes an Extended Chacha20
(EChacha20) stream cipher, which offers a slight improvement of Chacha20. It incorporates enhanced
Quarter Round Functions QR − F with 32-bit input words and Add , Rotate, and XOR (ARX) operations
on 16, 12, 8, 7, 4, and 2 constants. Using these improved QR−Fs, we expect EChacha20 to be more secure
and effective against attacks than Chacha20. The threat model leveraged in this paper considers attacker
assumptions based on the Bellare-Rogaway Model (B-RM) and the Chosen Plaintext Attack (CPA) to assess
the potential security weaknesses. Then, the study analyzes the EChacha20 cipher using the NIST Statistical
Test Suite (NSTS) and demonstrates its effectiveness against differential cryptanalysis. A differential attack
addresses this challenge, where the study comprehensively analyses the differences between original and
flipped bits. The NSTS has been used to statistically analyze the outcome for uniformity and evaluate the
randomness of generating sequences of tests considering 1000 tests based on a range of [0, 1]. Uniformity
is evaluated based on the p− values test against a battery of passing sequences, and 100% is achieved from
Runs and Serial(2) : Test 1, respectively. The performance evaluation metrics leveraged include encryption
speed, decryption speed, and memory usage. Based on the test conducted, it has been observed that with
increased QR− F , EChacha20 maintains a good balance in speed although slightly higher than Chacha20;
however, with also slightly high memory usage compared to Chacha20. Despite that, a comparative study has
been conducted against state-of-the-art studies, and the outcome has been reported to show the significance
of the current study. Ultimately, the outcome indicates that the EChacha20 cipher has improved QR−F and
security properties compared to Chacha20 and may provide a more robust encryption solution for various
applications.

INDEX TERMS Chacha20, Salsa20, stream cipher, Quater round function, EChacha20.

I. INTRODUCTION
The ancient secret messaging techniques date back to Scytale,
which the Spartans leveraged during the Persian War in the
Third Century BC, and communication in 1084 BC during the
fall of Troy [1]. While secret messaging techniques are very
old, cryptography has taken several years to be independently
invented [2], [3], [4], [5]. For example, early inventions
date back to Caesar’s ciphers by Gaius Julius Caesar in
epistolae (Letters from Caesar, which allowed messages to

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamad Afendee Mohamed .

be transmitted based on the changed orders. It is also seen
that it was difficult to distinguish an algorithm used for
encryption from the secret key based on ancient Cryptology.
This was never solved amicably until the Kerckhoffs principle
highlighted that the security of an encrypted message did not
have to rely on the protection of the encryption algorithm [6]
but on the secrecy of the key.

The transformations ever since have seen Caesar ciphers
being structured to modern-based ciphers through substi-
tution with keyspaces of 26! which is also seen as quite
an exhaustive search for the modern computer, and also
it suffers from weaknesses that can allow it to be broken

114220

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-4071-4596
https://orcid.org/0000-0001-5985-3970

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

when frequencies are analyzed. Further, these approaches
need obfuscation techniques, as seen in homomorphic ciphers
and Beale cipher [2], [7], -a poly-alphabetic cipher that uses
simple substitutions for each letter dated from 1568, mainly
using the Enigma Machine [8], [9], [10].

The objective of the above-mentioned ancient techniques
is to guarantee security from the letter frequencies; however,
the modern evolved ciphers are seen from a stream and block
cipher perspective. Block ciphers allow encryption to be done
to a data block [11]. In contrast, stream ciphers allow bit-by-
bit encryption where they are seen as a periodic approach if a
given keystream, k , can do a repetitive action for some given
characters [12].
Chacha20 is a stream cipher and a variant of Salsa20,

defined by Bernstein during the eSTREAM project at EU
ECRYPT [13]. It uses 8-round cipher Salsa 20/8 256-bit
keys. The main objective of this paper is to provide an
Extended Provable Chacha20 Stream Cipher, which has the
potential to be leveraged in secure communications in various
applications based on its performance. Specifically, the study
introduces a modified version of the Chacha20 quarter round
function (QR−Fs), herein referred to as ‘‘ExtendedChacha20
Quarter Round’’ (ECQR), that improves the diffusion of
the cipher and strengthens its security against potential
attacks. In its nature, Chacha20 can replace the Salsa20 round
functions by allowing doubling elements within a single
cycle [14]. Similarly, it is the authors’ opinion that, based
on the same approach of doubling the elements, EChacha20
could have a slightly perturbed diffusion during the process
to strengthen the cipher.

A. CONTRIBUTIONS
The contributions that have been proposed in this paper can
be summarized as follows:
• The author proposes an ExtendedChacha20 (EChacha20)
stream cipher that uses more rounds of the quarter-round
function (QR − Fs) for improved security. Additional
rounds of the QR − Fs in the EChacha20 cipher can
provide stronger resistance against known cryptographic
attacks, such as differential and linear cryptanalysis,
which could enhance the confidentiality, integrity, and
authenticity of sensitive data.

• A test against the differential cryptanalysis attack was
conducted to evaluate the security of the proposed
extended Chacha20 cipher, and observations are docu-
mented based on the randomness and passing sequences
using the NIST Statistical Test Suite (NSTS) where
uniformity and randomness of tests are checked.

• The study has also evaluated performance by measuring
the encryption speed, decryption speed, and memory
usage of EChacha20 and compared it with the widely
used Chacha20 cipher. This evaluation has been used
to compare EChacha20 and Chacha20 and assess the
effects of security enhancements.

• The study has been compared to state-of-the-art ciphers
through a comprehensive comparative analysis, and a

contextual evaluation of the proposed cipher has also
been provided, including a test against the differen-
tial cryptanalysis attack. The results demonstrate the
improved security and efficiency of the EChacha20
cipher, making it a promising candidate for secure
communication applications.

The remainder of this paper is organized as fol-
lows. Section II provides Background, while Section III
presents the Preliminaries needed to understand the proposed
EChacha20 stream cipher. Section IV discusses the Problem
Formulation, followed by an explanation of the proposed
Extended Chacha20 Stream Cipher QR − Fs in Section V.
The test against the differential cryptanalysis attack is given
in Section VI. Security Analysis is given in Section VII, while
a comparison with existing studies is given in Section VIII.
After this, a discussion of the results and implications of this
study are presented in Section IX. Section X concludes the
paper and suggests future research directions.

II. BACKGROUND
This section discusses modern stream ciphers, focusing on
the differences between block and stream ciphers. In addition,
this section provides an overview of the fundamental aspects
of Salsa20 and Chacha20 ciphers. The preliminaries of this
study are discussed in a later section of this paper.

A. MODERN STREAM CIPHERS
Communication systems mainly rely on cryptographic prim-
itives for protection and security. For quite some time,
symmetric-based ciphers have been leveraged, owing to the
guarantee of data integrity, confidentiality, and hardened
systems. Stream ciphers are essential to symmetric cryp-
tosystems with faster encryption and decryption and easy
hardware and software implementations [15]. Mostly, these
primitives have been preferred because of the functions
they use during cipher encryption. A stream cipher takes
a given key of n bits with some length and stretches it
to a long keystream. Using an Exclusive OR function, the
generated keystream is XORed to the plaintext p to provide
a ciphertext. To decrypt the ciphertext, the same keystream is
generated and XORed with the ciphertext to give the original
plaintext. Figure 1 shows a high-level representation of the
stream cipher. The plaintext is combined with the keystream
generated by a Pseudorandom Number Generator (PNG) to
create a ciphertext in the encryption process. To decrypt, the
keystream is XORed with the generated ciphertext to revert
to the original plaintext.

In addition to the bit-by-bit XOR operation between the
plaintext and the keystream, some stream ciphers employ a
feedback mechanism that introduces a dependency on the
ciphertext of previous blocks. This feedbackmechanism, also
known as self-synchronizing mode, enhances the security
and complexity of the cipher [16]. In these stream ciphers,
the plaintext of the current block is not only XORed
with the keystream but also with the previous block’s

VOLUME 11, 2023 114221

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

FIGURE 1. High-level representation of the stream cipher with a view of
the Pseudo-number generator used to generate the keystream that
encrypts bit by bit.

ciphertext [17], [18]. This feedback introduces diffusion, non-
linearity, and non-linear feedback shift registers (NFSR),
making the cipher more resistant to various attacks [18].
By incorporating the feedback mechanism, stream ciphers
can achieve higher levels of security and can offer stronger
resistance against known plaintext [19] and chosen plaintext
attacks (CPA) [20].
Consequently, existing research has also shown the

relevance of having simpler Substitution-Box (S-box) con-
struction in ciphers, owing to them being the key ingredients
that provide robustness and the enhancement of security
of block ciphers because the S-box has the capabilities
of confusing the potential attackers [21]. This is mainly
because the strength of any cryptographic technique primarily
relies on the S-box. As a result, research that focuses
on a modular approach has shown the applicability of
non-linear S-box construction using modular inverse and
permutation, differential approximation, bit independence,
and probabilities. These approaches have been leveraged to
deliver the strength of block ciphers [22], [23], [24].
Stream ciphers have mainly been adopted by many

international standards and other communication systems
because of their effectiveness. For example, E0 stream cipher
for Bluetooth, ZUC for 3GPP [25], RC4 for IEEE 802.11,
A5/1 stream cipher for European GSM [26], SNOW 3G [27],
also, other most recent include the stream ciphers from the
ECRYPT project launched by Europe [28], where through
the eSTREAM [29], 7 out of 34 algorithms were selected.
This include Grain V1 [30], trivium [31], Mickey.V2 [32],
Salsa20/12 [29], SOSEMANUK [33], rabbit [34] and
HCI-128 [35].

1) SALSA20
Salsa20 belongs to a family of 256-bit stream ciphers, and
it was designed as part of the ECRYPT stream cipher
project in 2005 and was submitted to the eSTREAM project
in Europe [29]. Being a 256-bit cipher, it allows smaller
keys because larger ones are more expensive. Its encryption
function conducts three operations on the 32-bit words,
as shown in Table 1 [13]. Generally, Salsa20 rotations account
for most integer operations where the 256-bit keys are
expanded and the 64-bit nonce is expanded to 270 byte stream.
The general approach is as follows:

TABLE 1. Salsa20 operations on 32-bit word.

• A plaintext, P, is encrypted by being XORed with the
first P bytes of the stream. The other bytes get discarded.

• The P byte ciphertext is then decrypted by XORing it
with the first P byte of that stream.

• A stream of 64 bytes, a 516-bit block is generated, which
is an independent hash of the utilized key, the nonce, and
the 64-bit block number.

• The key and the nonce are not pre-processed before
block generation.

