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ABSTRACT Current quantum annealing and quantum-inspired annealing devices have many usage
limitations and are difficult to apply to real-scale problems. In particular, a major hardware limitation is
the limited number of available variables (qubits). This paper proposes a problem relaxation method for
the Quantum Minimum Fill-in (QMF) algorithm. QMF finds the ordering of matrix rows and columns that
minimizes the incidence of fill-ins that occur when a direct solver is used to solve linear equations with sparse
matrices. In general, the first few steps in the forward elimination of sparse matrices add the most fill-ins.
Therefore, QMF was relaxed to order the rows and columns in only the first few steps. The results obtained
using the Fixstars Amplify Annealing Engine, a quantum-inspired annealing device, show that the problem
relaxation can be computed with 20 % – 60 % of the qubits for the original problem and that relaxation can
be applied to larger problems. Furthermore, it is found that more solutions that satisfy the constraints can be
obtained with problem relaxation and that the number of fill-ins is reduced. These results confirm that the
proposed problem relaxation is effective for QMF.

INDEX TERMS Quantum annealing, sparse matrix, fill-in reduction, ordering, relaxation method.

I. INTRODUCTION
Quantum annealing (QA) is an optimization technique that
utilizes transitions between states due to quantum fluctuation
effects to search for solutions [1], [2]. Since the development
of QA machines with superconducting integrated circuits
[3], [4], QA has attracted attention as a metaheuristic
solution method for combinatorial optimization problems.
The combinatorial optimization problems can be formulated
as a quadratic unconstrained binary optimization (QUBO):

E(x) = xTQx, (1)

where x is a vector of xi ∈ {0, 1} and Q is a matrix
whose elements Qij are the interactions between xi and
xj. QA finds x that minimizes E(x), which is called the
cost function. QA introduces quantum fluctuations into the
simulated annealing [5] process to speed up the search for
the optimal solution [1]. By gradually lowering the system’s
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temperature over a sufficiently long period, simulated anneal-
ing is guaranteed to reach its optimal solution. However,
in many cases, the time simulated annealing requires is
impractically long. Simulated annealing is often applied with
an insufficient search time, resulting in suboptimal solutions
(local solutions). In contrast, QA introduces a quantum
tunneling process into the state transition. QA may avoid
falling into local solutions and can more quickly reach the
optimal solution [1].

In addition to superconducting integrated circuit machines,
quantum-inspired annealing (QIA) machines (also called
Ising machines) are available from some companies [6],
[7], [8]. QIA machines can handle more quantum bits
(qubits) at a lower cost compared with machines that utilize
superconducting integrated circuits. Since the number of
qubits corresponds to the number of variables in a problem
that can be handled, QIA is expected to solve real-world
problems. However, both QA and QIA have limitations in
their use, such as the limited number of qubits available
in current machines and the difficulty of applying them to
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FIGURE 1. Example of MD algorithm. A symmetric matrix and the corresponding elimination graph for each elimination step are shown. The
elimination proceeds from left to right. In this example, 2 × 3 fill-ins are generated.

real-scale problems. An effective method for using these
machines is expected to significantly contribute to the
application of QA to practical problems.

Scientific and engineering computations often involve
solving parse matrix linear systems. Solving such equations
using a direct solver frequently results in fill-ins, where the
zero elements of the sparse matrix become nonzero. Fill-
ins degrade the sparsity of the original matrix and increase
memory and computational costs. The number of fill-ins can
be reduced by pre-ordering the matrix elements. It is known
that finding the ordering that minimizes the number of fill-ins
is an NP-complete problem [9]. Various algorithms have
been studied for this problem, including heuristic methods
and exact solution methods such as the divide-and-conquer
method.

In [10], the problem of finding orderings to reduce the
number of fill-ins for a positive definite symmetric sparse
matrix was formulated as a combinatorial optimization
problem, which was solved using QA. This ordering method
is called Quantum Minimum Fill-in (QMF). However, since
current QA/QIA machines have limited available qubits,
QMF can only be applied to very-small-size matrix problems.
The solutions that satisfy the problem’s constraint were
obtained only for problems up to 9 × 9 or 10 × 10 matrices.
Problems with such small matrices have few fill-ins and thus
even conventional methods can produce orderings with the
minimum number of fill-ins.

