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ABSTRACT Ophthalmic diseases afflict many people, and can even lead to irreversible blindness. Therefore,
the search for effective early diagnosis methods has attracted the attention of many researchers and clinicians.
At present, although there are some ways for the early screening of ophthalmic diseases, the early screening
of fundus images based on deep learning is generally favored by the medical community due to its non-
contact characteristic, non-invasive characteristic and high recognition accuracy. However, the generalization
performance of a common model and cross-domain identification is usually weak due to different collection
equipment, race, and patient conditions. Although the existing fundus image recognition technology has
achieved some results, the effect is still in the cross-domain problem and is not satisfactory. This paper
proposes a cross-domain retinal image recognition framework based on data augmentation and deep neural
networks. Firstly, the ResNeXt101 model pretrained on the ImageNet dataset is selected as the base
framework. The one-stage model is then trained in the source domain using this framework. Secondly,
the model obtained from the first stage is further fine-tuned in the target domain to obtain the two-stage
final model. During this process, various data augmentation techniques and focal loss are employed to
improve the recognition performance. Experimental results demonstrate that by incorporating common
data augmentation techniques and focal loss, the proposed framework achieved the following performance
metrics in cross-domain experiments from train-site to on-site: a kappa score of 0.845, an F1 score of 0.923,
and anAUC (AreaUnder the Curve) value of 0.974. In conclusion, the proposedmethod effectively addresses
the issue of poor generalization in cross-domain early retinal screening and provides insights and directions
for future related work.

INDEX TERMS Cross-domain, data enhancement, focal loss, fundus image, ocular disease, two-stage.

I. INTRODUCTION
Nowadays, Ophthalmic diseases have increasingly affected
people’s lives and tortured the psychology and spirit of
patients and their relatives [4]. For example, the typical symp-
toms of glaucoma are visual field defect, eye pain, and nausea
and vomiting in some patients. Some ophthalmic diseases can
also cause irreversible blindness, such as macular degenera-
tion. Therefore, it is essential to find an effective solution for
early diagnosis. Although there were some ways to diagnose
ophthalmic diseases, such as optical coherence tomography
(OCT) images [5] and some clinical methods [6], [7] etc.,
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early fundus screening is an economical and faster method
to prevent blindness caused by ophthalmic diseases [8].

Recently, deep learning hasmade great progress in the field
of computer vision, it has superior feature extraction ability
when processing image data, especially in Euclidean space
[11]. Furthermore, it is also gradually being applied in the
field of medical images, such as lung cancer diagnosis [1],
brain disease diagnosis [2], orthopedic disease screening [3],
etc. Due to its powerful performance, fundus images based
on deep learning are becoming increasingly popular in the
clinical diagnosis of ophthalmic diseases.

Although the existing fundus image recognition based on
depth learning has achieved good results, due to insufficient
training data, lack of labels and other problems, the general-
ization performance is not ideal, which affects its application
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in clinical practice, and the training of highly recognized
neural network models requires a large-scale original data set
for supervised learning. When the training set and test set are
in different hospitals, the recognition effect is significantly
reduced

In this paper, a framework based on fundus image screen-
ing and deep learning is proposed to improve the effect of
cross-domain ophthalmic disease diagnosis.

First, we select a classic convolutional neural network
(CNN), ResNeXt101 [12], as the recognition backbone that
pretrained on the ImageNet dataset [15], [17]. Compared with
other CNN networks, such as Inception [10], [19], VGG [18],
ResNet [20], [21], etc., the ResNeXt101 network can get
more features from fundus images to achieve higher accuracy
and generalization performance.

In addition, fundus images are taken from different devices
and environments due to the fact that the model parameters
obtained by training a group of samples from a certain domain
are only of high accuracy and generalization for this sam-
ple domain. Therefore, to reduce the gap between different
domains, In the first stage, we utilize a larger number of
samples from the source domain to train a model with good
robustness. In the second stage, we fine-tune the model using
a subset of samples from the target domain.

Finally, the general cross-entropy loss function is very
effective for those datasets with balanced sample numbers.
However, we often encounter an imbalance in the number
of samples of different categories, which also leads to poor
generalization performance of the final model and a larger
gap between domains. Therefore, we apply focal loss [9] and
data augmentation techniques to overcome this problem.

