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ABSTRACT This paper introduces the Arctan exponential distribution, a novel two-parameter trigonometric
distribution. Various statistical properties of the distribution are examined, including hazard rate functions,
cumulative hazard rate functions, mean deviation, reliability function, moments, conditional moments,
incomplete moments, quantile function, entropy, Lorenz and Bonferroni curves, order statistics, and
symmetry measures such as skewness and kurtosis. The parameters of the proposed distribution are estimated
using the maximum likelihood estimation method, and a simulation study is conducted to assess its
performance. Two real datasets are utilized to demonstrate the significance of the proposed distribution,
showing that it performs comparably or better than well-known distributions. Furthermore, the suggested
Arctan exponential distribution is employed within the Bayesian framework. The model’s parameters are
estimated and predicted using posterior samples generated through the application of the Markov Chain
Monte Carlo (MCMC) technique. The application of the suggested model involves employing the Stan
software in conjunction with the Hamiltonian Monte Carlo (HMC) algorithm and its adaptive variant known
as the No-U-turn sampler (NUTS). A real dataset is utilized to showcase the methodology, and both numerical
and graphical Bayesian analyses are performed, employing weakly informative priors. A posterior predictive
check is also conducted to evaluate the model’s predictability. The tools and methods employed in this study
adhere to the Bayesian approach and are implemented using the R statistical programming language.

INDEX TERMS Arctan distribution, posterior distribution, gamma prior, credible interval, Lorenz curve.

I. INTRODUCTION techniques. By characterizing the patterns and variability of

Statistical distributions play a pivotal role in the field of
probability theory and statistics, providing a mathematical
framework to describe the behavior of random variables
and the likelihood of various outcomes in a given dataset
or phenomenon. These distributions are fundamental build-
ing blocks for various statistical analyses and inference
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data, statistical distributions enable researchers and analysts
to make informed decisions, draw meaningful conclusions,
and quantify uncertainties in their findings. Each distribution
possesses unique properties and parameters that capture
specific data characteristics, such as central tendency, spread,
and shape. The selection of an appropriate distribution
depends on the nature of the data and the research question
at hand. Gaussian (normal), exponential, binomial, Poisson,
and uniform distributions, among others, find extensive
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applications in fields such as economics, biology, engineer-
ing, and social sciences. Through their ability to model
real-world phenomena and provide a structured framework
for data analysis, statistical distributions are indispensable
tools for researchers and practitioners seeking to derive
insights and make evidence-based inferences from empirical
observations.

Statistical models have emerged as indispensable tools in
the fields of weather and chemistry due to their capacity to
discern patterns, relationships, and trends within complex
datasets. In meteorology, these models aid in forecasting
and understanding atmospheric phenomena by integrating
diverse variables such as temperature, humidity, and air
pressure to predict weather patterns. They enable researchers
to unravel the dynamics of climate change, extreme events,
and long-term trends, providing valuable insights for policy
formulation and disaster preparedness. Similarly, in chem-
istry, statistical models contribute to the analysis of intricate
molecular interactions, aiding in drug discovery, environ-
mental assessments, and material design. By capturing
intricate correlations among various chemical properties,
these models facilitate the prediction of chemical behaviors
and reactions. Moreover, they optimize experiments, reduce
costs, and offer a deeper understanding of the underlying
mechanisms. In both weather and chemistry, statistical
models bridge the gap between observations and theoretical
understanding, enhancing decision-making processes and
advancing scientific knowledge.

Probability distributions are frequently employed to exam-
ine the lifespan of events, devices, or system components.
Lifetime distributions find wide application across various
fields, including medicine, biology, econometrics, engineer-
ing, and insurance. Several well-known classical continuous
probability distributions have been identified in statistical
literature for analyzing lifetime datasets. These include the
exponential, Cauchy, gamma, Weibull, etc. distributions.
Over the past few years, researchers have predominantly
focused on the exponential distribution’s ability to model
lifetime data. Its closed-form solutions have proven highly
effective in numerous reliability analyses. However, it is
important to note that while the exponential distribution
assumes a constant failure rate, real-world failure rates
often deviate from this assumption. Consequently, using
an exponential distribution may often be inappropriate
and unrealistic. Recently, researchers have endeavored to
develop novel probability distributions that extend existing
ones, providing greater flexibility in data modeling. These
distributions are created by introducing new parameters
into established distributions, thus expanding the family of
distributions available. In the past few years, modifications to
the original exponential distribution introduced by Smith and
Bain [37] have been proposed, resulting in the emergence of
the exponential power distribution. These models have been
instrumental in establishing novel classes of distributions. For
instance, Gupta and Kundu [16] devised a generalized expo-
nential distribution that surpasses the standard exponential
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model by incorporating a hazard function with varying failure
rates.