In this paper, a method for handling problems with large
matrices, achieved by relaxing QMF, is proposed. With
relaxation, the ordering of only the first few steps is found
for larger matrices. The results show that relaxed QMF can
find the orderings obtained by QMF and can sometimes
find orderings with fewer fill-ins than those obtained using
conventional ordering methods.

The remainder of this paper is organized as follows.
The ordering of sparse matrices is described in Section II.
A conventional ordering method based on graph theory and

QMF is also described. A problem relaxation method for
QMF is proposed in Section III. The results of the proposed
method are presented in Section IV. Lastly, conclusions are
presented in Section V.

II. FILL-IN REDUCTION ORDERING
FOR SPARSE MATRICES
Large-scale numerical simulations often involve solving
linear equations with large sparse matrices. Memory con-
sumption can be reduced by storing only the nonzero
elements of the sparse matrix. However, when a direct solver
is used to solve linear equations with sparse matrices, fill-
ins frequently occur, where elements that were zero become
nonzero. Fill-ins degrade the sparsity of sparse matrices,
increasing computational cost and memory consumption.
A technique called fill-in reduction ordering is utilized to
address this problem. Fill-in reduction ordering pre-orders the
rows and columns of matrices to minimize the occurrence of
fill-ins. However, finding such an ordering is an NP-complete
problem and thus to difficult to achieve in a feasible time
on a classical computer. Therefore, some heuristic ordering
methods [11], [12], [13], [14], [15], [16], [17], [18] have been
proposed.

A positive definite symmetric sparse matrix can be
expressed as a graph by setting the diagonal elements as
nodes and the nonzero elements as edges, as shown in Fig. 1.
This graph, called the elimination graph, can be used for
ordering because the order in which nodes are eliminated in
the elimination graph is equivalent to ordering and the edges
added when nodes are eliminated are equivalent to fill-ins.
An edge is added so that a complete graph is formed by
edges connected to nodes adjacent to the eliminated node.
The conventional ordering method based on this elimination
graph is described in II-A. In II-B, the problem of finding the
ordering that minimizes fill-ins using the elimination graph
as a 0-1 integer programming problem was formulated. This
problem was then solved using QA.
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FIGURE 2. Example of variable setting for QMF algorithm. The matrix elimination graph is shown on the left, the variable set x , which
indicates the elimination steps for nodes 0 to 4, is shown in the center, and the variable set y , which indicates the existence or
non-existence of edges, is shown on the right.

A. CONVENTIONAL FILL-IN REDUCTION
ORDERING METHODS
Here, some conventional methods based on elimination
graphs are presented.

One of the most commonly used conventional methods
is the minimum degree (MD) algorithm [11], [12]. This
algorithm minimizes the number of fill-ins in each step
by eliminating the node with the lowest degree (lowest
number of edge connections) in the elimination graph in each
step [13].

Fig. 1 shows an example of applying the MD algorithm
to a 7 × 7 matrix. Note that the MD algorithm and forward
elimination remove nodes in the same order in this matrix.
In this figure, we first eliminate node 1, which has the lowest
degree in the elimination graph (diagram on the left). This is
equivalent to eliminating the first row and first column in the
original matrix. When node 1 is eliminated, an edge must be
added to connect all the neighbors of node 1. In this figure,
an edge that connects nodes 6 and 7 is added (second diagram
from the left). The addition of the edge is equivalent to a
fill-in and causes a fill-in for the elements at row 6/column
7 and row 7/column 6. If this process is continued for the
subsequent steps, the elimination graph becomes complete in
step 4 (diagram on the right). After this step, regardless of
which order the nodes are eliminated, no fill-in occurs. The
elimination graph also shows that 3× 2 fill-ins are generated
in this matrix by the MD algorithm.

The MD algorithm can effectively order small matrices.
It does not generate fill-ins for problems where the elim-
ination graph has no cycles [14]. The algorithm has been
improved in many studies. Some studies have reduced the run
time by computing approximate node degrees [15], [16].

Another commonly used algorithm is the nested dissection
algorithm [17]. This algorithm recursively divides the matrix
of a mesh structure into multiple smaller matrices, which
can then be processed in parallel to quickly find solutions
to linear equations. This approach has been improved to

handle common graph structures [18]. The nested dissection
algorithm is applied to handle large matrices in parallel, not
to minimize the number of fill-ins. In this study, the MD
algorithm is referred to as the conventional ordering method
for fill-in reduction.