The main contributions of the proposed framework can be
summarized as follows:

1) ResNeXt [12] model is chosen as the CNN backbone in
our framework for better feature extraction;

2) In the first stage, a convolutional neural network is
trained using a larger number of samples from the source
domain;

3) In the second stage, transfer learning is applied to train
the final model using a subset of samples from the target
domain;

4) Some data augmentation methods are adopted to
improve model generalization performance. And the focal
loss function is applied during training to solve the class
imbalance issue.

II. RELATED WORK
A. DATASET
Many systemic diseases, such as hypertension, arteriosclero-
sis, and diabetes, will produce changes in small blood vessels
in various body parts. Because such small vessels can only be
seen directly on the retina throughout the body, it is possible
to checkwhether these diseases have caused vascular diseases
through fundus screening [36]. Based on the results of this
examination, we can refer to the course of disease research
and treatment.

Fundus screening is a basic requirement for general prac-
titioners or non-professional ophthalmologists. It can help
general practitioners estimate the condition of systemic dis-
eases and carry out specialized ophthalmic treatment as early
as possible to prevent the aggravation of the disease and the
risk of blindness [37].
The difference in the shape and position of the patient’s eye

structure has caused great trouble for clinicians in correctly
diagnosing the disease [13], and this is also labor-intensive
work. Clinicians find it difficult to quickly and accurately
diagnose diseases through naked eye observation. With the
help of fundus image screening based on deep learning, it is
able to help them better complete their work [14].

Currently, the clinical effects of fundus image screening
mainly include the following indicators: kappa is an indicator
used for consistency tests, and it can also be used to measure
the effect of classification. F1 score can be regarded as a
weighted average of model accuracy and recall rate, and Area
Under roc Curve(AUC) is a standard which used to measure
the quality of recognition models.

Optical CoherenceTomography (OCT) is a new non-
invasive imaging diagnostic technology. Currently, it is
mainly used for image recognition, such as segmentation,
detection and classification. He et al. proposed a method
to section the surface and pathological changes of the reti-
nal OCT layer [23], and Asgari et al. proposed a method
using a decoder for each target class and solve the Drusen
segmentation as a multi-task problem [24]. In order to inves-
tigate the symmetry between the eyes to better detect early
ocular diseases, Marzieh Mokhtari et al. calculated the local
Cup Disk Ratio (CDR) by combining fundus images and
the OCT B-scan method [25]. A system containing neural
network algorithms and data enhancement methods for the
multi-category and multi label classification is proposed by
Mehta et al. The system can classify the OCT images of four
common retinopathy [26].

B. CROSS DOMAIN
Domain adaptationmethod can be regarded as a sub-direction
of transfer learning. No matter what kind of domain adapta-
tion technology, its goal is to reduce the distance between the
target domain and the source domain. In recent years, popular
domain adaptation methods have become the focus, such as
Domain Adversarial Neural Networks (DANN) [27]. Tzeng
et al. proposed an Adversarial Discriminative Domain Adap-
tation (ADDA) which is used to align the feature distribution
between two different domains [34]. In addition, there are
other methods to achieve alignment in pixel space through
image conversion. PixelDA proposed a method to achieve
cross-domain alignment by learning one-to-many mapping
to synthesize images in the target domain [28]. A circular
consistent adversarial domain adaptation (CyCADA) method
is proposed by Hoffman, which converts images in the source
domain into images in the target domain, and then combines
the converted images with the target domain images for
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FIGURE 1. Two-stage training process of the proposed framework.

training, So as to narrow the gap between different domains
[29]. Tsai et al. used adversarial learning to achieve domain
adaptation on semantic segmentation [30].

Although the datasets have increased, there is still a short-
age of samples for the deep learning framework that requires
a large scale of data. To overcome this problem, we can
use some cross-domain methods, such as data enhancement,
Generative Adversarial Networks (GAN) and other means.

Data enhancement is to perform some operations, such as
sharpening and flipping on the image based on the original
data, which can effectively expand the size of the dataset. The
GAN aligns samples from different domains, narrows the gap
between different domains, and indirectly and effectively uses
limited datasets [35].