Gupta and Kundu [17] also introduced the weighted expo-
nential distribution, while Y AL-Jammal [1] proposed the
exponentiated exponential distribution to model failure data.
In [7], the exponential-Weibull distribution was introduced
as a suitable model for skewed lifetime data. To extend
the exponential distribution, Chaudhary et al. [5] proposed
the truncated version of the Cauchy power exponential
distribution, and Joshi et al. [24] proposed the logistic-
exponential power distribution, which uses exponential
power as a parent distribution. If the random variable i.e. X >
0 follows an exponential distribution with parameter A, then
its cumulative distribution function (CDF) and probability
density function (PDF) are

G(x; M) =1—exp(—Ax) ;1 > 0. (1)
glx; )= Aexp (—lx) ;A > 0. 2)

Nadarajah and Haghighi [30] proposed the extended expo-
nential distribution as an expansion of the exponential
distribution. Due to its broad application, simplicity, and
mathematical tractability, we chose the exponential distri-
bution as the base distribution. We present a trigonomet-
ric model in this study. Recently, trigonometric models
have attracted significant attention from researchers. For
instance, Souza et al. [38] introduced the Sine inverse
Weibull distribution, and Jamal and Chesneau [23] pro-
posed the Sine Kumaraswamy-G family and analyzed the
Sine Kumaraswamy exponential distribution. Furthermore,
Shrahili et al. [36] introduced the Sine inverted exponential
distribution, and Tomy and Chesneau [41] defined the Sine
modified Lindley distribution using the Sine-G family of
distribution. Additionally, Chaudhary et al. [6] presented the
arctan generalized exponential distribution with a flexible
hazard rate, and Isa et al. [22] defined the Sine exponential
distribution and investigated its properties. Its CDF and PDF
respectively are as follows

G(x;ﬂ)=Sin[z(1—e_ﬂx)];x>0,,3>0, )
2
and
T gy T g
g(x:p)=—pe p 005[5(1—6 p )];x>0,ﬁ>0. “)

The primary goal of this paper is to introduce a versatile
trigonometric model that can be fitted to real-world data
by inserting one more parameter into the exponential
distribution. Trigonometric models are relatively recent in the
area of statistics and reliability analysis, and we are interested
in exploring their properties. To accomplish this, we have
opted to utilize the arc-tan-G family of distribution presented
by Gémez-Déniz and Calderin-Ojeda [15] to introduce our
new model. They initially introduced this distribution family
to model Norwegian fire insurance data and proposed the
Pareto arctan distribution as a new distribution based on
an underlying Pareto distribution. It was observed that this
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distribution provided a better fit when compared to other
established distributions. The Arctan distribution family’s
CDF and PDF have also been provided with support [a, b].

arctan[a {1 — G(x; 7)}]_

Fx)=1- ;a>0,x>0;a €la,b].
arctan(o)

(5

)= xgiT) «>0.x>0 (6)

arctan(a) 1+ [a{1 — G(x; T)}]z;

Here g(x;t) and G(x;t) are the PDF and CDF of an
arbitrary parent model respectively. The parameter space
of the parent model is denoted by 7. In this paper, the
authors have employed both the classical and Bayesian
approaches for parameter estimation, posterior analysis,
and posterior predictive check. A comprehensive Bayesian
approach was implemented using Markov Chain Monte
Carlo (MCMC) methods, specifically the Hamiltonian Monte
Carlo (HMC) algorithm and its adaptive variant, the No-
U-turn sampler (NUTS), to investigate this model. For
more details, see [8], [25], and [31]. The proposed study
is divided into several sections. Section II introduces the
arctan exponential distribution and several reliability-related
functions. Section III discusses the statistical properties of
the proposed model. To compute the model’s parameters, the
maximum likelihood estimation (MLE) method is used in
Section IV. In Section V, we perform a simulation study to
investigate the characteristics of the MLEs. In Section VI,
we evaluate the applicability of the proposed distribution
using two real-world data sets. Here, we assess the goodness
of fit and model adequacy through various tests to validate the
arctan exponential model. Bayesian analysis of the suggested
model is presented in Section VII and finally, we provide
some general concluding remarks in Section VIII.

Il. THE ARCTAN EXPONENTIAL (ATE) DISTRIBUTION

By inserting Equation (1) into Equation (5), the CDF of the
ATE distribution can be obtained with the parameters « and
A. This can then be presented as:

arctan[a{exp(—Ax)}]

Fx;a,A)=1-— ca, A >0,x>0.
arctan(o)
(7
And the corresponding PDF of Equation (8) is
ald exp(—Ax)
jo,A) = X > 8
fla ) arctan(o) [ 1+ [aexp(—Ax)]? * ®)

A. RELIABILITY FUNCTION

Let X ~ ATE («, A) then the function for the reliability of
ATE distribution is

RGxv) = arctan[a{exp(—Ax)}] >0,

arctan(o)

©))
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FIGURE 1. Possible shapes of PDF (on the left) and HRF (on the right) for
various « and A values.

B. HAZARD RATE FUNCTION (HRF)
Let X ~ ATE (a, 7L) then HRF of ATE distribution is,

ade M
h(x)= ;x>0
arctan [a{exp(—Ax)}] {1+ [« exp(—Ax)]?}
(10)
C. HAZARD DISTRIBUTION FUNCTION
For the proposed model, it can be expressed as
t -2
H (x) = —log arctan[a{exp(—Ax)}] ' (11
arctan(o)

Graphs of the ATE distribution’s PDF and HRF for different
« and A parameter values are shown in Figure 1.
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Ill. STATISTICAL PROPERTIES OF ATE DISTRIBUTION
A. LINEAR FORM OF ATE DISTRIBUTION

To enhance the understanding of the ATE distribution,
we utilize power series expansions to extend both its CDF
and PDF.