Salsa20, as highlighted in Figure 2, is represented as a
single 32-bit word as is shown in Table 1. In addition,
Exclusive OR (XOR), bitwise AND, and left shift operators
are used to compute the QR− Fs and rotations, respectively.
In addition, Salsa20 is built on a Pseudorandom function
based on Add-Rotate-XOR (ARX) operations. As is shown
in Algorithm 1, the initial round for processing Salsa20 is
represented as a 4 × 4 matrix as is shown below and also
in Equation 1;

M =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

 (1)

In the context of this description, we use the notation xi
to represent values from matrix M , with [x]10 ≤ i ≤ 15
where i ranges from 0 to 15. Additionally, the round function
is represented as described in Equation 2, Equation 3, and
Equation 4 respectively. This clarification highlights that xi
is drawn from the set [M] within the specified range, and it
confirms how the round function, R(m) is presented in the in
Equation 2.

R(m) =
{
Qi4(m)

}T (2)

and

Qi =


x5 x6 x7 q1
x9 x10 x11 q2
x13 x14 x15 q3
x1 x2 x3 q0

 (3)

q =


q0
q1
q2
q3

 = Q =


m0
m4
m8
m12

 (4)

Four (4) words are then used for the input and output
function Q that are represented by y = y0 ∥ y1 ∥ y2 ∥ y3 and
z = z0 ∥ z1 ∥ z2 ∥ z3, where || are represented as
concatenations. q represents a vector or an array of four
elements: q0, q1, q2, and q3. These elements are involved

114222 VOLUME 11, 2023

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

FIGURE 2. High-level view of Salsa20 representation based on an input of
32-bit words, XOR operation, a mixer, and a 32-bit word output.

Algorithm 1 Salsa20 Algorithm
Input:Matrix X , r ∈ N
Output: Z = X + X r

Begin QR-Rounds from Matrix:
for l = 0 to r/2 do

Quaterround (x ′0, x
′

1, x
′

2, x
′

3)
Quaterround (x ′5, x

′

6, x
′

7, x
′

4)
Quaterround (x ′10, x

′

11, x
′

8, x
′

9)
Quaterround (x ′15, x

′

12, x
′

13, x
′

14)
Quaterround (x ′0, x

′

4, x
′

8, x
′

12)
Quaterround (x ′5, x

′

9, x
′

13, x
′

1)
Quaterround (x ′10, x

′

14, x
′

2, x
′

6)
Quaterround (x ′15, x

′

13, x
′

7, x
′

11)

end

return X + X r

in the round function and play a role in the computation of
Salsa20. They are derived from the input vector ‘m’ and used
to construct the matrix Q for each round. x in this context
represents the elements of the Salsa20 matrix and ’x’ refers to
each element within this grid, while m represents a vector or
an array consisting of 16 elements:m0,m1,m2, . . . ,m15. R(m)
represents the round function in Salsa20 applied to the input
vector ‘m’. It involves multiple operations such as addition,
rotation, and XOR. The result of applying the round function
to ‘m’ is amodified version of the input vector. A keystream in
Salsa20 is defined using a block that uses r rounds as X r , i.e.,
the round function represented as X r = Round r (x). In this
case, the keystreamwith a block Z represents 20 Salsa rounds,
as shown in Equation 5.

Z = X + X20 (5)

The vector for the four words is recalculated as follows:
The variable ‘z’ represents intermediate values computed

during the encryption process. These intermediate values are
derived from the original elements of the Salsa20 matrix (‘x’)
using bitwise operations such as XOR and left rotations. Each
line in the provided equations calculates a new ‘z’ value based

on previous ‘x’ and ‘z’ values.

z1 = x1 ⊕ ((x0 + x3) ≪ 7) (6)

z2 = x2 ⊕ ((z1 + x0) ≪ 9) (7)

z3 = x3 ⊕ ((z2 + z1) ≪ 13) (8)

z0 = x0 ⊕ ((z3 + z2) ≪ 18) (9)

In the context of the Salsa20 encryption algorithm,
‘z′ represents intermediate values computed during the
encryption process. These intermediate values are derived
from the original elements of the Salsa20 matrix (‘x’) and
are used in various calculations to create the keystream and
mix the key and input data.
As a result, the Salsa20 encryption is defined as shown

below in Equation 10

Salsa20 =


c0 k0 k1 k2
k3 c1 v0 v1
i0 i1 c2 k4
k5 k6 k7 c3

 (10)

where c represents the constant values used in Salsa20
encryption, i represents the input values or nonce used in
Salsa20 encryption and v represents the counter values used
in Salsa20 encryption. In this matrix, the ‘k’ values represent
parts of the encryption key that aremixedwith other constants
(‘c’), input values or nonces (‘i’), and counter values (‘v’) to
generate the keystream used in the encryption process. The
exact role of each ‘k’ value in the algorithm depends on the
specific step and operation being performed.

2) CHACHA20
Chacha20 stream cipher is a descendant of Salsa20 cipher
that was launched in the year 2008 [13] as a replacement
for obsolete RC4 [36] and was adopted by Google to run
over Chrome and Android-based devices. Chacha design
principles are based on Salsa20’s round functions; however,
under the same level of security, Chacha outperforms Salsa
in speed. While Chacha20 follows the design principles of
Salsa20, it presents different operations when performing
column transformations in round functions, where it can
update each round twice rather than once. In addition,
Chacha20 incorporates unique operations during column
transformations that allow it to update each round twice,
making it faster than Salsa20. It is represented as shown in
Equation 11 and Algorithm 2:

X =


c0 1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

 (11)

Characters can be updated in Chacha20 as shown below.

z0 = z0 + z1, z3 = z3 ⊕ z0, z3 = z3 ≪ 16, (12)

z2 = z2 + z3, z1 = z1 ⊕ z2, z1 = z1 ≪ 12, (13)

z0 = z0 + z1, z3 = z3 ⊕ z0, z3 = z3 ≪ 8, (14)

VOLUME 11, 2023 114223

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

Algorithm 2 Chacha20 Algorithm
Input:Matrix X , r ∈ N
Output: Z = X + X r

Begin QR-Rounds from Matrix:
for l = 0 to r/2 do

Quaterround (x ′0, x
′

4, x
′

8, x
′

12)
Quaterround (x ′1, x

′

5, x
′

9, x
′

13)
Quaterround (x ′2, x

′

6, x
′

10, x
′

14)
Quaterround (x ′3, x

′

7, x
′

11, x
′

15)
Quaterround (x ′0, x

′

5, x
′

10, x
′

15)
Quaterround (x ′1, x

′

6, x
′

11, x
′

12)
Quaterround (x ′2, x

′

7, x
′

8, x
′

13)
Quaterround (x ′3, x

′

4, x
′

9, x
′

14)

end

return X + X r

z2 = z2 + z3, z1 = z1 ⊕ z2, z1 = z1 ≪ 7 (15)

III. PRELIMINARIES
A. MOTIVATION
Developing a cryptographic algorithm plays a significant role
in guaranteeing the security of data, information, privacy
perspective, digital transactions, and secure communication
in networks. Recently, Chacha20 has seen widespread
adoption due to its efficiency and supposed security [37],
[38], [39]. While it has gained this adoption, from a research
perspective, there is a need for continuous exploration in
cryptography. As a result, the author considers the following
factors to be relevant as to why the need for exploring variant
ciphers in the field of cryptography is essential:
• Evolving Cyber-Threat Landscape: The cyber threat
landscape and demands are evolving [40], with constant
advancements in cryptographic algorithms relevant in
countering emerging key attack techniques. Based on
this premise, proactiveness is essential for anticipatory
vulnerabilities. As such, exploring variant ciphers like
EChacha20 strengthens the cryptographic defenses
against emerging threats while guaranteeing long-term
resiliency.

• Weakness Mitigation in other ciphers: While to
some extent the novel Chacha20 is considered to be
robust, it is worth noting that other ciphers still exhibit
some weaknesses and vulnerabilities [41]. Exploring
EChacha20 is a step towards addressing some weak-
nesses by incorporating enhanced security features and
strengthening the overall security posture. EChacha20
could provide alternative solutions by offering security
guarantees based on specific use cases.

• Future Security Proofing: The rapid technological
advancements mean it is also crucial to anticipate
futuristic security challenges. Exploring or strengthen-
ing cryptographic algorithms like EChacha20, acts as

foundations of secure communication and allows us
to stay ahead of emerging security threats and face
evolving attack vectors.

• Continual Advancement of Cryptographic Science:
The development and research of novel cryptographic
research is an ongoing ongoing endeavor focused on
advancement in science and innovation. It is envisaged
that EChacha20 is a valuable addition to the body
of cryptographic algorithms that offers new insights,
techniques, and possibilities that can benefit the broader
community of security practitioners and researchers.

B. SCOPE AND RELEVANCE
The relevance of this study lies in the fact that it proposes
an extension of the well-known Chacha20 stream cipher that
offers an increased level of security against a selected type
of attack. The extended Chacha20 uses a longer key and
nonce to generate a larger keystream, which is then XORed
with the plaintext to produce the ciphertext. The proposed
cipher is highly relevant in today’s digital age, where secure
communication is critical to data transmission. With the
increasing number of cyber-attacks and the growing demand
for secure communication protocols, the development of
ciphers that offer a higher level of security is of great
importance. Therefore, the scope of this study is to investigate
the performance of the extended Chacha20 algorithm, which
uses a QR− Fs with 36 rounds, in the context of differential
cryptanalysis and its resilience against emerging attacks.
Specifically, this study aims to analyze the algorithm’s
security by examining its resistance to differential attacks
and efficiency. Also, this study aims to contribute to
the ongoing efforts to improve cryptographic algorithms’
security and efficiency and provide a deeper understanding
of the strengths and limitations of an extended Chacha20
algorithm.

IV. PROBLEM FORMULATION
A. SYSTEM MODEL
A scenario that assesses the effectiveness of an extended
Chacha20 is considered with 36 QR − Fs in the context of
differential cryptanalysis. This scenario involves an attacker
attempting to obtain the secret key used by a sender to encrypt
two different plaintexts, denoted as P and P′, the secret key
K used by the sender to encrypt the plaintexts, the ciphertexts
C and C ′ generated by encrypting P and P′ respectively,
using the Chacha20 algorithm with the secret key K , and
the attacker who is trying to obtain the secret key K . In the
long run, the attacker/adversary will be tasked with changing
the content of the message, and statistically, an assessment is
made based on the altered or diverse plaintexts. The specific
roles of each other identified entities are described below:
• Plaintexts P and P′: These are the messages that the
sender wants to transmit securely to the receiver. In the
context of the differential cryptanalysis approach used in
this paper, these plaintexts are carefully chosen to satisfy
certain properties that make them vulnerable to attack.