Typical medical applications include cross domain synthe-
sis of medical images, including CT to PET, MR to CT, CT to
MR, and T1, T2, FLAIR, etc., in MRI.

Cohen et al. proposed a novel system based on FCN and
GAN networks, which generates virtual PET images fromCT
scanning, thus lowering expensive PET scanning costs [31].
Wolterink et al. used GAN to convert 2D brain MR image

slices into 2D brain CT image slices, reducing the error in
synthetic CT images caused by the dislocation between pairs
of images [32].

Salman et al. proposes a method of synthesizing
multi-contrast MRI images using conditional GAN, which
realizes the mutual conversion and synthesis of T1 and T2 in
MRI, and uses the adversarial loss function to maintain the
middle and high frequency details of the image [33].

III. METHOD
In this paper, we propose a framework based on a convo-
lutional neural network for fundus screening, as shown in
FIGURE 1. and FIGURE 2.

The FIGURE 1. illustrates the two-stage training process.
Firstly, the train dataset with a larger number of samples is uti-
lized to conduct the first-stage model training. Subsequently,
the target domain data with a smaller number of samples is
employed to fine-tune the model trained in the first stage.

In FIGURE 2. The images on the left are the fundus images
we have obtained. They are from the OIA-ODIR dataset.
This dataset is one of the subsets of the OIA dataset, which
contains 10,000 fundus images. The sampling population

FIGURE 2. The training process of the proposed framework.

FIGURE 3. Data augmentation methods used in this paper.

covers all age groups, more than 96% of whom are 30 to
80 years old. This data is mainly for multiple eye diseases.
Then we enhanced the input data, including flip horizontal,
flip vertical, random color, random brightness, random con-
straint, and random sharpness. and the enhanced data are sent
to the ResNeXt network for training with the cross entropy
loss function is replaced to focal loss function, which finally
achieved good results. We discuss the framework in detail in
the following subsections.

A. DATA AUGMENTATION
As shown in FIGURE 3, we have enhanced the data to be
sent over the network. For instance, the original images are
horizontally flipped, vertically flipped, subjected to random
color modifications, random brightness adjustments, random
contrast changes, and random sharpening.

B. ResNeXt
ResNeXt network uses the bottleneck structure in each
branch. First, use 1 × 1 convolution to reduce the dimension
and reduce the number of channels in the feature map. Then,
use grouped convolutions to extract features. Finally, use
1 × 1 convolution to increase the dimension and restore
the number of channels in the feature map. Each block in
ResNeXt can be shown in FIGURE 4.

Each block in ResNeXt can be represented as follows

y = x +

C∑
i=1

Ti (x) (1)
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FIGURE 4. A ResNeXt block with cardinality equal to 32. Each layer
displayed represents the input channel, filter size and output channel
respectively.

In formula (1), C is the number of branches in the block, Ti
is the subnet of each branch, and x is the shortcut connection.

ResNeXt involves the following related work: 1) ResNeXt
uses multi-branch subnets for feature fusion, 2) uses packet
convolution to control network parameters and floating point
computation, unlike common compression methods that cost
model accuracy, 3) ResNeXt uses multi branch packet con-
volution and other operations to further improve the model’s
expression ability while controlling the model parameters
and floating point calculations, and 4) uses multi branch
subnetworks for feature fusion. ResNeXt is different from
the integrated learning method in that each branch is iden-
tical [12]

C. FOCAL LOSS
Usually, the cross entropy loss function is used to train the
neural network, but this is more suitable for the case of
balanced sample categories. When the number of sample
categories varies greatly, the negative samples account for a
large proportion of the total loss due to their large number,
which makes the optimization direction of the model deviate
from our expectations. Focal loss function is modified based
on the standard cross entropy loss. The function can reduce
the weight of easily classified samples and make the model
focus on more difficult samples during training.