B. QUANTUM MINIMUM FILL-IN ALGORITHM
The QMF algorithmwas proposed as a method for finding the
order with the minimum number of fill-ins as a combinatorial
optimization problem. It uses an elimination graph to find the
elimination order of vertices (ordering) that minimizes edge
addition (fill-ins).

The QMF formulation introduces the binary variable xn,s ∈

{0, 1}, which represents the order of node elimination. The
variable xn,s represents the elimination of node n in step
s when xn,s = 1. The binary variable y⟨u,v⟩ ∈ {0, 1} is
introduced to represent the existence or non-existence of an
edge between nodes u and v. If the edge exists, y⟨u,v⟩ = 1.
Thus, if an edge is not present in the initial elimination
graph, it represents an added edge (fill-in). An example of
this variable setup is shown in Fig. 2.

This method minimizes the number of edges added with
node elimination. The function Hcost , which minimizes the
number of added edges, is defined in (2).

Hcost =

∑
⟨u,v⟩∈Ē

y⟨u,v⟩, (2)

where Ē is the set of edges that do not exist in the
first elimination graph. If there are no fill-ins, Hcost has a
minimum value of 0.

There are three constraints in this approach.
Constraint I: All nodes are eliminated
The function (3) for this constraint takes the minimum value
0 when the sum of the variables xn,s that represent the
node n equals one. This means that each node is eliminated
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only once.

H1 =

N−1∑
n=0

(
N−1∑
s=0

xn,s − 1

)2

, (3)

where N is the matrix size and xs,n = 1 means that the n-th
node is eliminated in the s-th step.
Constraint II: Only one node can be eliminated in each
step
The function (4) for this constraint takes theminimum value 0
when the sum of the variables xn,s that represent the same
elimination step s is one. This means that only one node is
eliminated in each elimination step s.

H2 =

N−1∑
s=0

(
N−1∑
n=0

xn,s − 1

)2

. (4)

Constraint III: Edges are added with node elimination In
each step, edges are added so that all nodes connected to the
node to be eliminated are joined. Fig. 2 is used as an example
to explain this constraint. When node 0 is eliminated, an edge
between nodes 1 and 4 is added to make adjacent nodes 1 and
4 fully connected. The addition of an edge has the following
conditions.

• node n is eliminated in step s (xn,s = 1; e.g., x0,0 = 1)
• node i that is not eliminated in the step before step
s(
∑s

k=0 xu,k = 0; e.g.,
∑0

k=0 x1,k = 1) is eliminated
• node j is not eliminated in the step before step
s(
∑s

k=0 xv,k = 0; e.g.,
∑0

k=0 x4,k = 1)
• there exists an edge that connects nodes n and i to be
eliminated (y⟨n,u⟩ = 1; y⟨0,1⟩ = 1)

• there exists an edge that connects nodes n and j to be
eliminated (y⟨n,v⟩ = 1; y⟨0,4⟩ = 1)

When all the above conditions are satisfied, the required edge
(the edge between nodes 1 and 4 in Fig. 2) is added (y⟨u,v⟩ =

1; e.g., y⟨1,4⟩ = 1). The function that satisfies this constraint
is formulated using two methods, one based on higher-order
functions and the other based on inequalities.

This constraint can be formulated using a higher-order
function as follows.

H3 =

∑
⟨u,v⟩∈Ē

∑
n/∈{u,v}

N−1∑
s=0

(1 − y⟨u,v⟩)xn,s

(
1 −

s∑
k=0

xu,j

)

×

(
1 −

s∑
k=0

xv,j

)
y⟨n,u⟩y⟨n,v⟩. (5)

QA can optimize problems expressed as a QUBO. Since
QA cannot handle functions with an order higher than three,
auxiliary variables are introduced for order reduction. The
auxiliary variable b is defined as follows.

b⟨u,v⟩ = (1 − y⟨u,v⟩), bu,j=

(
1 −

s∑
k=0

xu,j

)
, bv,j=

(
1 −

s∑
k=0

xv,j

)
(6)

With the auxiliary variable b, the higher-order function (4)
can be formulated as a monomial of the sixth degree.

H ′

3a =

∑
⟨u,v⟩∈Ē

∑
n/∈{u,v}

N−1∑
s=0

b⟨u,v⟩ xn,s bu,j bv,j y⟨n,u⟩ y⟨n,v⟩. (7)

This function is converted to a QUBO using the Ishikawa
method [19]. The number of auxiliary variables introduced
at this time can be expressed as 2N (N − 2)|Ē| for a problem
size N and a total number of edges |Ē| that are not present in
the elimination graph.