(1-y" —Z( ly()y yl<lLn>0.  (12)

1+ =Z(—1)" (”+§‘1)ﬂ. (13)
j=0

Expansion of the CDF of ATE distribution defined in (7) is

P B arctan[a{exp(—Ax)}] k
[F@F = |:1 arctan(a) :| - 19
Applying series (12) we can express as
[F () ]F :Zdj{arctan(ae—“)}j. (15)

J=0

where dj = (— 1)1
Equation (8) takes the form

{arctan(a)} 7 The PDF defined in

-1
fx)= Wn() {1+ [aexp(=Ax)1*} exp(—Ax). (16)
Using Equation (13) we can obtain
> .
f(x) — Zgi efl(21+l)x. (]7)
i=0
where g = el Further, the PDF defined in

arctano
Equation (17) can also be presented as the linear combination

of exponential densities as

[
Z (_l)ia2i+ll efl(2i+1)x

arctano “4

fx)=

1 21+1

~ arctana Z(_ ] i+1)

A 20+ 1)e HEitDx

00
O[ZH_I

1 ; .
- arctano g(_ ) (2i +1)f (x). (18)

Here f* (x) denote the PDF of exponential distribution with
rate parameter A (2i+1).

B. MOMENTS OF ATE DISTRIBUTION

The 7™ moment about the origin of ATE distribution using
PDF defined in Equation (17) can be defined as

w, = /Ooxrf(x)dx
0

00 00

_ r —A(1+420)x

= X E gie dx
/o

i=0
Cr+1)
l (1 +2 )]r+1

o0

"

(19)
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oo
where [x"e ™dx = L fl;’rll) is a standard gamma integral.

0
Substituting the values of r = 1,2, 3,4 in Equation (19) we
get the first four moments. Now one can compute the mean
of X as

> 1
EX)=pj=D e,
i=0

[A(1+20)]

C. CONDITIONAL MOMENTS

The ¢ conditional moment of ATE distribution can be
determined as

Yg = / xf (x)dx

00 00
— / x4 Zgiefl(lJer)xdx
@ i=0

B igf‘(q—i—l,l(l+2i)a)
=7 [Aa+2n] !

(20)

I'(n+1, ab)

o0
where [ x"e P dx = s

a

function and ¢; =

is an upper gamma integral
(=1yla! T2y,

arctano

D. INCOMPLETE MOMENT
The utilization of incomplete moments is significant in
assessing reliability. The ™ incomplete moment of the ATE
distribution can be formulated as follows:

t

Mj"“ = /xrf (x)dx

y(r+1,AQi+1)1)
= {rei+n) !

2

M8

b

where y (a,b) = f e *x% gy is the function of lower

0
incomplete gamma.

E. MOMENT GENERATING FUNCTION (MGF) OF ATE
DISTRIBUTION

The mgf of Y using Equation (19) is

o0k
My (t)=E (e’Y) = %,u,’(
k=0 "
- ZZ F(k+ Dra+20] " @2

k=0 i=0

F. INEQUALITY MEASUREMENT FUNCTIONS

1) LORENZ CURVE (LC)

It is also an important statistical tool to measure inequality,
and it can be obtained for ATE distribution as

Minc 0
L) = IM_/(”) =S y@AQi+Dp), @3
1 i=0
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where M f’“’ is the first incomplete moment and p is the
quantile function.

2) BONFERRONI CURVE (BC)

This function can be obtained by using LC and defined as
B(p) = 2.
p

G. ENTROPY

Entropy is a statistical tool used to quantify the degree of
randomness or variation. Two commonly used entropies,
Renyi, and g, have been developed for ATE distribution.

1) RENYI ENTROPY
This type of entropy can be defined as

In(x) = I hlog/[f(x)]hdx;h>0andh7é 1. (24
0

The expression for [f 0))" is derived as

(x) Z V; e*l(h+21)x

where v; =
distribution is

. Now Renyi entropy for ATE

(arctana)”

1
I (x) = og[Zv,m} h>0and h+1.

(25)

2) Q-ENTROPY
Similarly, g-entropy is defined as

Z, (x) = log 1—/[f(x)]qu (-9~ 'ig>0and g #1.

(26)
_ ~ X
Z,x)=log| 1= vi— [(1—g)7". 27
4(x) =log gvll(qm)]( q) 27)
H. MEAN DEVIATION (MD)
The expression for MD about the mean is
MD(M)Z/IX—le(X)dx
0
[e ¢}
—2uF -2+ [f . @9
N

where w is the E(X). Using the PDF defined in Equation (17)
and the upper gamma function defined in Equation (20) we
get
S {2, Ad+2iu)
MD(w) =2uF(u)—2u+ ) &
(W) =2uF(u) =21 ; (1)

. (29

115466

I. ORDER STATISTICS (OS) FOR ATE DISTRIBUTION

Let X;., denotes the i OS and f;., denotes PDF of i OS
for X(1), ..., X(n from CDF F;,, (x) and using CDF and PDF
defined in Equations (15) and (17) and PDF of OS for
ATE is

n. n—i i—

Jin (x) = m[l—l’(ﬂ] [F I f @)
—' c+i—1
i~ @ )Z( ) el

S n— —A(142k)x
d4
(z—l)'(n—z)'§lzo‘g 1( )’8"6
{arctan(ae_lx)}] ,
(30)
where d; = (—1)7(C+l_1){arctan(a)}_j and g =
(—l)k(leerl

arctano

J. QUANTILE FUNCTION (QF) FOR ATE DISTRIBUTION
QF of the ATE distribution with u following a uniform
distribution [0, 1] is composed as

1 1
0 (u; o, l) = —)—Llog [;tan{arctan(a)(l — u)}i| 0<u<1.
(31)

By substituting the value of u = 1/4,1/2 and 3/4 in
Equation (31) we can obtain the value of the lower quartile,
median and upper quartile respectively.