114224 VOLUME 11, 2023

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

• Secret key K : This is the key used by the sender to
encrypt the plaintexts P and P′ using the EChacha20
algorithm. The security of the algorithm depends on the
secrecy of the key, which is assumed to be known only
to the sender and the intended receiver.

• CiphertextsC andC ′:These are the encrypted versions
of the plaintexts P and P′ respectively, generated using
the Chacha20 algorithm with the secret key K . The
attacker intercepts these ciphertexts and attempts to use
them to obtain information about the secret key K .

• Attacker: This is an adversary who intercepts the
ciphertexts C and C ′ and tries to obtain information
about the secret keyK. The attacker’s goal is to be able to
decrypt future messages encrypted using the same secret
key K .

To formulate the problem, we consider the following factors
which are critical to understanding the issue and developing
a solution:

Let P and P′ be two plaintexts that differ only in one block,
denoted as Pi and P′i, respectively, where i is the block index.
LetCi andC ′i be the corresponding ciphertext blocks obtained
by encrypting Pi and P′i, respectively, using the EChacha20
algorithm with the secret key K . The attacker tries to find
a set of differential characteristics (1P, 1C) such that the
difference between the output of the EChacha20 algorithm
on Pi and P′i is related to the difference between the inputs
Pi ⊕1P and (P′i ⊕1P) as follows in Equation 16:

Ci ⊕ C ′i = (Pi ⊕ P′i)⊕ (1C) (16)

where 1C is the difference between the output of the
Chacha20 algorithm on (Pi ⊕ 1P) and (P′i ⊕ 1P). In this
scenario, we assume Pi and P′i are two plaintexts, each with
a length of X bytes. 1P is the difference between the two
plaintexts, i.e.,1P = Pi⊕P′i.Ci andC

′
i are the corresponding

ciphertexts generated by the Extended Chacha20 algorithm
with 36 rounds using Pi and P′i, respectively. 1C is the
difference between the two ciphertexts, i.e., 1C = Ci ⊕
C ′i . The goal is to analyze the security of the Extended
Chacha20 algorithm by assessing its resistance to differential
cryptanalysis attacks.

It is essential to clarify that the attacker’s goals may
vary depending on their capabilities and objectives. The
formulation considers both possibilities, acknowledging that
attackers may aim to find the correct key or exploit
differential characteristics.

B. THREAT MODEL
The Bellare-Rogaway model (BR-M) is a widely used
security model for analyzing symmetric key cryptographic
algorithms [42]. In this model, the attacker is assumed to
have access to a public encryption oracle, which can be
used to encrypt messages of the attacker’s choice based on
the foundations of the BR-M. In the context of our study,
we assume that the attacker is honest but curious [43], and
has access to the plaintexts and ciphertexts generated by

the EChacha20 algorithm with 36 rounds. The attacker is
interested in obtaining information about the secret key used
by the algorithm.Wemodel the attacker as having access to an
encryption oracle that can encrypt messages of the attacker’s
choice.

Nevertheless, we also consider the chosen-plaintext attack
(CPA) attack model [20], where the attacker can choose
plaintexts and obtain their corresponding ciphertexts from
the encryption oracle. The attacker’s goal is to use this
information to gain information about the secret key and
other operations. We assume that the attacker has no
knowledge of the secret key used by the algorithm and
that the only information available to the attacker is the
set of plaintext-ciphertext pairs generated by the algorithm.
Our objective is to analyze the security of the EChacha20
algorithm against this CPA attack model with a test of
differential cryptanalysis attack. Therefore, we represent the
attacker’s capabilities as follows:
• Attacker’s encryption oracle: E(m), where m is the
message to be encrypted.

• Set of plaintext-ciphertext pairs available to the attacker:
(Pi,Ci), (P′i,C

′
i), where Pi and P

′
i are two plaintexts, Ci

and C ′i are the corresponding ciphertexts generated by
the Extended Chacha20 algorithm with 36 rounds.

• Attacker’s goal: Recover the secret key used by the
Extended Chacha20 algorithm for purposes of alteration
or manipulation (active and passive attacks).

C. SECURITY REQUIREMENTS
We assess the security concerns and requirements based
on the honesty and curiosity of the attacker based
on the Bellare-Rogaway model (BR-M) [42], and the
chosen-plaintext attack (CPA) attack model [20], where the
attacker has access to the encryption oracle E(m) and a set
of plaintext-ciphertext pairs (Pi,Ci), (P′i,C

′
i). The attacker’s

goal is to recover the secret key in order to conduct some
manipulations. The security requirements are to prevent the
attacker from obtaining any information about the secret key
from the given information. In this model, the honest but
curious attacker can perform chosen plaintext attacks and
obtain ciphertexts for arbitrary plaintexts of their choice with
an unknown goal once the key is obtained. The security
requirements for this scenario include ensuring that the
attacker cannot obtain the secret key even if they have access
to multiple plaintext-ciphertext pairs. This requirement can
be expressed as follows:

For all polynomial-time attackers A, the advantage AdvA
of the attacker in distinguishing between the encryption of a
random message m and the encryption of a message m′ that
was not previously queried to the encryption oracle should be
negligible, as is shown in Equation 17.

AdvA =
∣∣Pr[AE(m) = 1]− Pr[AE(m′) = 1]

∣∣ ≤ negl(n) (17)

whereAdvA is the advantage of the adversaryA in distinguish-
ing the encryptions. It measures how well A can differentiate
between the encryption of m and m′, Pr[A(E(m)) = 1] is

VOLUME 11, 2023 114225

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

the probability that the adversary A outputs 1 (indicating a
successful distinction) when given the encryption of plaintext
m, and Pr[A(E(m′)) = 1] is the probability that the adversary
A outputs 1 (indicating a successful distinction) when
given the encryption of plaintext m′. The inequality ‘‘ ≤′′

indicates that the adversary’s advantage must be negligible,
meaning that the probability of the adversary successfully
distinguishing between the encryptions approaches zero as
the security parameter increases. n is the security parameter
and negl(n) is a negligible function. A function is considered
negligible if it becomes arbitrarily small as n (security
parameter) grows.

The attacker should not be able to recover the secret key
even if they have access to multiple plaintext-ciphertext pairs.
The equation expresses the security requirement that the
advantage of the attacker A in distinguishing between the
encryption of two messages m and m′ using the encryption
oracle. We, therefore, assess the security of the system based
on the following security requirements:
• Confidentiality:The attacker should not be able to learn
any information about the plaintext or the secret key
from the ciphertext alone as follows in Equation 18:

Pr

[
(Pi,P′i)← Gen; ,Ci← E(K ,Pi); ,

C ′i ← E(K ,P′i); , b← 0, 1; , (Pb,Cb)

]
≈

1
2
,

(18)

where Gen is the key generation algorithm, E is the
encryption algorithm, K is the secret key, and≈ denotes
statistical indistinguishability.

• Key Recovery: The attacker should not be able to
recover the secret key used by the algorithm. This
requirement can be expressed as follows in Equation 19.

Pr[K ′← A(C1,C2, . . . ,Cn)] ≈ 0, (19)

where A is the attacker’s algorithm, and n is the number
of plaintext-ciphertext pairs available to the attacker.

• Resistance to Chosen Plaintext Attacks: An attacker
should not be able to learn any information about
the secret key from the ciphertexts generated by the
algorithm, even when the attacker is allowed to choose
the plaintexts; this can be expressed as follows in
Equation 20:

Pr[c← E(k,m1) : c = E(k,m2)] (20)

where Pr denotes the probability, E is the encryption
function with key k ,m1 andm2 are two distinct plaintext
messages, and c is the corresponding ciphertext. The
equation measures the probability that an attacker,
who has the ability to choose plaintext messages and
observe their corresponding ciphertexts, can determine
any useful information about the encryption key k that
would allow them to decrypt other ciphertexts encrypted
with the same key. A higher probability indicates a
weaker resistance to CPA.

TABLE 2. List of notations.

V. EXTENDED CHACHA20 STREAM CIPHER
This section describes the proposed Extended Chacha20
(EChacha20) Cipher with an increased Quater Round Func-
tion (QR− Fs) as a contribution.

A. OVERVIEW
EChacha20 improves the Quater Round Function (QR−Fs)
used in Chacha20. Essentially, EChacha20 is a pseudorandom
function (PRF) that takes a 256-bit key, a 64-bit nonce, and
a 64-bit counter as inputs to generate a stream of keystream
bytes, which is expressed as shown in Equation 21.

Chacha20(k, n, c) = PRFk (n ∥ c) (21)

where k is the 256-bit key, n is the 64-bit nonce, c is the 64-
bit counter, PRF is the pseudorandom function, and || denotes
concatenation.

The EChacha20 cipher, as proposed, employs sixQR−Fs,
in contrast to the four QR− Fs used in the Chacha20 cipher.
Each QR−Fs takes four 32-bit words as input and generates
four 32-bit words as output. The six QR − Fs operate on a
[6× 6] matrix of 32-bit words, each row of the matrix being
processed by a distinct QR− Fs.
Understanding the Chacha20 stream cipher requires famil-

iarity with its key component, the QR − F . This function is
crucial to the encryption process and the overall security of
the cipher. It combines four 32-bit input words (a, b, c, and
d), expressed as 8-digit hexadecimal numbers, into a single
32-bit output word using an ARX sequence. The resulting
output word creates a secure stream cipher that ensures the
encrypted data can’t be decrypted without the correct key.
In the Chacha20 algorithm, this quarter-round function is
repeated multiple times to strengthen the encryption further.

B. ECHACHA20 STEPS
The QR − F used in the Chacha20 stream cipher involves
several steps. First, the values of two input words, a and b, are
added together, and the result is stored in a as is shown below
in Algorithm 3. Then, the values of two other input words,

114226 VOLUME 11, 2023

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

c and d , are XORed together, and the result is stored in d .
Next, the value of a is rotated 16 bits to the left and stored back
in a. The values of a and d are then added together, and the
result is stored in d . The same addition of a and d is performed
again, but the result is not stored this time.

The values of b and d are XORed together, and the result
is stored in b. The value of b is then rotated 12 bits to the
left and stored back in b. The values of b and c are added
together, and the result is stored in c. The values of a and c
are XORed together, and the result is stored in a. The value
of a is rotated 8 bits to the left and stored back in a. The
values of a and d are added together again, and the result is
stored in d . The values of b and d are XORed together again,
and the result is stored in b. Finally, the value of b is rotated
7 bits to the left and stored back in b as is shown below in
Algorithm 3.