This constraint can also be formulated using an inequality
as follows.

(1 − y⟨u,v⟩) + xn,s +

(
1 −

s∑
k=0

xu,j

)
+

(
1 −

s∑
k=0

xv,j

)
+ y⟨n,u⟩ + y⟨n,v⟩ ≤ 5 (8)

The left-hand side of (8) takes integer values from 0 to 6.
The constraint H3 is satisfied when the value is less than or
equal to 5. Since QA cannot handle inequality constraints, the
inequalities are converted into equalities by adding auxiliary
variables. Therefore, this constraint can be formulated using
the inequality (8) and auxiliary variables yl as follows.

H ′

3b =

∑
⟨u,v⟩∈Ē

∑
n/∈{u,v}

N−1∑
s=0

{
(1 − y⟨u,v⟩) + xn,s+

(
1 −

s∑
k=0

xu,j

)

+

(
1 −

s∑
k=0

xv,j

)
+ y⟨n,u⟩ + y⟨n,v⟩ −

4∑
l=0

yl

}2
.

(9)

The function H to be optimized with QA is formulated by
adding the weights δ and ϵ to each of the above functions.

H = Hcost + δ(H1 + H2) + ϵH ′

3 (10)

Functionswith larger weights aremore likely to beminimized
(i.e., more likely to satisfy the constraints). However, if the
weights applied to the constraints are too large, it is difficult
to minimize (maximize) the cost function. Conversely, if the
weights are too small, finding a solution that satisfies the
constraints becomes difficult. Therefore, it is essential to
apply appropriate weights in order to obtain good-quality
solutions. The method for setting these weights is explained
in Section IV.

III. RELAXATION OF QMF ALGORITHM
Due to hardware limitations, current QA/QIA machines
are limited in terms of the number of variables available.
Therefore, it is difficult to obtain orderings for large matrices
using QMF with the current machines. In order to obtain
orderings for such matrices, the number of variables in
the problem must be significantly reduced. In the forward
elimination of the sparse direct solver, many fill-ins occur in
the first few steps. Fig. 3 shows the average number of fill-ins
for the first and last half of steps when QMF is applied to
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FIGURE 3. Number of fill-ins for first and last half of steps of QMF. The
average number of fill-ins when the QMF is applied to 10 N × N matrices
is shown. The vertical axis is the average number of fill-ins and the
horizontal axis is the problem size N .

FIGURE 4. Modified Constraint I for node elimination with problem
relaxation.

10 N × N matrices in which nonzero elements occur with
a probability of 1/3. This figure shows that the majority of
fill-ins occur in the first half of the steps. In other words,
by finding the order of only the first few steps, the number
of fill-ins can be reduced. This can significantly reduce the
number of variables in the problem and increase the size of
the target matrix.

To find the ordering of only the first few steps in QMF, the
function H1 for Constraint I is changed as follows.

H ′

1 =

N−1∑
n=0

S−1∑
s=0

xn,s

(
S∑
s=0

xn,s − 1

)
, (11)

where N is the matrix size and S is the number of steps to
be ordered. When ordering only the first few steps, there are
nodes that are eliminated and nodes that are not eliminated,
as shown in Fig. 4. Therefore, it can be formulated as a
function that takes a minimum value when the sum of the
variables xn,s representing node n is equal to 0 or 1.
Furthermore, since only the rows and columns selected in

the first few steps are swapped, the other rows and columns
are eliminated without being swapped. This is equivalent to

eliminating the remaining nodes in ascending order of node
number (i.e., row and column number) in the elimination
graph.

IV. EXPERIMENTS AND RESULTS
This section presents the results of evaluating the size of
matrices that can be ordered using QMF with problem
relaxation. The variation of the number of fill-ins for QMF
with problem relaxation is also investigated.

The number of fill-ins generated during forward elimina-
tion after QMF ordering is applied for only the first three steps
is measured. In the proposed method, ordering only the first
step is almost the same as the MD algorithm, and the number
of fill-ins cannot be reduced compared with that for the MD
algorithm. In addition, for the tested problem sizes, a larger
variable reduction is not expected with more than five steps
and the number of fill-ins generated in later steps is small.
Therefore, three steps were applied in this experiment.