K. RANDOM DEVIATION GENERATION

Using the quantile function, we can generate random numbers
as

X = —%log |:lmn {1 —v)arctan(a)}] 0<v<l1l. (32
o

L. SKEWNESS AND KURTOSIS

Skewness and kurtosis are effective statistical techniques
for conducting descriptive analyses. To compute Bowley’s
skewness utilizing quantiles, we can use the following
formula:

0 (0.25; o, l) -20 (0.5; o, l) +Q (0.75; o, l)
Bsx = .

0 (0.75; o, ),) -0 (0.5; o, l)

(33)

and The Moors kurtosis introduced by Moors [28] is (34), as
shown at the bottom of the next page.

From Figure 2, it can be observed that the ATE
distribution’s skewness and kurtosis decrease with increas-
ing values of the parameter «. Additionally, it appears
that A has a minimal effect on the shape of the
distribution.
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FIGURE 2. Graphs of skewness and kurtosis for different combination of
o« and A.

IV. CLASSICAL METHODS FOR PARAMETER ESTIMATION
A. MLE METHOD

In this part, we have demonstrated the MLE method to

estimate the parameters of the ATE distribution. The log-

likelihood function / (a, A /)_c) for the random sample x =
(x1,...,x,) of size ‘n’ from ATE (Ol, l) can be presented as,

I (e, Alx) = n (loger +log A) — nlog{arctan(a)} — A in
i=1

n
— D In{1+[eexp(—Ax)I*}. (35)
i=1
By differentiating Equation (35) with respect to «, and A we
get

a n S lexp(—Ax)]?
da o arctan(a)[1 +o?] * 1+ exp(—Ax)]?

A n < 2 xilexp(—Ax)]? 37

on A lzx‘ Z 1+ [aexp(— A ©7
The MLEs for ATE will be acquired by solving Equations (36)
and (37) and setting the unknown parameters (a, A) to zero.
As resolving them manually is challenging, one can utilize
the appropriate software to solve these equations.

B. CONFIDENCE INTERVAL (CI) FOR PARAMETERS
Let U = (o, A) and U = (a, l) denote the vectors for
parameters and MLEs then the information matrix defined
by Fisher is obtained as
921 821
I (U) _ E (W) E (aaax)
= 821 821
£ (5i) (%)
Now the observed matrix O (@) can be used as an estimate of
1)

(38)

N 3—2§ 91
0 (D) =_( g’ ag'ﬁ) -z (Q)l(m) (39)
aAda IAZ |(&,i) =

where Z is a Hessian matrix. Hence inverse of the observed
matrix is used to generate the SE as

[_Z ©) }1 _( var@ cov@, ) “0)
7l (6=5) cov(A,a) var(d)

Hence the Cl at 100(1 — v)% confidence levels for parameters

(v, A) can be presented as follows: & £ 1,/2SE (&) ,and A £

Nv/2SE (i) where 7, is the area under the normal curve.

V. NUMERICAL SIMULATION FOR MLES
The behavior of the MLEs of the ATE(«, A) distribution
can be studied using Monte Carlo simulation for N =
1000 replications. In this study, we select sample sizes
= 20,40, 60, 80, 100,150 and two sets of parameter
combinations. To carry out this study, we have performed the
following algorithm
1) Assign the initial values to the parameter.
2) Decide the size of the sample #n.
3) Using the quantile function, generate the random
numbers of size n.
4) Determine the MLEs of each of N independent
samples.
5) Determine the mean of the N estimates and calculate
the biases and mean square error (MSE) for each
pararneter as

Bias = + z(a,—a)) and MSE = - z(a,—a)2 for o, where

Mgy =

(36) o is the 1n1t1a1 value and 51m11arly for A. Results of the

0(0.375;,4) —0(0.625;a, 1) + Q (0.875; ¢, 1) — 0 (0.125; &, A) 34
[0 (0.75; o, l) — Q(0.25; o, l)

115467
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TABLE 1. Simulation study for « = 0.5 and 1 = 0.25.

TABLE 4. Simulation study for « = 1.5 and 1 =1.25.

. MLE Bias MSE
a p) a y) & p)
20 1.0491 03045 05491 00545 2016 0.0131
40 07527 02794 02527 0.0294 0.6514  0.0047
60  0.6399 02697 0.1399 0.0197 03942  0.0027
80 0596 02649 0.096 00149 03022 0.0017
100 05684 02619 00684 00119 02719 0.0012
150 05213 02577 0.0213 0.0077 0.1766  0.0008

TABLE 2. Simulation study for « =0.75 and 1 = 0.5.

N MLE Bias MSE
o3 A o A o A
20 22749 14317 0.7749  0.1817 5.0486  0.236
40 1.8238  1.3346 0.3238 0.0846 1.6174  0.0982
60 1.6869 1.3013 0.1869 0.0513  0.8061  0.0579
80 1.6141  1.2805 0.1141 0.0305 0.5253  0.0396
100 1.599 1.2811 0.099  0.0311 0.386  0.0319
150  1.5468 1.2689 0.0468 0.0189  0.2588  0.0198

TABLE 5. CI for MLEs along with SE.