The specific form of focal loss is as follows:

Lfl =

{
−

(
1 − p̂

)γ log
(
p̂
)

(if y = 1)
−p̂γ log

(
1 − p̂

)
(if y = 0)

(2)

There y is label, which corresponds to 0, 1 in the binary
classification. where

pt =

{
p̂ (if y = 1)
1 − p̂ otherwise

(3)

Focal loss expression will unify into one expression:

Lfl = − (1 − pt)γ log (pt) (4)

In this expression, pt represents the distance from cate-
gory y. The closer pt is to 1, the closer the sample is to ground
truth. pt also reflects the difficulty of classification. The larger
pt is, the higher the confidence level of classification is, and
the easier the samples are to distinguish; The smaller pt is, the
lower the confidence level of classification, the more difficult

FIGURE 5. Sample images from two categories. The normal fundus on the
left of the two types of images represents positive samples, and the other
fundus on the right represents negative samples.

is the samples are to distinguish. Therefore, the focus loss is to
increase the weight of hard samples in the loss function and
reduce the weight of soft samples, so that the loss function
pays more attention to hard samples, thus improving the
overall classification accuracy. γ (>0) is an adjustable factor.
Its function is to adjust the steepness of the weight curve in
an exponential manner [9].

IV. EXPERIMENTS
The dataset OIA-ODIR used in this paper is a binocular
fundus image dataset that can be used to detect various
types of diseases. Its sample data is from a private clin-
ical fundus database with more than 1.6 million images.
These fundus images are collected from 487 clinical hospitals
in 26 provinces of China. OIA-ODIR selected 10000 left
and right fundus images of 5000 patients. In our experi-
ments, we only used images of the left eye. All images are
divided into normal fundus and abnormal fundus as shown in
FIGURE 5. Three ophthalmologists with more than 2 years of
clinical experience in ophthalmology and three doctors with
more than 10 years of clinical experience in ophthalmology
completed the annotation of the dataset within 10 months.
In this series of experiments, we selected 3500 left-eye
images in the train-site domain, 1000 left-eye images in the
on-site domain, and 500 left-eye images in the off-site domain
as training sets and test sets, respectively, to evaluate our
method. During data preprocessing, we define the samples
labeled normal fundus as positive samples and the others as
negative samples. Their proportions are shown in TABLE 1.
Before training, we adjust the non-RGB images in the data
set to RGB images, uniformly adjust the pixels to 384 ×

384 according to bilinear interpolation, and finally, normalize
the pixels.

A. TRAINING DETAILS
Before training, we select resnext101, the pre-training model
of the ImageNet dataset, as the backbone of the network
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TABLE 1. The proportion of fundus images in training and testing
datasets.

model. the optimization function is Adaptive Motion Esti-
mation (Adm). In the second stage of training, the on-site
and off-site sets are used for fine-tuning, with a sample size
of 50% of the total samples, which is 500 and 250 samples
respectively. During training, we set epoch = 30, and the
learning rate = 0.0001. When focal loss function is selected
as the loss function, the hyper-parameter γ set to 0.25 to bal-
ance positive and negative samples. Label smoothing is used
to reduce overfitting. The proposed method is implemented
with PaddlePaddle of Baidu, network training using the v100
GPU with 32 GB memory of the Baidu AI Studio platform.

B. EXPERIMENTAL INDICATORS
In order to know how much of the evaluation result of a
diagnostic test is due to opportunity factors, the kappa score
is frequently used in clinical medicine to measure it. Its
calculation method is as follows:

KappaScore =
Observationcr − Opportunitycr

100% − Opportunitycr
(5)

where cr represents compliance rate
F-1 score is an indicator used to measure the accuracy

of binary classification model in statistics. It is defined as
the harmonic mean of accuracy rate and recall rate, with a
maximum of 1 and a minimum of 0. The expression is shown
as follow:

F1score = 2·
accuracy · recall
accuracy + recall

(6)

AUC (Area Under Curve) is the area under the ROC curve,
which is a performance indicator to measure the quality of
classifier. The closer the AUC value is to 1.0, the better the
reliability of the detection method is.

The final score is the average of kappa score, F-1 score and
AUC value.We use it as a comprehensive evaluation indicator
to declare the result of the method.