In this experiment, QMF is performed using the Fixstars
Amplify Annealing Engine [6], a GPU-based annealing
machine that utilizes parallel processing. This QIA machine
is capable of fast annealing of a fully connected graph
with over 100,000 qubits. To facilitate parameter tuning,
the parameters δ and ϵ in (10) were normalized so that the
maximum coefficient of each constraint function had the
same magnitude. The annealing time (i.e., time taken to solve
the problem) was set to 2000 ms.

The parameters δ and ϵ in (10) were set as follows.

δ = ϵ max(H ′

3), (12)

where max(H ′) is the maximum coefficient value. The value
of ϵ was varied in the range of 1.0 to 10.0. The values that
gave the most orderings with the fewest fill-ins were used.

For the experiments, 100 matrices were used. We used
a random matrix in which nonzero elements occurred with
a probability of 1/3. We compared the number of required
qubits and the number of fill-ins for the same matrices
without ordering, with MD ordering applied, and with QMF
ordering applied in all steps.

A. NUMBER OF QUBITS
Here, the number of qubits required for the calculation is
evaluated. Fig.5 shows a comparison of the average number
of qubits for ordering only the first three steps and all steps.
Both QMFs using (7) and (9) show a significant reduction
in the number of qubits and smaller problem sizes due to
problem relaxation. In particular, a larger decrease in qubits
was achieved for a larger problem size (N ). It was found
that N = 15 requires only about 20 % of the qubits of the
original problem (before relaxation). There is no significant
difference in the number of variables that would be required
using either formulation.

Thus, even QA/QIA devices with a limited number
of qubits are capable of solving large-size problems via
problem relaxation. In the experiment described below (see
Section IV-B), we solved problems with up to 160,000 qubits.
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FIGURE 5. Average number of variables. It is almost the same when using
QUBO based on the higher-order formulation and the inequality-based
formulation. Note that the lines ‘‘i’’ and ‘‘iii’’, ‘‘ii’’ and ‘‘iv’’, ‘‘ratio: i/ii’’ and
‘‘ratio: iii/iv’’ overlap each other.

It is possible to conduct experiments with up to N=15 when
ordering only the first three steps and up to N = 10 when
ordering all steps. For these problem sizes, adding one step
increases the number of variables by approximately O(N 3).

B. NUMBER OF FILL-INS
Here, the number of fill-ins when ordering and forward
elimination are applied is evaluated. QMF compared two
formulations, (7) and (9). For each matrix size N × N ,
the following results are presented. 1) the total number of
solutions that satisfy the constraints when QMF is executed,
2) the average number of fill-ins for each method (avg. Fill-
ins) and 3) the comparison results for the number of fill-ins
between QMF and each method (i.e., between QMF and
method without ordering (NoOrder), and between QMF and
MD). The comparison of the number of fill-ins between QMF
and each method is based on the number of solutions that
satisfy the constraints where the number of fill-ins is QMF
< NoOrder (or MD), QMF=NoOrder (or MD), and QMF >

NoOrder (or MD). For example, in Table 1, in the ‘‘Three
steps’’ column for QA-NoOrder fill-ins, for N = 5, QMF
yielded 36 solutions with fewer fill-ins than those obtained
without ordering and 64 solutions with the same number of
fill-ins.

First, the results of 1) are shown in Fig. 6. Fig. 6 shows
that it becomes harder to obtain solutions that satisfy the
constraints as the matrix size increases for all QMF methods.
With QUBO based on the higher-order formulation (7), the
solutions that satisfy the constraints can be obtained for up
to 10 × 10 matrices when ordering only the first three steps,
and for up to 8 × 8 matrices when ordering all steps. With
QUBO based on the inequality-based formulation (9), the
solutions that satisfy the constraints can be obtained for up
to 15 × 15 matrices when ordering the first three steps, and
for up to 10 × 10 matrices when ordering all steps. A larger
matrix can be used when ordering the first three steps because
the actual problem size to be solved is smaller due to problem

FIGURE 6. Results for total number of solutions that satisfy constraints
when QMF is executed.

TABLE 1. Comparison of results for number of fill-ins between QMF
using (7) and other methods.

relaxation. Fig. 6 also shows that it is easier to obtain a
solution that satisfies the constraints when using QUBO with
(9) than when using QUBO with (7). Even when the problem
size was reduced to give a computable number of variables
in Amplify AE, no solution satisfying the constraint was
obtained in QUBO with (7).