_ Parameter CI MLE SE

n MLE Bias MSE a (05019, 11.5400)  6.0246  2.814

a A a 2 o A A (0.8193,1.7659)  1.2926  0.2415
20 1.2757  0.5988  0.5257 0.0988  2.439  0.0488
40 0.9592 05509 0.2092  0.0509 0.7664 0.0177
60 0855 05327 0.105 00327 04573 00105 C. TEST OF THE ADEQUACY OF ATE DISTRIBUTION
80 0.8115 05235 0.0615 0.0235  0.351 0.0067 . C e
100 07895 05179 00395 0.0179 03123 0005 To illustrate the performance of the ATE distribution,
150 0.7538 05108 0.0038 0.0108 0.1976  0.0032 we selected several renowned distributions for compar-

TABLE 3. Simulation study for alpha = 1.25 and lambda = 0.75.

N MLE Bias MSE
o A [/ A [ A
20 1.9459  0.8727  0.6959  0.1227 43805  0.0926
40 1.4378  0.793  0.1878  0.043  0.9301 0.0289
60 1.4421  0.7869  0.1921  0.0369 0.7002  0.0209
80 1.3451 0.7743  0.0951 0.0243  0.4696  0.0153
100 1.3291 0.7694 0.0791 0.0194 0.3231  0.0107
150  1.2968 0.7613  0.0468 0.0113  0.2087  0.0075

simulation are presented in Tables 1 and 2 and we observed
that biases and MSEs are decreased even for small increments
in the sample size.

VI. APPLICATIONS TO REAL DATASET

For the application, we demonstrate the usefulness of ATE
distribution by showcasing two real authentic datasets:
meteorology and chemistry.

A. DATASET-I

We used an actual data set that was first employed by Hinkley
[19]. The dataset provides thirty consecutive March rainfall
(inches) values for Minneapolis/St. Paul. ““0.77, 1.74, 0.81,
1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,
0.52,1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75,
2.48,0.96, 1.89, 0.90, 2.05”

B. ESTIMATION OF THE PARAMETERS

The MLEs were calculated by optimizing the likelihood
function (35) through the function maxLik () in the R
software package [34], as described by Hui [21]. The
MLEs, along with their SE and 95%CI for « and A, are
presented in Table 5. Also, we have calculated the matrix for
variance as

M — 7.91837 0.56158
~10.56158 0.05835

115468

ative analysis. These distributions include the Gompertz
distribution (GZ) introduced by Murthy et al. [29], the
Exponential power (EP) distribution proposed by Smith
and Bain [37], the Marshall-Olkin Extended Exponential
(MOEE) distribution presented by Marshall and Olkin
[26], and the NHE distribution (Exponential extension) by
Nadarajah and Haghighi [30].

To assess the model adequacy, we computed various infor-
mation criteria: the Akaike information criterion (AIC), cor-
rected AIC (CAIC), negative log-likelihood (-LL), Bayesian
information criterion (BIC), and Hannan-Quinn information
criterion (HQIC). These criteria were calculated using the
following expressions:

AIC = —21(0) +2b.

BIC = —21(6)+blog (n) .
2b(w+1)
n—b—1"

HQIC = —21(0) +2blog [log (n)].

CAIC =AIC +

where the symbols n and b, represent the sample size and the
number of parameters respectively. To evaluate the adequacy
of fit for the ATE distribution, we computed three statistical
metrics: Kolmogorov-Smirnov (KS), Anderson-Darling (W),
and Cramer-Von Mises (A?). These tests are commonly used
to compare models and assess the level of agreement between
an observed dataset’s empirical distribution and a particular
cumulative distribution function (CDF).
KS = max (di—:, i—d,-),

1<i<n

1 .
W=-n—-— Z(Zz — 1) [logd; +log (1 —dus1-1)],

i=1
" TQi—1) 2
2[5 el

where d(j) = CDF (x) the x;’s are ordered variables.
Table 6 displays the AIC, BIC, CAIC, HQIC, and -LL

A = L
12n
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TABLE 6. Some model selection statistics.

Distribution  AIC BIC CAIC  HQIC LL
ATE 824562 852585 829006 83.3527 39.2281
MOEE 827540 855564 83.1984  83.6505  39.3770
EP 849537 87.7561 85.3982  85.8502  40.4769
GZ 86.1523  88.9547 86.5967 87.0488  41.0762
NHE 86.8436  89.6459 87.2880 87.7401  41.4218
o
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FIGURE 3. Q-Q and P-P plots of ATE distribution.

indicators to evaluate the proposed model’s suitability.
Figure 3 depicts the ATE distribution’s Q-Q plot (theoretical
versus empirical quantile) and P-P plot. In Figure 4,
we presented the fitted density function of candidate models
and an empirical along with the estimated distribution
function of ATE distribution. Table 7 displays the W, KS, and
AZ statistics and their associated p-values, which were used to
assess the goodness-of-fit of the ATE model in comparison
to alternative distributions. Based on the results, the ATE
distribution showed the lowest value of test statistics and a
higher p-value, indicating that it is a superior fit and produces
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TABLE 7. Statistics for goodness-of-fit and associated p-values.