Algorithm 3 QR-F Steps
a ← a + b d ← c ⊕ d a ← left_rotate(a, 16) d ← a + d
d ← a + d b ← b ⊕ d b ← left_rotate(b, 12) c ← b + c
a ← a ⊕ c a ← left_rotate(a, 8) d ← a + d b ← b ⊕ d
b← left_rotate(b, 7)

C. ECHACHA20 QR − FS: HIGH-LEVEL VIEW
Given that the significant operations on ChaCha are per-
formed on matrices, we can assume a matrix, M , with 32-bit
words and an extended six (6) QR − Fs with 32 words as
output. Specifically, the QR − Fs round (column) takes in
six 32-bit words and generates six 32-bit words as output,
as shown in Figure 2. The proposed EChacha20 approach
leverages six (32-bit) words as input and mixes them to
generate 32-bit words as output. The QR− Fs works on four
32-bit words of input and output and is used in each of the
four rounds. It works by taking two 32-bit words (A and B)
and combining themwith two other 32-bit words (C and D) to
create two new 32-bit words (A′ and B′). The quarter-round
works by first adding A and B together, then XORing C with
the result, and finally adding D to the result. The output words
of the quarter-round function are A′ and B′.

Taking EChacha20 input for x = (x0, x1, x2, x3, x4, x5),
then the QR− Fs will be given by y = (y0, y1, y2, y3, y4, y5),
where x and y are six-word input and output, respectively.
Therefore, the extended QR − Fs is given as shown in the
word computation.

z1 = y1 ⊕ ((y0 + y5) ≪ 2, z2 = y2 ⊕ ((z1 + y3) ≪ 4,

z3 = y3 ⊕ ((z2 + y4) ≪ 7, z4 = y4 ⊕ ((z3 + y0) ≪ 8,

z5 = y3 ⊕ ((z4 + z1) ≪ 12, z0 = y0 ⊕ ((z5 + z2) ≪ 16

In the context of six-word round input, the following
is true: The EChacha20 QR − Fs generates a 32-bit
output for each of the 32-bit input words. Additionally, the
rotation constants used in the algorithm have been extended
from the original Chacha20 constants of 16, 12, and 8 to

include 7, 4, and 2, respectively, as is shown next.

y0, y1, y2, y3, y4, y5 = QR− Fs(x0, x1, x2, x3, x4, x5)

y6, y7, y8, y9, y10, y11 = QR− Fs(x6, x7, x8, x9, x10, x11)

y12, y13, y14, y15, y16, y17 = QR− Fs(x12, x13, x14, x15, x16, x17)

y18, y19, y20, y21, y22, y23 = QR− Fs(x18, x19, x20, x21, x22, x23)

y24, y25, y26, y27, y28, y29 = QR− Fs(x24, x25, x26, x27, x28, x29)

y30, y31, y32, y33, y34, y35 = QR− Fs(x30, x31, x32, x33, x34, x35)

D. ECHACHA20 COLUMN ROUND
The EChacha20 column round selects six 32-bit input words
and sequentially generates the respective parameters based
on the QR − Fs shown above. This results in 36 inputs
arranged in a 6 × 6 matrix and 36 outputs denoted as
x = (x0, x1, x2,x35) and y = (y0, y1, y35)
respectively. The final EChacha20 column round is then
obtained from these outputs.

The Echacha QR − Fs is designed as a 32-bit block
cipher that can process arbitrary message sizes. It employs
six rotation constants ranging from 16 to 2, which are used in
a round function shown in Figure 2. The QR − Fs operates
on six input 32-bit words using Addition, Rotation, and
Exclusive-OR (ARX) operations. At each input block, the
32-bit words are processed sequentially, triggering a new
round of the QR process. When the last ARX operation is
performed, a termination signal is sent, and the resulting
32-bit block is truncated and outputted.

The architecture of the QR − Fs involves pairs of
rotational constants that allow randomized permutations to
resist potential attacks. The rotational constants are applied
using XOR pairs, denoted by y, z, and q, as shown in
Equation 22.

y+ z
⊕
⟨⟨q = (y⟨⟨q)

⊕
(z⟨⟨q) (22)

The EChacha20 is represented as a 6× 6 matrix shown in
Equation 23

MX =



M0 M1 M2 M3 M4 M5
M6 M7 M8 M9 M10 M11
M12 M13 M14 M15 M16 M17
M18 M19 M20 M21 M22 M23
M24 M25 M26 M27 M28 M29
M30 M31 M32 M33 M34 M35


(23)

The QR− Fs is represented using Equation 24 below

QR−Fs = [MX ki]6×6 = QR− F[(MX k−1i)]6×6 (24)

Based on equation 24, the Quarter Round FunctionQR−Fs
is given as shown in Equation 24 -30, as shown at the bottom
of the next page. ‘MX ’ is amatrix used to compute theQuarter
Round Function QR − Fs. For example, ‘MX ki ’ represents a
6×6 matrix derived from elements of the ‘x’ matrix (Salsa20
matrix) starting from index ‘i’. The matrix ‘MX ki ’ is used to
compute the Quarter Round Function.

To improve the security of Chacha20, a few steps can be
taken. First, the key size should be increased to 256 bits,

VOLUME 11, 2023 114227

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

which is the maximum the cipher allows. This is done
by increasing the number of rounds, currently set to 20.
Increasing the number of rounds increases the cipher’s

security and makes it more resistant to brute-force attacks.
Second, the nonce size should be increased to 64 bits, the
maximum the cipher allows. This is done by increasing the

(QR− F)1 =



MX k1
MX k2
MX k3
MX k4
MX k5
MX k0


=



MX k−16 ⊕ ((MX k−10 +MX k−15) ≪ 2)
MX k−112 ⊕ ((MX k−11 +MX k−13) ≪ 4)
MX k−118 ⊕ ((MX k−12 +MX k−14) ≪ 7)
MX k−124 ⊕ ((MX k−13 +MX k−10) ≪ 8)
MX k−130 ⊕ ((MX k−14 +MX k−12) ≪ 12)
MX k−10 ⊕ ((MX k−15 +MX k−12) ≪ 16)


(25)

(QR− F)2 =



MX k6
MX k8
MX k7
MX k9
MX k11
MX k10


=



MX k−11 ⊕ ((MX k−11 +MX k−15) ≪ 2)
MX k−17 ⊕ ((MX k−111 +MX

k−1
3) ≪ 4)

MX k−113 ⊕ ((MX k−110 +MX
k−1
9) ≪ 7)

MX k−119 ⊕ ((MX k−16 +MX k−10) ≪ 8)
MX k−125 ⊕ ((MX k−19 +MX k−18) ≪ 12)
MX k−131 ⊕ ((MX k−110 +MX

k−1
6) ≪ 16)


(26)

(QR− F)3 =



MX k15
MX k14
MX k13
MX k12
MX k16
MX k17


=



MX k−12 ⊕ ((MX k−11 5+MX k−112) ≪ 2)
MX k−18 ⊕ ((MX k−115 +MX

k−1
17) ≪ 4)

MX k−114 ⊕ ((MX k−117 +MX
k−1
12) ≪ 7)

MX k−120 ⊕ ((MX k−116 +MX
k−1
13) ≪ 8)

MX k−126 ⊕ ((MX k−116 +MX
k−1
17) ≪ 12)

MX k−132 ⊕ ((MX k−114 +MX
k−1
14) ≪ 16)


(27)

(QR− F)4 =



MX k18
MX k19
MX k20
MX k22
MX k21
MX k23


=



MX k−13 ⊕ ((MX k−110 +MX
k−1
21) ≪ 2)

MX k−19 ⊕ ((MX k−119 +MX
k−1
23) ≪ 4)

MX k−115 ⊕ ((MX k−110 +MX
k−1
12) ≪ 7)

MX k−121 ⊕ ((MX k−121 +MX
k−1
23) ≪ 8)

MX k−127 ⊕ ((MX k−119 +MX
k−1
22) ≪ 12)

MX k−133 ⊕ ((MX k−120 +MX
k−1
19) ≪ 16)


(28)

(QR− F)5 =



MX k24
MX k25
MX k26
MX k27
MX k28
MX k29


=



MX k−14 ⊕ ((MX k−119 +MX
k−1
25) ≪ 2)

MX k−11 0⊕ ((MX k−126 +MX
k−1
25) ≪ 4)

MX k−116 ⊕ ((MX k−129 +MX
k−1
28) ≪ 7)

MX k−122 ⊕ ((MX k−125 +MX
k−1
25) ≪ 8)

MX k−128 ⊕ ((MX k−119 +MX
k−1
24) ≪ 12)

MX k−129 ⊕ ((MX k−124 +MX
k−1
23) ≪ 16)


(29)

(QR− F)6 =



MX k30
MX k31
MX k32
MX k33
MX k34
MX k35


=



MX k−15 ⊕ ((MX k−130 +MX
k−1
31) ≪ 2)

MX k−11 1⊕ ((MX k−132 +MX
k−1
32) ≪ 4)

MX k−117 ⊕ ((MX k−131 +MX
k−1
33) ≪ 7)

MX k−123 ⊕ ((MX k−130 +MX
k−1
35) ≪ 8)

MX k−129 ⊕ ((MX k−130 +MX
k−1
35) ≪ 12)

MX k−135 ⊕ ((MX k−124 +MX
k−1
35) ≪ 16)


(30)

114228 VOLUME 11, 2023

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

number of blocks currently set to 8. Increasing the number
of blocks increases the cipher’s security and makes it more
resistant to replay attacks.

Based on the premise mentioned above, EChacha20
utilizes an increased key size,, making it difficult to break.
This modification increases the round size and allows faster
encryption/decryption speeds. This increases the number of
rounds and multiplications, making the cipher more secure.
Additionally, the Echacha20 uses a larger key size and
a more secure nonce size. The larger key size helps to
increase the cipher’s security, while the larger nonce size
helps ensure that each message is encrypted with a different
key.

Consequently, the EChacha20 stream cipher includes
additional rounds and operations to enhance its resistance
to attack. Furthermore, using a [6 × 6] matrix has a more
significant influence on the memory, which slightly reduces
memory usage, which can be advantageous for memory-
constrained applications. Also the [6 × 6] matrix provides
higher security than the [8 × 8] matrix due to its increased
diffusion and additional encryption rounds. This improved
version of Chacha20 offers superior security and performance
while reducing memory usage. It provides faster encryption
and decryption times due to the increased number of rounds
and longer time per round with the [6 × 6] matrix, further
increasing security.

E. ECHACHA20 ROW ROUND
The EChacha20 row round is the second step in the
EChacha20 cipher after the column round. The output of the
column round is used as the input for the row round. The row
round consists of six QR−Fs, which are applied to the input
data row-wise. The row round is designed to provide diffusion
in the horizontal direction, while the column round provides
diffusion in the vertical direction.

The EChacha20 row round is similar to the column
round, employing the ARX operations of Addition, Rotation,
and XOR. However, the row round has different rotational
constants for the ARX operations and takes six 32-bit inputs.
Specifically, the rotational constants used in the row round
are (13, 16, 17, 21, 5, 8).