Next, the results for QMF with QUBO based on the
higher-order formulation (7) are discussed in terms of the
number of fill-ins. The results for 2) and 3) for QMF using
QUBO with the higher-order formulation (7) are shown in
Fig. 7 and Table 1, respectively. Fig. 7 shows that when
ordering only the first three steps or all steps, the average
number of fill-ins is smaller than that for NoOrder, but larger
than that for MD. It can also be seen that the average number
of fill-ins is almost the same when ordering the first three
steps or all steps. On the other hand, a comparison of the
number of fill-ins betweenQMF and the conventional method
(MD) in Table 1 indicates that ordering only the first three
steps tends to produce more solutions with the same number
of fill-ins than those obtained with the conventional method.
Note that in this experiment, this QUBO did not yield a
solution with fewer fill-ins than MD.

Lastly, the results for QMF with QUBO based on the
inequality-based formulation (9) are discussed in terms of
the number of fill-ins. The results for 2) and 3) for QMF
are shown in Fig. 8 and Table 2, respectively. Fig. 8 shows
that ordering the first three steps or all steps gives a smaller
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FIGURE 7. Average number of fill-ins for QUBO using higher-order
function (7). It is almost the same when ordering the first three steps or
all steps. Note the overlapping lines ‘‘All steps-QMF’’ and ‘‘Three
steps-QMF.’’

TABLE 2. Comparison of number of fill-ins between QMF using (9) and
other methods.

average number of fill-ins than NoOrder, but a larger number
than MD. This is almost the same result as for QMF with
QUBO based on (7). However, the average number of fill-ins
is about the same regardless of whether the first three steps
or all steps are ordered. In addition, a comparison of QMF
and the conventional method shows that there is a tendency
for many solutions to have the same number of fill-ins
when the first three steps are ordered. Consequently, problem
relaxation using QUBO based on (9) is more effective than
using QUBO based on (7). For matrices larger than 10 × 10,
although solutions that satisfy the constraints are obtained,
most have a higher number of fill-ins than that for MD.
The solution with the minimum number of fill-ins was not
obtained because only a few steps were ordered. It is also
highly possible that the optimal solution was not obtained
with QA because the number of fill-ins tends to be larger
than that for MD when the problem size is larger even
when all steps are ordered. Since MD is capable of ordering
effectively for the problem sizes in this experiment, the
effect of not obtaining an optimal solution with QA is more
significant.

FIGURE 8. Average number of fill-ins for QUBO using inequality
function (9).

These results suggest that problem relaxation using the
proposed method is effective for QMF. However, the average
number of fill-ins with QMF for both methods is smaller
than that without ordering and larger than that with MD.
This is due to the fact that QA does not always provide
the optimal solution, and therefore does not provide better
ordering than the MD method, which can be effective for
smaller sizes. Therefore, when large matrices can be solved
with QA in the future, it may be possible to order more
effectively than MD with QMF. When it is possible to use
larger matrix sizes, the change in the number of fill-ins
due to ordering only a few steps will be discussed in more
detail.

V. CONCLUSION
Current QA/QIA devices have many usage limitations and
are difficult to apply to real-scale problems. Here, a problem
relaxation method for QMF was proposed and the results
of applying and evaluating QMF for larger problems were
presented. Generally, the first few steps are the ones where
most fill-ins are added in the forward elimination of a sparse
matrix. Therefore, QMF was relaxed to order only the first
few steps.

From the results of the number of qubits required for
computation, it was found that a problem can be computed
with 20 % – 60 % of the qubits of the original problem
when problem relaxation is applied. This effect is larger for
larger problem sizes. It was found that large matrices can be
ordered even using current QA/QIA devices. Furthermore,
the orderings were evaluated using the number of fill-ins in
thematrices to which the orderings were applied. It was found
that QA can obtain more solutions that satisfy the constraints
and fewer fill-ins for orderings with problem relaxation than
those obtained without it. In this evaluation, the results were
also compared with those of the conventional method (MD)
and the case without ordering. It was found that the case with
problem relaxation obtained more orderings with the same
or lower number of fill-ins than the conventional method.
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These results suggest that the effect of the problem size on
the difficulty of obtaining optimal solutions is larger than
the effect of problem relaxation, confirming that problem
relaxation for QMF is effective.

For thematrix sizes considered in the experiment, the effect
of the difficulty in obtaining an optimal solution with QA
was more significant than the effect of ordering only the first
few steps. In the future, when larger matrix sizes can be used
for QA/QIA devices, the change in the number of fill-ins
due to ordering only a few steps will be studied in more
detail.
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