Distribution W(p-value) KS(p-value) A (p-value)

ATE 0.1803(0.9950)  0.0600(0.9999)  0.0182(0.9987)
MOEE 0.2125(0.9866)  0.0641(0.9997)  0.0219(0.9955)
EP 0.5166(0.7285)  0.1164(0.8107)  0.0738(0.7320)
GZ 0.6440(0.6060)  0.1149(0.8230)  0.0836(0.6749)
NHE 2.8190(0.0341)  0.2381(0.0666)  0.4905(0.0414)

more reliable and consistent outcomes than the distributions
under study.

D. DATASET-II
The data set consisting of 34 observations of vinyl chloride in
mg/L was taken from surveillance wells for clean-up gradient
ground-water [3].

“5.1,1.2,1.3,0.6,0.5,2.4,0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9,
04,2.0,05,5.3,3.2,2.7,29,25,2.3,1.0,0.2,0.1, 0.1, 1.8,
09,2.0,4.0,6.8,1.2,04,0.2”.
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TABLE 8. MLEs with SE.

Distribution parameter SE parameter SE

ATE(&, 1) 0.0018 1.2944 0.5321 0.0913
MOEEATE(é, 1) 0.8230 0.4845 0.4819 0.1733
EPATE(é, A) 0.7110 0.0994 0.2790 0.0419
NHE(¢, 6) 0.9003 0.3442 0.6320 0.4160
GE(i, 6) 1.0764 0.2474 0.5581 0.1242

TABLE 9. Model selection and goodness-of-fit statistics.

Distribution KS(p-value) CVM(p-value) AD(p-value) -2logL AIC BIC

ATE 0.0890(0.9507)  0.0405(0.9331)  0.2719(0.9574)  110.9052  114.9052  117.9579
MOEE 0.0876(0.9565)  0.0318(0.9716) 0.241(0.9749) 1107915 114.7915  117.8443
EP 0.1228(0.6840)  0.0927(0.6246)  0.5801(0.6657)  113.7415 117.7415 120.7942
NHE 0.0838(0.9707)  0.0328(0.9679)  0.2417(0.9745)  110.8345  114.8345  117.8872
GE 0.0978(0.9012)  0.0521(0.8668)  0.3179(0.9236)  110.8037  114.8037  117.8565

E. PARAMETER ESTIMATION

For the application of ATE distribution using second data,
we have considered four other well-known distributions, and
the GZ model is replaced by GE (generalized exponential)
distribution due to the problem in estimating its parameters.
MLEs along with SE are reported in Table 8 for all competing
models

F. MODEL SELECTION

For the second data set, we computed some criteria to choose
the best model such as -2logL., AIC, and BIC, and presented in
Table 9, and observed that the suggested model ATE performs
similar or better than MOEE, EP, NHE, and GE models.
Further PP-plot and QQ-plot are also depicted to visualize
its performance graphically in Figure 5.

G. GOODNESS-OF-FIT TEST OF ATE DISTRIBUTION

To compare the fit of the ATE distribution to the candidate
models MOEE, EP, NHE, and GE, we computed some
test statistics and p-values (see Table 9). According to our
findings, the ATE model fits the data as well as or better than
competing distributions (see Figure 6).

VII. MODEL ANALYSIS UNDER THE BAYESIAN
APPROACH

In a Bayesian approach, the analysis of the model involves
considering the parameters as random variables rather than
constants. Unlike the classical approach, where the likelihood
of the data sample is used, Bayesian modeling incorporates
prior information to support assumptions about the parameter
distribution Gelman et al. [13].

A. PRIOR DISTRIBUTION

In Bayesian analysis, a prior distribution (referred to as the
prior) represents our initial beliefs about the true parameter
values before considering the data. In this article, we have
chosen a Gamma prior to the parameters 6 = (a,l) as
o~ G(Cl,dl), and A ~ G(Cz,dz) where (C] = 0.01,d1 =
0.50) and (¢ = 0.01,d, = 0.75), respectively. The Gamma
prior described here is widely employed as a weak prior
for variance, exhibiting a nearly flat distribution (refer to
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FIGURE 5. Q-Q and P-P plots of ATE distribution.

Figure 7). We can express the prior distributions in the
following way

d!

pla) = ﬁa"l’l exp(—dia); o >0, (c1,d;) > 0.
as? o

p(A)= @l‘rlexp (=daA); A >0, (c2,d2) > 0.

B. LIKELIHOOD FUNCTION
When we have a dataset x = (x1, ..., X,), we can determine
the likelihood function using the following equation,

I (x]er, A) = n (loger +1og A) — nlog{arctan(a)} — A in
i=1

— Zln{l + [ exp(—lxi)]z}.

i=1
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The term p (a, 7L) represents the distribution that reflects
our prior beliefs about the various parameter values 6 =
(a, 7L) in our model.

C. POSTERIOR DISTRIBUTION

Under the Bayesian inference approach, Bayes’ theorem is
utilized to compute the posterior distribution—a probability
distribution estimate—which can be represented as follows:

ple.A/x) =L (xle,A)p(e)p(A).