The output of the row round is a 6 × 6 matrix of 32-bit
words that undergoes shuffling within each row to provide
additional diffusion. To achieve this, a permutation matrix
is constructed using the Fibonacci numbers to generate a
cyclic shift pattern for each row. The following equations can
represent the EChacha20 row round:

y4i = y4i ⊕ ((y4i+1 + y4i+2) ≪ r1) (31)

y4i+3 = y4i+3 ⊕ ((y4i + y4i+1) ≪ r2) (32)

y4i+2 = y4i+2 ⊕ ((y4i+3 + y4i) ≪ r3) (33)

y4i+1 = y4i+1 ⊕ ((y4i+2 + y4i+3) ≪ r4) (34)

Equations shown above operate on a 128-bit data block and
consist of four QR-F (Quarter Round - Function) operations.
The input block is divided into 16, 32-bit words, processed

in four sets of four words each. For each set, the equation
computes four new values for the output block by performing
the following operations:
• The first output word is obtained by XORing the fourth
input wordwith the left shift of the addition of the second
and third input words by a constant value r1.

• The second output word is obtained by XORing the first
input word with the left shift of the addition of the third
and fourth input words by a constant value r2.

• The third output word is obtained by XORing the second
input word with the left shift of the addition of the fourth
and first input words by a constant value r3.

• The fourth output word is obtained by XORing the third
input word with the left shift of the addition of the first
and second input words by a constant value r4.

VI. TEST AGAINST DIFFERENTIAL ANALYSIS ATTACK
Differential analysis is a cryptanalysis technique commonly
used to identify the statistical differences between pairs of
inputs and outputs of a cipher. To achieve this, a large number
of pairs of plaintexts are generated that differ in bits; they
are then encrypted with the EChacha20 cipher to obtain
the corresponding ciphertext. The following approaches have
been used as shown in Figure 3:

FIGURE 3. Differential cryptanalysis approach.

• Generate a large number of pairs of plaintext that differ
by a few bits

• Encrypt the plain text with EChacha20 to obtain the
corresponding ciphertext pair

• Compare the ciphertext pairs (Look for statistical
differences), employ NIST Statistical Test Suite

• Compare results of the test with outcomes and analyze
deviations.

• Statistical differences show weakness in the cipher
• Interpret the results and draw conclusions on the security
of EChacha20

To ascertain the effectiveness of the EChacha20 cipher,
the differences between the two ciphertexts are computed,.
A comparison of their differences is expected if the cipher is
perfectly secure. When or if the distribution of the differences
between the ciphertext is significantly different from the
desired outcome, then it indicates that the cipher is vulnerable
to differential analysis. As a result, further analysis of the

VOLUME 11, 2023 114229

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

FIGURE 4. Passing sequences obtained from a battery of statistical tests
used in hypothesis testing, including frequency, block frequency, runs,
and longest run of ones and zeros, among others.

cipher becomes necessary to identify the source of the
vulnerability.

A. RANDOM PLAINTEXT GENERATION & BIT FLIPPING
This study has leveraged the NIST Statistical Test Suite
(NSTS) for conducting differential analysis for EChacha20,
owing to its ability to evaluate the randomness and the
quality of random number generators, whichmakes it suitable
for the proposed EChacha20. In addition, the NSTS test is
designed to detect a variety of deviations from randomness
like correlation, biases, and other patterns that are likely to
exhibit weaknesses or vulnerabilities in the cipher. In this
study, we have generated 1000 pairs of 32-byte plaintexts
that differ only in one bit, as is shown in Algorithm 4 where
bitflips are realized. In this approach, Algorithm 4 takes an
n input that specifies the number of plaintexts and outputs
a list of plaintexts, each of 32-byte plaintext. Random bytes
are generated using the os.urandom function for the plaintext,
and the byte-array is used in the mutation of p1, which allows
the random index j to be flipped between 0 and 31 using a
bitwise XOR operation.

This eventually is followed by appending the tuple where
the process repeats for iteration purposes, as is shown in
Algorithm 4.

B. ENCRYPTING FLIPPED BIT WITH ECHACHA20
In flipping and encrypting the plaintext, the plaintext is first
XORed with the key stream generated by the EChacha20
algorithm. The result of the XOR operation is the ciphertext.

FIGURE 5. P-values obtained from a battery of statistical tests used in
hypothesis testing, including frequency, block frequency, runs, and
longest run of ones and zeros, among others.

Algorithm 4 Generating Plaintexts With Bitflips
Input: Number of plaintexts to generate: n
Output: List of plaintext tuples: plaintexts
initialize plaintexts as an empty list
for i← 1 to n do

p1← generate 32-byte random string
using os.urandom()
p2← convert p1 to a bytearray
j← random integer between 0 and 31
p2[j]← bitwise XOR of p2[j] and 1
append (p1, bytes(p2)) to plaintexts

end
return plaintexts

The key stream is generated by running the EChacha20
algorithm with the secret key and the nonce as inputs.
However, before running the encryption process, a random
bit in the plaintext is flipped to introduce an error. This
bit flip is intended to simulate an error in transmitting or
storing the encrypted data. The QR − F is a fundamental
building block of the Chacha20 cipher and by extension, the
EChacha20 cipher. The QR − F itself involves four basic
operations: addition, XOR, left rotation, and right rotation.
These operations are performed on the four input elements
in a specific order, with the output elements permutations
of the input elements. Whereas the original Chacha20 cipher
uses 20 rounds, the EChacha20 cipher uses 36 rounds. This
increased number of rounds is intended to provide greater

114230 VOLUME 11, 2023

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

Algorithm 5 EChacha20 Encryption
Input: Number of iterations: n
Output: EChacha20-ciphertext and nonce
for i← 1 to n do

key← os.urandom(32);
nonce← os.urandom(16);
rounds← 36;
backend← default-backend();
cipher ← Cipher(algorithms.Chacha20(key, nonce,
rounds), mode=None, backend=backend);
plaintext← b‘‘This is a secret message’’;
encryptor← cipher.encryptor();
ciphertext ← encryptor.update(plaintext) +
encryptor.finalize();
Print ‘‘Ciphertext:’’ + ciphertext.hex() + ‘‘ Nonce:’’ +
nonce.hex();

end
return ciphertext and nonce

TABLE 3. Results of the NIST statistical suite tests for the EChacha20
cipher with 36 Q-Rounds.

security against attacks on the cipher while still maintaining
a high level of performance. Encrypting the flipped bit with
EChacha20 based on 36 QR-F is shown in Algorithm 5.

C. MEASURE WITH NIST STATISTICAL SUITE
Using the NIST Statistical Test Suite (NSTS), EChacha20’s
quality is evaluated by being subjected to 36 rounds with a
battery of tests using the approach shown inAlgorithm 6. This
study considers 1000 pairs of plaintexts that only differed by
a few bits, which had been flipped before being encrypted
by the EChacha20 algorithm. The resulting ciphertext has
been analyzed using NSTS to determine its randomness and
the quality of encryption. It is worth noting that the NSTS
consists of diverse tests used to assess the randomness and
the quality of randomized number generators and respective

Algorithm 6 Running the NIST Statistical Test Suite
Input: Ciphertexts ciphertext1 and ciphertext2
Output: NIST Statistical Test Suite results
Write ciphertext1 to a binary file named ‘‘ciphertext1.bin’’
Write ciphertext2 to a binary file named ‘‘ciphertext2.bin’’
for i from 1 to N do

Execute the NIST Statistical Test Suite with the command
‘‘Compute ciphertext1.bin & ciphertext2.bin’’ Obtain
the NIST Statistical Test Suite results for iteration i

end

cryptographic algorithms. Uniformity of the p-values is
measured or evaluated based on uniform distribution with an
interval of [0, 1].
After applying NSTS to the ciphertexts, the p-values,

statistical tests, and the measure of randomness were
assessed. Table 3 shows the statistical test results after
analysis for the p-value for the sequence and the proportion
of passing sequences. As shown, the frequency test showed
a p-value of 0.499132. In addition, the Run-test exhibited
a p-value of 0.000006, and all the 1000 sequences passed
the test. This was followed by The LongestRunOfOnes test,
which had a p-value of 0.983454, a selected performance of
the sequences is shown out of the 1,000 sequences passed
the test as is shown in Figures 5 and 4 respectively. Figure 5
displays the p-values obtained from a battery of statistical
tests used in hypothesis testing, including frequency, block
frequency, runs, and longest run of ones and zeros, among
others, while Figure 4 displays the passing rates against the
battery of tests that are shown in Table 3.

VII. SECURITY ANALYSIS
This section focuses on evaluating the security properties of
the proposed EChacha20 encryption scheme. The ultimate
aim is to comprehensively analyze the security guarantees
offered by EChacha20 and compare them to the well-
established Chacha20 cipher. This is relevant because it
enriches the field of cryptographic research, providing a
thorough assessment of the security properties of EChacha20
and offering insights into its strengths and potential vulnera-
bilities.

A. ECHACHA20 SECURITY MODEL ANALYSIS
It is vital to establish the foundational concepts, assumptions,
and adversary models essential for evaluating the security
guarantees of the proposed cipher. This analysis explores the
security notions and properties that EChacha20 satisfies by
identifying the capabilities and constraints of the adversaries,
considering their access to various resources, such as
ciphertexts, plaintexts, and encryption keys, as was initially
shown in the descriptions of EChacha20.

The notions that have been considered significant while
assessing EChacha20 in the context of adversarial capabilities
are as follows:

VOLUME 11, 2023 114231

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

• Indistinguishability under Chosen-Plaintext Attack
(IND-CPA): This property ensures that an adversary
cannot distinguish between encryptions of differ-
ent plaintexts with a non-negligible advantage [44].
The proof for IND-CPA typically demonstrates that the
probability of successfully distinguishing between the
ciphertexts in EChacha20 is negligible.
The security of EChacha20 is shown in this context
by proving that no efficient adversary can distinguish
the encryptions with non-negligible advantage. This
is achieved by carefully analyzing the encryption
process of EChacha20 and the computational hardness
assumptions underlying the cipher.

• Non-malleability: This property guarantees that an
adversary cannot modify ciphertexts meaningfully with-
out knowledge of the corresponding plaintext [45].
The proof for non-malleability involves demonstrating
that any modification to the ciphertext results in an
unpredictable change in the corresponding decrypted
plaintext. This is established by analyzing the crypto-
graphic properties of EChacha20, such as the integrity
protection mechanisms and the resistance against
chosen-ciphertext attacks.