C. EXPERIMENTAL RESULTS
Through a series of experiments, we finally obtained the
following results.

In TABLE 2, the first column is the distribution of training
sets and test sets, where ‘‘da’’ represents data augmentation
and ‘‘fl’’ represents focal loss. When only train-site is used as
the training set, off-site is used as the test set, all indicators
are the lowest except AUC Value. The effect can be improved
to some extent by adding data augmentation or using the
focal loss function during training. When data augmenta-
tion and focal loss are used simultaneously, the score is the

TABLE 2. The results obtained when the train-site is the training set and
off-site is the test set.

TABLE 3. The results obtained when train-site is used as the training set
and on-site is the test set.

TABLE 4. The results obtained with different training sets and test sets.

highest, which just indicates that our method can effectively
improve the recognition effect from train-site domain to off-
site domain.

TABLE 3 shows the results when train-site is used as
training set on-site is used as test set. Obviously, using da and
fl can effectively improve the recognition results for cross-
domain. Each corresponding score in TABLE 3 better than
TABLE 2 due to on-site domain is closer to train-site domain
than off_site domain. In TABLE 3, the use of focal loss leads
to lower scores compared to not using it. This is due to the
off-site domain having a larger disparity between positive and
negative samples relative to the on-site domain.

TABLE 4 indicate that the model has been improved after
using data augmentation and focal loss function. Compared
with train-site domain to on-site domain or off-site domain,
this improvement effect is not obvious, because the number of
samples in on-site domain and off-site domain is much less
than train-site domain. The insufficient number of samples
and uneven distribution will inevitably lead to a poor recog-
nition effect, which is also to be improved in the future.

TABLE 5 provides a comparison of the scores between
the first-stage model and the second-stage model. In the
second-stage model data, the terms ‘‘on-site’’ or ‘‘off-site’’
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TABLE 5. Comparison of two-stage training data.

FIGURE 6. The loss and accuracy of training with train-site is the train set
and off-site is the test set.

in parentheses indicate the use of transfer learning in a spe-
cific domain. It can be observed that the performance of
the second-stage model exhibits significant advantages when
transferred to the target domain. However, for non-transfer
domains, the improvement is not significant and in some
cases, even shows a decrease in performance. This is because
the image knowledge learned in the first stage becomes more
comprehensive after cross-domain adaptation, resulting in a
more stable and reliable model.

The above-left figure shows the trend of loss change for the
four training situations in TABLE 2. It can be seen from the
observation that with the increase of the number of samples,
the loss value shows an obvious downward trend. The curve
loss4 representing our core method decays rapidly with the
increase of sample numbe. The acc4 curve in the right figure
shows that the final accuracy tends to the maximum value
except for the large deviation of individual samples.

FIGURE 7. shows the trend of loss and acc when train-site
is used as the training set on-site is used as the test set. They
are very close to the trend of FIGURE 6. The difference is
that the loss in FIGURE 7 decays faster and the acc reaches
the peak using a shorter time, which is also because the
gap between the train-site domain and the on-site domain is

FIGURE 7. The loss and accuracy of training with train-site is the train set
and on-site is the test set.

shorter than that between the train-site domain and the off-site
domain.

V. CONCLUSION AND FUTURE WORK
To enhance the performance of cross-domain recognition in
ophthalmic disease diagnosis, we initially opted for ViT as
the backbone network, however, under the same conditions,
the final score achieved was only about 0.6, significantly
lower than the score of around 0.9 achieved by the proposed
two-stage method in this paper. We believe this is due to the
lack of prior knowledge in ViT compared to CNN.

The experimental results indicate that our method has
better adaptability than the mainstream neural networks for
cross-domain fundus screening. It can better help clinicians
diagnose, and thus contribute to solving the pain of patients
and their families.

However, the drawback of our two-stage method is the
complexity it introduces to the training process, When the
target domain changes, it requires the model to be readjusted
once again to adapt to the new target domain, which poses
a challenge for subsequent work. At the same time, GAN,
as the mainstream framework of cross-domain methods at
the present stage, has not been able to achieve cross-domain
diagnosis in combination with medical images due to its
unpredictability. In the future, we will focus on more datasets
to carry out follow-up experiments and verify the effec-
tiveness of our framework. In addition, we look forward to
exploring more ideas and methods combined with medical
image cross-domain recognition based on the advantages of
the generation network
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