P A/x)
_ ( al "ﬁ exp(—Ax;)
o arctan(a)) P 1+ [ exp(—Ax;)]?
c| dCZ
1 el B 2" el _
X F(Cl)al exp (—dja) _F(cz)l >“lexp(—daA).
p (o A/x)

arta—ipnta=l L fexp(—Ax; —dia — da )
arctan’(«) N

1 + [a exp(—Ax;)]?
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The posterior distribution contains all essential information
for Bayesian analyses, and the goal is to derive numerical
and graphical summaries by means of integration. However,
the posterior distribution can be rather complex, making it
challenging to draw any meaningful inferences. Therefore,
we propose an alternative approach called the simulation
technique. This technique relies on the utilization of the
Markov Chain Monte Carlo (MCMC) approach. MCMC
generates samples by operating a cleverly designed Markov
Chain that ultimately reaches convergence towards the
desired target distribution, namely the posterior distribution
p (a, A /)_c). There are various techniques available for con-
structing such chains. Some of these techniques include the
Gibbs sampler see [10] and [14] which are specific instances
within the general framework introduced by Metropolis et al.
[27] and Hasting [18]. In this article, we employ MCMC
algorithms implemented through Stan (Stan Development
team) [40]. Specifically, we utilize the HMC algorithm and
its adaptive variant NUTS. For more details, please refer to
the works of [4] and [20]. Recently, Sapkota [35] presented a
Bayesian analysis using the HMC/NUTS sampler.

D. SAMPLING METHOD

1) NO-U-TURN SAMPLER (NUTS):

The NUTS engine autonomously calculates the most suitable
value for the leapfrog step size, denoted as L, during each
iteration. The primary objective is to enhance the distance
traversed at every L while simultaneously regulating the
stochastic traversal pattern. Let 6y and 6; denote the initial
and current positions of a particle, respectively, while D
signifies half the displacement between 6y and 8; achieved at
each leapfrog step. The primary objective entails the iterative
execution of leapfrog steps until the position ; commences
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TABLE 10. Informational statistic of sampler parameters.

chains accept_stat  stepsize treedepth n_leapfrog divergent  energy
All chains 0.9316 0.2454 2.4606 8.0532 0 45.5748
chainl 0.9044 0.3678 2.2360 6.2530 0 45.6982
chain2 0.9289 0.2746 2.3970 7.4280 0 45.6536
chain3 0.9546 0.1475 2.7290 10.2950 0 45.4878
chain4 0.9383 0.1917 2.4805 8.2370 0 45.4594

TABLE 11. Summary of posterior samples for the ATE distribution.

parameter mean se_mean sd n_eff Rhat CI HPD

alpha 23559  0.0373  1.3385 1287 1.0015 (0.0217,5.1931)  (0.0000204, 4.680)
lambda 0.9092  0.0059 0.2074 1226 1.0018 (0.5187, 1.3023) (0.5080, 1.2900)
log-posterior -44.5854 0.0519 15163 852 1.0031 (-48.855,-43.1922) (-47.8756, -43.1603)

retrogressing towards 6y. This aim is effectively realized
through the application of a well-defined algorithm, wherein
leapfrog steps are undertaken until the temporal derivative of
the half-displacement D exhibits negativity.

oD 9
o ot

However, this algorithm does not guarantee convergence
or reversibility to the target distribution. To address this
issue, NUTS employs a doubling method for slice sampling,
as introduced by Neal [32]. For more detailed information
about NUTS, refer to Hoffman and Gelman [20], as well as
Nishio and Arkawa [33].

[ 6 — 90>T<91—90)] =1 —6p)"p<0.

2) HAMILTONIAN MONTE CARLO (HMC) METHOD
Hamiltonian Monte Carlo (HMC) exhibits a higher compu-
tational cost compared to Metropolis and Gibbs sampling
methods. However, HMC’s proposals demonstrate signif-
icantly enhanced efficiency Gelman, Lee, and Guo [13].
Consequently, HMC necessitates fewer samples for exploring
the posterior distribution.

3) CONVERGENCE AND EFFICIENCY DIAGNOSTICS FOR
NUTS/ HMC SAMPLING
We utilized the initial dataset provided in the application
section to analyze the model ATE under Bayesian. To conduct
the analysis, we employed Stan software that employs NUTS
sampler, which is a variant of HMC simulation, see Hoffman
and Gelman [20]. Our implementation involved running Stan
with the HMC algorithm and the NUTS engine, utilizing
four chains, and iterating over 4000 iterations. During the
convergence assessment, we make observations regarding the
performance of both NUTS/HMC and MCMC techniques

i) NUTS/ HMC: In this study, we examine the details
regarding  divergence, step_size, tree_depth,
enerqgy, and acceptance statistic. For more
information, please refer to the publication by Betancourt [2]
and the user manual of Stan (Stan Development team) [40].

ii) MCMC: The MCMC draws may be observed by
creating visual representations of the following graphs. such
as autocorrelation plots, trace plots, pairs plots, etc.
Figure 8 displayed here are autocorrelation plots for alpha and
lambda, representing all chains. Autocorrelation measures
the relationship between samples in a Monte Carlo simulation
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for more information see Vehtari et al. [42]. The illustration
in Figure 9 presents trace plots that effectively demonstrate
the favorable characteristics of mixing, stationarity, and
convergence for alpha and lambda variables across all chains.
Trace plots serve as invaluable tools for visually scrutinizing
the behavior of the sampling process and assessing the
uniformity of convergence within multiple chains. Figure 10
presents a pairs plot displaying the alpha, lambda, and log-
posterior MCMC samples. The diagonal of the plot consists
of univariate marginal posteriors represented by histograms.
Above and below the diagonal, bivariate plots are displayed
as scatter plots. Table 10 depicts the statistics relating to the
efficiency of the MCMC sampling.
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E. POSTERIOR ANALYSIS

1) NUMERICAL SUMMARY

Utilizing the R-Software in combination with the rstan
package (as documented in [39]), we have effectively derived
the posterior density for the fitted ATE model. The posterior
summary for all merged chains is provided in Table 11,
encompassing evaluations of the posterior mean, standard
error of the mean (se,,ean), posterior standard deviation (sd),
a95% credible interval (CI), and the highest posterior density
(HPD). Additionally, it is worth noting that the efficiency
of the samples is indicated by the fact that the number of
effective samples (n.ff) utilized for posterior mean estimation
surpasses 10% of the total sample size. The efficacy of the
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Yrep[30].

sampling process is further supported by the Rhat statistic
(estimated potential scale reduction), which registers a value
below 1.1.