• Randomness Preservation: This property ensures that
EChacha20 preserves the randomness properties of the
underlying Chacha20 cipher. The proof for randomness
preservation typically involves analyzing the modifi-
cations introduced in EChacha20 and verifying that
they do not compromise the underlying randomness
properties of Chacha20.

B. PERFORMANCE EVALUATION AND COMPARISON
Performance evaluation and comparison show the effect
of implementing EChacha20 over Chacha20, coupled with
an analysis of the effectiveness of the suggested security
improvements.

For this performance evaluation, data were collected on
the encryption and decryption time metrics for Chacha20 and
EChacha20 using a data size of 1048576 bytes, respectively.
The selection of the appropriate metrics is important during
performance evaluation to assess the effectiveness and
efficiency of the cryptographic algorithm. In this evaluation,
the followingmetrics that are relevant for this study have been
chosen owing to them providing their crucial performance
characteristics:
• Encryption time: This metric measures the duration
required to encrypt a given amount of data. The
importance of this metric lies in the fact that it is
directly used to reflect the speed at which the cipher
can process and protect sensitive information. Normally,
fast encryption time is preferred because it facilitates
efficient and timely data encryption.

• Decryption time: This metric measures the time taken
to decrypt encrypted data. It is similar to encryption
time. Faster decryption time shows the efficiency of
the cipher in recovering the original plaintext from the

FIGURE 6. Performance evaluation results of EChacha20. The graph
illustrates the encryption and decryption time measurements with the
inclusion of noise, providing a visual representation of the performance
characteristics. The x-axis represents the data size in bytes, while the
y-axis denotes the time in seconds. The plotted data points show varying
data sizes’ encryption and decryption time values.

FIGURE 7. Performance evaluation results of Chacha20. The graph
illustrates the encryption and decryption time measurements with the
inclusion of noise, providing a visual representation of the performance
characteristics. The x-axis represents the data size in bytes, while the
y-axis denotes the time in seconds. The plotted data points show varying
data sizes’ encryption and decryption time values.

ciphertext. When rapid access to encrypted information
is essential, then quick decryption is necessary in such
scenarios.

• Memory Usage: Memory usage refers to the amount
of computer memory the cipher requires during its
operation. It is an essential metric as it affects the overall
resource consumption of the cipher. Lower memory
usage is desirable as it minimizes the impact on system
resources and allows for more efficient execution in
resource-constrained environments.

Based on the results that have been obtained from
this evaluation, as is shown in Table 4, it is observed
that EChacha20 demonstrates comparable performance to
Chacha20 in terms of encryption and decryption time. It is
worth noting that the slight differences in the measured times
can be attributed to various factors such as system variations
and measurement noise, as is shown in Figures 7 and 6
respectively.

114232 VOLUME 11, 2023

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

TABLE 4. Performance evaluation results.

One of the key improvements introduced in EChacha20
while conducting this evaluation is the increased number of
QR − F from 20 to 36. This enhancement is to improve
the security property of the EChacha20 cipher. In addition,
despite the additional computational complexity introduced
by the extra QR − F in this process, our evaluation has
shown that the impact on the overall performance is relatively
minimal.

Moreover, the line graphs with noise generated, as is shown
in Figures 7 and 6 respectively, are based on the collected
data, and they provide more insights into the performance
characteristics of Chacha20 and EChacha20. It is observed
that these graphs exhibit similar trends, indicating that the
additional QR − F in EChacha20 does not significantly
affect the overall performance in terms of encryption and
decryption time, however, with a small margin. This suggests
that the proposed modifications in EChacha20 maintain a
good balance between security and performance.

On the other hand, it has been observed that the memory
usage of EChacha20 is higher than that of Chacha20,
as is shown in Figure 8. This suggests that EChacha20
requires more memory resources to perform its operations
effectively. High memory usage can have implications for
systems with limited memory capacity. This may lead to
increased resource consumption and potential performance
degradation. Consequently, the graph in Figure 8 highlights
the trade-off between computational efficiency and memory
usage in the performance of Chacha20 and EChacha20.
While EChacha20 offers improved encryption and decryption
times, it comes at the cost of higher memory usage.
Ultimately, the choice between the two ciphers depends on
the specific requirements and constraints of the system or
application where they are used.

It is important to note that the performance evaluation
conducted in this paper is just one aspect of cipher analysis
that is relevant for this study, and a comprehensive evaluation
that is positioned as an avenue for future work should con-
sider other factors such as throughput and latency. However,
our evaluation demonstrates that EChacha20 can provide
comparable performance to Chacha20 while incorporating
the proposed improvements for the specific metrics of
encryption and decryption time.

The results of our performance evaluation support the
effectiveness of the EChacha20 cipher as a potential alter-
native to Chacha20 based on the security enhancements. The
enhancements made in EChacha20, particularly the increased
QR − F , contribute to its security without compromising its
performance. The ability to balance security and performance
is a crucial factor in the design of modern encryption
algorithms, as seen in EChacha20.

FIGURE 8. Performance comparison between Chacha20 and EChacha20
in terms of encryption and decryption time, along with memory usage.
The bars represent each cipher’s encryption and decryption time, while
the red curve depicts the memory usage.

VIII. COMPARISON WITH EXISTING STUDIES
This section concentrates on giving comparative studies on
the proposed extended QR − Fs and other studies that
have somewhat been used as baselines of the propositions
identified in this paper. These studies have been explored to
show relevance and how Chacha20 performs against other
algorithms.

The primary difference between Chacha20 and other block
ciphers is that it uses a different type of key scheduling
algorithm. Specifically, Chacha20 uses a 20-round variant of
the well-known salsa20 algorithm, designed for high-speed
encryption. Chacha20 was designed to be more secure and
efficient than existing block ciphers like AES. The main
benefit of Chacha20 is its increased speed: it can encrypt and
decrypt data up to four times faster than AES. In addition,
Chacha20 is more secure than AES since it has a larger
number of rounds, and its rounds aremore complex than those
used in AES.

Nevertheless, Chacha20 offers some other advantages
over older block ciphers, such as the ability to use nonce-
based encryption. This allows for more secure and unique
encryption keys for each session, improving security by
making it more difficult for attackers to guess the encryption
key. It also supports a variety of different modes of operation,
allowing it to be used in a variety of applications.

The need for combining Chacha20 and Poly1305, that
IETF protocols have suggested, is necessitated by the fact
that Chacha20 and Poly1305 primitives are seen to be secure.
Security analysis shows that adversaries are given access
to the encrypting oracles where the decryption oracle takes
a chance to query the oracles; however, adversaries are
treated as nonce-respecting adversaries [46]. Also, side-
channel attacks onChachaQuarter Round show initial diverse
levels of resistance; however, a divide and conquer approach
(Brick-layer attack approach) shows the efficiency when
attacking the reverse Quarter Round from the keystream
as opposed to the attack from the input block [47].
Consequently, an analysis of Chacha and Salsa Quarter

VOLUME 11, 2023 114233

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

Round that was aimed at exploring alternative designs for
maximizing diffusion showed that for each algorithm, more
than a million diffusion matrices were generated, and the
findings also show that there exists a higher number of
rotational constants which in the long run generates more
diffusion [48].

Another study has explored rotational analysis of Chacha
permutation where it is seen that Chacha20 stream cipher
hardly acts as a random permutation when 17 rounds
are observed during cryptanalysis. Furthermore, it is seen
that the probability of finding a rotational collision that
is parallel is estimated to be less than 2400 and (88117)
rounds are observed as opposed to 2−511 for a random
permutation [49]. Other research on vectorization approaches
for Chacha stream cipher has shown the need for speeding
encryption and decryption of X86-64 processors through
AVX-2 implementation. Through this, there is a widening
of the vector from 128 bits to 256/512 bits,, showing an
improved throughput and an increase in speed. However,
with an improved double Quarter-Round, there is a need for
changing the initialization vectors [50].

Consequently, a study focused on analyzing the non-
randomness of estream cipher and the possibility of
recovering the key after five (5) rounds of 128 bits with
281 operations and six (6) rounds of 256 bits with 2177 rounds
respectively. In this study, the weakness of this approach is
extensively highlighted in the seven rounds [51].

Another research that analyses Probabilistic Neutral Bits
(PNB) using the input and output pairs has suggested the
PNB-based differential attacks concentrate on the reduced
round Chacha. It was observed that the extended attack can
work for up to 7.25 rounds. However, with a time complexity
of 2555.62, 248.36 with the success of 0.5. While this outcome
seems feasible, the suggested attack seems less effective
as compared to a brute force attack [52]. Another research
by [53], on the rotational cryptanalysis of Chacha cipher, that
checks how to obtain rotational XOR pairs shows that in the
first quarter round, the probability is seen to be 2−251.7875,
which ultimately is expected based on a random permutation.
The potential weakness is seen to be the rotational XOR
probability, which increases in other Chacha20 variants.
An analysis for fault in Chacha and Salsa stream cipher
by [54] shows commonality in differential attacks. From this
study, fault model attacks are suggested, and it is seen that
when the attacker knows the plaintext and the ciphertext,
then the fault mode can easily be exploited; however, the
low complexity of this study showed that it is practical in
nature [54].

From the above studies that have offered more insights,
it is seen that Chacha20 is a cipher widely regarded as
one of the most secure and efficient encryption algorithms
currently available. Compared to other ciphers, such as AES,
Chacha20 has been more efficient at high-speed encryption.
Additionally, Chacha20 is more secure than other ciphers due
to its increased number of rounds and more complex round
structure.

It is important to note that the motivation for exploring
the extended rounds for Chacha20 is based on the limitations
identified in other ciphers, as shown in Table 5. These limita-
tions include issues such as weaknesses in the key schedule
and the susceptibility of some ciphers to side-channel
attacks [47], attackingQR−Fs from keystream [48],QR−F
modification, weaknesses in rotational XOR in Chacha20
variants, etc [49], [50], [51], [54]. EChacha20 has been
designed to address the specific limitation of improved
QR − F and stands to provide a more secure and efficient
encryption algorithm.

IX. DISCUSSIONS AND IMPLICATIONS
Chacha20 is a round-based cryptographic construction that
processes data through a series of rounds, each consist-
ing of various operations. It differs from Salsa20 in the
number of rounds used, with Chacha20 employing 10 or
20 rounds depending on the application, compared to
Salsa20’s 20 rounds. EChacha20 is an improved version of
the Chacha20 cipher. Its goal is to enhance the cipher’s
security by implementing additional encryption rounds.
Compared to the original Chacha20, the EChacha20 cipher
uses more rounds, making it more secure and resilient
to attacks. Moreover, the EChacha20 quarter round is an
extension of the standard Chacha20 quarter round, utilizing
the same algorithm but with larger rounds. Nevertheless,
the QR-F in EChacha20 increases the security of the
Chacha20 algorithm by implementing additional rounds. Its
purpose is to provide extra protection against brute force and
cryptographic attacks that exploit known plaintext. The QR-F
takes two input vectors, a state array and a round constant,
and performs four rounds of the Chacha20 algorithm.
Each round comprises several operations, as Section V and
Equations 1-22 shows.