2) VISUAL SUMMARY

We have created a histogram with a kernel density estimate
for alpha and lambda (Figure 11) using all 4 chains.
These graphical representations offer comprehensive infor-
mation about the posterior samples and their corresponding
parameters. In total, 8000 posterior samples were utilized
to generate these graphs. Notably, the parameter lambda
demonstrates near symmetry, while alpha displays positive
skewness.

F. POSTERIOR PREDICTIVE CHECKS (PPCS)

A common approach to evaluating the adequacy of a Bayesian
model is by assessing the agreement between the model’s
predictions and the observed data [11], [12]. If our model
effectively captures the data, it should generate simulated data
that closely resemble the observed data. The PPCs utilize
simulated data from the posterior predictive distribution
(PPD) to assess model fit. The R Bayes plot package
provides a range of plotting functions designed to facilitate
the visualization of posterior predictive checks. These visual
representations can be generated using both observed and
generated posterior predictive distribution (PPD) data. For
further details, readers are directed to the work by Gabry et al.
as outlined in [9]. The distribution of the outcome variable
implied by a model, known as the PPD, is obtained by
updating our beliefs about unknown parameters 6 = (oc, 7L)
based on the observed data y (N=30). The PPC for y,,,
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FIGURE 13. Fitted CDF with simulated CDF (left) and density of y and
simulated data (right).

observation can be generated using

pQG/y) = /p 5/ p0/y)do.

For every iteration within the simulation index s, spanning
from 1 to §, the posterior distribution 6(s) ~ p(@|y) of
the model parameters is subjected to analysis. Within this
context, a vector of N outcomes, denoted as y*, is generated
through the simulation process, wherein data is synthesized
from the data model, conditioned on the identified parame-
ters. This sequential procedure forms a matrix encompass-
ing § rows and N columns, thereby yielding an § x N
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(or 8000 x 30) matrix of drawn values. It is important to
emphasize that this matrix, derived from the simulation
process, represents duplications or replications of the existing
observed data y instead of predictive estimations tailored for
forthcoming observations. To enhance our comprehension
of the decision concerning the study of PPC, we examine
the three replicated observations: the smallest (y,.,[1]), the
middle (y,[15]), and the largest (y,,[30]). We have pro-
vided visual summaries to assess the predictive capabilities
of posterior samples. These summaries include a histogram
(Figure 12), the estimates of empirical CDF for each dataset
Yrep are superimposed with the distribution of y (represented
in dark) in Figure 13, left panel while in right panel
kernel density estimates. To provide a clearer understanding,
we have incorporated an interval plot see Figure 14 in the
left panel. This plot effectively illustrates intervals using
vertical bars, emphasizing the inner 80% and outer 90% HPD
intervals. Moreover, the plot utilizes data points to indicate
the medians, with darker points representing observed values
of y. Figure 14 showcases a histogram, featured in the right
panel, that illuminates the predictive errors derived from both
the observed data y and the synthesized data instances y,[1],
Vrepl15], and y,.,[30]. This visual representation provides
a comprehensive insight into the disparities between the
actual observed data and the outcomes generated from the
model.
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VIil. CONCLUSION

In conclusion, this research paper introduced the arctan
exponential distribution as a continuous distribution with
two parameters. The statistical and mathematical properties
of the suggested distribution were extensively explored,
including the hazard rate, cumulative hazard rate, moments,
incomplete moments, reliability function, quantile function,
entropies, order statistics, Lorenz and Bonferroni curves, and
symmetry measures such as skewness and kurtosis. The max-
imum likelihood estimation (MLE) method was employed
to estimate the distribution parameters, and a numerical
simulation experiment was conducted to assess the stability
and consistency of the MLEs. Real-world data sets were used
to demonstrate the significance of the proposed distribution,
and various test statistics were computed to evaluate its
applicability and potential. The results showed that the arctan
exponential distribution performed comparably or better than
other lifetime models considered.

Furthermore, a Bayesian analysis of the arctan exponen-
tial distribution was conducted using the Stan software,
employing the No-U-Turn sampler (NUTS) based on Markov
chain Monte Carlo (MCMC) techniques. This adaptive
variant of Hamiltonian Monte Carlo (HMC) offered a robust
and efficient sampling method. The chains were found
to be well mixed and converged through numerical and
graphical analysis. The model parameters were estimated,
and posterior predictive checks confirmed the model’s ability
to generate reliable samples. These Bayesian techniques
were successfully applied to an observed dataset, enabling a
comprehensive Bayesian analysis of the arctan exponential
distribution in the context of the research. This research
aimed to provide an alternative model for probability theory,
survival analysis, and applied statistics.
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