By adding additional rounds to the Chacha20 algorithm,
the EChacha20 cipher provides enhanced protection against
known plaintext and brute force attacks based on the
test conducted for differential cryptanalysis. The QR − F
operation is a crucial component of the EChacha20 QR-F,
designed to ensure that the same plaintext does not produce
the same ciphertext when using the same key. However, the
EChacha20 quarter round is similar to the standard quarter
round but includes four rounds instead of two, providing even
more excellent protection. The four rounds consist of adding
and XORing 32-bit word blocks, rotating the blocks left or
right by a specific number of bits, and performing additional
XOR operations.

Based on the need to assess the statistical suitability of
the EChacha20 with the enhanced QR − F as is shown in
Section VI of this paper, the study went the extra mile to test
the effectiveness and randomness of EChacha20 cipher using
theNIST Statistical Test Suite [55], designed to detect various
deviations from randomness that can lead to vulnerabilities in
the cipher. The study leveraged 1000 pairs of plaintexts that
differed only in one bit and then flipped a bit in the plaintext
before encrypting with EChacha20. The resulting ciphertext

114234 VOLUME 11, 2023

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

TABLE 5. Comparing the study with the state of the art that closely matches.

was analyzed using the NIST Statistical Suite to evaluate its
randomness and quality of encryption.

The frequency test showed a p-value of 0.499132, and
only 47 out of the 1000 sequences passed the test. The
BlockFrequency test showed a p-value of 0.074648, and
96 out of the 1000 sequences passed the test. The Runs test
showed a p-value of 0.000006, and all the 1000 sequences
passed the test. The LongestRunOfOnes test showed a p-value
of 0.983454, and 2 sequences passed the test based on
the current sequences in Table 3. The LongestRunOfZeros
test showed a p-value of 0.912505, and 12 out of the
1000 sequences passed the test.

Based on the outcome, it was seen that EChacha20
performswell in terms of the Runs test, but it may not perform
well in terms of other tests. Specifically, the frequency and
block frequency tests suggest that the EChacha20 cipher may
not be as random as desired. This could be because the cipher
uses only 36 rounds, which may not be enough to provide
sufficient security against attacks, or it could give room
for lengthy processes that tamper with effective diffusion.
However, the cipher is still considered secure for most
applications, as it has passed many other tests in the NIST
Statistical Suite, such as the Universal test, which showed a
p-value of 0.068926, and 98 out of the 1000 sequences passed
the test.

The choice of using more than 20 rounds is necessitated
by the fact that, in some cases, it may be desirable to use
more than 20 rounds of Chacha20 encryption to increase
protection. For example, if an application needs to protect
susceptible data, it may be necessary to use additional
rounds of Chacha20 encryption to ensure the data remains
secure. Additionally, if a system is being attacked, it may be
beneficial to use additional rounds of Chacha20 encryption

to make it more difficult for an attacker to gain access to
the data. Adding additional rounds to the algorithm will
also increase the time it takes for an attacker to crack the
encryption, thus providing additional layers of protection.
For example, an attacker who knows the structure of Salsa20
will not necessarily be able to apply the same techniques
to Chacha20. For example, increasing the number of rounds
from 20 to 36, or 40, increases the cipher’s security by a
factor of 220, or over one million. However, increasing the
number of rounds also increases the cipher’s complexity,
as each additional round requires additional operations and
memory. Consequently, When considering additional rounds,
it is essential to understand the trade-off between security
and performance. The additional rounds may provide higher
protection but at the cost of slower performance. As such, it is
essential. Overall, the additional rounds in Chacha20 make it
a more secure option than Salsa20, especially for applications
requiring higher levels of security; however, it is essential to
note that additional roundswill also add additional processing
time, so it should only be used when necessary.

In analyzing the security posture of EChacha20, it demon-
strates promising characteristics. The analysis suggests that
the increased number of QR − F rounds, from 20 to 36,
enhances the resistance against differential attacks and
strengthens the overall security of the cipher. Additionally,
utilizing the extended key schedule contributes to the
mitigation of related-key attacks, further improving the
cipher’s security profile.

While assessing the performance, the quantitative eval-
uation shows the comparable efficiency of EChacha20
and Chacha20. Both ciphers’ encryption and decryption
times exhibit minimal differences, indicating that the addi-
tional computational complexity introduced by EChacha20’s

VOLUME 11, 2023 114235

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

enhancements does not significantly impact its overall per-
formance. In the author’s opinion, this finding is crucial as it
demonstrates that the proposed modifications in EChacha20
can be integrated into existing systems without sacrificing
computational efficiency.

It has also been observed that EChacha20 exhibits
higher memory usage compared to Chacha20. This trade-off
between computational efficiency and memory consumption
should be carefully considered when deploying the cipher
in resource-constrained environments. While EChacha20
offers improved encryption and decryption times, it has been
observed that the slightly higher memory requirements may
impact system resources. In the authors’ opinion, it is worth
mentioning that based on this outcome, the selection of
the appropriate cipher between EChacha20 and Chacha20
depends on the specific requirements and constraints of the
system or application.

X. CONCLUSION AND FUTURE WORK
The author of this paper has suggested an extended
EChacha20 stream cipher that utilizes ARX with six
rotational constants. The Chacha20 quarter-round function
is an essential component of the ChaCha stream cipher.
Also, the proposed quarter-round function is a non-linear
transformation that operates on four 32-bit words at a time.
It is designed to be efficient, fast, and secure and is well-suited
for use in embedded systems. The proposed Echacha is a
substitution-permutation network that consists of four mixing
functions, each operating on a 4-word (16-byte) state. The
QR− F is used to mix the state in a pseudo-random manner,
and it operates on four 32-bit words at a time.

Consequently, this study will explore comprehensive
performance evaluation in the future to consider other
factors, such as throughput and latency, further to assess the
performance of EChacha20 against the Chacha20 cipher.

Also, future work is aimed at studying how the efficiency
of the QR − F can be increased based on the existing
number of operations. Also, the security analysis of the
QR − F will also be studied to see the degree and whether
the proposed QR − F is resistant to known attacks in a
complex environment with massive data. Also, while the
suggested approach is more secure, future research will focus
on reducing the number of XOR operations on the QR− F .

ACKNOWLEDGMENT
The author would like to thank anonymous reviewers for their
valuable insights, the Secure Distributed Systems (SDS), and
the Department of Computer Science (DIDA) at Blekinge
Institute of Technology, BTH, Karlskrona, Sweden, for their
support while coming up with this research. The author also
acknowledges that the opinions, findings, and conclusions
expressed in this paper are purely of the authors.

REFERENCES
[1] W. Butler and L. D. Keeney, Secret Messages. London, U.K.: Simon &

Schuster, 2001.

[2] D. Kahn, The Codebreakers: The Comprehensive History of Secret
Communication From Ancient Times to the Internet. New York, NY, USA:
Simon and Schuster, 1996.

[3] A. M. Qadir and N. Varol, ‘‘A review paper on cryptography,’’ in Proc. 7th
Int. Symp. Digit. Forensics Secur. (ISDFS), Jun. 2019, pp. 1–6.

[4] W. Diffie and M. E. Hellman, ‘‘New directions in cryptography,’’ IEEE
Trans. Inf. Theory, vol. IT-22, no. 6, Nov. 1976.

[5] D. Pandya, K. Ram, S. Thakkar, T. Madhekar, and B. S. Thakare, ‘‘Brief
history of encryption,’’ Int. J. Comput. Appl., vol. 131, no. 9, pp. 28–31,
Dec. 2015.

[6] A. Kerckhoffs, ‘‘La cryptographie militaire,’’ J. Des. Sci. Militaries, vol. 4,
no. 38, p. 5, 1883.

[7] L. Kruh, ‘‘The Beale cipher as a bamboozlement—Part II,’’ Cryptologia,
vol. 12, no. 4, pp. 241–246, Oct. 1988.

[8] N. P. Smart and N. P. Smart, ‘‘The enigma machine,’’ in Cryptography
Made Simple, 2016, pp. 133–161.

[9] C. A. Deavours and J. Reeds, ‘‘The enigma part I historical perspectives,’’
Cryptologia, vol. 1, no. 4, pp. 381–391, Oct. 1977.

[10] C. Ellis, Exploring the Enigma. Cambridge, U.K.: Univ. Cambridge, 2005.
[11] J. Daemen and V. Rijmen, ‘‘The block cipher Rijndael,’’ in Smart

Card Research and Applications. Cham, Switzerland: Springer, 2000,
pp. 277–284.

[12] T. W. Cusick, C. Ding, and A. R. Renvall, Stream Ciphers and Number
Theory. Amsterdam, The Netherlands: Elsevier, 2004.

[13] D. J. Bernstein, ‘‘The Salsa20 family of stream ciphers,’’ in New Stream
Cipher Designs. Cham, Switzerland: Springer, 2008, pp. 84–97.

[14] R. Velea, F. Gurzau, L. Margarit, I. Bica, and V.-V. Patriciu, ‘‘Performance
of parallel ChaCha20 stream cipher,’’ in Proc. IEEE 11th Int. Symp. Appl.
Comput. Intell. Informat. (SACI), May 2016, pp. 391–396.

[15] L. Jiao, Y. Hao, and D. Feng, ‘‘Stream cipher designs: A review,’’ Sci.
China Inf. Sci., vol. 63, no. 3, pp. 1–25, Mar. 2020.

[16] J. Daemen and P. Kitsos, ‘‘The self-synchronizing stream cipher
MOUSTIQUE,’’ in New Stream Cipher Designs. Cham, Switzerland:
Springer, 2008, pp. 210–223.

[17] J. D. Golić, ‘‘Modes of operation of stream ciphers,’’ in Selected Areas in
Cryptography. Cham, Switzerland: Springer, 2001, pp. 233–247.

[18] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and Y. Papaefstathiou, ‘‘A
survey of lightweight stream ciphers for embedded systems,’’ Secur.
Commun. Netw., vol. 9, no. 10, pp. 1226–1246, Jul. 2016.

[19] P. C. vanOorschot andM. J.Wiener, ‘‘A known-plaintext attack on two-key
triple encryption,’’ in Advances in Cryptology—EUROCRYPT ’90. Cham,
Switzerland: Springer, 1991, pp. 318–325.

[20] Y. Liu, L. Y. Zhang, J. Wang, Y. Zhang, and K.-W. Wong, ‘‘Chosen-
plaintext attack of an image encryption scheme based on modified
permutation–diffusion structure,’’ Nonlinear Dyn., vol. 84, no. 4,
pp. 2241–2250, Jun. 2016.

[21] A. H. Zahid, E. Al-Solami, and M. Ahmad, ‘‘A novel modular approach
based substitution-box design for image encryption,’’ IEEE Access, vol. 8,
pp. 150326–150340, 2020.

[22] A. H. Zahid, M. Ahmad, A. Alkhayyat, M. J. Arshad, M. M. U. Shaban,
N. F. Soliman, and A. D. Algarni, ‘‘Construction of optimized dynamic
S-boxes based on a cubic modular transform and the sine function,’’ IEEE
Access, vol. 9, pp. 131273–131285, 2021.

[23] A. H. Zahid, A. M. Iliyasu, M. Ahmad, M. M. U. Shaban, M. J. Arshad,
H. S. Alhadawi, and A. A. A. El-Latif, ‘‘A novel construction of dynamic
S-box with high nonlinearity using heuristic evolution,’’ IEEE Access,
vol. 9, pp. 67797–67812, 2021.

[24] A. Zahid, M. Arshad, and M. Ahmad, ‘‘A novel construction of effi-
cient substitution-boxes using cubic fractional transformation,’’ Entropy,
vol. 21, no. 3, p. 245, Mar. 2019.

[25] F. Xiu-Tao, ‘‘ZUC algorithm: 3GPP LTE international encryption stan-
dard,’’ Inf. Secur. Commun. Privacy, vol. 19, no. 12, pp. 45–46, 2011.

[26] D. P. Anderson and R. G. Herrtwich, ‘‘Internet communication with
end-to-end performance guarantees,’’ in Telekommunikation und Multime-
diale Anwendungen der Informatik. Cham, Switzerland: Springer, 1991,
pp. 246–258.

[27] G. Orhanou, S. E. Hajji, Y. Bentaleb, and J. Laassiri, ‘‘EPS confidentiality
and integrity mechanisms algorithmic approach,’’ 2011, arXiv:1102.5191.

[28] D. J. Bernstein. Notes on the Ecrypt Stream Cipher Project
(eSTREAM). Accessed: Jul. 2023. [Online]. Available: http://cr.yp.to/
streamciphers/#timings

[29] M. Robshaw, ‘‘The eSTREAM project,’’ in New Stream Cipher Designs.
Cham, Switzerland: Springer, 2008, pp. 1–6.

114236 VOLUME 11, 2023

V. R. Kebande: Extended-Chacha20 Stream Cipher With Enhanced Quarter Round Function

[30] M. Hell, T. Johansson, and W. Meier, ‘‘Grain: A stream cipher for
constrained environments,’’ Int. J. Wireless Mobile Comput., vol. 2, no. 1,
pp. 86–93, 2007.

[31] C. De Cannière, ‘‘TRIVIUM: A stream cipher construction inspired by
block cipher design principles,’’ in Proc. Int. Conf. Inf. Secur. Cham,
Switzerland: Springer, 2006, pp. 171–186.

[32] S. Babbage and M. Dodd, ‘‘The stream cipher Mickey 2.0. eSTREAM,’’
Project Dates 2004 to 2008, EU, Eur. Project, ECRYPT Stream Cipher
Project, Tech. Rep. 2, Sep. 2009.

[33] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert,
L. Goubin, A. Gouget, L. Granboulan, C. Lauradoux, and M. Minier,
‘‘SOSEMANUK, a fast software-oriented stream cipher,’’ in New Stream
Cipher Designs. Cham, Switzerland: Springer, 2008, pp. 98–118.

[34] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and
O. Scavenius, ‘‘Rabbit: A new high-performance stream cipher,’’ in Proc.
Int. Workshop Fast Softw. Encryption. Cham, Switzerland: Springer, 2003,
pp. 307–329.

[35] H. Wu, ‘‘The stream cipher HC-128,’’ in New Stream Cipher Designs.
Cham, Switzerland: Springer, 2008, pp. 39–47.

[36] A. Klein, ‘‘Attacks on the RC4 stream cipher,’’ Des., Codes Cryptogr.,
vol. 48, no. 3, pp. 269–286, Sep. 2008.

[37] W. Cai, H. Chen, Z. Wang, and X. Zhang, ‘‘Implementation and optimiza-
tion of ChaCha20 stream cipher on sunway taihuLight supercomputer,’’
J. Supercomput., vol. 78, no. 3, pp. 4199–4216, Feb. 2022.

[38] A. T. Maolood, E. K. Gbashi, and E. S. Mahmood, ‘‘Novel lightweight
video encryption method based on ChaCha20 stream cipher and hybrid
chaotic map,’’ Int. J. Electr. Comput. Eng., vol. 12, no. 5, p. 4988,
Oct. 2022.

[39] Z. Wang, H. Chen, and W. Cai, ‘‘A hybrid CPU/GPU scheme for
optimizing ChaCha20 stream cipher,’’ in Proc. IEEE Int. Conf Parallel
Distrib. Process. Appl., Big Data Cloud Comput., Sustain. Comput.
Commun., Social Comput. Netw., Sep. 2021, pp. 1171–1178.

[40] B. Ang, ‘‘Mitigating challenges in an evolving cyber threat landscape,’’
Cyber Secur., Peer-Reviewed J., vol. 6, no. 2, pp. 168–177, 2022.

[41] W. Stone, D. Kim, V. Y. Kemmoe, M. Kang, and J. Son, ‘‘Rethinking
the weakness of stream ciphers and its application to encrypted malware
detection,’’ IEEE Access, vol. 8, pp. 191602–191616, 2020.

[42] C. Brzuska,M. Fischlin, B.Warinschi, and S. C.Williams, ‘‘Composability
of Bellare–Rogaway key exchange protocols,’’ in Proc. 18th ACM Conf.
Comput. Commun. Secur., Oct. 2011, pp. 51–62.

[43] L. E. Olson, M. J. Rosulek, and M. Winslett, ‘‘Harvesting credentials
in trust negotiation as an honest-but-curious adversary,’’ in Proc. ACM
Workshop Privacy Electron. Soc., Oct. 2007, pp. 64–67.

[44] T. V. Carstens, E. Ebrahimi, G. N. Tabia, and D. Unruh, ‘‘Relationships
between quantum IND-CPA notions,’’ in Proc. Theory Cryptogr. Conf.
Cham, Switzerland: Springer, 2021, pp. 240–272.

[45] G. Alagic and C.Majenz, ‘‘Quantum non-malleability and authentication,’’
in Advances in Cryptology—CRYPTO 2017. Cham, Switzerland: Springer,
2017, pp. 310–341.

[46] G. Procter, ‘‘A security analysis of the composition of ChaCha20 and
Poly1305,’’ IACR Cryptol. ePrint Arch., vol. 2014, p. 613, 2014.

[47] A. Adomnicai, J. J. A. Fournier, and L. Masson, ‘‘Bricklayer attack:
A side-channel analysis on the ChaCha quarter round,’’ in Proc. Int. Conf.
Cryptol. India. Cham, Switzerland: Springer, 2017, pp. 65–84.

[48] R. Sobti and G. Ganesan, ‘‘Analysis of quarter rounds of salsa and ChaCha
core and proposal of an alternative design to maximize diffusion,’’ Indian
J. Sci. Technol., vol. 9, no. 3, pp. 1–10, Jan. 2016.

[49] S. Barbero, E. Bellini, and R. Makarim, ‘‘Rotational analysis of ChaCha
permutation,’’ 2020, arXiv:2008.13406.

[50] M. Goll and S. Gueron, ‘‘Vectorization on ChaCha stream cipher,’’ in Proc.
11th Int. Conf. Inf. Technol., New Generat., Apr. 2014, pp. 612–615.

[51] S. Fischer,W.Meier, C. Berbain, J.-F. Biasse, andM. J. B. Robshaw, ‘‘Non-
randomness in eSTREAM Candidates Salsa20 and TSC-4,’’ in Proc. Int.
Conf. Cryptol. India. Cham, Switzerland: Springer, 2006, pp. 2–16.

[52] S. Miyashita, R. Ito, and A. Miyaji, ‘‘PNB-focused differential cryptanaly-
sis of ChaCha stream cipher,’’ in Information Security and Privacy. Cham,
Switzerland: Springer, 2022, pp. 46–66.

[53] S. Barbero, D. Bazzanella, and E. Bellini, ‘‘Rotational cryptanalysis on
ChaCha stream cipher,’’ Symmetry, vol. 14, no. 6, p. 1087, May 2022.

[54] A. Beckers, B. Gierlichs, and I. Verbauwhede, ‘‘Fault analysis of the
ChaCha and Salsa families of stream ciphers,’’ in Smart Card Research and
Advanced Applications. Cham, Switzerland: Springer, 2018, pp. 196–212.

[55] A. M. Zubkov and A. A. Serov, ‘‘Testing the NIST statistical test suite
on artificial pseudorandom sequences,’’ Math. Aspects Cryptogr., vol. 10,
no. 2, pp. 89–96, 2019.

[56] K. Marton and A. Suciu, ‘‘On the interpretation of results from the
NIST statistical test suite,’’ Romanian J. Inf. Sci. Technol., vol. 18, no. 1,
pp. 18–32, 2015.

[57] M. Sýs and Z. Ríha, ‘‘Faster randomness testing with the NIST statistical
test suite,’’ in Security, Privacy, and Applied Cryptography Engineering.
Cham, Switzerland: Springer, 2014, pp. 272–284.

VICTOR R. KEBANDE (Member, IEEE) received
the Ph.D. degree in computer science (infor-
mation and computer security architectures and
digital forensics) from the University of Pretoria,
Hatfield, South Africa. He was a Researcher with
the Information and Computer Security Architec-
tures (ICSA) and the DIgiFORS Research Groups,
University of Pretoria, and he was a Postdoc-
toral Researcher with the Internet of Things and
People (IOTAP) Center, Department of Computer

Science, Malmö University, Malmö, Sweden. He was also a Postdoctoral
Researcher of cyber and information security in information systems
research subject with the Department of Computer Science, Electrical
and Space Engineering, Luleå University of Technology, Luleå, Sweden.
He is currently an Assistant Professor in IT security with the Department
of Computer Science (DIDA), Blekinge Institute of Technology (BTH),
Karlskrona, Sweden. His research interests include cyber, information
security, and digital forensics in the IoT, the IoT security, digital forensics-
incident response, cyber-physical system protection, critical infrastructure
protection, cloud computing security, computer systems, distributed system
security, threat hunting and modeling, cyber-security risk assessment,
blockchain technologies, and privacy-preserving techniques. He is also an
Editorial Board Member of Forensic Science International: Reports journal.

VOLUME 11, 2023 114237

